1
|
Jurado O, José MV, Frixione E. Fragile X mental retardation protein modulates translation of proteins with predicted tendencies for liquid-liquid phase separation. Biosystems 2025; 248:105405. [PMID: 39892695 DOI: 10.1016/j.biosystems.2025.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein and a key regulator of translation in neurons, hence crucial for neural development and plasticity. FMRP loss, resulting from mutations in the Fmr1 gene, leads to Fragile X Syndrome (FXS) and Autism Spectrum Disorder (ASD), the most common inherited intellectual disabilities. Ribosome profiling in neurons consistently reveals that FMRP-knockout (FK) significantly down-regulates the translation of numerous lengthy genes, many of which are FMRP-binding targets and associated with ASD. Despite these findings, the functional explanation for FMRP's translation regulation of large neuronal proteins remains elusive. Our present study compiles data from published ribosome profiling studies, to identify genes with significantly decreased translation in FK neurons. Using bioinformatic analysis and machine-learning sequence-based tools, PSPredictor and FuzDrop, we found that the proteins encoded by these genes are predicted to be enriched in intrinsically disordered regions and are prone to liquid-liquid phase separation. These findings suggest that FMRP modulates the translation of proteins involved in the formation of biomolecular condensates. Our results can have significant implications for understanding the molecular mechanisms of FXS and ASD, adding complexity to FMRP's regulatory functions, thus offering avenues for further exploration and targeted therapeutic interventions in intellectual disability disorders.
Collapse
Affiliation(s)
- Omar Jurado
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| | - Eugenio Frixione
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| |
Collapse
|
2
|
Kaufmann WE, Luu S, Budimirovic DB. Drug Treatments for Neurodevelopmental Disorders: Targeting Signaling Pathways and Homeostasis. Curr Neurol Neurosci Rep 2024; 25:7. [PMID: 39641900 DOI: 10.1007/s11910-024-01394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF THE REVIEW Preclinical and clinical evidence support the notion that neurodevelopmental disorders (NDDs) are synaptic disorders, characterized by excitatory-inhibitory imbalance. Despite this, NDD drug development programs targeting glutamate or gamma-aminobutyric acid (GABA) receptors have been largely unsuccessful. Nonetheless, recent drug trials in Rett syndrome (RTT), fragile X syndrome (FXS), and other NDDs targeting other mechanisms have met their endpoints. The purpose of this review is to identify the basis of these successful studies. RECENT FINDINGS Despite increasing evidence of disruption in synaptic homeostasis, most genetic variants associated with NDDs implicate proteins involved in cell regulation and not in neurotransmission. Metabolic processes, in particular mitochondrial function, appear to play a role in NDD pathophysiology. NDDs are also characterized by distinctive cell signaling abnormalities, which link cellular and synaptic homeostasis. Recent successful trials in NDDs, including those of trofinetide, the first drug specifically approved for one of these disorders (i.e., RTT), implicate the targeting of downstream processes (i.e., signaling pathways) rather than neurotransmitter receptors. Recent positive drug studies in NDDs and their underlying mechanisms, in conjunction with new knowledge on the pathophysiology of these disorders, support the concept that targeting signaling and cellular and synaptic homeostasis may be a preferred approach for ameliorating synaptic abnormalities in many NDDs.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Boston Children's Hospital, Boston, MA, 02115, USA.
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Skylar Luu
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dejan B Budimirovic
- Kennedy Krieger Institute and Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Fink JJ, Delaney-Busch N, Dawes R, Nanou E, Folts C, Harikrishnan K, Hempel C, Upadhyay H, Nguyen T, Shroff H, Stoppel D, Ryan SJ, Jacques J, Grooms J, Berry-Kravis E, Bear MF, Williams LA, Gerber D, Bunnage M, Furey B, Dempsey GT. Deep functional measurements of Fragile X syndrome human neurons reveal multiparametric electrophysiological disease phenotype. Commun Biol 2024; 7:1447. [PMID: 39506078 PMCID: PMC11541539 DOI: 10.1038/s42003-024-07120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function, and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS, but no efficacious treatment has been identified to date, possibly as a consequence of poor translation from pre-clinical animal models to human. Here, we use a high resolution all-optical electrophysiology platform applied to multiple FXS patient-derived and CRISPR/Cas9-generated isogenic neuronal cell lines to develop a multi-parametric FXS disease phenotype. This neurophysiological phenotype was optimized and validated into a high throughput assay based on the amount of FMRP re-expression and the number of healthy neurons in a mosaic network necessary for functional rescue. The resulting highly sensitive and multiparameter functional assay can now be applied as a discovery platform to explore new therapeutic approaches for the treatment of FXS.
Collapse
Affiliation(s)
- James J Fink
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - David Stoppel
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven J Ryan
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jane Jacques
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jennifer Grooms
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | - Mark F Bear
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis A Williams
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - David Gerber
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | - Graham T Dempsey
- Quiver Bioscience, Cambridge, MA, USA.
- Q-State Biosciences, Cambridge, MA, USA.
| |
Collapse
|
4
|
Toledano-Zaragoza A, Enriquez-Zarralanga V, Naya-Forcano S, Briz V, Alfaro-Ruíz R, Parra-Martínez M, Mitroi DN, Luján R, Esteban JA, Ledesma MD. Enhanced mGluR 5 intracellular activity causes psychiatric alterations in Niemann Pick type C disease. Cell Death Dis 2024; 15:771. [PMID: 39443481 PMCID: PMC11499878 DOI: 10.1038/s41419-024-07158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Niemann-Pick disease Type C (NPC) is caused by mutations in the cholesterol transport protein NPC1 leading to the endolysosomal accumulation of the lipid and to psychiatric alterations. Using an NPC mouse model (Npc1nmf164) we show aberrant mGluR5 lysosomal accumulation and reduction at plasma membrane in NPC1 deficient neurons. This phenotype was induced in wild-type (wt) neurons by genetic and pharmacological NPC1 silencing. Extraction of cholesterol normalized mGluR5 distribution in NPC1-deficient neurons. Intracellular accumulation of mGluR5 was functionally active leading to enhanced mGluR-dependent long-term depression (mGluR-LTD) in Npc1nmf164 hippocampal slices. mGluR-LTD was lower or higher in Npc1nmf164 slices compared with wt when stimulated with non-membrane-permeable or membrane-permeable mGluR5 agonists, respectively. Oral treatment with the mGluR5 antagonist 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP) reduced mGluR-LTD and ameliorated psychiatric anomalies in the Npc1nmf164 mice. Increased neuronal mGluR5 levels were found in an NPC patient. These results implicate mGluR5 alterations in NPC psychiatric condition and provide a new therapeutic strategy that might help patients suffering from this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Víctor Briz
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro Nacional de Sanidad Ambiental, Instituto Salud Carlos III, Majadahonda, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | - Daniel N Mitroi
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José A Esteban
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
5
|
Protic D, Breeze E, Mendoza G, Zafarullah M, Abbeduto L, Hagerman R, Coffey C, Cudkowicz M, Durbin-Johnson B, Ashwood P, Berry-Kravis E, Erickson CA, Filipink R, Gropman A, Lehwald L, Maxwell-Horn A, Morris S, Bennett AP, Prock L, Talboy A, Tartaglia N, Veenstra-VanderWeele J, Tassone F. Negative effect of treatment with mGluR5 negative allosteric modulator AFQ056 on blood biomarkers in young individuals with Fragile X syndrome. SAGE Open Med 2024; 12:20503121241282401. [PMID: 39483619 PMCID: PMC11526204 DOI: 10.1177/20503121241282401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Fragile X syndrome, with an approximate incidence rate of 1 in 4000 males to 1 in 8000 females, is the most prevalent genetic cause of heritable intellectual disability and the most common monogenic cause of autism spectrum disorder. The full mutation of the Fragile X Messenger Ribonucleoprotein-1 gene, characterized by an expansion of CGG trinucleotide repeats (>200 CGG repeats), leads to fragile X syndrome. Currently, there are no targeted treatments available for fragile X syndrome. In a recent large multi-site trial, FXLEARN, the effects of the mGluR5 negative allosteric modulator, AFQ056 (mavoglurant), were investigated, but did not show a significant impact of AFQ056 on language development in children with fragile X syndrome aged 3-6 years. Objectives The current analyses from biospecimens collected in the FXLEARN study aimed to determine whether AFQ056 affects the level of potential biomarkers associated with Akt/mTOR and matrix metalloproteinase 9 signaling in young individuals with fragile X syndrome. Previous research has indicated that these biomarkers play crucial roles in the pathophysiology of fragile X syndrome. Design A double-blind placebo-controlled parallel-group flexible-dose forced titration design. Methods Blood samples for biomarkers were collected during the FXLEARN at baseline and subsequent visits (1- and 8-month visits). Biomarker analyses included fragile X messenger ribonucleoprotein-1 genotyping by Southern blot and PCR approaches, fragile X messenger ribonucleoprotein-1 mRNA levels determined by PCR, matrix metalloproteinase 9 levels' detection using a magnetic bead panel, and targets of the Akt/mTOR signaling pathway with their phosphorylation levels detected. Results This research revealed that administering AFQ056 does not affect the expression levels of the investigated blood biomarkers in young children with fragile X syndrome. Conclusion Our findings of the lack of association between clinical improvement and biomarkers' levels in the treatment group are in line with the lack of benefit observed in the FXLEARN study. These findings indicate that AFQ056 does not provide benefits as assessed by primary or secondary endpoints. Registration ClincalTrials.gov NCT02920892.
Collapse
Affiliation(s)
- Dragana Protic
- Faculty of Medicine, Department of Pharmacology, Clinical Pharmacology, and Toxicology, University of Belgrade, Belgrade, Serbia
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, Belgrade, Serbia
| | - Elizabeth Breeze
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Anatomy, and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | - Stephanie Morris
- Washington University Medical Center, Saint Louis Children’s Hospital, St. Louis, MO, USA
| | | | - Lisa Prock
- Boston Children’s Hospital, Boston, MA, USA
| | - Amy Talboy
- Emory University Medical Center, Atlanta, GA, USA
| | | | - Jeremy Veenstra-VanderWeele
- Center for Autism and the Developing Brain, New York-Presbyterian, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
7
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 PMCID: PMC11771367 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
8
|
Choi JH, Marsal-García L, Peraldi E, Walters C, Huang Z, Gantois I, Sonenberg N. Early metformin treatment: An effective approach for targeting fragile X syndrome pathophysiology. Proc Natl Acad Sci U S A 2024; 121:e2407546121. [PMID: 39042682 PMCID: PMC11295030 DOI: 10.1073/pnas.2407546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common genetic cause of autism spectrum disorder engendered by transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Given the early onset of behavioral and molecular changes, it is imperative to know the optimal timing for therapeutic intervention. Case reports documented benefits of metformin treatment in FXS children between 2 and 14 y old. In this study, we administered metformin from birth to Fmr1-/y mice which corrected up-regulated mitogen-2 activated protein kinase/extracellular signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 signaling pathways and specific synaptic mRNA-binding targets of FMRP. Metformin rescued increased number of calls in ultrasonic vocalization and repetitive behavior in Fmr1-/y mice. Our findings demonstrate that in mice, early-in-life metformin intervention is effective in treating FXS pathophysiology.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Laura Marsal-García
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Eve Peraldi
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Caleb Walters
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Ziying Huang
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| |
Collapse
|
9
|
Dionne O, Abolghasemi A, Corbin F, Çaku A. Implication of the endocannabidiome and metabolic pathways in fragile X syndrome pathophysiology. Psychiatry Res 2024; 337:115962. [PMID: 38763080 DOI: 10.1016/j.psychres.2024.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Fragile X Syndrome (FXS) results from the silencing of the FMR1 gene and is the most prevalent inherited cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorder. It is well established that Fragile X individuals are subjected to a wide array of comorbidities, ranging from cognitive, behavioural, and medical origin. Furthermore, recent studies have also described metabolic impairments in FXS individuals. However, the molecular mechanisms linking FMRP deficiency to improper metabolism are still misunderstood. The endocannabinoidome (eCBome) is a lipid-based signalling system that regulates several functions across the body, ranging from cognition, behaviour and metabolism. Alterations in the eCBome have been described in FXS animal models and linked to neuronal hyperexcitability, a core deficit of the disease. However, the potential link between dysregulation of the eCBome and altered metabolism observed in FXS remains unexplored. As such, this review aims to overcome this issue by describing the most recent finding related to eCBome and metabolic dysfunctions in the context of FXS. A better comprehension of this association will help deepen our understanding of FXS pathophysiology and pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Olivier Dionne
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada.
| | - Armita Abolghasemi
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - François Corbin
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| | - Artuela Çaku
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
| |
Collapse
|
10
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum SG, Razak KA, Gibson JR, Huber KM. Female-specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and estrogen receptor α. Cell Rep 2024; 43:114056. [PMID: 38581678 PMCID: PMC11112681 DOI: 10.1016/j.celrep.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024] Open
Abstract
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Collapse
Affiliation(s)
- Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA
| | - Darya Gonzalez
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Saba Mirjafary
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, USA; Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Jay R Gibson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Coulson RL, Frattini V, Moyer CE, Hodges J, Walter P, Mourrain P, Zuo Y, Wang GX. Translational modulator ISRIB alleviates synaptic and behavioral phenotypes in Fragile X syndrome. iScience 2024; 27:109259. [PMID: 38510125 PMCID: PMC10951902 DOI: 10.1016/j.isci.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/31/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Rochelle L. Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Valentina Frattini
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Caitlin E. Moyer
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Hodges
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Kumar V, Lee KY, Acharya A, Babik MS, Christian-Hinman CA, Rhodes JS, Tsai NP. mGluR7 allosteric modulator AMN082 corrects protein synthesis and pathological phenotypes in FXS. EMBO Mol Med 2024; 16:506-522. [PMID: 38374465 PMCID: PMC10940663 DOI: 10.1038/s44321-024-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anirudh Acharya
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew S Babik
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Molinaro G, Bowles JE, Croom K, Gonzalez D, Mirjafary S, Birnbaum S, Razak KA, Gibson JR, Huber KM. Female specific dysfunction of sensory neocortical circuits in a mouse model of autism mediated by mGluR5 and Estrogen Receptor α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.10.552857. [PMID: 37609208 PMCID: PMC10441407 DOI: 10.1101/2023.08.10.552857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Autism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, Pten, in neocortical pyramidal neurons (NSE Pten KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE Pten KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in Pten deleted female neurons. In support of this idea, Pten deleted Layer 5 cortical neurons have female-specific increases in mGluR5 and mGluR5-driven protein synthesis. In addition, mGluR5-ERα complexes are elevated in female cortex and genetic reduction of ERα in Pten KO cortical neurons rescues circuit excitability, protein synthesis and enlarged neurons selectively in females. Abnormal timing and hyperexcitability of neocortical circuits in female NSE Pten KO mice are associated with deficits in temporal processing of sensory stimuli and social behaviors as well as mGluR5-dependent seizures. Female-specific cortical hyperexcitability and mGluR5-dependent seizures are also observed in a human disease relevant mouse model, germline Pten +/- mice. Our results reveal molecular mechanisms by which sex and a high impact ASD-risk gene interact to affect brain function and behavior.
Collapse
|
15
|
Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis-dependent mGluR-LTD at CA3-CA1 synapses. PNAS NEXUS 2024; 3:pgae062. [PMID: 38384385 PMCID: PMC10879843 DOI: 10.1093/pnasnexus/pgae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.
Collapse
Affiliation(s)
- Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Linjia Ji
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claudia De Sanctis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
16
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Kim J, He MJ, Widmann AK, Lee FS. The role of neurotrophic factors in novel, rapid psychiatric treatments. Neuropsychopharmacology 2024; 49:227-245. [PMID: 37673965 PMCID: PMC10700398 DOI: 10.1038/s41386-023-01717-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michelle J He
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alina K Widmann
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Chojnacka M, Beroun A, Magnowska M, Stawikowska A, Cysewski D, Milek J, Dziembowska M, Kuzniewska B. Impaired synaptic incorporation of AMPA receptors in a mouse model of fragile X syndrome. Front Mol Neurosci 2023; 16:1258615. [PMID: 38025260 PMCID: PMC10665894 DOI: 10.3389/fnmol.2023.1258615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.
Collapse
Affiliation(s)
- Magdalena Chojnacka
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Stawikowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
20
|
Berry-Kravis E, Abbeduto L, Hagerman R, Coffey CS, Cudkowicz M, Erickson CA, McDuffie A, Hessl D, Ethridge L, Tassone F, Kaufmann WE, Friedmann K, Bullard L, Hoffmann A, Veenstra-VanderWeele J, Staley K, Klements D, Moshinsky M, Harkey B, Long J, Fedler J, Klingner E, Ecklund D, Costigan M, Huff T, Pearson B. Effects of AFQ056 on language learning in fragile X syndrome. J Clin Invest 2023; 134:e171723. [PMID: 37651202 PMCID: PMC10904045 DOI: 10.1172/jci171723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUNDFXLEARN, the first-ever large multisite trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of metabotropic glutamate receptor type 5 (mGluR5) negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3- to 6-year-old children with FXS, expected to have more learning plasticity than adults, for whom prior trials of mGluR5 NAMs have failed.METHODSAfter a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language-learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-reported cognitive and language measures.RESULTSFXLEARN enrolled 110 participants, randomized 99, and had 91 who completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures.CONCLUSIONDespite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from preclinical models to humans in genetic neurodevelopmental disorders.TRIAL REGISTRATIONClincalTrials.gov NCT02920892.FUNDING SOURCESNeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352; NIH grant P50HD103526; and Novartis IIT grant AFQ056X2201T for provision of AFQ056.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Leonard Abbeduto
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Randi Hagerman
- MIND Institute and Department of Pediatrics, UCD, Sacramento, California, USA
| | | | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea McDuffie
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - David Hessl
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, and Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Flora Tassone
- MIND Institute and Department of Biochemistry and Molecular Medicine, UCD, Sacramento, California, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lauren Bullard
- MIND Institute and Department of Psychiatry and Behavioral Sciences and
| | - Anne Hoffmann
- Departments of Pediatrics and Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Kevin Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Klements
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Moshinsky
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brittney Harkey
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeff Long
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Janel Fedler
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | | - Dixie Ecklund
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Michele Costigan
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Trevis Huff
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Brenda Pearson
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
21
|
Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis dependent mGluR-LTD at CA3-CA1 synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551676. [PMID: 37577654 PMCID: PMC10418280 DOI: 10.1101/2023.08.02.551676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the CNS and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein, are critical for mGluR-LTD and protect spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite of its modulation on the structural plasticity. In the present study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data show for the first time that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight to our understanding of spine/synapse-specific plasticity. Significance statement Hippocampal group I metabotropic glutamate receptor dependent long-term depression (mGluR-LTD), a form of learning and memory, is misregulated in many murine models of neurodevelopmental disorders. Despite extensive studies there is a paucity of information on the molecular mechanism underlying mGluR-LTD. Previously, we reported that loss of synaptopodin, an actin-associated protein found in a subset of mature dendritic spines, impairs mGluR-LTD. In the current study, we uncover the molecular and cellular deficits involved. We find that synaptopodin is required for the mGluR5-Homer interaction and uncover synaptopodin as a molecular switch for mGluR-LTD expression, as mGluR-LTD becomes protein synthesis-independent and relies on endocannabinoid signaling in synaptopodin knock-out. This work provides insight into synaptopodin as a gatekeeper to regulate mGluR-LTD at hippocampal synapses.
Collapse
|
22
|
Milla LA, Corral L, Rivera J, Zuñiga N, Pino G, Nunez-Parra A, Cea-Del Rio CA. Neurodevelopment and early pharmacological interventions in Fragile X Syndrome. Front Neurosci 2023; 17:1213410. [PMID: 37599992 PMCID: PMC10433175 DOI: 10.3389/fnins.2023.1213410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the leading monogenic cause of autism and intellectual disability. For years, several efforts have been made to develop an effective therapeutic approach to phenotypically rescue patients from the disorder, with some even advancing to late phases of clinical trials. Unfortunately, none of these attempts have completely succeeded, bringing urgency to further expand and refocus research on FXS therapeutics. FXS arises at early stages of postnatal development due to the mutation and transcriptional silencing of the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1) and consequent loss of the Fragile X Messenger Ribonucleoprotein (FMRP) expression. Importantly, FMRP expression is critical for the normal adult nervous system function, particularly during specific windows of embryogenic and early postnatal development. Cellular proliferation, migration, morphology, axonal guidance, synapse formation, and in general, neuronal network establishment and maturation are abnormally regulated in FXS, underlying the cognitive and behavioral phenotypes of the disorder. In this review, we highlight the relevance of therapeutically intervening during critical time points of development, such as early postnatal periods in infants and young children and discuss past and current clinical trials in FXS and their potential to specifically target those periods. We also discuss potential benefits, limitations, and disadvantages of these pharmacological tools based on preclinical and clinical research.
Collapse
Affiliation(s)
- Luis A. Milla
- Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Lucia Corral
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Jhanpool Rivera
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Nolberto Zuñiga
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Gabriela Pino
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Physiology Laboratory, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- Cell Physiology Center, Universidad de Chile, Santiago, Chile
| | - Christian A. Cea-Del Rio
- Laboratorio de Neurofisiopatologia, Centro de Investigacion Biomedica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
23
|
Dong R, Li X, Flores AD, Lai KO. The translation initiating factor eIF4E and arginine methylation underlie G3BP1 function in dendritic spine development of neurons. J Biol Chem 2023; 299:105029. [PMID: 37442236 PMCID: PMC10432808 DOI: 10.1016/j.jbc.2023.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Communication between neurons relies on neurotransmission that takes place at synapses. Excitatory synapses are located primarily on dendritic spines that possess diverse morphologies, ranging from elongated filopodia to mushroom-shaped spines. Failure in the proper development of dendritic spines has detrimental consequences on neuronal connectivity, but the molecular mechanism that controls the balance of filopodia and mushroom spines is not well understood. G3BP1 is the key RNA-binding protein that assembles the stress granules in non-neuronal cells to adjust protein synthesis upon exogenous stress. Emerging evidence suggests that the biological significance of G3BP1 extends beyond its role in stress response, especially in the nervous system. However, the mechanism underlying the regulation and function of G3BP1 in neurons remains elusive. Here we found that G3BP1 suppresses protein synthesis and binds to the translation initiation factor eIF4E via its NTF2-like domain. Notably, the over-production of filopodia caused by G3BP1 depletion can be alleviated by blocking the formation of the translation initiation complex. We further found that the interaction of G3BP1 with eIF4E is regulated by arginine methylation. Knockdown of the protein arginine methyltransferase PRMT8 leads to elevated protein synthesis and filopodia production, which is reversed by the expression of methylation-mimetic G3BP1. Our study, therefore, reveals arginine methylation as a key regulatory mechanism of G3BP1 during dendritic spine morphogenesis and identifies eIF4E as a novel downstream target of G3BP1 in neuronal development independent of stress response.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Xuejun Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China
| | - Angelo D Flores
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Jong YJI, Izumi Y, Harmon SK, Zorumski CF, ÓMalley KL. Striatal mGlu 5-mediated synaptic plasticity is independently regulated by location-specific receptor pools and divergent signaling pathways. J Biol Chem 2023; 299:104949. [PMID: 37354970 PMCID: PMC10388212 DOI: 10.1016/j.jbc.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Charles F Zorumski
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Karen L ÓMalley
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
25
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
26
|
Di Menna L, Orlando R, D'Errico G, Ginerete RP, Machaczka A, Bonaccorso CM, Arena A, Spatuzza M, Celli R, Alborghetti M, Ciocca E, Zuena AR, Scioli MR, Bruno V, Battaglia G, Nicoletti F, Catania MV. Blunted type-5 metabotropic glutamate receptor-mediated polyphosphoinositide hydrolysis in two mouse models of monogenic autism. Neuropharmacology 2023:109642. [PMID: 37392820 DOI: 10.1016/j.neuropharm.2023.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cβ and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.
Collapse
Affiliation(s)
| | - Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | | | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | | | | | | | | | - Marika Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - Eleonora Ciocca
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, The National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
27
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
28
|
Murari K, Abushaibah A, Rho JM, Turner RW, Cheng N. A clinically relevant selective ERK-pathway inhibitor reverses core deficits in a mouse model of autism. EBioMedicine 2023; 91:104565. [PMID: 37088035 PMCID: PMC10149189 DOI: 10.1016/j.ebiom.2023.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK/MAPK) pathway in the brain is hypothesized to be a critical convergent node in the development of autism spectrum disorder. We reasoned that selectively targeting this pathway could reverse core autism-like phenotype in animal models. METHODS Here we tested a clinically relevant, selective inhibitor of ERK pathway, PD325901 (Mirdametinib), in a mouse model of idiopathic autism, the BTBR mice. FINDINGS We report that treating juvenile mice with PD325901 reduced ERK pathway activation, dose and duration-dependently reduced core disease-modeling deficits in sociability, vocalization and repetitive behavior, and reversed abnormal EEG signals. Further analysis revealed that subchronic treatment did not affect weight gain, locomotion, or neuronal density in the brain. Parallel treatment in the C57BL/6J mice did not alter their phenotype. INTERPRETATION Our data indicate that selectively inhibiting ERK pathway using PD325901 is beneficial in the BTBR model, thus further support the notion that ERK pathway is critically involved in the pathophysiology of autism. These results suggest that a similar approach could be applied to animal models of syndromic autism with dysregulated ERK signaling, to further test selectively targeting ERK pathway as a new approach for treating autism. FUNDING This has beenwork was supported by Alberta Children's Hospital Research Foundation (JMR & NC), University of Calgary Faculty of Veterinary Medicine (NC), Kids Brain Health Network (NC), and Natural Sciences and Engineering Research Council of Canada (NC).
Collapse
Affiliation(s)
- Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Canada
| | - Abdulrahman Abushaibah
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Canada
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
29
|
Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, Verity NC, Wills JC, Li KW, Nolan MF, Osterweil EK. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron 2023; 111:508-525.e7. [PMID: 36495869 DOI: 10.1016/j.neuron.2022.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Beatriz Maio
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Cristina Martinez-Gonzalez
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melania Muscas
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nick C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jimi C Wills
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
30
|
Therapeutic Potential and Limitation of Serotonin Type 7 Receptor Modulation. Int J Mol Sci 2023; 24:ijms24032070. [PMID: 36768393 PMCID: PMC9916679 DOI: 10.3390/ijms24032070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Although a number of mood-stabilising atypical antipsychotics and antidepressants modulate serotonin type 7 receptor (5-HT7), the detailed contributions of 5-HT7 function to clinical efficacy and pathophysiology have not been fully understood. The mood-stabilising antipsychotic agent, lurasidone, and the serotonin partial agonist reuptake inhibitor, vortioxetine, exhibit higher binding affinity to 5-HT7 than other conventional antipsychotics and antidepressants. To date, the initially expected rapid onset of antidepressant effects-in comparison with conventional antidepressants or mood-stabilising antipsychotics-due to 5-HT7 inhibition has not been observed with lurasidone and vortioxetine; however, several clinical studies suggest that 5-HT7 inhibition likely contributes to quality of life of patients with schizophrenia and mood disorders via the improvement of cognition. Furthermore, recent preclinical studies reported that 5-HT7 inhibition might mitigate antipsychotic-induced weight gain and metabolic complication by blocking other monoamine receptors. Further preclinical studies for the development of 5-HT7 modulation against neurodevelopmental disorders and neurodegenerative diseases have been ongoing. To date, various findings from various preclinical studies indicate the possibility that 5-HT7 modifications can provide two independent strategies. The first is that 5-HT7 inhibition ameliorates the dysfunction of inter-neuronal transmission in mature networks. The other is that activation of 5-HT7 can improve transmission dysfunction due to microstructure abnormality in the neurotransmission network-which could be unaffected by conventional therapeutic agents-via modulating intracellular signalling during the neurodevelopmental stage or via loss of neural networks with aging. This review attempts to describe the current and novel clinical applications of 5-HT7 modulation based on preclinical findings.
Collapse
|
31
|
Borland JM, Dempsey DA, Peyla AC, Hall MAL, Kohut-Jackson AL, Mermelstein PG, Meisel RL. Aggression Results in the Phosphorylation of ERK1/2 in the Nucleus Accumbens and the Dephosphorylation of mTOR in the Medial Prefrontal Cortex in Female Syrian Hamsters. Int J Mol Sci 2023; 24:1379. [PMID: 36674893 PMCID: PMC9862940 DOI: 10.3390/ijms24021379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Like many social behaviors, aggression can be rewarding, leading to behavioral plasticity. One outcome of reward-induced aggression is the long-term increase in the speed in which future aggression-based encounters is initiated. This form of aggression impacts dendritic structure and excitatory synaptic neurotransmission in the nucleus accumbens, a brain region well known to regulate motivated behaviors. Yet, little is known about the intracellular signaling mechanisms that drive these structural/functional changes and long-term changes in aggressive behavior. This study set out to further elucidate the intracellular signaling mechanisms regulating the plasticity in neurophysiology and behavior that underlie the rewarding consequences of aggressive interactions. Female Syrian hamsters experienced zero, two or five aggressive interactions and the phosphorylation of proteins in reward-associated regions was analyzed. We report that aggressive interactions result in a transient increase in the phosphorylation of extracellular-signal related kinase 1/2 (ERK1/2) in the nucleus accumbens. We also report that aggressive interactions result in a transient decrease in the phosphorylation of mammalian target of rapamycin (mTOR) in the medial prefrontal cortex, a major input structure to the nucleus accumbens. Thus, this study identifies ERK1/2 and mTOR as potential signaling pathways for regulating the long-term rewarding consequences of aggressive interactions. Furthermore, the recruitment profile of the ERK1/2 and the mTOR pathways are distinct in different brain regions.
Collapse
Affiliation(s)
| | - Desarae A. Dempsey
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna C. Peyla
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Megan A. L. Hall
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert L. Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
32
|
Johnson D, Hagerman R. Medical use of cannabidiol in fragile X syndrome. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:415-426. [DOI: 10.1016/b978-0-323-90036-2.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Abstract
The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.
Collapse
Affiliation(s)
- Devon Johnson
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Courtney Clark
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
34
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
35
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
36
|
Kalinowska M, van der Lei MB, Kitiashvili M, Mamcarz M, Oliveira MM, Longo F, Klann E. Deletion of Fmr1 in parvalbumin-expressing neurons results in dysregulated translation and selective behavioral deficits associated with fragile X syndrome. Mol Autism 2022; 13:29. [PMID: 35768828 PMCID: PMC9245312 DOI: 10.1186/s13229-022-00509-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common genetic cause of autism spectrum disorder and intellectual disability, is caused by the lack of fragile X mental retardation protein (FMRP) expression. FMRP is an mRNA binding protein with functions in mRNA transport, localization, and translational control. In Fmr1 knockout mice, dysregulated translation has been linked to pathophysiology, including abnormal synaptic function and dendritic morphology, and autistic-like behavioral phenotypes. The role of FMRP in morphology and function of excitatory neurons has been well studied in mice lacking Fmr1, but the impact of Fmr1 deletion on inhibitory neurons remains less characterized. Moreover, the contribution of FMRP in different cell types to FXS pathophysiology is not well defined. We sought to characterize whether FMRP loss in parvalbumin or somatostatin-expressing neurons results in FXS-like deficits in mice. METHODS We used Cre-lox recombinase technology to generate two lines of conditional knockout mice lacking FMRP in either parvalbumin or somatostatin-expressing cells and carried out a battery of behavioral tests to assess motor function, anxiety, repetitive, stereotypic, social behaviors, and learning and memory. In addition, we used fluorescent non-canonical amino acid tagging along with immunostaining to determine whether de novo protein synthesis is dysregulated in parvalbumin or somatostatin-expressing neurons. RESULTS De novo protein synthesis was elevated in hippocampal parvalbumin and somatostatin-expressing inhibitory neurons in Fmr1 knockout mice. Cell type-specific deletion of Fmr1 in parvalbumin-expressing neurons resulted in anxiety-like behavior, impaired social behavior, and dysregulated de novo protein synthesis. In contrast, deletion of Fmr1 in somatostatin-expressing neurons did not result in behavioral abnormalities and did not significantly impact de novo protein synthesis. This is the first report of how loss of FMRP in two specific subtypes of inhibitory neurons is associated with distinct FXS-like abnormalities. LIMITATIONS The mouse models we generated are limited by whole body knockout of FMRP in parvalbumin or somatostatin-expressing cells and further studies are needed to establish a causal relationship between cellular deficits and FXS-like behaviors. CONCLUSIONS Our findings indicate a cell type-specific role for FMRP in parvalbumin-expressing neurons in regulating distinct behavioral features associated with FXS.
Collapse
Affiliation(s)
- Magdalena Kalinowska
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Mathijs B. van der Lei
- grid.5284.b0000 0001 0790 3681Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Michael Kitiashvili
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Maggie Mamcarz
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Mauricio M. Oliveira
- grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY USA
| | - Francesco Longo
- grid.8761.80000 0000 9919 9582Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA. .,NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
37
|
Flanagan K, Baradaran-Heravi A, Yin Q, Dao Duc K, Spradling AC, Greenblatt EJ. FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics 2022; 221:6613139. [PMID: 35731217 PMCID: PMC9339308 DOI: 10.1093/genetics/iyac094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022] Open
Abstract
Mutations in FMR1 are the most common heritable cause of autism spectrum disorder. FMR1 encodes an RNA-binding protein, FMRP, which binds to long, autism-relevant transcripts and is essential for normal neuronal and ovarian development. In contrast to the prevailing model that FMRP acts to block translation elongation, we previously found that FMRP activates the translation initiation of large proteins in Drosophila oocytes. We now provide evidence that FMRP-dependent translation is conserved and occurs in the mammalian brain. Our comparisons of the mammalian cortex and Drosophila oocyte ribosome profiling data show that translation of FMRP-bound mRNAs decreases to a similar magnitude in FMRP-deficient tissues from both species. The steady-state levels of several FMRP targets were reduced in the Fmr1 KO mouse cortex, including a ∼50% reduction of Auts2, a gene implicated in an autosomal dominant autism spectrum disorder. To distinguish between effects on elongation and initiation, we used a novel metric to detect the rate-limiting ribosome stalling. We found no evidence that FMRP target protein production is governed by translation elongation rates. FMRP translational activation of large proteins may be critical for normal human development, as more than 20 FMRP targets including Auts2 are dosage sensitive and are associated with neurodevelopmental disorders caused by haploinsufficiency.
Collapse
Affiliation(s)
- Keegan Flanagan
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada.,Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, BC V6T 1Z2
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada
| | - Qi Yin
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, BC V6T 1Z2
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| | - Ethan J Greenblatt
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada.,Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, Maryland 21218 USA
| |
Collapse
|
38
|
Seo SS, Louros SR, Anstey N, Gonzalez-Lozano MA, Harper CB, Verity NC, Dando O, Thomson SR, Darnell JC, Kind PC, Li KW, Osterweil EK. Excess ribosomal protein production unbalances translation in a model of Fragile X Syndrome. Nat Commun 2022; 13:3236. [PMID: 35688821 PMCID: PMC9187743 DOI: 10.1038/s41467-022-30979-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated protein synthesis is a core pathogenic mechanism in Fragile X Syndrome (FX). The mGluR Theory of FX predicts that pathological synaptic changes arise from the excessive translation of mRNAs downstream of mGlu1/5 activation. Here, we use a combination of CA1 pyramidal neuron-specific TRAP-seq and proteomics to identify the overtranslating mRNAs supporting exaggerated mGlu1/5 -induced long-term synaptic depression (mGluR-LTD) in the FX mouse model (Fmr1−/y). Our results identify a significant increase in the translation of ribosomal proteins (RPs) upon mGlu1/5 stimulation that coincides with a reduced translation of long mRNAs encoding synaptic proteins. These changes are mimicked and occluded in Fmr1−/y neurons. Inhibiting RP translation significantly impairs mGluR-LTD and prevents the length-dependent shift in the translating population. Together, these results suggest that pathological changes in FX result from a length-dependent alteration in the translating population that is supported by excessive RP translation. Dysregulated protein synthesis is key contributor to Fragile X syndrome. Here the authors identify a relationship between ribosome expression and the translation of long mRNAs that contributes to synaptic weakening in a model of Fragile X syndrome.
Collapse
Affiliation(s)
- Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Natasha Anstey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Nicholas C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sophie R Thomson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Jennifer C Darnell
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK. .,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
39
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
40
|
Sanderson TM, Ralph LT, Amici M, Ng AN, Kaang BK, Zhuo M, Kim SJ, Georgiou J, Collingridge GL. Selective Recruitment of Presynaptic and Postsynaptic Forms of mGluR-LTD. Front Synaptic Neurosci 2022; 14:857675. [PMID: 35615440 PMCID: PMC9126322 DOI: 10.3389/fnsyn.2022.857675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 μM) or a high (100 μM) concentration of (RS)-DHPG. We found that 30 μM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 μM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Thomas M. Sanderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Liam T. Ralph
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mascia Amici
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Ai Na Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bong-Kiun Kaang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Min Zhuo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sang Jeong Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- *Correspondence: Graham L. Collingridge,
| |
Collapse
|
41
|
Armstrong JL, Saraf TS, Bhatavdekar O, Canal CE. Spontaneous seizures in adult Fmr1 knockout mice: FVB.129P2-Pde6b+ Tyr Fmr1/J. Epilepsy Res 2022; 182:106891. [PMID: 35290907 PMCID: PMC9050957 DOI: 10.1016/j.eplepsyres.2022.106891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
The prevalence of seizures in individuals with fragile X syndrome (FXS) is ~25%; however, there are no reports of spontaneous seizures in the Fmr1 knockout mouse model of FXS. Herein, we report that 48% of adult (median age P96), Fmr1 knockout mice from our colony were found expired in their home cages. We observed and recorded adult Fmr1 knockout mice having spontaneous convulsions in their home cages. In addition, we captured by electroencephalography an adult Fmr1 knockout mouse having a spontaneous seizure-during preictal, ictal, and postictal phases-which confirmed the presence of a generalized seizure. We did not observe this phenotype in control conspecifics or in juvenile (age <P35) Fmr1 knockout mice. We hypothesized that chronic, random, noise perturbations during development caused the phenotype. We recorded decibels (dB) in our vivarium. The average was 61 dB, but operating the automatic door to the vivarium caused spikes to 95 dB. We modified the door to eliminate noise spikes, which reduced unexpected deaths to 33% in Fmr1 knockout mice raised from birth in this environment (P = 0.07). As the modifications did not eliminate unexpected deaths, we further hypothesized that building vibrations may also be a contributing factor. After installing anti-vibration pads underneath housing carts, unexpected deaths of Fmr1 knockout mice born and raised in this environment decreased to 29% (P < 0.01 compared to the original environment). We also observed significant sex effects, for example, after interventions to reduce sound and vibration, significantly fewer male, but not female, Fmr1 knockout mice died unexpectedly (P < 0.001). The spontaneous seizure phenotype in our Fmr1 knockout mice could serve as a model of seizures observed in individuals with FXS, potentially offering a new translationally-valid phenotype for FXS research. Finally, these observations, although anomalous, serve as a reminder to consider gene-environment interactions when interpreting data derived from Fmr1 knockout mice.
Collapse
Affiliation(s)
- Jessica L Armstrong
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Tanishka S Saraf
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Omkar Bhatavdekar
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, 3400 North Charles Street, Croft Hall B27, Baltimore, MD 21218, USA
| | - Clinton E Canal
- Mercer University, College of Pharmacy, Department of Pharmaceutical Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA.
| |
Collapse
|
42
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
43
|
Ding Q, Wu X, Li X, Wang H. Vorinostat Corrects Cognitive and Non-Cognitive Symptoms in a Mouse Model of Fragile X Syndrome. Int J Neuropsychopharmacol 2022; 25:147-159. [PMID: 34791268 PMCID: PMC8832232 DOI: 10.1093/ijnp/pyab081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is caused by mutations in the FMR1 gene. It is a form of heritable intellectual disability and autism. Despite recent advance in elucidating disease mechanisms, there is no efficacious medication. Because de novo drug development is a lengthy process, repurposing the existing FDA-approved drugs offers an opportunity to advance clinical intervention for FXS. Our previous study with transcriptome analysis predicts potential therapeutic effects of vorinostat on FXS. METHODS We analyzed the vorinostat-induced transcriptome changes and confirmed its similarity to that induced by trifluoperazine, which was previously shown to correct pathological outcomes associated with FXS. To validate the therapeutic efficacy, we examined vorinostat's effect on correcting the key behavioral and cellular symptoms in a mouse model of FXS. RESULTS We found that vorinostat restores object location memory and passive avoidance memory in the Fmr1 knockout mice. For the non-cognitive behavioral symptoms, vorinostat corrected the autism-associated alterations, including repetitive behavior and social interaction deficits. In the open field test, vorinostat dampened hyperactivity in the center area of the arena. Surprisingly, vorinostat did not correct the abnormally elevated protein synthesis in cultured Fmr1 knockout hippocampal neurons, suggesting that different aspects of pathological outcomes may respond differently to a specific therapeutic intervention. CONCLUSIONS We used the drug-induced transcriptome signature to predict new application of existing drugs. Our data reveal the therapeutic effects of the FDA-approved drug vorinostat in a mouse model of FXS.
Collapse
Affiliation(s)
- Qi Ding
- Department of Physiology Michigan State University, East Lansing, Michigan, USA
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hongbing Wang
- Department of Physiology Michigan State University, East Lansing, Michigan, USA
- Neuroscience Program Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
44
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
45
|
Bui TA, Shatto J, Cuppens T, Droit A, Bolduc FV. Phenotypic Trade-Offs: Deciphering the Impact of Neurodiversity on Drug Development in Fragile X Syndrome. Front Psychiatry 2021; 12:730987. [PMID: 34733188 PMCID: PMC8558248 DOI: 10.3389/fpsyt.2021.730987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common single-gene cause of intellectual disability and autism spectrum disorder. Individuals with FXS present with a wide range of severity in multiple phenotypes including cognitive delay, behavioral challenges, sleep issues, epilepsy, and anxiety. These symptoms are also shared by many individuals with other neurodevelopmental disorders (NDDs). Since the discovery of the FXS gene, FMR1, FXS has been the focus of intense preclinical investigation and is placed at the forefront of clinical trials in the field of NDDs. So far, most studies have aimed to translate the rescue of specific phenotypes in animal models, for example, learning, or improving general cognitive or behavioral functioning in individuals with FXS. Trial design, selection of outcome measures, and interpretation of results of recent trials have shown limitations in this type of approach. We propose a new paradigm in which all phenotypes involved in individuals with FXS would be considered and, more importantly, the possible interactions between these phenotypes. This approach would be implemented both at the baseline, meaning when entering a trial or when studying a patient population, and also after the intervention when the study subjects have been exposed to the investigational product. This approach would allow us to further understand potential trade-offs underlying the varying effects of the treatment on different individuals in clinical trials, and to connect the results to individual genetic differences. To better understand the interplay between different phenotypes, we emphasize the need for preclinical studies to investigate various interrelated biological and behavioral outcomes when assessing a specific treatment. In this paper, we present how such a conceptual shift in preclinical design could shed new light on clinical trial results. Future clinical studies should take into account the rich neurodiversity of individuals with FXS specifically and NDDs in general, and incorporate the idea of trade-offs in their designs.
Collapse
Affiliation(s)
- Truong An Bui
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Julie Shatto
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Tania Cuppens
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec-Université Laval et Département de Médecine Moléculaire de l'Université Laval, Laval, QC, Canada
| | - François V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
46
|
Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord 2021; 13:47. [PMID: 34645383 PMCID: PMC8513313 DOI: 10.1186/s11689-021-09394-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. Methods To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. Results Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. Conclusions Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09394-x.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Rashid Syed
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Keon Hessamian
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
47
|
Fernandes G, Mishra PK, Nawaz MS, Donlin-Asp PG, Rahman MM, Hazra A, Kedia S, Kayenaat A, Songara D, Wyllie DJA, Schuman EM, Kind PC, Chattarji S. Correction of amygdalar dysfunction in a rat model of fragile X syndrome. Cell Rep 2021; 37:109805. [PMID: 34644573 DOI: 10.1016/j.celrep.2021.109805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in vitro and in vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.
Collapse
Affiliation(s)
- Giselle Fernandes
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Pradeep K Mishra
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Mohammad Sarfaraz Nawaz
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | | | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anupam Hazra
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Sonal Kedia
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Aiman Kayenaat
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; University of Transdisciplinary Health Sciences and Technology, Bangalore 560064, India
| | - Dheeraj Songara
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - David J A Wyllie
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Peter C Kind
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sumantra Chattarji
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
48
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
49
|
Bengani H, Grozeva D, Moyon L, Bhatia S, Louros SR, Hope J, Jackson A, Prendergast JG, Owen LJ, Naville M, Rainger J, Grimes G, Halachev M, Murphy LC, Spasic-Boskovic O, van Heyningen V, Kind P, Abbott CM, Osterweil E, Raymond FL, Roest Crollius H, FitzPatrick DR. Identification and functional modelling of plausibly causative cis-regulatory variants in a highly-selected cohort with X-linked intellectual disability. PLoS One 2021; 16:e0256181. [PMID: 34388204 PMCID: PMC8362966 DOI: 10.1371/journal.pone.0256181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Institute of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Lambert Moyon
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Shipra Bhatia
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Susana R. Louros
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Jilly Hope
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Jackson
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Liusaidh J. Owen
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Magali Naville
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Jacqueline Rainger
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Graeme Grimes
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mihail Halachev
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura C. Murphy
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivera Spasic-Boskovic
- East Midlands and East of England NHS Genomic Laboratory Hub, Molecular Genetics, Adden brooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge, Cambridge, United Kingdom
| | | | - Peter Kind
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine M. Abbott
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Osterweil
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - F. Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
50
|
Klüssendorf M, Song I, Schau L, Morellini F, Dityatev A, Koliwer J, Kreienkamp HJ. The Golgi-Associated PDZ Domain Protein Gopc/PIST Is Required for Synaptic Targeting of mGluR5. Mol Neurobiol 2021; 58:5618-5634. [PMID: 34383253 PMCID: PMC8599212 DOI: 10.1007/s12035-021-02504-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022]
Abstract
In neuronal cells, many membrane receptors interact via their intracellular, C-terminal tails with PSD-95/discs large/ZO-1 (PDZ) domain proteins. Some PDZ proteins act as scaffold proteins. In addition, there are a few PDZ proteins such as Gopc which bind to receptors during intracellular transport. Gopc is localized at the trans-Golgi network (TGN) and binds to a variety of receptors, many of which are eventually targeted to postsynaptic sites. We have analyzed the role of Gopc by knockdown in primary cultured neurons and by generating a conditional Gopc knockout (KO) mouse line. In neurons, targeting of neuroligin 1 (Nlgn1) and metabotropic glutamate receptor 5 (mGlu5) to the plasma membrane was impaired upon depletion of Gopc, whereas NMDA receptors were not affected. In the hippocampus and cortex of Gopc KO animals, expression levels of Gopc-associated receptors were not altered, while their subcellular localization was disturbed. The targeting of mGlu5 to the postsynaptic density was reduced, coinciding with alterations in mGluR-dependent synaptic plasticity and deficiencies in a contextual fear conditioning paradigm. Our data imply Gopc in the correct subcellular sorting of its associated mGlu5 receptor in vivo.
Collapse
Affiliation(s)
- Malte Klüssendorf
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Lynn Schau
- Research Group Behavioral Biology, Center for Molecular Neurobiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
- Medical Faculty, Otto-Von-Guericke University, 39120, Magdeburg, Germany
| | - Judith Koliwer
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|