1
|
Zhang Y, Yan H, Han Y, Shan X, Li H, Liu F, Li P, Zhao J, Guo W. Influence of panic disorder and paroxetine on brain functional hubs in drug-free patients. J Psychopharmacol 2024; 38:1083-1094. [PMID: 39310938 DOI: 10.1177/02698811241278780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND The effects of panic disorder (PD) and pharmacotherapy on brain functional hubs in drug-free patients, and the utility of their degree centrality (DC) in diagnosing and predicting treatment response (TR) for PD, remained unclear. AIMS This study aimed to assess the effects of PD and paroxetine on brain functional hubs in drug-free patients and to identify neuroimaging biomarkers for diagnosing and predicting TR in patients with PD. METHODS Imaging data from 54 medication-free PD patients and 54 matched healthy controls (HCs) underwent DC and functional connectivity (FC) analyses before and after a 4-week paroxetine treatment. Diagnosis and prediction of TR models for PD were constructed using support vector machine (SVM) and support vector regression (SVR), with DC as features. RESULTS Patients with PD showed aberrant DC and FC in the anterior cingulum, temporal, and occipital areas compared with HCs at baseline. After treatment, DC of the patients increased in the calcarine cortex, lingual gyrus, and cerebellum IV/V, along with improved clinical symptoms. Utilizing voxel-wise DC values at baseline, the SVM effectively distinguished patients with PD from HCs with an accuracy of 83.33%. In SVR, the predicted TR significantly correlated with the observed TR (correlation coefficient (r) = 0.893, Mean Squared Error = 0.009). CONCLUSION Patients with PD exhibited abnormal DC and FC, notably in the limbic network, temporal, and occipital regions. Paroxetine ameliorated patients' symptoms while altering their brain FC. SVM and SVR models, utilizing baseline DC, effectively distinguished the patients from HCs and accurately predicted TR.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Moraes ACN, Wijaya C, Freire R, Quagliato LA, Nardi AE, Kyriakoulis P. Neurochemical and genetic factors in panic disorder: a systematic review. Transl Psychiatry 2024; 14:294. [PMID: 39025836 PMCID: PMC11258274 DOI: 10.1038/s41398-024-02966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
This systematic review addresses the complex nature of Panic Disorder (PD), characterized by recurrent episodes of acute fear, with a focus on updating and consolidating knowledge regarding neurochemical, genetic, and epigenetic factors associated with PD. Utilizing the PRISMA methodology, 33 original peer-reviewed studies were identified, comprising 6 studies related to human neurochemicals, 10 related to human genetic or epigenetic alterations, and 17 animal studies. The review reveals patterns of altered expression in various biological systems, including neurotransmission, the Hypothalamic-Pituitary-Adrenal (HPA) axis, neuroplasticity, and genetic and epigenetic factors leading to neuroanatomical modifications. Noteworthy findings include lower receptor binding of GABAA and serotonin neurotransmitters in the amygdala. The involvement of orexin (ORX) neurons in the dorsomedial/perifornical region in triggering panic reactions is highlighted, with systemic ORX-1 receptor antagonists blocking panic responses. Elevated Interleukin 6 and leptin levels in PD patients suggest potential connections between stress-induced inflammatory changes and PD. Brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) signaling are implicated in panic-like responses, particularly in the dorsal periaqueductal gray (dPAG), where BDNF's panicolytic-like effects operate through GABAA-dependent mechanisms. GABAergic neurons' inhibitory influence on dorsomedial and posterior hypothalamus nuclei is identified, potentially reducing the excitability of neurons involved in panic-like responses. The dorsomedial hypothalamus (DMH) is highlighted as a specific hypothalamic nucleus relevant to the genesis and maintenance of panic disorder. Altered brain lactate and glutamate concentrations, along with identified genetic polymorphisms linked to PD, further contribute to the intricate neurochemical landscape associated with the disorder. The review underscores the potential impact of neurochemical, genetic, and epigenetic factors on the development and expression of PD. The comprehensive insights provided by this systematic review contribute to advancing our understanding of the multifaceted nature of Panic Disorder and pave the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Clarissa Wijaya
- School of Psychology, Swinburne University, Melbourne, VIC, Australia
| | - Rafael Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | | | - Peter Kyriakoulis
- School of Psychology, Swinburne University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Wakeford AGP, Nye JA, Morin EL, Mun J, Meyer JS, Goodman M, Howell LL, Sanchez MM. Alterations in adolescent brain serotonin (5HT) 1A, 5HT 2A, and dopamine (D) 2 receptor systems in a nonhuman primate model of early life adversity. Neuropsychopharmacology 2024; 49:1227-1235. [PMID: 38671147 PMCID: PMC11224234 DOI: 10.1038/s41386-023-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 04/28/2024]
Abstract
Stress affects brain serotonin (5HT) and dopamine (DA) function, and the effectiveness of 5HT and DA to regulate stress and emotional responses. However, our understanding of the long-term impact of early life adversity (ELA) on primate brain monoaminergic systems during adolescence is scarce and inconsistent. Filling this gap in the literature is critical, given that the emergence of psychopathology during adolescence has been related to deficits in these systems. Here, we use a translational nonhuman primate (NHP) model of ELA (infant maltreatment by the mother) to examine the long-term impact of ELA on adolescent 5HT1A, 5HT2A and D2 receptor systems. These receptor systems were chosen based on their involvement in stress/emotional control, as well as reward and reinforcement. Rates of maternal abuse, rejection, and infant's vocalizations were obtained during the first three postnatal months, and hair cortisol concentrations obtained at 6 months postnatal were examined as early predictors of binding potential (BP) values obtained during adolescence using positron emission tomography (PET) imaging. Maltreated animals demonstrated significantly lower 5HT1A receptor BP in prefrontal cortical areas as well as the amygdala and hippocampus, and lower 5HT2A receptor BP in striatal and prefrontal cortical areas. Maltreated animals also demonstrated significantly lower D2 BP in the amygdala. None of the behavioral and neuroendocrine measurements obtained early in life predicted any changes in BP data. Our findings suggest that early caregiving experiences regulate the development of brain 5HT and DA systems in primates, resulting in long-term effects evident during adolescence.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Elyse L Morin
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Jerrold S Meyer
- Department of Psychological & Brain Sciences, University of Massachusetts, 441 Tobin Hall, Amherst, MA, 01003, USA
| | - Mark Goodman
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd. NE, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
4
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
5
|
Chen RJ, Nabila A, Gal Toth J, Stuhlmann H, Toth M. The chemokine XCL1 functions as a pregnancy hormone to program offspring innate anxiety. Brain Behav Immun 2024; 118:178-189. [PMID: 38428650 PMCID: PMC11044916 DOI: 10.1016/j.bbi.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Elevated levels of cytokines in maternal circulation increase the offspring's risk for neuropsychiatric disease. Because of their low homeostatic levels, circulating maternal cytokines during normal pregnancies have not been considered to play a role in fetal brain development and offspring behavior. Here we report that the T/NK cell chemotactic cytokine XCL1, a local paracrine immune signal, can function as a pregnancy hormone and is required for the proper development of placenta and male offspring approach-avoidance behavior. We found that circulating XCL1 levels were at a low pregestational level throughout pregnancy except for a midgestational rise and fall. Blunted elevation in maternal plasma XCL1 in dams with a genetic 5HT1A receptor deficit or following neutralization by anti-XCL1 antibodies increased the expression of tissue damage associated factors in WT fetal placenta and led to increased innate anxiety and stress reactivity in the WT male offspring. Therefore, chemokines like XCL1 may act as pregnancy hormones to regulate placenta development and offspring emotional behavior.
Collapse
Affiliation(s)
- Rosa J Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Judit Gal Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heidi Stuhlmann
- Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
6
|
Kim HM, Kang C, Chae B, Kang JC, Yoon HK. Exploring Brainstem Structural Abnormalities: Potential Biomarkers for Panic Disorder. Exp Neurobiol 2024; 33:18-24. [PMID: 38471801 PMCID: PMC10938071 DOI: 10.5607/en23034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
Panic disorder (PD), characterized by recurrent and intense panic attacks, presents a complex interplay between psychological and neurobiological factors. Although the amygdala and hippocampus have been studied extensively in the context of PD, the brainstem's involvement remains relatively underexplored. This study aims to address this gap by examining structural abnormalities within specific brainstem regions, including the medulla, pons, and midbrain. The study sample population comprised twenty-one adult patients diagnosed with PD and an age-gender-education-matched control group. Utilizing rigorous inclusion and exclusion criteria, confounding factors related to comorbid psychiatric conditions and brain structure abnormalities were minimized. Our findings revealed a significant reduction in medulla volume among PD patients, a finding that persisted even after correcting for individual differences in total intracranial volume. The medulla's role in cardiovascular regulation and autonomic function, coupled with its involvement in fear responses, underscores its potential significance in the pathophysiology of PD. This study elucidates the medulla's structural abnormalities as a potential biomarker for PD. Understanding the role of the brainstem in PD could pave the way for more targeted and effective interventions for this condition.
Collapse
Affiliation(s)
- Hye-Min Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan 15355, Korea
| | - Chanmi Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Boram Chae
- Department of Psychiatry, Korea University Ansan Hospital, Ansan 15355, Korea
| | - June Christoph Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Ansan 15355, Korea
| |
Collapse
|
7
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Delli Pizzi S, Chiacchiaretta P, Sestieri C, Ferretti A, Onofrj M, Della Penna S, Roseman L, Timmermann C, Nutt DJ, Carhart-Harris RL, Sensi SL. Spatial Correspondence of LSD-Induced Variations on Brain Functioning at Rest With Serotonin Receptor Expression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:768-776. [PMID: 37003409 DOI: 10.1016/j.bpsc.2023.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Lysergic acid diethylamide (LSD) is an atypical psychedelic compound that exerts its effects through pleiotropic actions, mainly involving 1A/2A serotoninergic (5-HT) receptor subtypes. However, the mechanisms by which LSD promotes a reorganization of the brain's functional activity and connectivity are still partially unknown. METHODS Our study analyzed resting-state functional magnetic resonance imaging data acquired from 15 healthy volunteers undergoing LSD single-dose intake. A voxelwise analysis investigated the alterations of the brain's intrinsic functional connectivity and local signal amplitude induced by LSD or by a placebo. Quantitative comparisons assessed the spatial overlap between these 2 indices of functional reorganization and the topography of receptor expression obtained from a publicly available collection of in vivo, whole-brain atlases. Finally, linear regression models explored the relationships between changes in resting-state functional magnetic resonance imaging and behavioral aspects of the psychedelic experience. RESULTS LSD elicited modifications of the cortical functional architecture that spatially overlapped with the distribution of serotoninergic receptors. Local signal amplitude and functional connectivity increased in regions belonging to the default mode and attention networks associated with high expression of 5-HT2A receptors. These functional changes correlate with the occurrence of simple and complex visual hallucinations. At the same time, a decrease in local signal amplitude and intrinsic connectivity was observed in limbic areas, which are dense with 5-HT1A receptors. CONCLUSIONS This study provides new insights into the neural processes underlying the brain network reconfiguration induced by LSD. It also identifies a topographical relationship between opposite effects on brain functioning and the spatial distribution of different 5-HT receptors.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - David J Nutt
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom; Psychedelics Division-Neuroscape, Neurology, University of California San Francisco, San Francisco, California
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
9
|
Murgaš M, Unterholzner J, Stöhrmann P, Philippe C, Godbersen GM, Nics L, Reed MB, Vraka C, Vanicek T, Wadsak W, Kranz GS, Hahn A, Mitterhauser M, Hacker M, Kasper S, Lanzenberger R, Baldinger-Melich P. Effects of bilateral sequential theta-burst stimulation on 5-HT 1A receptors in the dorsolateral prefrontal cortex in treatment-resistant depression: a proof-of-concept trial. Transl Psychiatry 2023; 13:33. [PMID: 36725835 PMCID: PMC9892572 DOI: 10.1038/s41398-023-02319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Theta-burst stimulation (TBS) represents a brain stimulation technique effective for treatment-resistant depression (TRD) as underlined by meta-analyses. While the methodology undergoes constant refinement, bilateral stimulation of the dorsolateral prefrontal cortex (DLPFC) appears promising to restore left DLPFC hypoactivity and right hyperactivity found in depression. The post-synaptic inhibitory serotonin-1A (5-HT1A) receptor, also occurring in the DLPFC, might be involved in this mechanism of action. To test this hypothesis, we performed PET-imaging using the tracer [carbonyl-11C]WAY-100635 including arterial blood sampling before and after a three-week treatment with TBS in 11 TRD patients compared to sham stimulation (n = 8 and n = 3, respectively). Treatment groups were randomly assigned, and TBS protocol consisted of excitatory intermittent TBS to the left and inhibitory continuous TBS to the right DLPFC. A linear mixed model including group, hemisphere, time, and Hamilton Rating Scale for Depression (HAMD) score revealed a 3-way interaction effect of group, time, and HAMD on specific distribution volume (VS) of 5-HT1A receptor. While post-hoc comparisons showed no significant changes of 5-HT1A receptor VS in either group, higher 5-HT1A receptor VS after treatment correlated with greater difference in HAMD (r = -0.62). The results of this proof-of-concept trial hint towards potential effects of TBS on the distribution of the 5-HT1A receptor. Due to the small sample size, all results must, however, be regarded with caution.
Collapse
Affiliation(s)
- Matej Murgaš
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Peter Stöhrmann
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
11
|
Voisin DA, Wakeford A, Nye J, Mun J, Jones SR, Locke J, Huhman KL, Wilson ME, Albers HE, Michopoulos V. Sex and social status modify the effects of fluoxetine on socioemotional behaviors in Syrian hamsters and rhesus macaques. Pharmacol Biochem Behav 2022; 215:173362. [PMID: 35219757 PMCID: PMC8983589 DOI: 10.1016/j.pbb.2022.173362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Social subordination increases risk for psychiatric disorders, while dominance increases resilience to these disorders. Fluoxetine, a selective serotonin (5HT) reuptake inhibitor whose actions are mediated in part by the 5HT1A receptor (5HT1AR), has sex- and social status-specific effects on socioemotional behavior and aggressive behavior. However, the impact of social status on these sex-specific effects remains unclear. The current study evaluated the impact of acute fluoxetine treatment and social status on dominance-related behaviors in female and male hamsters, and the impact of chronic fluoxetine treatment on socioemotional behavior and 5HT1AR binding potential (5HT1ARBP) in female rhesus macaques. We hypothesized that sex differences in the effects of fluoxetine on aggression in hamsters would be diminished in dominant and enhanced in subordinate males and that aggression in female hamsters would be enhanced in dominants and diminished in subordinates. In female rhesus macaques, we hypothesized that chronic fluoxetine would alter socioemotional behaviors and site-specific 5HT1ARBP in a status-dependent manner. Male (n = 46) and female (n = 56) hamsters were paired with conspecifics for three days to establish social rank. Hamsters received a single dose of 20 mg/kg fluoxetine or vehicle two-hours prior to a test with a non-aggressive intruder. Female rhesus monkeys (n = 14) housed were administered fluoxetine (2.8 mg/kg/day) or vehicle injections chronically for 14-days, separated by a three-week washout period. On Day 15, positron emission tomography neuroimaging for 5HT1ARBP was conducted. Fluoxetine treatment decreased aggression in subordinate female monkeys and subordinate female hamsters but not in dominant females of either species. Fluoxetine decreased aggression in dominant but not in subordinate male hamsters. Fluoxetine also reduced and increased prefrontal 5HT1ARBP in dominant and subordinate females, respectively. Taken together, these results provide cross-species evidence that social status and sex impact how increased 5HT modulates agonistic behavior.
Collapse
Affiliation(s)
- Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Alison Wakeford
- Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Jonathon Nye
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiyoung Mun
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Molecular Imaging Department, Charles River Laboratories, Mattawan, MI, United States of America
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
12
|
Shayganfard M. Are Essential Trace Elements Effective in Modulation of Mental Disorders? Update and Perspectives. Biol Trace Elem Res 2022; 200:1032-1059. [PMID: 33904124 DOI: 10.1007/s12011-021-02733-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
The emergence of mental disorders is associated with several risk factors including genetic and environmental susceptibility. A group of nutrients serves an especially important role in a number of essential neurodevelopmental processes through brain areas promoting the high degree of brain metabolism during early life, although almost all nutrients are needed. These include macronutrients and micronutrients (e.g., iron, magnesium, zinc, copper, selenium). Numerous nutritional psychiatry trials have been performed to examine the correlation of many individual nutrients with mental health, such as essential trace elements. The increased accumulation or lack of such components will facilitate an alternative metabolic pathway that can lead to many diseases and conditions of neurodevelopment. Mental functions have biochemical bases, so the impairment of such neurochemical mechanisms due to lack of trace elements can have mental effects. In psychological conditions such as depression, anxiety, schizophrenia, and autism, scientific studies demonstrate the putative role of trace element deficiency. Therefore, given the critical roles played by essential trace elements in the neurodevelopment and mental health, the effect of these elements' intake on the modulation of psychological functioning is reviewed.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
13
|
Samaddar S, Purkayastha S, Diallo S, Tantry SJ, Schroder R, Chanthrakumar P, Flory MJ, Banerjee P. The G Protein-Coupled Serotonin 1A Receptor Augments Protein Kinase Cε-Mediated Neurogenesis in Neonatal Mouse Hippocampus-PKCε-Mediated Signaling in the Early Hippocampus. Int J Mol Sci 2022; 23:1962. [PMID: 35216076 PMCID: PMC8878481 DOI: 10.3390/ijms23041962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/14/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) plays an important role in mood disorders. It has been demonstrated that 5-HT signaling through 5-HT1A receptors (5-HT1A-R) is crucial for early postnatal hippocampal development and later-life behavior. Although this suggests that 5-HT1A-R signaling regulates early brain development, the mechanistic underpinnings of this process have remained unclear. Here we show that stimulation of the 5-HT1A-R at postnatal day 6 (P6) by intrahippocampal infusion of the agonist 8-OH-DPAT (D) causes signaling through protein kinase Cε (PKCε) and extracellular receptor activated kinase ½ (ERK1/2) to boost neuroblast proliferation in the dentate gyrus (DG), as displayed by an increase in bromodeoxy-uridine (BrdU), doublecortin (DCX) double-positive cells. This boost in neuroproliferation was eliminated in mice treated with D in the presence of a 5-HT1A-R antagonist (WAY100635), a selective PKCε inhibitor, or an ERK1/2-kinase (MEK) inhibitor (U0126). It is believed that hippocampal neuro-progenitors undergoing neonatal proliferation subsequently become postmitotic and enter the synaptogenesis phase. Double-staining with antibodies against bromodeoxyuridine (BrdU) and neuronal nuclear protein (NeuN) confirmed that 5-HT1A-R → PKCε → ERK1/2-mediated boosted neuroproliferation at P6 also leads to an increase in BrdU-labeled granular neurons at P36. This 5-HT1A-R-mediated increase in mature neurons was unlikely due to suppressed apoptosis, because terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis showed no difference in DNA terminal labeling between vehicle and 8-OH-DPAT-infused mice. Therefore, 5-HT1A-R signaling through PKCε may play an important role in micro-neurogenesis in the DG at P6, following which many of these new-born neuroprogenitors develop into mature neurons.
Collapse
Affiliation(s)
- Sreyashi Samaddar
- Department of Physical Therapy, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA;
| | | | | | | | - Ryan Schroder
- Eurofins Lancaster PSS, Merck Sharp and Dohme, Rahway, NJ 07065, USA;
| | | | - Michael J. Flory
- Research Design and Analysis Service, New York State Institute for Developmental Disabilities, Staten Island, NY 10314, USA;
| | - Probal Banerjee
- Department of Chemistry, Center for Developmental Neuroscience, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
14
|
Gamma camera imaging in psychiatric disorders. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Esler M, Alvarenga M, Barton D, Jennings G, Kaye D, Guo L, Schwarz R, Lambert G. Measurement of Noradrenaline and Serotonin Metabolites With Internal Jugular Vein Sampling: An Indicator of Brain Monoamine Turnover in Depressive Illness and Panic Disorder. Front Psychiatry 2022; 13:818012. [PMID: 35722546 PMCID: PMC9201502 DOI: 10.3389/fpsyt.2022.818012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In research spanning three decades we have estimated brain monoamine turnover (approximately equating with synthesis rate) with sampling from the internal jugular veins and measurement of trans-cerebral plasma monoamine metabolite concentration gradients. Here we report indices of brain noradrenaline and serotonin turnover in patients with major depressive illness (MDD) and panic disorder (PD). Brain noradrenaline turnover was assessed from the combined flux into the internal jugular veins of the metabolites dihydroxyphenylglycol (DHPG) and 3-hydroxy-4-methoxyphenylglycol (MHPG), and brain serotonin turnover from the overflow of the primary metabolite, 5-hydroxyindole acetic acid (5HIAA). Comparison was made with matched healthy research participants. In both MD and PD the estimate of brain noradrenaline turnover provided by metabolite overflow was unremarkable. In contrast, in both patient groups the estimate of brain serotonin turnover provided by 5HIAA overflow was increased 3-4-fold (P < 0.01). This neurotransmitter abnormality was normalized in MDD and PD in clinical remission, during selective serotonin reuptake blocker (SSRI) dosing. We cannot be sure if the brain serotonergic abnormality we find in MDD and PD is causal or a correlate. Measurements in PD were not made during a panic attack. The increased estimated serotonin turnover here may possibly be a substrate for panic attacks; serotonergic raphe nuclei participate in anxiety responses in experimental animals. It is puzzling that the findings were identical in MDD and PD, although it may be pertinent that these psychiatric diagnoses are commonly comorbid. It is unlikely that activation of brain serotonergic neurons is driving the sympathetic nervous activation present, which contributes to cardiovascular risk, persistent sympathetic activation in MDD and episodic activation in PD during panic attacks. We have previously demonstrated that the mechanism of activation of human central sympathetic outflow in other contexts (hypertension, heart failure) is activation of noradrenergic brainstem neurons projecting to the hypothalamus and amygdala.
Collapse
Affiliation(s)
- Murray Esler
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Marlies Alvarenga
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David Barton
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Garry Jennings
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David Kaye
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ling Guo
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rosemary Schwarz
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin Lambert
- Human Neurotransmitter Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Kondaurova EM, Plyusnina AV, Ilchibaeva TV, Eremin DV, Rodnyy AY, Grygoreva YD, Naumenko VS. Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF. Int J Mol Sci 2021; 22:ijms222413319. [PMID: 34948116 PMCID: PMC8707087 DOI: 10.3390/ijms222413319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The serotonin 5-HT1A receptor is one of the most abundant and widely distributed brain serotonin (5-HT) receptors that play a major role in the modulation of emotions and behavior. The 5-HT1A receptor gene (Htr1a) is under the control of transcription factor Freud-1 (also known as Cc2d1a/Freud-1). Here, using adeno-associated virus (AAV) constructs in vivo, we investigated effects of a Cc2d1a/Freud-1 knockdown in the hippocampus of C57BL/6J mice on behavior, the brain 5-HT system, and brain-derived neurotrophic factor (BDNF). AAV particles carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a short-hairpin RNA targeting mouse Cc2d1a/Freud-1 mRNA had an antidepressant effect in the forced swim test 5 weeks after virus injection. The knockdown impaired spatiotemporal memory as assessed in the Morris water maze. pAAV_H1-2_shRNA-Freud-1_Syn_EGFP decreased Cc2d1a/Freud-1 mRNA and protein levels. Furthermore, the Cc2d1a/Freud-1 knockdown upregulated 5-HT and its metabolite 5-hydroxyindoleacetic acid but not their ratio. The Cc2d1a/Freud-1 knockdown failed to increase mRNA and protein levels of Htr1a but diminished a 5-HT1A receptor functional response. Meanwhile, the Cc2d1a/Freud-1 knockdown reduced Creb mRNA expression and CREB phosphorylation and upregulated cFos mRNA. The knockdown enhanced the expression of a BDNF precursor (proBDNF protein), which is known to play a crucial part in neuroplasticity. Our data indicate that transcription factor Cc2d1a/Freud-1 is implicated in the pathogenesis of depressive disorders not only via the 5-HT1A receptor and transcription factor CREB but also through an influence on BDNF.
Collapse
|
17
|
Chan JZ, Fernandes MF, Hashemi A, Grewal RS, Mardian EB, Bradley RM, Duncan RE. Age-associated increase in anxiety-like behavior in Lpaatδ/Agpat4 knockout mice. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Stupin KN, Zenko MY, Rybnikova EA. Comparative Analysis of Pathobiochemical Changes in Major Depression and Post-Traumatic Stress Disorder. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:729-736. [PMID: 34225595 DOI: 10.1134/s0006297921060109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/13/2023]
Abstract
Comparative analysis of available literature data on the pathogenetic neuroendocrine mechanisms of depression and post-traumatic stress disorder (PTSD) is provided in this review to identify their common features and differences. We discuss the multidirectional modifications of the activity of cortical and subcortical structures of the brain, levels of neurotransmitters and their receptors, and functions of the hypothalamic-pituitary-adrenocortical axis in depression and PTSD. The analysis shows that these disorders are examples of opposite failures in the system of adaptive stress response of the body to stressful psychotraumatic events. On this basis, it is concluded that the currently widespread use of similar approaches to treat these disorders is not justified, despite the significant similarity of their anxiety-depressive symptoms; development of differential therapeutic strategies is required.
Collapse
Affiliation(s)
- Konstantin N Stupin
- Pavlov Institute of Physiology, Russian Academy of Sciences, St.-Petersburg, 199034, Russia
| | - Mikhail Y Zenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, St.-Petersburg, 199034, Russia
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St.-Petersburg, 199034, Russia.
| |
Collapse
|
19
|
Kumari N, Kaul A, Varshney R, Singh VK, Srivastava K, Bhagat S, Mishra AK, Tiwari AK. Synthesis and evaluation of technetium-99m labelled 1-(2-methoxyphenyl)piperazine derivative for single photon emission computed tomography imaging for targeting 5-HT 1A. Bioorg Chem 2021; 111:104972. [PMID: 33993020 DOI: 10.1016/j.bioorg.2021.104972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Quantitative changes in expression level of 5HT1A are somewhere related to common neurological disorders such as anxiety, major depression and schizophrenia. We have designed EDTA conjugated SPECT imaging probe for localization of 5HT1A receptor in brain. For designing SPECT probe we have employed the concept of bivalent approach and a homodimeric system with desirable pharmacokinetics of 5HT1A imaging. 99mTc-EDHT was also evaluated for its stability through serum stability assay and glutathione challenge experiment. Biodistribution study showed the highest accumulation of radioactivity in kidney which depicted the renal mode of excretion from the body. However in brain the uptake of 1.21% ID per gram was observed in initial 5 min of drug administration. On blocking the receptor this percent get decreased to 0.97% ID per gram. The regional distribution in brain was also performed which showed the accumulation of drug in cerebellum, cortex and hippocampus part, which are already known for 5HT1A expression. Dynamic study in rabbit is also in support of results derived from biodistribution and blood kinetics experiment. These finding suggest that 99mTc-EDHT holds promising place for further optimization before nuclear medicine applications in different animal species.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Chemistry, School of Physical & Decision Sciences (SPDS), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, UP, India; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India; Department of Chemistry, University of Delhi, Delhi 110054, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India
| | - Vinay Kumar Singh
- Department of Chemistry, Dr. S.M.N.R University, Lucknow 226018, India
| | - Krishna Srivastava
- Faculty of Chemical Sciences, Shri Ramswaroop Memorial University, Lucknow 225003, UP, India
| | - Sunita Bhagat
- Department of Chemistry, University of Delhi, Delhi 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, School of Physical & Decision Sciences (SPDS), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226025, UP, India; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi 110054, India.
| |
Collapse
|
20
|
Sakakibara R, Ogata T, Aiba Y, Tateno F, Uchiyama T, Yamamoto T. Does Depression Contribute to the Bladder and Bowel Complaint in Parkinson's Disease Patients? Mov Disord Clin Pract 2021; 8:240-244. [PMID: 33553494 DOI: 10.1002/mdc3.13124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background The question of whether depression contributes to the bladder and bowel complaint in Parkinson's disease (PD) has not been addressed. Objectives We studied bladder, bowel and sexual symptoms in PD patients with/without depression. Methods We had 267 referred PD patients: age 68.3 ± 7.7 years, 150 men, 117 women. We divided them into those with/without depression and performed the pelvic function questionnaires including bladder, bowel and sexual items; for example, OABSS, IPSS, and a pelvic organ questionnaire). Results The patient age, sex ratio, disease duration, Hoehn-Yahr motor grade, and cognitive score were not significantly different between the PD with depression (n = 35, 13.1%) and PD without depression (n = 232, 86.9%) groups. Regarding bladder, bowel and sexual complaints, significant difference was noted in constipation (P = 0.000854) and sensation of residual urine (P = 0.04820) items. Conclusions Our PD patients with depression showed significantly more common constipation and sensation of residual urine compared to the patients with PD alone, suggesting that depression contributes to the bladder and bowel complaint in PD patients.
Collapse
Affiliation(s)
- Ryuji Sakakibara
- Neurology, Internal Medicine, Sakura Medical Center Toho University Sakura Japan
| | - Tsuyoshi Ogata
- Neurology, Internal Medicine, Sakura Medical Center Toho University Sakura Japan
| | - Yosuke Aiba
- Neurology, Internal Medicine, Sakura Medical Center Toho University Sakura Japan
| | - Fuyuki Tateno
- Neurology, Internal Medicine, Sakura Medical Center Toho University Sakura Japan
| | - Tomoyuki Uchiyama
- Neurology International University of Health and Welfare Narita Japan
| | - Tatsuya Yamamoto
- Neurology Chiba Prefectural University of Health Sciences Chiba Japan
| |
Collapse
|
21
|
Cumming P, Gründer G, Brinson Z, Wong DF. Applications, Advances, and Limitations of Molecular Imaging of Brain Receptors. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
23
|
Sahoo S, Kharkar PS, Sahu NU, S B. Anxiolytic activity of Psidium guajava in mice subjected to chronic restraint stress and effect on neurotransmitters in brain. Phytother Res 2020; 35:1399-1415. [PMID: 33034100 DOI: 10.1002/ptr.6900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/05/2023]
Abstract
The anxiolytic activity of Psidium guajava L. leaf ethanolic extract (PLE) and its effect on neurotransmitter systems was investigated. PLE, extracted using Soxhlet apparatus, was subjected to preliminary qualitative and quantitative (flavonoids and phenols) analyses. The anxiolytic activity at 100, 200, and 400 mg/Kg doses were assessed in mice using elevated plus maze (EPM) and light/dark transition (LDT) test models on days 1 and 16. Neurotransmitters such as monoamines (serotonin, norepinephrine, and dopamine), γ-aminobutyric acid (GABA), and glutamate were estimated in different regions of the brain (cortex, hippocampus, and cerebellum and brain stem). Phytoconstituents identified using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry were analyzed in silico to evaluate their potential binding mode(s) to GABAA and 5-HT1A receptors. Phytochemical studies showed the presence of alkaloids, tannins, flavonoids, saponins, anthraquinone glycosides, carbohydrates, and proteins, whereas total flavonoid and phenol contents were estimated to be 64.96 ± 0.95 and 206.58 ± 1.60 mg/g of dried extract, respectively. PLE treatment significantly enhanced exploratory activity of mice in EPM and LDT models with significant effects on monoamines, GABA and glutamate levels in the brain. The in silico studies suggested the interaction(s) of PLE component(s) with GABAA /5-HT1A receptors as a potential mechanism of its anxiolytic activity.
Collapse
Affiliation(s)
- Swati Sahoo
- Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, India
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Niteshkumar U Sahu
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Brijesh S
- Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
24
|
Alqhazo M, Rashaid AB. Amino acids profiles of children who stutter compared to their fluent sibling. Int J Psychiatry Clin Pract 2020; 24:301-308. [PMID: 32129116 DOI: 10.1080/13651501.2020.1735447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: This study scrutinises the abundances of 9 neurological-related amino acids of the scalp hair of 35 (5 females, 30 males) children who stutter and 30 normally fluent children (age and sex matched).Methods: Samples of hair from children who stutter aged (5-9 years) were collected from Speech Clinic at King Abdullah Hospital. The control subjects were selected from the same families of children who stutter to exclude the effect of nutritional, environmental, and biological factors. Amino Acid Analyser was used to measure the concentrations of amino acids in acid hydrolysed hair samples.Results: results indicated that the concentrations of threonine, tyrosine, and isoleucine (p = 0.001, 0.001, 0.02 respectively) are lower in hair samples of people who stutter compared with samples of normal fluent speakers.Conclusion: The findings of this study could introduce a new treatment protocol including the supplementation of reduced nutritional elements.KEY POINTSConcentrations of amino acids (threonine, isoleucine, and tyrosine) in the hair samples of people who stutter were significantly lower than the concentrations in the hair samples of control group.Concentrations of amino acids (histidine and glutamate) in hair samples of people who stutter were lower than control group with low significant values.The concentrations of amino acids (phenylalanine, serine, glycine, aspartate, glutamate) were not significantly different between hair samples of stuttering group and control group.The findings of the current study will be helpful in designing a new treatment method based on the supplementation of deficient amino acids.
Collapse
Affiliation(s)
- Mazin Alqhazo
- Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayat Bani Rashaid
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
25
|
Tateno F, Sakakibara R, Aiba Y, Takahashi O, Shimizu A, Oki T. Increased bladder sensation without detrusor overactivity revisited: Use of a five-grade sensory measure. Low Urin Tract Symptoms 2019; 12:162-166. [PMID: 31833660 DOI: 10.1111/luts.12298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 01/23/2023]
Abstract
AIMS Increased bladder sensation (IBS) without detrusor overactivity (DO) is still a matter of debate, regarding its clinical relevance, urodynamic nature, underlying pathology, and management. Among these, we present our data focusing on the urodynamic nature of IBS without DO, by applying our five-grade sensory measure during urodynamics. METHODS We enrolled 400 individuals who visited our laboratory for screening of lower urinary tract function, mostly with neurogenic etiologies. They included 74 control, 87 DO (irrespective of IBS), and 239 IBS (defined as first sensation <100 mL) without DO. During slow bladder filling, we instructed individuals to indicate their sensation in five grades: 1, first sensation to 5, strong desire to void. We also instructed individuals to report other sensations such as pain. RESULTS The five-grade measure could be performed in all participants without difficulty. None of the participants reported pain or any qualitatively different sensations. Although we defined DO irrespective of IBS, the sensation interval 0 (start) to 1 (first sensation) of subjects with IBS but without DO was significantly less than that of subjects with DO (P < 0.05). CONCLUSIONS The present study results showed that first sensation of subjects with IBS without DO was significantly less than that of subjects with DO (P < 0.05), while the bladder capacities of the two groups were the same. An extremely low-volume first sensation may suggest the possibility of IBS without DO.
Collapse
Affiliation(s)
- Fuyuki Tateno
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Ryuji Sakakibara
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Yosuke Aiba
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Osamu Takahashi
- Clinical Physiology Unit, Sakura Medical Center, Toho University, Sakura, Japan
| | - Ayami Shimizu
- Clinical Physiology Unit, Sakura Medical Center, Toho University, Sakura, Japan
| | - Takeshi Oki
- Neurology, Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| |
Collapse
|
26
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
27
|
Dopamine D 2L Receptor Deficiency Causes Stress Vulnerability through 5-HT 1A Receptor Dysfunction in Serotonergic Neurons. J Neurosci 2019; 39:7551-7563. [PMID: 31371425 DOI: 10.1523/jneurosci.0079-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mental disorders are caused by genetic and environmental factors. We here show that deficiency of an isoform of dopamine D2 receptor (D2R), D2LR, causes stress vulnerability in mouse. This occurs through dysfunction of serotonin [5-hydroxytryptamine (5-HT)] 1A receptor (5-HT1AR) on serotonergic neurons in the mouse brain. Exposure to forced swim stress significantly increased anxiety- and depressive-like behaviors in D2LR knock-out (KO) male mice compared with wild-type mice. Treatment with 8-OH-DPAT, a 5-HT1AR agonist, failed to alleviate the stress-induced behaviors in D2LR-KO mice. In forced swim-stressed D2LR-KO mice, 5-HT efflux in the medial prefrontal cortex was elevated and the expression of genes related to 5-HT levels was upregulated by the transcription factor PET1 in the dorsal raphe nucleus. Notably, D2LR formed a heteromer with 5-HT1AR in serotonergic neurons, thereby suppressing 5-HT1AR-activated G-protein-activated inwardly rectifying potassium conductance in D2LR-KO serotonergic neurons. Finally, D2LR overexpression in serotonergic neurons in the dorsal raphe nucleus alleviated stress vulnerability observed in D2LR-KO mice. Together, we conclude that disruption of the negative feedback regulation by the D2LR/5-HT1A heteromer causes stress vulnerability.SIGNIFICANCE STATEMENT Etiologies of mental disorders are multifactorial, e.g., interactions between genetic and environmental factors. In this study, using a mouse model, we showed that genetic depletion of an isoform of dopamine D2 receptor, D2LR, causes stress vulnerability associated with dysfunction of serotonin 1A receptor, 5-HT1AR in serotonergic neurons. The D2LR/5-HT1AR inhibitory G-protein-coupled heteromer may function as a negative feedback regulator to suppress psychosocial stress.
Collapse
|
28
|
Albert PR, Le François B, Vahid-Ansari F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: the 5-HT1A receptor gene as a paradigm. J Psychiatry Neurosci 2019; 44:164-176. [PMID: 30807072 PMCID: PMC6488484 DOI: 10.1503/jpn.180209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Major depression and anxiety are highly prevalent and involve chronic dysregulation of serotonin, but they remain poorly understood. Here, we review novel transcriptional (genetic, epigenetic) and posttranscriptional (microRNA, alternative splicing) mechanisms implicated in mental illness, focusing on a key serotonin-related regulator, the serotonin 1A (5-HT1A) receptor. Functional single-nucleotide polymorphisms and stress-induced DNA methylation of the 5-HT1A promoter converge to differentially alter pre- and postsynaptic 5-HT1A receptor expression associated with major depression and reduced therapeutic response to serotonergic antidepressants. Major depression is also associated with altered levels of splice factors and microRNA, posttranscriptional mechanisms that regulate RNA stability. The human 5-HT1A 3′-untranslated region is alternatively spliced, removing microRNA sites and increasing 5-HT1A expression, which is reduced in major depression and may be genotype-dependent. Thus, the 5-HT1A receptor gene illustrates the convergence of genetic, epigenetic and posttranscriptional mechanisms in gene expression, neurodevelopment and neuroplasticity, and major depression. Understanding gene regulatory mechanisms could enhance the detection, categorization and personalized treatment of major depression.
Collapse
Affiliation(s)
- Paul R. Albert
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Brice Le François
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Faranak Vahid-Ansari
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| |
Collapse
|
29
|
The neural markers of MRI to differentiate depression and panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:72-78. [PMID: 29705713 DOI: 10.1016/j.pnpbp.2018.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022]
Abstract
Depression and panic disorder (PD) share the common pathophysiology from the perspectives of neurotransmitters. The relatively high comorbidity between depression and PD contributes to the substantial obstacles to differentiate from depression and PD, especially for the brain pathophysiology. There are significant differences in the diagnostic criteria between depression and PD. However, the paradox of similar pathophysiology and different diagnostic criteria in these two disorders were still the issues needing to be addressed. Therefore the clarification of potential difference in the field of neuroscience and pathophysiology between depression and PD can help the clinicians and scientists to understand more comprehensively about significant differences between depression and PD. The researchers should be curious about the underlying difference of pathophysiology beneath the significant distinction of clinical symptoms. In this review article, I tried to find some evidences for the differences between depression and PD, especially for neural markers revealed by magnetic resonance imaging (MRI). The distinctions of structural and functional alterations in depression and PD are reviewed. From the structural perspectives, PD seems to have less severe gray matter alterations in frontal and temporal lobes than depression. The study of white matter microintegrity reveals more widespread alterations in fronto-limbic circuit of depression patients than PD patients, such as the uncinate fasciculus and anterior thalamic radiation. PD might have a more restrictive pattern of structural alterations when compared to depression. For the functional perspectives, the core site of depression pathophysiology is the anterior subnetwork of resting-state network, such as anterior cingulate cortex, which is not significantly altered in PD. A possibly emerging pattern of fronto-limbic distinction between depression and PD has been revealed by these explorative reports. The future trend for machine learning and pattern recognition might confirm the differentiation pattern between depression and PD based on the explorative results.
Collapse
|
30
|
Avedisova AS, Lebedeva AV, Pashnin EV, Kustov GV, Akzhigitov RG, Guekht AB. [Anxiety disorders in epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:37-44. [PMID: 30698542 DOI: 10.17116/jnevro201811810237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review is devoted to the place of anxiety disorders in the spectrum of psychiatric comorbidity in patients with epilepsy. The authors present general characteristics of anxiety manifestations and current views on the classification and qualification of anxiety disorders in such patients. Recent data show the relationship of anxiety with different forms of epilepsy, demographic and gender characteristics, localization of epileptic focus. The problem of bidirectional relationship of anxiety and epilepsy as well as the temporal relationship between anxiety and epileptic states are considered.
Collapse
Affiliation(s)
- A S Avedisova
- Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
| | - A V Lebedeva
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - E V Pashnin
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
| | - G V Kustov
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
| | - R G Akzhigitov
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
| | - A B Guekht
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
31
|
Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Transl Psychiatry 2019; 9:33. [PMID: 30670681 PMCID: PMC6343029 DOI: 10.1038/s41398-019-0368-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023] Open
Abstract
Genetic variation in serotonin transporter (SERT) that reduces transcriptional efficiency is associated with higher anxiety and fear traits and a greater incidence of post traumatic stress disorder (PTSD). Although previous studies have shown that rats with no expression of SERT (SERT-/-) have increased baseline anxiety behaviors, SERT+/- rats with low SERT expression (and more relevant to the clinical condition with low SERT expression) do not. Yet, no systematic studies of fear acquisition/extinction or their underlying neural mechanisms have been conducted in this preclinical genetic SERT+/- model. Here we sought to determine if SERT+/- or SERT-/-, compared to wildtype, rats would show exacerbated panic responses and/or persistent conditioned fear responses that may be associated with PTSD or phobia vulnerability. Results: Only SERT-/- rats showed increased baseline anxiety-like behaviors with heightened panic respiratory responses. However SERT+/- (also SERT-/-) rats showed enhanced acquisition of fear and delayed extinction of fear that was associated with changes in serotonergic-related genes (e.g., reduced 5-HT1A receptor) and disrupted inhibition within the basolateral amygdala (BLA). Furthermore, the disrupted fear responses in SERT+/- rats were normalized with 5HT1A antagonist infusions into the BLA. Enhanced acquisition and failure to extinguish fear memories displayed by both SERT-/- and SERT+/- rats are cardinal symptoms of disabling anxiety disorders such as phobias and PTSD. The data here support the hypothesis that reduced SERT function is a genetic risk that disrupts select gene expression and network properties in the amygdala that could result in vulnerability to these syndromes.
Collapse
|
32
|
Park SC, Kim YK. A Novel Bio-Psychosocial-Behavioral Treatment Model of Panic Disorder. Psychiatry Investig 2019; 16:4-15. [PMID: 30301303 PMCID: PMC6354044 DOI: 10.30773/pi.2018.08.21.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
To conceptualize a novel bio-psychosocial-behavioral treatment model of panic disorder (PD), it is necessary to completely integrate behavioral, psychophysiological, neurobiological, and genetic data. Molecular genetic research on PD is specifically focused on neurotransmitters, including serotonin, neuropeptides, glucocorticoids, and neurotrophins. Although pharmacological interventions for PD are currently available, the need for more effective, faster-acting, and more tolerable pharmacological interventions is unmet. Thus, glutamatergic receptor modulators, orexin receptor antagonists, corticotrophin-releasing factor 1 receptor antagonists, and other novel mechanism-based anti-panic therapeutics have been proposed. Research on the neural correlates of PD is focused on the dysfunctional "cross-talk" between emotional drive (limbic structure) and cognitive inhibition (prefrontal cortex) and the fear circuit, which includes the amygdala-hippocampus-prefrontal axis. The neural perspective regarding PD supports the idea that cognitive-behavioral therapy normalizes alterations in top-down cognitive processing, including increased threat expectancy and attention to threat. Consistent with the concept of "personalized medicine," it is speculated that Research Domain Criteria can enlighten further treatments targeting dysfunctions underlying PD more precisely and provide us with better definitions of moderators used to identify subgroups according to different responses to treatment. Structuring of the "negative valence systems" domain, which includes fear/anxiety, is required to define PD. Therefore, targeting glutamate- and orexin-related molecular mechanisms associated with the fear circuit, which includes the amygdala-hippocampus-prefrontal cortex axis, is required to define a novel bio-psychosocial-behavioral treatment model of PD.
Collapse
Affiliation(s)
- Seon-Cheol Park
- Department of Psychiatry, Inje University College of Medicine and Haeundae Paik Hospital, Busan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
33
|
Liu Y, Zhao J, Fan X, Guo W. Dysfunction in Serotonergic and Noradrenergic Systems and Somatic Symptoms in Psychiatric Disorders. Front Psychiatry 2019; 10:286. [PMID: 31178761 PMCID: PMC6537908 DOI: 10.3389/fpsyt.2019.00286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Somatic symptoms include a range of physical experiences, such as pain, muscle tension, body shaking, difficulty in breathing, heart palpitation, blushing, fatigue, and sweating. Somatic symptoms are common in major depressive disorder (MDD), anxiety disorders, and some other psychiatric disorders. However, the etiology of somatic symptoms remains unclear. Somatic symptoms could be a response to emotional distress in patients with those psychiatric conditions. Increasing evidence supports the role of aberrant serotoninergic and noradrenergic neurotransmission in somatic symptoms. The physiological alterations underlying diminished serotonin (5-HT) and norepinephrine (NE) signaling may contribute to impaired signal transduction, reduced 5-HT, or NE release from terminals of presynaptic neurons, and result in alternations in function and/or number of receptors and changes in intracellular signal processing. Multiple resources of data support each of these mechanisms. Animal models have shown physiological responses, similar to somatic symptoms seen in psychiatric patients, after manipulations of 5-HT and NE neurotransmission. Human genetic studies have identified many single-nucleotide polymorphisms risk loci associated with somatic symptoms. Several neuroimaging findings support that somatic symptoms are possibly associated with a state of reduced receptor binding. This narrative literature review aimed to discuss the involvement of serotonergic and noradrenergic systems in the pathophysiology of somatic symptoms. Future research combining neuroimaging techniques and genetic analysis to further elucidate the biological mechanisms of somatic symptoms and to develop novel treatment strategies is needed.
Collapse
Affiliation(s)
- Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Xiaoduo Fan
- University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, United States
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| |
Collapse
|
34
|
Liu Y, Zhao J, Guo W. Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front Psychol 2018; 9:2201. [PMID: 30524332 PMCID: PMC6262356 DOI: 10.3389/fpsyg.2018.02201] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
A growing body of researches support a role for dysfunction of serotoninergic, noradrenergic, and dopaminergic systems in the neurobiological processes involved in major depression disorder (MDD) and anxiety disorders (ADs). The physiological changes underlying abnormal signaling of 5-HT, NE, and DA may be due to either reduced presynaptic release of these neurotransmitters or aberrant signal transductions, and thus contributing to the alterations in regulation or function of receptors and/or impaired intracellular signal processing. Animal models demonstrate crucial responsiveness to disturbance of 5-HT, NE, and DA neurotransmissions. Postmortem and biochemical studies have shown altered concentrations of 5-HT, NE, and DA metabolites in brain regions that contribute importantly to regulation of mood and motivation in patients with MDD or ADs. Neuroimaging studies have found abnormal 5-HT, NE, and DA receptors binding and regulation in regard to receptor numbers. Medications that act on 5-HT, NE, and DA neurons or receptors, such as SSRIs and SNRIs, show efficacy in both MDD and ADs. The overlapping treatment response presumably suggests a common mechanism underlying the interaction of these disorders. In this paper, we reviewed studies from multiple disciplines to interpret the role of altered 5-HT, NE and DA mono-amine neurotransmitter functions in both MDD and ADs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
35
|
Rawat A, Guo J, Renoir T, Pang TY, Hannan AJ. Hypersensitivity to sertraline in the absence of hippocampal 5-HT 1AR and 5-HTT gene expression changes following paternal corticosterone treatment. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy015. [PMID: 30046455 PMCID: PMC6054191 DOI: 10.1093/eep/dvy015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The male germ line is capable of transmitting a legacy of stress exposure to the next generation of offspring. This transgenerational process manifests by altering offspring affective behaviours, cognition and metabolism. Paternal early life trauma causes hippocampal serotonergic dysregulation in male offspring. We previously showed a transgenerational modification to male offspring anxiety-like behaviours by treatment of adult male breeders with corticosterone (CORT) prior to mating. In the present study, we used offspring from our paternal CORT model and characterised offspring serotonergic function by examining their responses to the 5HT1AR agonist, 8-OH-DPAT, and the selective serotonin reuptake inhibitor, sertraline. We also examined whether post-weaning environmental enrichment, a paradigm well-known to modulate serotonergic signalling in the brain, had the capacity to normalise the anxiety phenotype of male offspring. Finally, we assessed gene expression levels of 5HT1AR and serotonin transporter in the offspring hippocampus to determine whether deficits in gene transcription contributed to the male-only anxiety phenotype. We report that male and female offspring of CORT-treated fathers are hypersensitive to sertraline but have normal hypothermic responses to 8-OH-DPAT. No deficits in htr1a and sert were found in association with paternal CORT treatment, and environmental enrichment did not rescue the anxiety phenotype of male offspring on the elevated-plus maze. These findings indicate that varying forms of paternal stress exert different effects on offspring brain serotonergic function.
Collapse
Affiliation(s)
- Arina Rawat
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jackey Guo
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Thibault Renoir
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Terence Y Pang
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony J Hannan
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
36
|
Luft MJ, Lamy M, DelBello MP, McNamara RK, Strawn JR. Antidepressant-Induced Activation in Children and Adolescents: Risk, Recognition and Management. Curr Probl Pediatr Adolesc Health Care 2018; 48:50-62. [PMID: 29358037 PMCID: PMC5828909 DOI: 10.1016/j.cppeds.2017.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tolerability of antidepressants is poorly characterized in children and adolescents with depressive and anxiety disorders. Among adverse events that affect the tolerability of antidepressants in youth is activation, a cluster of symptoms that represent a hyperarousal event characterized by impulsivity, restlessness, and/or insomnia. This cluster of symptoms was first identified as a side effect of selective serotonin and selective serotonin norepinephrine inhibitors (SSRIs and SSNRIs) in the early 1990s; however, activation remains poorly characterized in terms of prevalence, risk factors, and pathophysiology. This article describes the pathophysiology of antidepressant-related activation, predictors of activation and its clinical management in youth with depressive and anxiety disorders who are treated with antidepressant medications.
Collapse
Affiliation(s)
- Marissa J Luft
- Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0559
| | - Martine Lamy
- Department of Pediatrics, Division of Child & Adolescent Psychaitry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Melissa P DelBello
- Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0559; Department of Pediatrics, Division of Child & Adolescent Psychaitry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Robert K McNamara
- Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0559
| | - Jeffrey R Strawn
- Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0559; Department of Pediatrics, Division of Child & Adolescent Psychaitry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229.
| |
Collapse
|
37
|
Maron E, Lan CC, Nutt D. Imaging and Genetic Approaches to Inform Biomarkers for Anxiety Disorders, Obsessive-Compulsive Disorders, and PSTD. Curr Top Behav Neurosci 2018; 40:219-292. [PMID: 29796838 DOI: 10.1007/7854_2018_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders are the most common mental health problem in the world and also claim the highest health care cost among various neuropsychiatric disorders. Anxiety disorders have a chronic and recurrent course and cause significantly negative impacts on patients' social, personal, and occupational functioning as well as quality of life. Despite their high prevalence rates, anxiety disorders have often been under-diagnosed or misdiagnosed, and consequently under-treated. Even with the correct diagnosis, anxiety disorders are known to be difficult to treat successfully. In order to implement better strategies in diagnosis, prognosis, treatment decision, and early prevention for anxiety disorders, tremendous efforts have been put into studies using genetic and neuroimaging techniques to advance our understandings of the underlying biological mechanisms. In addition to anxiety disorders including panic disorder, generalised anxiety disorder (GAD), specific phobias, social anxiety disorders (SAD), due to overlapping symptom dimensions, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder (PTSD) (which were removed from the anxiety disorder category in DSM-5 to become separate categories) are also included for review of relevant genetic and neuroimaging findings. Although the number of genetic or neuroimaging studies focusing on anxiety disorders is relatively small compare to other psychiatric disorders such as psychotic disorders or mood disorders, various structural abnormalities in the grey or white matter, functional alterations of activity during resting-state or task conditions, molecular changes of neurotransmitter receptors or transporters, and genetic associations have all been reported. With continuing effort, further genetic and neuroimaging research may potentially lead to clinically useful biomarkers for the prevention, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia.
| | - Chen-Chia Lan
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
38
|
Mlinar B, Montalbano A, Waider J, Lesch KP, Corradetti R. Increased functional coupling of 5-HT 1A autoreceptors to GIRK channels in Tph2 -/- mice. Eur Neuropsychopharmacol 2017; 27:1258-1267. [PMID: 29126768 DOI: 10.1016/j.euroneuro.2017.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Firing activity of serotonergic neurons is under regulatory control by somatodendritic 5-HT1A autoreceptors (5-HT1AARs). Enhanced 5-HT1AAR functioning may cause decreased serotonergic signaling in brain and has thereby been implicated in the etiology of mood and anxiety disorders. Tryptophan hydroxylase-2 knockout (Tph2-/-) mice exhibit sensitization of 5-HT1A agonist-induced inhibition of serotonergic neuron firing and thus represents a unique animal model of enhanced 5-HT1AAR functioning. To elucidate the mechanisms underlying 5-HT1AAR supersensitivity in Tph2-/- mice, we characterized the activation of G protein-coupled inwardly-rectifying potassium (GIRK) conductance by the 5-HT1A receptor agonist 5-carboxamidotryptamine using whole-cell recordings from serotonergic neurons in dorsal raphe nucleus. Tph2-/- mice exhibited a mean twofold leftward shift of the agonist concentration-response curve (p < 0.001) whereas the maximal response, proportional to the 5-HT1AAR number, was not different (p = 0.42) compared to Tph2+/- and Tph2+/+ littermates. No differences were found in the basal inwardly-rectifying potassium conductance, determined in the absence of agonist, (p = 0.80) nor in total GIRK conductance activated by intracellular application of GTP-γ-S (p = 0.69). These findings indicate increased functional coupling of 5-HT1AARs to GIRK channels in Tph2-/- mice without a concomitant increase in 5-HT1AARs and/or GIRK channel density. In addition, no changes were found in α1-adrenergic facilitation of firing (p = 0.72) indicating lack of adaptive changes Tph2-/- mice. 5-HT1AAR supersensitivity may represents a previously unrecognized cause of serotonergic system hypofunction and associated disorders and provides a possible explanation for conflicting results on the correlation between 5-HT1AAR density and depression in clinical imaging studies.
Collapse
Affiliation(s)
- Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| | - Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Pilar-Cuéllar F, Vidal R, Díaz Á, Garro-Martínez E, Linge R, Castro E, Haberzettl R, Fink H, Bert B, Brosda J, Romero B, Crespo-Facorro B, Pazos Á. Enhanced Stress Response in 5-HT 1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation. ACS Chem Neurosci 2017; 8:2393-2401. [PMID: 28777913 DOI: 10.1021/acschemneuro.7b00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Postsynaptic 5-HT1A receptors (5-HT1AR) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT1ARs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT1ARs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT1AR overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT1AR activation might predispose to a high anxious phenotype and an impaired stress coping behavior.
Collapse
Affiliation(s)
- Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Rebeca Vidal
- Departamento
de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Raquel Linge
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Elena Castro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Robert Haberzettl
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidrun Fink
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bettina Bert
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jan Brosda
- Institut
für Pharmakologie und Toxikologie, Fachbereich Veterinärmedizin, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Romero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Hospital Universitario Marqués de Valdecilla, University of Cantabria-IDIVAL, School of Medicine, Department of Psychiatry, 39008 Santander, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Instituto
de Biomedicina y Biotecnologı́a de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, 39011 Santander, Spain
- Departamento
de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
40
|
Abadie D, Essilini A, Fulda V, Gouraud A, Yéléhé-Okouma M, Micallef J, Montastruc F, Montastruc JL. Drug-induced panic attacks: Analysis of cases registered in the French pharmacovigilance database. J Psychiatr Res 2017; 90:60-66. [PMID: 28231495 DOI: 10.1016/j.jpsychires.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The potential role of drugs in the onset of panic attacks (PAs) is poorly understood. AIM The objective of our study was to characterize drug-induced PAs. METHOD We performed an analysis of PAs registered in the French pharmacovigilance database between 01/01/1985 and 05/11/2014. RESULTS Among the 163 recorded cases, 136 (83.4%) were directly related to drugs, mainly antidepressants (11.3%, mainly serotonin reuptake inhibitors), mefloquine (7.2%), isotretinoin (5.2%), rimonabant (3.6%) and corticosteroids (4.7%). PAs are labelled in the Summary of Product Characteristics (SmPC) for a minority (8.6%) of these drugs. In 31.4% of these cases, withdrawal of the suspected drug was performed more than a week after the onset of PAs. PAs could also be secondary to another adverse drug reaction (ADR; n = 14, 8.6%), mainly an allergy to antineoplastic or immunomodulating agents. In 13 cases (8.0%), PAs occurred during a drug-withdrawal syndrome, mainly after benzodiazepines or opioids. Most cases (73%) involved patients without any previous psychiatric disorder. CONCLUSION This is the first pharmacoepidemiological study about iatrogenic PAs. Beside antidepressants, the most often encountered drugs are not indicated for psychiatric diseases. This study also reveals that iatrogenic PAs mostly occur in patients without any psychiatric medical history and that PAs can be triggered by another ADR. Lastly, the many cases with delayed management underline the need to raise awareness of this relatively unknown ADR among physicians, especially since PAs are generally not labelled in SmPCs of the suspected drugs.
Collapse
Affiliation(s)
- Delphine Abadie
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France.
| | - Anaïs Essilini
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Virginie Fulda
- Regional Pharmacovigilance Center, Hôpital Européen Georges Pompidou, 20-40 rue Leblanc, 75015 Paris, France
| | - Aurore Gouraud
- Regional Pharmacovigilance Center, Hospices Civils de Lyon, 162 avenue Lacassagne, 69424 Lyon, France
| | - Mélissa Yéléhé-Okouma
- Regional Pharmacovigilance Center, Hôpitaux de Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035 Nancy, France
| | - Joëlle Micallef
- Regional Pharmacovigilance Center, Department of Medical and Clinical Pharmacology, Hôpital Sainte-Marguerite AP-HM, 270 boulevard de Saint-Marguerite, 13009 Marseille, France
| | - François Montastruc
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France
| | - Jean Louis Montastruc
- Department of Medical and Clinical Pharmacology, Toulouse University Hospital, Faculty of Medicine, 37 allées Jules Guesde, 31000 Toulouse, France
| |
Collapse
|
41
|
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry 2017; 7:12-33. [PMID: 28401046 PMCID: PMC5371170 DOI: 10.5498/wjp.v7.i1.12] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/16/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To provide an overview of the current research in the functional neuroanatomy of panic disorder.
METHODS Panic disorder (PD) is a frequent psychiatric disease. Gorman et al (1989; 2000) proposed a comprehensive neuroanatomical model of PD, which suggested that fear- and anxiety-related responses are mediated by a so-called “fear network” which is centered in the amygdala and includes the hippocampus, thalamus, hypothalamus, periaqueductal gray region, locus coeruleus and other brainstem sites. We performed a systematic search by the electronic database PubMed. Thereby, the main focus was laid on recent neurofunctional, neurostructural, and neurochemical studies (from the period between January 2012 and April 2016). Within this frame, special attention was given to the emerging field of imaging genetics.
RESULTS We noted that many neuroimaging studies have reinforced the role of the “fear network” regions in the pathophysiology of panic disorder. However, recent functional studies suggest abnormal activation mainly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), insula, and lateral as well as medial parts of the prefrontal cortex. Interestingly, differences in the amygdala activation were not as consistently reported as one would predict from the hypothesis of Gorman et al (2000). Indeed, amygdala hyperactivation seems to strongly depend on stimuli and experimental paradigms, sample heterogeneity and size, as well as on limitations of neuroimaging techniques. Advanced neurochemical studies have substantiated the major role of serotonergic, noradrenergic and glutamatergic neurotransmission in the pathophysiology of PD. However, alterations of GABAergic function in PD are still a matter of debate and also their specificity remains questionable. A promising new research approach is “imaging genetics”. Imaging genetic studies are designed to evaluate the impact of genetic variations (polymorphisms) on cerebral function in regions critical for PD. Most recently, imaging genetic studies have not only confirmed the importance of serotonergic and noradrenergic transmission in the etiology of PD but also indicated the significance of neuropeptide S receptor, CRH receptor, human TransMEMbrane protein (TMEM123D), and amiloride-sensitive cation channel 2 (ACCN2) genes.
CONCLUSION In light of these findings it is conceivable that in the near future this research will lead to the development of clinically useful tools like predictive biomarkers or novel treatment options.
Collapse
|
42
|
Zang KE, Ho E, Ringstad N. Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels. eLife 2017; 6. [PMID: 28165324 PMCID: PMC5330680 DOI: 10.7554/elife.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neurons that drive female reproductive behavior are directly modulated by inhibitory neuropeptides. Here, we report the isolation of mutants in which inhibitory neuropeptides fail to properly modulate serotonin neurons and the behavior they mediate. The corresponding mutations affect the T-type calcium channel CCA-1 and symmetrically re-tune its voltage-dependencies of activation and inactivation towards more hyperpolarized potentials. This shift in voltage dependency strongly and specifically bypasses the behavioral and cell physiological effects of peptidergic inhibition on serotonin neurons. Our results indicate that T-type calcium channels are critical regulators of a C. elegans serotonergic circuit and demonstrate a mechanism in which T-type channels functionally gate inhibitory modulation in vivo.
Collapse
Affiliation(s)
- Kara E Zang
- Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, NYU Langone School of Medicine, New York, United States
| | - Elver Ho
- Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, NYU Langone School of Medicine, New York, United States
| | - Niels Ringstad
- Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Department of Cell Biology, NYU Langone School of Medicine, New York, United States
| |
Collapse
|
43
|
Soares VP, Campos AC. Evidences for the Anti-panic Actions of Cannabidiol. Curr Neuropharmacol 2017; 15:291-299. [PMID: 27157263 PMCID: PMC5412699 DOI: 10.2174/1570159x14666160509123955] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/26/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Panic disorder (PD) is a disabling psychiatry condition that affects approximately 5% of the worldwide population. Currently, long-term selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PD; however, the common side-effect profiles and drug interactions may provoke patients to abandon the treatment, leading to PD symptoms relapse. Cannabidiol (CBD) is the major non-psychotomimetic constituent of the Cannabis sativa plant with anti-anxiety properties that has been suggested as an alternative for treating anxiety disorders. The aim of the present review was to discuss the effects and mechanisms involved in the putative anti-panic effects of CBD. METHODS electronic database was used as source of the studies selected selected based on the studies found by crossing the following keywords: cannabidiol and panic disorder; canabidiol and anxiety, cannabidiol and 5-HT1A receptor). RESULTS In the present review, we included both experimental laboratory animal and human studies that have investigated the putative anti-panic properties of CBD. Taken together, the studies assessed clearly suggest an anxiolytic-like effect of CBD in both animal models and healthy volunteers. CONCLUSION CBD seems to be a promising drug for the treatment of PD. However, novel clinical trials involving patients with the PD diagnosis are clearly needed to clarify the specific mechanism of action of CBD and the safe and ideal therapeutic doses of this compound.
Collapse
Affiliation(s)
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes avenue, Ribeirao Preto-SP, Brazil
| |
Collapse
|
44
|
Watanabe T, Ishiguro S, Aoki A, Ueda M, Hayashi Y, Akiyama K, Kato K, Shimoda K. Genetic Polymorphism of 1019C/G (rs6295) Promoter of Serotonin 1A Receptor and Catechol-O-Methyltransferase in Panic Disorder. Psychiatry Investig 2017; 14:86-92. [PMID: 28096880 PMCID: PMC5240452 DOI: 10.4306/pi.2017.14.1.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Family and twin studies have suggested genetic liability for panic disorder (PD) and therefore we sought to determine the role of noradrenergic and serotonergic candidate genes for susceptibility for PD in a Japanese population. METHODS In this age- and gender-matched case-control study involving 119 PD patients and 119 healthy controls, we examined the genotype distributions and allele frequencies of the serotonin transporter gene linked polymorphic region (5-HTTLPR), -1019C/G (rs6295) promoter polymorphism of the serotonin receptor 1A (5-HT1A), and catechol-O-methyltransferase (COMT) gene polymorphism (rs4680) and their association with PD. RESULTS No significant differences were evident in the allele frequencies or genotype distributions of the COMT (rs4680), 5-HTTLPR polymorphisms or the -1019C/G (rs6295) promoter polymorphism of 5-HT1A between PD patients and controls. Although there were no significant associations of these polymorphisms with in subgroups of PD patients differentiated by gender or in subgroup comorbid with agoraphobia (AP), significant difference was observed in genotype distributions of the -1019C/G (rs6295) promoter polymorphism of 5-HT1A between PD patients without AP and controls (p=0.047). CONCLUSION In this association study, the 1019C/G (rs6295) promoter polymorphism of the 5-HT1A receptor G/G genotype was associated with PD without AP in a Japanese population.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Shin Ishiguro
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Akiko Aoki
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Mikito Ueda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Yuki Hayashi
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Kazufumi Akiyama
- Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| | - Kazuko Kato
- Sakura La Mental Clinic, Utsunomiya, Tochigi, Japan
| | - Kazutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi, Japan
| |
Collapse
|
45
|
Goddard AW. The Neurobiology of Panic: A Chronic Stress Disorder. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017736038. [PMID: 32440580 PMCID: PMC7219873 DOI: 10.1177/2470547017736038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Panic disorder is an often chronic and impairing human anxiety syndrome, which frequently results in serious psychiatric and medical comorbidities. Although, to date, there have been many advances in the diagnosis and treatment of panic disorder, its pathophysiology still remains to be elucidated. In this review, recent evidence for a neurobiological basis of panic disorder is reviewed with particular attention to risk factors such as genetic vulnerability, chronic stress, and temperament. In addition, neuroimaging data are reviewed which provides support for the concept of panic disorder as a fear network disorder. The potential impact of the National Institute of Mental Health Research Domain Criteria constructs of acute and chronic threats responses and their implications for the neurobiology of panic disorder are also discussed.
Collapse
Affiliation(s)
- Andrew W. Goddard
- UCSF Fresno Medical Education and
Research Program, University of California, San Francisco, USA
| |
Collapse
|
46
|
Abstract
Anxiety and its associated disorders are common in patients with cardiovascular disease and may significantly influence cardiac health. Anxiety disorders are associated with the onset and progression of cardiac disease, and in many instances have been linked to adverse cardiovascular outcomes, including mortality. Both physiologic (autonomic dysfunction, inflammation, endothelial dysfunction, changes in platelet aggregation) and health behavior mechanisms may help to explain the relationships between anxiety disorders and cardiovascular disease. Given the associations between anxiety disorders and poor cardiac health, the timely and accurate identification and treatment of these conditions is of the utmost importance. Fortunately, pharmacologic and psychotherapeutic interventions for the management of anxiety disorders are generally safe and effective. Further study is needed to determine whether interventions to treat anxiety disorders ultimately impact both psychiatric and cardiovascular health.
Collapse
|
47
|
Nikolaus S, Müller HW, Hautzel H. Different patterns of 5-HT receptor and transporter dysfunction in neuropsychiatric disorders--a comparative analysis of in vivo imaging findings. Rev Neurosci 2016; 27:27-59. [PMID: 26376220 DOI: 10.1515/revneuro-2015-0014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/05/2015] [Indexed: 11/15/2022]
Abstract
Impairment of serotonin receptor and transporter function is increasingly recognized to play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). We conducted a PubMed search, which provided a total of 136 in vivo studies with PET and SPECT, in which 5-HT synthesis, 5-HT transporter binding, 5-HT1 receptor binding or 5-HT2 receptor binding in patients with the primary diagnosis of acute AD, MDD, BD or SZ was compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BD and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and receptor binding sites.
Collapse
|
48
|
Bandelow B, Baldwin D, Abelli M, Altamura C, Dell'Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17:321-65. [PMID: 27403679 DOI: 10.1080/15622975.2016.1181783] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part I) summarises findings on potential biomarkers in neuroimaging studies, including structural brain morphology, functional magnetic resonance imaging and techniques for measuring metabolic changes, including positron emission tomography and others. Furthermore, this review reports on the clinical and molecular genetic findings of family, twin, linkage, association and genome-wide association studies. Part II of the review focuses on neurochemistry, neurophysiology and neurocognition. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high-quality research has accumulated that will improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- a Department of Psychiatry and Psychotherapy , University of Göttingen , Germany
| | - David Baldwin
- b Faculty of Medicine , University of Southampton , Southampton , UK
| | - Marianna Abelli
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Carlo Altamura
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Bernardo Dell'Osso
- d Department of Psychiatry , University of Milan; Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Katharina Domschke
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany
| | - Naomi A Fineberg
- f Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire , Rosanne House, Parkway , Welwyn Garden City , UK
| | - Edna Grünblatt
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland ;,i Zurich Center for Integrative Human Physiology , University of Zurich , Switzerland
| | - Marek Jarema
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Eduard Maron
- k North Estonia Medical Centre, Department of Psychiatry , Tallinn , Estonia ;,l Department of Psychiatry , University of Tartu , Estonia ;,m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - David Nutt
- m Faculty of Medicine, Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences , Imperial College London , UK
| | - Stefano Pini
- c Department of Clinical and Experimental Medicine , Section of Psychiatry, University of Pisa , Italy
| | - Matilde M Vaghi
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK
| | - Adam Wichniak
- j Third Department of Psychiatry , Institute of Psychiatry and Neurology , Warszawa , Poland
| | - Gwyneth Zai
- n Department of Psychology and Behavioural and Clinical Neuroscience Institute , University of Cambridge , UK ;,o Neurogenetics Section, Centre for Addiction & Mental Health , Toronto , Canada ;,p Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre , Toronto , Canada ;,q Institute of Medical Science and Department of Psychiatry, University of Toronto , Toronto , Canada
| | - Peter Riederer
- e Department of Psychiatry, Psychosomatics and Psychotherapy , University of Wuerzburg , Germany ;,g Neuroscience Center Zurich , University of Zurich and the ETH Zurich , Zürich , Switzerland ;,h Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zurich , Zürich , Switzerland
| |
Collapse
|
49
|
Kaneko F, Kawahara Y, Kishikawa Y, Hanada Y, Yamada M, Kakuma T, Kawahara H, Nishi A. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors. Int J Neuropsychopharmacol 2016; 19:pyw026. [PMID: 27029212 PMCID: PMC5006198 DOI: 10.1093/ijnp/pyw026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. METHODS The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. RESULTS Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. CONCLUSIONS Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress.
Collapse
Affiliation(s)
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan (Ms Kaneko and Drs Kawahara, Kishikawa, Hanada, and Nishi); Department of Psychiatry, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan (Dr Yamada); Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan (Dr Kakuma); Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi-ku, Yokohama, Kanagawa, Japan (Dr Kawahara).
| | | | | | | | | | | | | |
Collapse
|
50
|
Donaldson ZR, le Francois B, Santos TL, Almli LM, Boldrini M, Champagne FA, Arango V, Mann JJ, Stockmeier CA, Galfalvy H, Albert PR, Ressler KJ, Hen R. The functional serotonin 1a receptor promoter polymorphism, rs6295, is associated with psychiatric illness and differences in transcription. Transl Psychiatry 2016; 6:e746. [PMID: 26926882 PMCID: PMC4872437 DOI: 10.1038/tp.2015.226] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022] Open
Abstract
The G/C single-nucleotide polymorphism in the serotonin 1a receptor promoter, rs6295, has previously been linked with depression, suicide and antidepressant responsiveness. In vitro studies suggest that rs6295 may have functional effects on the expression of the serotonin 1a receptor gene (HTR1A) through altered binding of a number of transcription factors. To further explore the relationship between rs6295, mental illness and gene expression, we performed dual epidemiological and biological studies. First, we genotyped a cohort of 1412 individuals, randomly split into discovery and replication cohorts, to examine the relationship between rs6295 and five psychiatric outcomes: history of psychiatric hospitalization, history of suicide attempts, history of substance or alcohol abuse, current posttraumatic stress disorder (PTSD), current depression. We found that the rs6295G allele is associated with increased risk for substance abuse, psychiatric hospitalization and suicide attempts. Overall, exposure to either childhood or non-childhood trauma resulted in increased risk for all psychiatric outcomes, but we did not observe a significant interaction between rs6295 and trauma in modulating psychiatric outcomes. In conjunction, we also investigated the potential impact of rs6295 on HTR1A expression in postmortem human brain tissue using relative allelic expression assays. We found more mRNA produced from the C versus the G-allele of rs6295 in the prefrontal cortex (PFC), but not in the midbrain of nonpsychiatric control subjects. Further, in the fetal cortex, rs6295C allele exhibited increased relative expression as early as gestational week 18 in humans. Finally, we found that the C:G allelic expression ratio was significantly neutralized in the PFC of subjects with major depressive disorder (MDD) who committed suicide as compared with controls, indicating that normal patterns of transcription may be disrupted in MDD/suicide. These data provide a putative biological mechanism underlying the association between rs6295, trauma and mental illness. Moreover, our results suggest that rs6295 may affect transcription during both gestational development and adulthood in a region-specific manner, acting as a risk factor for psychiatric illness. These findings provide a critical framework for conceptualizing the effects of a common functional genetic variant, trauma exposure and their impact on mental health.
Collapse
Affiliation(s)
- Z R Donaldson
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - B le Francois
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T L Santos
- New York State Psychiatric Institute, New York, NY, USA
| | - L M Almli
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - M Boldrini
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - F A Champagne
- Department of Psychology, Columbia University, New York, NY, USA
| | - V Arango
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J J Mann
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - C A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - H Galfalvy
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - P R Albert
- Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - K J Ressler
- Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - R Hen
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| |
Collapse
|