1
|
Kniffin A, Targum M, Patel A, Bangasser DA, Parikh V. Alterations in hippocampal cholinergic dynamics following CRF infusions into the medial septum of male and female rats. Neurochem Int 2024; 176:105739. [PMID: 38604443 PMCID: PMC11078599 DOI: 10.1016/j.neuint.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Corticoptropin releasing factor (CRF) is implicated in stress-related physiological and behavioral changes. The septohippocampal pathway regulates hippocampal-dependent mnemonic processes, which are affected in stress-related disorders, and given the abundance of CRF receptors in the medial septum (MS), this pathway is influenced by CRF. Moreover, there are sex differences in the MS sensitivity to CRF and its impact on hippocampal function. However, the mechanisms underlying these associations remain elusive. In the present study, we utilized an in vivo biosensor-based electrochemistry approach to examine the impact of MS CRF infusions on hippocampal cholinergic signaling dynamics in male and female rats. Our results show increased amplitudes of depolarization-evoked phasic cholinergic signals in the hippocampus following MS infusion of CRF at the 3 ng dose as compared to the infusion involving artificial cerebrospinal fluid (aCSF). Moreover, a trend for a sex × infusion interaction indicated larger cholinergic transients in females. On the contrary, intraseptal infusion of a physiologically high dose (100 ng) of CRF produced a subsequent reduction in phasic cholinergic transients in both males and females. The assessment of tonic cholinergic activity over 30 min post-infusion revealed no changes at the 3 ng CRF dose in either sex, but a significant infusion × sex interaction indicated a reduction in females at the 100 ng dose of CRF as compared to the aCSF. Taken together, our results show differential, dose-dependent modulatory effects of MS CRF on the dynamics of phasic and tonic modes of cholinergic signaling in the hippocampus of male and female rats. These cholinergic signaling modes are critical for memory encoding and maintaining arousal states, and may underlie sex differences in cognitive vulnerability to stress and stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, 19122, USA
| | - Miranda Targum
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, 19122, USA
| | - Aryan Patel
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, 19122, USA
| | - Debra A Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
3
|
Carmon H, Haley EC, Parikh V, Tronson NC, Sarter M. Neuro-Immune Modulation of Cholinergic Signaling in an Addiction Vulnerability Trait. eNeuro 2023; 10:ENEURO.0023-23.2023. [PMID: 36810148 PMCID: PMC9997697 DOI: 10.1523/eneuro.0023-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Sign-tracking (ST) describes the propensity to approach and contact a Pavlovian reward cue. By contrast, goal-trackers (GTs) respond to such a cue by retrieving the reward. These behaviors index the presence of opponent cognitive-motivational traits, with STs exhibiting attentional control deficits, behavior dominated by incentive motivational processes, and vulnerability for addictive drug taking. Attentional control deficits in STs were previously attributed to attenuated cholinergic signaling, resulting from deficient translocation of intracellular choline transporters (CHTs) into synaptosomal plasma membrane. Here, we investigated a posttranslational modification of CHTs, poly-ubiquitination, and tested the hypothesis that elevated cytokine signaling in STs contributes to CHT modification. We demonstrated that intracellular CHTs, but not plasma membrane CHTs, are highly ubiquitinated in male and female sign-tracking rats when compared with GTs. Moreover, levels of cytokines measured in cortex and striatum, but not spleen, were higher in STs than in GTs. Activation of the innate immune system by systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) elevated ubiquitinated CHT levels in cortex and striatum of GTs only, suggesting ceiling effects in STs. In spleen, LPS increased levels of most cytokines in both phenotypes. In cortex, LPS particularly robustly increased levels of the chemokines CCL2 and CXCL10. Phenotype-specific increases were restricted to GTs, again suggesting ceiling effects in STs. These results indicate that interactions between elevated brain immune modulator signaling and CHT regulation are essential components of the neuronal underpinnings of the addiction vulnerability trait indexed by sign-tracking.
Collapse
Affiliation(s)
- Hanna Carmon
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Evan C Haley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Cholinergic blockade of neuroinflammation – from tissue to RNA regulators. Neuronal Signal 2022; 6:NS20210035. [PMID: 35211331 PMCID: PMC8837817 DOI: 10.1042/ns20210035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs (miRs) and transfer RNA fragments (tRFs) may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood–brain barrier (BBB) protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body–brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammation-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.
Collapse
|
6
|
Dudai A, Yayon N, Soreq H, London M. Cortical VIP
+
/ChAT
+
interneurons: From genetics to function. J Neurochem 2021; 158:1320-1333. [DOI: 10.1111/jnc.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Nadav Yayon
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Michael London
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
7
|
Ojiakor O, Rylett R. Modulation of sodium-coupled choline transporter CHT function in health and disease. Neurochem Int 2020; 140:104810. [DOI: 10.1016/j.neuint.2020.104810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
|
8
|
Madrer N, Soreq H. Cholino-ncRNAs modulate sex-specific- and age-related acetylcholine signals. FEBS Lett 2020; 594:2185-2198. [PMID: 32330292 PMCID: PMC7496432 DOI: 10.1002/1873-3468.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) signaling orchestrates mammalian movement, mental capacities, and inflammation. Dysregulated ACh signaling associates with many human mental disorders and neurodegeneration in an individual‐, sex‐, and tissue‐related manner. Moreover, aged patients under anticholinergic therapy show increased risk of dementia, but the underlying molecular mechanisms are incompletely understood. Here, we report that certain cholinergic‐targeting noncoding RNAs, named Cholino‐noncoding RNAs (ncRNAs), can modulate ACh signaling, agonistically or antagonistically, via distinct direct and indirect mechanisms and at different timescales. Cholino‐ncRNAs include both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The former may attenuate translation and/or induce destruction of target mRNAs that code for either ACh‐signaling proteins or transcription factors controlling the expression of cholinergic genes. lncRNAs may block miRNAs via ‘sponging’ events or by competitive binding to the cholinergic target mRNAs. Also, single nucleotide polymorphisms in either Cholino‐ncRNAs or in their recognition sites in the ACh‐signaling associated genes may modify ACh signaling‐regulated processes. Taken together, both inherited and acquired changes in the function of Cholino‐ncRNAs impact ACh‐related deficiencies, opening new venues for individual, sex‐related, and age‐specific oriented research, diagnosis, and therapeutics.
Collapse
Affiliation(s)
- Nimrod Madrer
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hermona Soreq
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
9
|
Abstract
The central cholinergic system is one of the most important modulator neurotransmitter system implicated in diverse behavioral processes. Activation of the basal forebrain cortical cholinergic input system represents a critical step in cortical information processing. This chapter explores recent developments illustrating cortical cholinergic transmission mediate defined cognitive operations, which is contrary to the traditional view that acetylcholine acts as a slowly acting neuromodulator that influences arousal cortex-wide. Specifically, we review the evidence that phasic cholinergic signaling in the prefrontal cortex is a causal mediator of signal detection. In addition, studies that support the neuromodulatory role of cholinergic inputs in top-down attentional control are summarized. Finally, we review new findings that reveal sex differences and hormonal regulation of the cholinergic-attention system.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Bell T, Lindner M, Langdon A, Mullins PG, Christakou A. Regional Striatal Cholinergic Involvement in Human Behavioral Flexibility. J Neurosci 2019; 39:5740-5749. [PMID: 31109959 PMCID: PMC6636079 DOI: 10.1523/jneurosci.2110-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Animal studies have shown that the striatal cholinergic system plays a role in behavioral flexibility but, until recently, this system could not be studied in humans due to a lack of appropriate noninvasive techniques. Using proton magnetic resonance spectroscopy, we recently showed that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal learning (a measure of behavioral flexibility) in humans. The aim of the present study was to examine whether regional average striatal choline was associated with reversal learning. A total of 22 participants (mean age = 25.2 years, range = 18-32 years, 13 female) reached learning criterion in a probabilistic learning task with a reversal component. We measured choline at rest in both the dorsal and ventral striatum using magnetic resonance spectroscopy. Task performance was described using a simple reinforcement learning model that dissociates the contributions of positive and negative prediction errors to learning. Average levels of choline in the dorsal striatum were associated with performance during reversal, but not during initial learning. Specifically, lower levels of choline in the dorsal striatum were associated with a lower number of perseverative trials. Moreover, choline levels explained interindividual variance in perseveration over and above that explained by learning from negative prediction errors. These findings suggest that the dorsal striatal cholinergic system plays an important role in behavioral flexibility, in line with evidence from the animal literature and our previous work in humans. Additionally, this work provides further support for the idea of measuring choline with magnetic resonance spectroscopy as a noninvasive way of studying human cholinergic neurochemistry.SIGNIFICANCE STATEMENT Behavioral flexibility is a crucial component of adaptation and survival. Evidence from the animal literature shows that the striatal cholinergic system is fundamental to reversal learning, a key paradigm for studying behavioral flexibility, but this system remains understudied in humans. Using proton magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal striatum are associated with performance specifically during reversal learning. These novel findings help to bridge the gap between animal and human studies by demonstrating the importance of cholinergic function in the dorsal striatum in human behavioral flexibility. Importantly, the methods described here cannot only be applied to furthering our understanding of healthy human neurochemistry, but also to extending our understanding of cholinergic disorders.
Collapse
Affiliation(s)
- Tiffany Bell
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom
| | - Michael Lindner
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom
| | - Angela Langdon
- Princeton Neuroscience Institute, Princeton University, New Jersey 08544, and
| | | | - Anastasia Christakou
- School of Psychology and Clinical Language Sciences, and Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, United Kingdom,
| |
Collapse
|
11
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
12
|
Koshy Cherian A, Tronson NC, Parikh V, Kucinski A, Blakely RD, Sarter M. Repetitive mild concussion in subjects with a vulnerable cholinergic system: Lasting cholinergic-attentional impairments in CHT+/- mice. Behav Neurosci 2019; 133:448-459. [PMID: 30896190 DOI: 10.1037/bne0000310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous research emphasized the impact of traumatic brain injury on cholinergic systems and associated cognitive functions. Here we addressed the converse question: Because of the available evidence indicating cognitive and neuronal vulnerabilities in humans expressing low-capacity cholinergic systems or with declining cholinergic systems, do injuries cause more severe cognitive decline in such subjects, and what cholinergic mechanisms contribute to such vulnerability? Using mice heterozygous for the choline transporter (CHT+/- mice) as a model for a limited cholinergic capacity, we investigated the cognitive and neuronal consequences of repeated, mild concussion injuries (rmCc). After five rmCc, and compared with wild type (WT) mice, CHT+/- mice exhibited severe and lasting impairments in sustained attention performance, consistent with effects of cholinergic losses on attention. However, rmCc did not affect the integrity of neuronal cell bodies and did not alter the density of cortical synapses. As a cellular mechanism potentially responsible for the attentional impairment in CHT+/- mice, we found that rmCc nearly completely attenuated performance-associated, CHT-mediated choline transport. These results predict that subjects with an already vulnerable cholinergic system will experience severe and lasting cognitive-cholinergic effects after even relatively mild injuries. If confirmed in humans, such subjects may be excluded from, or receive special protection against, activities involving injury risk. Moreover, the treatment and long-term outcome of traumatic brain injuries may benefit from determining the status of cholinergic systems and associated cognitive functions. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Vinay Parikh
- Department of Psychology and Neuroscience Program
| | | | | | | |
Collapse
|
13
|
Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors forin vivoAnalysis of Brain Interstitial Fluid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700836] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charles Chatard
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- Université Claude Bernard Lyon 1; Lyon France
| | - Anne Meiller
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
- Lyon Neuroscience Research Center, Team TIGER; Faculty of Medicine; 8 Avenue Rockefeller 69373 Lyon Cedex 08 France
| |
Collapse
|
14
|
Sarter M, Phillips KB. The neuroscience of cognitive-motivational styles: Sign- and goal-trackers as animal models. Behav Neurosci 2018; 132:1-12. [PMID: 29355335 DOI: 10.1037/bne0000226] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive-motivational styles describe predominant patterns of processing or biases that broadly influence human cognition and performance. Here we focus on the impact of cognitive-motivational styles on the response to cues predicting the availability of food or addictive drugs. An individual may preferably conduct an analysis of the motivational significance of reward cues, with the result that such cues per se are perceived as rewarding and worth approaching and working for. Alternatively, a propensity for a "cold" analysis of the behavioral utility of a reward cue may yield search behavior for food or drugs but not involve cue approach. Animal models for studying the neuronal mechanisms mediating such styles have originated from research concerning behavioral indices that predict differential vulnerability to addiction-like behaviors. Rats classified as sign- or goal-trackers (STs, GTs) were found to have opposed attentional biases (bottom-up or cue-driven attention vs. top-down or goal-driven attentional control) that are mediated primarily via relatively unresponsive versus elevated levels of cholinergic neuromodulation in the cortex. The capacity for cholinergic neuromodulation in STs is limited by a neuronal choline transporter (CHT) that fails to support increases in cholinergic activity. Moreover, in contrast to STs, the frontal dopamine system in GTs does not respond to the presence of drug cues and, thus, biases against cue-oriented behavior. The opponent cognitive-motivational styles that are indexed by sign- and goal-tracking bestow different cognitive-behavioral vulnerabilities that may contribute to the manifestation of a wide range of neuropsychiatric disorders. (PsycINFO Database Record
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan
| | - Kyra B Phillips
- Department of Psychology and Neuroscience Program, University of Michigan
| |
Collapse
|
15
|
Lack of association between SLC5A7 polymorphisms and Tourette syndrome in a Chinese Han population. Neurosci Lett 2017; 658:161-164. [PMID: 28830823 DOI: 10.1016/j.neulet.2017.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
Although Tourette syndrome (TS) is a chronic neuropsychiatric disorder whose pathogenesis remains unclear, genetic factors play an important role in the occurrence and development. A variety of studies have been shown that the candidate genes related to cholinergic neurons may be associated with the onset of TS. To investigate the association between the SLC5A7 polymorphisms and Tourette syndrome (TS) in the Chinese Han population, the SNP rs1013940, rs2433718, and rs4676169 were genotyped in 401 TS trios and 400 controls. The transmission disequilibrium test (TDT) and haplotype relative risk (HRR) compared genetic distributions of trios, while the chi-square test compared patients and controls. However, no transmission disequilibrium was found between the three SLC5A7 SNPs and TS. Therefore, we think that this gene may not be the main risk factor on the onset of TS. However, these results should be further validated in different populations.
Collapse
|
16
|
Luo D, Chen L, Yu B. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis. Biochem Biophys Res Commun 2017; 488:204-210. [DOI: 10.1016/j.bbrc.2017.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022]
|
17
|
Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochem Int 2017; 108:410-416. [PMID: 28577989 DOI: 10.1016/j.neuint.2017.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease.
Collapse
|
18
|
Choudhary P, Armstrong EJ, Jorgensen CC, Piotrowski M, Barthmes M, Torella R, Johnston SE, Maruyama Y, Janiszewski JS, Storer RI, Skerratt SE, Benn CL. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter. Front Mol Neurosci 2017; 10:40. [PMID: 28289374 PMCID: PMC5326799 DOI: 10.3389/fnmol.2017.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/03/2017] [Indexed: 01/09/2023] Open
Abstract
Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Maruyama
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd. Nagano, Japan
| | | | - R Ian Storer
- Pfizer, Worldwide Medicinal Chemistry Cambridge, UK
| | | | | |
Collapse
|
19
|
Unresponsive Choline Transporter as a Trait Neuromarker and a Causal Mediator of Bottom-Up Attentional Biases. J Neurosci 2017; 37:2947-2959. [PMID: 28193693 DOI: 10.1523/jneurosci.3499-16.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/16/2023] Open
Abstract
Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013). Here, we demonstrate a cellular mechanism, linked to ACh synthesis, that accounts for attenuated cholinergic capacity in STs. First, we found that electrical stimulation of the basal forebrain increased cortical choline transporter (CHT)-mediated choline transport in GTs, paralleled by a redistribution of CHTs to the synaptic plasma membrane. Neither increases in choline uptake nor translocation of CHTs occurred in STs. Second, and consistent with uptake/translocation alterations, STs demonstrated a reduced ability to support cortical ACh release in vivo compared with GTs after reverse-dialysis to elevate extracellular potassium levels. Third, rats were significantly more likely to develop sign-tracking behavior if treated systemically before pavlovian conditioned approach training with the CHT inhibitor VU6001221. Consistent with its proposed mechanisms, administration of VU6001221 attenuated potassium-evoked ACh levels in prefrontal cortex measured with in vivo microdialysis. We propose that loss of CHT-dependent activation of cortical cholinergic activity in STs degrades top-down executive control over behavior, producing a bias for bottom-up or stimulus-driven attention. Such an attentional bias contributes to nonadaptive reward processing and thus identifies a novel mechanism that can support psychopathology, including addiction.SIGNIFICANCE STATEMENT The vulnerability for addiction-like behavior has been associated with psychological traits, such as the propensity to attribute incentive salience to reward cues that is modeled in rats by sign-tracking behavior. Sign-trackers tend to approach and contact cues associated with reward, whereas their counterparts, the goal-trackers, have a preference for approaching the location of the reward. Here, we show that the capacity of presynaptic cholinergic synapses to respond to stimulation by elevating presynaptic choline uptake and releasing acetylcholine is attenuated in sign-trackers. Furthermore, pharmacological inhibition of choline transport induced sign-tracking behavior. Our findings suggest that reduced levels of cholinergic neuromodulation can mediate an attentional bias toward reward-related cues, thereby allowing such cues to exert relatively greater control over behavior.
Collapse
|
20
|
Kim K, Müller MLTM, Bohnen NI, Sarter M, Lustig C. Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses. Neuroimage 2017; 149:295-304. [PMID: 28167350 DOI: 10.1016/j.neuroimage.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Successful behavior depends on the ability to detect and respond to relevant cues, especially under challenging conditions. This essential component of attention has been hypothesized to be mediated by multiple neuromodulator systems, but the contributions of individual systems (e.g., cholinergic, dopaminergic) have remained unclear. The present study addresses this issue by leveraging individual variation in regionally-specific cholinergic denervation in Parkinson's disease (PD) patients, while controlling for variation in dopaminergic denervation. Patients whose dopaminergic and cholinergic nerve terminal integrity had been previously assessed using Positron Emission Tomography (Bohnen et al., 2012) and controls were tested in a signal detection task that manipulates attentional-perceptual challenge and has been used extensively in both rodents and humans to investigate the cholinergic system's role in responding to such challenges (Demeter et al., 2008; McGaughy and Sarter, 1995; see Hasselmo and Sarter 2011 for review). In simple correlation analyses, measures of midbrain dopaminergic, and both cortical and thalamic cholinergic innervation all predicted preserved signal detection under challenge. However, regression analyses also controlling for age, disease severity, and other variables showed that the only significant independent neurotransmitter-related predictor over and above the other variables in the model was thalamic cholinergic integrity. Furthermore, thalamic cholinergic innervation exclusively predicted hits, not correct rejections, indicating a specific contribution to bottom-up salience processing. These results help define regionally-specific contributions of cholinergic function to different aspects of attention and behavior.
Collapse
Affiliation(s)
- Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48109, United States
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States
| | - Cindy Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States.
| |
Collapse
|
21
|
Valuskova P, Farar V, Janisova K, Ondicova K, Mravec B, Kvetnansky R, Myslivecek J. Brain region-specific effects of immobilization stress on cholinesterases in mice. Stress 2017; 20:36-43. [PMID: 27873537 DOI: 10.1080/10253890.2016.1263836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brain acetylcholinesterase (AChE) variant AChER expression increases with acute stress, and this persists for an extended period, although the timing, strain and laterality differences, have not been explored previously. Acute stress transiently increases acetylcholine release, which in turn may increase activity of cholinesterases. Also the AChE gene contains a glucocorticoid response element (GRE), and stress-inducible AChE transcription and activity changes are linked to increased glucocorticoid levels. Corticotropin-releasing hormone knockout (CRH-KO) mice have basal glucocorticoid levels similar to wild type (WT) mice, but much lower levels during stress. Hence we hypothesized that CRH is important for the cholinesterase stress responses, including butyrylcholinesterase (BChE). We used immobilization stress, acute (30 or 120 min) and repeated (120 min daily × 7) in 48 male mice (24 WT and 24 CRH-KO) and determined AChER, AChE and BChE mRNA expression and AChE and BChE activities in left and right brain areas (as cholinergic signaling shows laterality). Immobilization decreased BChE mRNA expression (right amygdala, to 0.5, 0.3 and 0.4, × control respectively) and AChER mRNA expression (to 0.5, 0.4 and 0.4, × control respectively). AChE mRNA expression increased (1.3, 1.4 and 1.8-fold, respectively) in the left striatum (Str). The AChE activity increased in left Str (after 30 min, 1.2-fold), decreased in right parietal cortex with repeated stress (to 0.5 × control). BChE activity decreased after 30 min in the right CA3 region (to 0.4 × control) but increased (3.8-fold) after 120 min in the left CA3 region. The pattern of changes in CRH-KO differed from that in WT mice.
Collapse
Affiliation(s)
- Paulina Valuskova
- a Institute of Physiology, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Vladimir Farar
- b Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Katerina Janisova
- a Institute of Physiology, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Katarina Ondicova
- c Institute of Pathophysiology, Faculty of Medicine , Comenius University , Bratislava , Slovakia
- d Institute of Experimental Endocrinology Centre of Excellence for Cardiovascular Research and CENDO Slovak Academy of Sciences , Bratislava , Slovakia
| | - Boris Mravec
- d Institute of Experimental Endocrinology Centre of Excellence for Cardiovascular Research and CENDO Slovak Academy of Sciences , Bratislava , Slovakia
- e Institute of Physiology, Faculty of Medicine , Comenius University , Bratislava , Slovakia
| | - Richard Kvetnansky
- d Institute of Experimental Endocrinology Centre of Excellence for Cardiovascular Research and CENDO Slovak Academy of Sciences , Bratislava , Slovakia
| | - Jaromir Myslivecek
- a Institute of Physiology, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| |
Collapse
|
22
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
23
|
Cholinergic genetics of visual attention: Human and mouse choline transporter capacity variants influence distractibility. ACTA ACUST UNITED AC 2016; 110:10-18. [PMID: 27404793 DOI: 10.1016/j.jphysparis.2016.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
Abstract
The basal forebrain cholinergic projection system to the cortex mediates essential aspects of visual attention performance, including the detection of cues and the response to performance challenges (top-down control of attention). Higher levels of top-down control are mediated via elevated levels of cholinergic neuromodulation. The neuronal choline transporter (CHT) strongly influences the synthesis and release of acetylcholine (ACh). As the capacity of the CHT to import choline into the neuron is a major, presynaptic determinant of cholinergic neuromodulation, we hypothesize that genetically-imposed CHT capacity variation impacts the balance of bottom-up versus top-down control of visual attention. Following a brief review of the cognitive concepts relevant for this hypothesis, we describe the key results from our research in mice and humans that possess genetically-imposed changes in choline uptake capacity. CHT subcapacity is associated with poor top-down attentional control and attenuated (cholinergic) activation of right frontal regions. Conversely, mice overexpressing the CHT, and humans expressing a CHT variant hypothesized to enhance choline transporter function, are relatively resistant to challenges of visual attention performance. Genetic or environmental modulation of CHT expression and function may be associated with vulnerabilities for cognitive disorders.
Collapse
|
24
|
Demeter E, De Alburquerque D, Woldorff MG. The effects of ongoing distraction on the neural processes underlying signal detection. Neuropsychologia 2016; 89:335-343. [PMID: 27378439 DOI: 10.1016/j.neuropsychologia.2016.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/23/2023]
Abstract
Distraction can impede our ability to detect and effectively process task-relevant stimuli in our environment. Here we leveraged the high temporal resolution of event-related potentials (ERPs) to study the neural consequences of a global, continuous distractor on signal-detection processes. Healthy, young adults performed the dSAT task, a translational sustained-attention task that has been used across different species and in clinical groups, in the presence and absence of ongoing distracting stimulation. We found the presence of distracting stimuli impaired participants' ability to behaviorally detect task-relevant signal stimuli and greatly affected the neural cascade of processes underlying signal detection. Specifically, we found distraction reduced an anterior and a posterior early-latency N2 ERP component (~140-220ms) and modulated long-latency, detection-related P3 components (P3a: ~200-330ms, P3b: 300-700ms), even to correctly detected targets. These data provide evidence that distraction can induce powerful alterations in the neural processes related to signal detection, even when stimuli are behaviorally detected.
Collapse
Affiliation(s)
- Elise Demeter
- Center for Cognitive Neuroscience, Duke University, United States.
| | | | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, United States
| |
Collapse
|
25
|
Ennis EA, Blakely RD. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:175-213. [PMID: 27288078 DOI: 10.1016/bs.apha.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics.
Collapse
Affiliation(s)
- E A Ennis
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - R D Blakely
- Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
26
|
Iwamoto H, Calcutt MW, Blakely RD. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine. Neurochem Int 2016; 98:138-45. [PMID: 27013347 DOI: 10.1016/j.neuint.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
The efficient import of choline into cholinergic nerve terminals by the presynaptic, high-affinity choline transporter (CHT, SLC5A7) dictates the capacity for acetylcholine (ACh) synthesis and release. Tissue levels of ACh are significantly reduced in mice heterozygous for a loss of function mutation in Slc5a7 (HET, CHT(+/-)), but significantly elevated in overexpressing, Slc5a7 BAC-transgenic mice (BAC). Since the readily-releasable pool of ACh is thought to constitute a small fraction of the total ACh pool, these genotype-dependent changes raised the question as to whether CHT expression or activity might preferentially influence the size of reserve pool ACh vesicles. In the current study, we approached this question by evaluating CHT genotype effects on the release of ACh from suprafused mouse forebrain slices. We treated slices from HET, BAC or wildtype (WT) controls with elevated K(+) and monitored release of both newly synthesized and storage pools of ACh. Newly synthesized ACh produced following uptake of [(3)H]choline was quantified by scintillation spectrometry whereas release of endogenous ACh storage pools was quantified by an HPLC-MS approach, from the same samples. Whereas endogenous ACh release scaled with CHT gene dosage, preloaded [(3)H]ACh release displayed no significant genotype dependence. Our findings suggest that CHT protein levels preferentially impact the capacity for ACh release afforded by mobilization of reserve pool vesicles.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
27
|
Abstract
The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses.
Collapse
|
28
|
Kim CH, Hvoslef-Eide M, Nilsson SRO, Johnson MR, Herbert BR, Robbins TW, Saksida LM, Bussey TJ, Mar AC. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology (Berl) 2015; 232:3947-66. [PMID: 26415954 PMCID: PMC4600477 DOI: 10.1007/s00213-015-4081-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/03/2015] [Indexed: 11/26/2022]
Abstract
RATIONALE Continuous performance tests (CPTs) are widely used to assess attentional processes in a variety of disorders including Alzheimer's disease and schizophrenia. Common human CPTs require discrimination of sequentially presented, visually patterned 'target' and 'non-target' stimuli at a single location. OBJECTIVES The aims of this study were to evaluate the performance of three popular mouse strains on a novel rodent touchscreen test (rCPT) designed to be analogous to common human CPT variants and to investigate the effects of donepezil, a cholinesterase inhibitor and putative cognitive enhancer. METHODS C57BL/6J, DBA/2J and CD1 mice (n = 15-16/strain) were trained to baseline performance using four rCPT training stages. Then, probe tests assessed the effects of parameter changes on task performance: stimulus size, duration, contrast, probability, inter-trial interval or inclusion of flanker distractors. rCPT performance was also evaluated following acute administration of donepezil (0-3 mg/kg, i.p.). RESULTS C57BL/6J and DBA/2J mice showed similar acquisition rates and final baseline performance following rCPT training. On probe tests, rCPT performance of both strains was sensitive to alteration of visual and/or attentional demands (stimulus size, duration, contrast, rate, flanker distraction). Relative to C57BL/6J, DBA/2J mice exhibited (1) decreasing sensitivity (d') across the 45-min session, (2) reduced performance on probes where the appearance of stimuli or adjacent areas were changed (size, contrast, flanking distractors) and (3) larger dose- and stimulus duration-dependent changes in performance following donepezil administration. In contrast, CD1 mice failed to acquire rCPT (stage 3) and pairwise visual discrimination tasks. CONCLUSIONS rCPT is a potentially useful translational tool for assessing attention in mice and for detecting the effects of nootropic drugs.
Collapse
Affiliation(s)
- Chi Hun Kim
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Martha Hvoslef-Eide
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Simon R O Nilsson
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Mark R Johnson
- Academic Obstetrics and Gynaecology, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, SW10 9NH, London, UK
| | - Bronwen R Herbert
- Academic Obstetrics and Gynaecology, Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, SW10 9NH, London, UK
| | - Trevor W Robbins
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Adam C Mar
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK.
- Department of Neuroscience and Physiology Neuroscience Institute, New York University, New York, NY, USA.
| |
Collapse
|
29
|
Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2015; 123:695-729. [PMID: 26497023 PMCID: PMC4919383 DOI: 10.1007/s00702-015-1475-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
The lateral part of the mesopontine tegmentum contains functionally important structures involved in the control of posture and gait. Specifically, the mesencephalic locomotor region, which may consist of the cuneiform nucleus and pedunculopontine tegmental nucleus (PPN), occupies the interest with respect to the pathophysiology of posture-gait disorders. The purpose of this article is to review the mechanisms involved in the control of postural muscle tone and locomotion by the mesopontine tegmentum and the pontomedullary reticulospinal system. To make interpretation and discussion more robust, the above issue is considered largely based on our findings in the experiments using decerebrate cat preparations in addition to the results in animal experimentations and clinical investigations in other laboratories. Our investigations revealed the presence of functional topographical organizations with respect to the regulation of postural muscle tone and locomotion in both the mesopontine tegmentum and the pontomedullary reticulospinal system. These organizations were modified by neurotransmitter systems, particularly the cholinergic PPN projection to the pontine reticular formation. Because efferents from the forebrain structures as well as the cerebellum converge to the mesencephalic and pontomedullary reticular formation, changes in these organizations may be involved in the appropriate regulation of posture-gait synergy depending on the behavioral context. On the other hand, abnormal signals from the higher motor centers may produce dysfunction of the mesencephalic-reticulospinal system. Here we highlight the significance of elucidating the mechanisms of the mesencephalic-reticulospinal control of posture and locomotion so that thorough understanding of the pathophysiological mechanisms of posture-gait disorders can be made.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan.
| | - Ryosuke Chiba
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Midorigaoka-Higashi 2-1, 1-1, Asahikawa, 078-8511, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
30
|
Kutlu MG, Parikh V, Gould TJ. Nicotine Addiction and Psychiatric Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:171-208. [PMID: 26472530 DOI: 10.1016/bs.irn.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though smoking rates have long been on the decline, nicotine addiction still affects 20% of the US population today. Moreover, nicotine dependence shows high comorbidity with many mental illnesses including, but are not limited to, attention deficit hyperactivity disorder, anxiety disorders, and depression. The reason for the high rates of smoking in patients with mental illnesses may relate to attempts to self-medicate with nicotine. While nicotine may alleviate the symptoms of mental disorders, nicotine abstinence has been shown to worsen the symptoms of these disorders. In this chapter, we review the studies from animal and human research examining the bidirectional relationship between nicotine and attention deficit hyperactivity disorder, anxiety disorders, and depression as well as studies examining the roles of specific subunits of nicotinic acetylcholine receptors (nAChRs) in the interaction between nicotine and these mental illnesses. The results of these studies suggest that activation, desensitization, and upregulation of nAChRs modulate the effects of nicotine on mental illnesses.
Collapse
Affiliation(s)
| | - Vinay Parikh
- Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
31
|
Behler O, Breckel TPK, Thiel CM. Nicotine reduces distraction under low perceptual load. Psychopharmacology (Berl) 2015; 232:1269-77. [PMID: 25304866 DOI: 10.1007/s00213-014-3761-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Several studies provide evidence that nicotine alleviates the detrimental effects of distracting sensory stimuli. It is been suggested that nicotine may either act as a stimulus filter that prevents irrelevant stimuli entering awareness or by enhancing the attentional focus to relevant stimuli via a boost in processing capacity. OBJECTIVES To differentiate between these two accounts, we administered nicotine to healthy non-smokers and investigated distractor interference in a visual search task with low and high perceptual load to tax processing capacity. METHODS Thirty healthy non-smokers received either 7 mg transdermal nicotine or a matched placebo in a double blind within subject design 1 h prior to performing the visual search task with different fixation distractors. RESULTS Nicotine reduced interference of incongruent distractors, but only under low-load conditions, where distractor effects were large. No effects of nicotine were observed under high-load conditions. Highly distractible subjects showed the largest effects of nicotine. CONCLUSIONS The findings suggest that nicotine acts primarily as a stimulus filter that prevents irrelevant stimuli from entering awareness in situations of high distractor interference.
Collapse
Affiliation(s)
- Oliver Behler
- Biological Psychology, Department of Psychology, European Medical School, Carl-von-Ossietzky Universität Oldenburg, Ammerländer Heer Str. 114-118, 26111, Oldenburg, Germany
| | | | | |
Collapse
|
32
|
Ennis EA, Wright J, Retzlaff CL, McManus OB, Lin Z, Huang X, Wu M, Li M, Daniels JS, Lindsley CW, Hopkins CR, Blakely RD. Identification and characterization of ML352: a novel, noncompetitive inhibitor of the presynaptic choline transporter. ACS Chem Neurosci 2015; 6:417-27. [PMID: 25560927 PMCID: PMC4367188 DOI: 10.1021/cn5001809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
The high-affinity choline transporter
(CHT) is the rate-limiting
determinant of acetylcholine (ACh) synthesis, yet the transporter
remains a largely undeveloped target for the detection and manipulation
of synaptic cholinergic signaling. To expand CHT pharmacology, we
pursued a high-throughput screen for novel CHT-targeted small molecules
based on the electrogenic properties of transporter-mediated choline
transport. In this effort, we identified five novel, structural classes
of CHT-specific inhibitors. Chemical diversification and functional
analysis of one of these classes identified ML352 as a high-affinity
(Ki = 92 nM) and selective CHT inhibitor.
At concentrations that fully antagonized CHT in transfected cells
and nerve terminal preparations, ML352 exhibited no inhibition of
acetylcholinesterase (AChE) or cholineacetyltransferase (ChAT) and
also lacked activity at dopamine, serotonin, and norepinephrine transporters,
as well as many receptors and ion channels. ML352 exhibited noncompetitive
choline uptake inhibition in intact cells and synaptosomes and reduced
the apparent density of hemicholinium-3 (HC-3) binding sites in membrane
assays, suggesting allosteric transporter interactions. Pharmacokinetic
studies revealed limited in vitro metabolism and
significant CNS penetration, with features predicting rapid clearance.
ML352 represents a novel, potent, and specific tool for the manipulation
of CHT, providing a possible platform for the development of cholinergic
imaging and therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Owen B. McManus
- Johns Hopkins University Ion Channel Center, Baltimore, Maryland 21205, United States
| | - Zhinong Lin
- Johns Hopkins University Ion Channel Center, Baltimore, Maryland 21205, United States
| | - Xiaofang Huang
- Johns Hopkins University Ion Channel Center, Baltimore, Maryland 21205, United States
| | - Meng Wu
- Johns Hopkins University Ion Channel Center, Baltimore, Maryland 21205, United States
| | - Min Li
- Johns Hopkins University Ion Channel Center, Baltimore, Maryland 21205, United States
| | | | | | | | | |
Collapse
|
33
|
Berry AS, Blakely RD, Sarter M, Lustig C. Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. Neuroimage 2015; 108:386-95. [PMID: 25536497 PMCID: PMC4469545 DOI: 10.1016/j.neuroimage.2014.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/01/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022] Open
Abstract
In rodent studies, elevated cholinergic neurotransmission in right prefrontal cortex (PFC) is essential for maintaining attentional performance, especially in challenging conditions. Apparently paralleling the rises in acetylcholine seen in rodent studies, fMRI studies in humans reveal right PFC activation at or near Brodmann's areas 9 (BA 9) increases in response to elevated attentional demand. In the present study, we leveraged human genetic variability in the cholinergic system to test the hypothesis that the cholinergic system contributes to the BA 9 response to attentional demand. Specifically, we scanned (BOLD fMRI) participants with a polymorphism of the choline transporter gene that is thought to limit choline transport capacity (Ile89Val variant of the choline transporter gene SLC5A7, rs1013940) and matched controls while they completed a task previously used to demonstrate demand-related increases in right PFC cholinergic transmission in rats and right PFC activation in humans. As hypothesized, we found that although controls showed the typical pattern of robust BA 9 responses to increased attentional demand, Ile89Val participants did not. Further, pattern analysis of activation within this region significantly predicted participant genotype. Additional exploratory pattern classification analyses suggested that Ile89Val participants differentially recruited orbitofrontal cortex and parahippocampal gyrus to maintain attentional performance to the level of controls. These results contribute to a growing body of translational research clarifying the role of cholinergic signaling in human attention and functional neural measures, and begin to outline the risk and resiliency factors associated with potentially suboptimal cholinergic function with implications for disorders characterized by cholinergic dysregulation.
Collapse
Affiliation(s)
- Anne S Berry
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232, USA
| | - Martin Sarter
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA; Psychology Department, University of Michigan, Ann Arbor, MI 49109-1043, USA
| | - Cindy Lustig
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA; Psychology Department, University of Michigan, Ann Arbor, MI 49109-1043, USA.
| |
Collapse
|
34
|
Yegla B, Parikh V. Rejuvenating procholinergic treatments for cognition enhancement in AD: current challenges and future prospects. Front Syst Neurosci 2015; 8:254. [PMID: 25674054 PMCID: PMC4309160 DOI: 10.3389/fnsys.2014.00254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/29/2014] [Indexed: 11/23/2022] Open
|
35
|
Lustig C, Sarter M. Attention and the Cholinergic System: Relevance to Schizophrenia. Curr Top Behav Neurosci 2015; 28:327-62. [PMID: 27418070 DOI: 10.1007/7854_2015_5009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditional methods of drug discovery often rely on a unidirectional, "bottom-up" approach: A search for molecular compounds that target a particular neurobiological substrate (e.g., a receptor type), the refinement of those compounds, testing in animal models using high-throughput behavioral screening methods, and then human testing for safety and effectiveness. Many attempts have found the "effectiveness" criterion to be a major stumbling block, and we and others have suggested that success may be improved by an alternative approach that considers the neural circuits mediating the effects of genetic and molecular manipulations on behavior and cognition. We describe our efforts to understand the cholinergic system's role in attention using parallel approaches to test main hypotheses in both rodents and humans as well as generating converging evidence using methods and levels of analysis tailored to each species. The close back-and-forth between these methods has enhanced our understanding of the cholinergic system's role in attention both "bottom-up" and "top-down"-that is, the basic neuroscience identifies potential neuronal circuit-based mechanisms of clinical symptoms, and the patient and genetic populations serve as natural experiments to test and refine hypotheses about its contribution to specific processes. Together, these studies have identified (at least) two major and potentially independent contributions of the cholinergic system to attention: a neuromodulatory component that influences cognitive control in response to challenges from distractors that either make detection more difficult or draw attention away from the distractor, and a phasic or transient cholinergic signal that instigates a shift from ongoing behavior and the activation of cue-associated response. Right prefrontal cortex appears to play a particularly important role in the neuromodulatory component integrating motivational and cognitive influences for top-down control across populations, whereas the transient cholinergic signal involves orbitofrontal regions associated with shifts between internal and external attention. Understanding how these two modes of cholinergic function interact and are perturbed in schizophrenia will be an important prerequisite for developing effective treatments.
Collapse
Affiliation(s)
- Cindy Lustig
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48103, USA.
| | - Martin Sarter
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48103, USA
| |
Collapse
|
36
|
Parikh V, Bernard CS, Naughton SX, Yegla B. Interactions between Aβ oligomers and presynaptic cholinergic signaling: age-dependent effects on attentional capacities. Behav Brain Res 2014; 274:30-42. [PMID: 25101540 DOI: 10.1016/j.bbr.2014.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
Substantial evidence suggests that cerebral deposition of the neurotoxic fibrillar form of amyloid precursor protein, β-amyloid (Aβ), plays a critical role in the pathogenesis of Alzheimer's disease (AD). Yet, many aspects of AD pathology including the cognitive symptoms and selective vulnerability of cortically projecting basal forebrain (BF) cholinergic neurons are not well explained by this hypothesis. Specifically, it is not clear why cognitive decline appears early when the loss of BF cholinergic neurons and plaque deposition are manifested late in AD. Soluble oligomeric forms of Aβ are proposed to appear early in the pathology and to be better predictors of synaptic loss and cognitive deficits. The present study was designed to examine the impact of Aβ oligomers on attentional functions and presynaptic cholinergic transmission in young and aged rats. Chronic intracranial infusions of Aβ oligomers produced subtle decrements in the ability of rats to sustain attentional performance with time on task, irrespective of the age of the animals. However, Aβ oligomers produced robust detrimental effects on performance under conditions of enhanced attentional load in aged animals. In vivo electrochemical recordings show reduced depolarization-evoked cholinergic signals in Aβ-infused aged rats. Moreover, soluble Aβ disrupted the capacity of cholinergic synapses to clear exogenous choline from the extracellular space in both young and aged rats, reflecting impairments in the choline transport process that is critical for acetylcholine (ACh) synthesis and release. Although aging per se reduced the cross-sectional area of BF cholinergic neurons and presynaptic cholinergic proteins in the cortex, attentional performance and ACh release remained unaffected in aged rats infused with the control peptide. Taken together, these data suggest that soluble Aβ may marginally influence attentional functions at young ages primarily by interfering with the choline uptake processes. However, age-related weakening of the cholinergic system may synergistically interact with these disruptive presynaptic mechanisms to make this neurotransmitter system vulnerable to the toxic effects of oligomeric Aβ in robustly impeding attentional capacities.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Carcha S Bernard
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Sean X Naughton
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Brittney Yegla
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
37
|
Gorka AX, Knodt AR, Hariri AR. Basal forebrain moderates the magnitude of task-dependent amygdala functional connectivity. Soc Cogn Affect Neurosci 2014; 10:501-7. [PMID: 24847112 DOI: 10.1093/scan/nsu080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 12/28/2022] Open
Abstract
Animal studies reveal that the amygdala promotes attention and emotional memory, in part, by driving activity in downstream target regions including the prefrontal cortex (PFC) and hippocampus. Prior work has demonstrated that the amygdala influences these regions directly through monosynaptic glutamatergic signaling, and indirectly by driving activity of the cholinergic basal forebrain and subsequent downstream acetylcholine release. Yet to date, no work has addressed the functional relevance of the cholinergic basal forebrain in facilitating signaling from the amygdala in humans. We set out to determine how blood oxygen level-dependent signal within the amygdala and cholinergic basal forebrain interact to predict neural responses within downstream targets. Here, we use functional connectivity analyses to demonstrate that the cholinergic basal forebrain moderates increased amygdala connectivity with both the PFC and the hippocampus during the processing of biologically salient stimuli in humans. We further demonstrate that functional variation within the choline transporter gene predicts the magnitude of this modulatory effect. Collectively, our results provide novel evidence for the importance of cholinergic signaling in modulating neural pathways supporting arousal, attention and memory in humans. Further, our results may shed light on prior association studies linking functional variation within the choline transporter gene and diagnoses of major depression and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Adam X Gorka
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Institute for Genome Sciences & Policy, Duke University, Durham, 27708 NC, USA
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Institute for Genome Sciences & Policy, Duke University, Durham, 27708 NC, USA
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Institute for Genome Sciences & Policy, Duke University, Durham, 27708 NC, USA
| |
Collapse
|
38
|
Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int 2014; 73:71-88. [PMID: 24704795 DOI: 10.1016/j.neuint.2014.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 12/30/2022]
Abstract
The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.
Collapse
|
39
|
Berry AS, Demeter E, Sabhapathy S, English BA, Blakely RD, Sarter M, Lustig C. Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects. J Cogn Neurosci 2014; 26:1981-91. [PMID: 24666128 DOI: 10.1162/jocn_a_00607] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both the passage of time and external distraction make it difficult to keep attention on the task at hand. We tested the hypothesis that time-on-task and external distraction pose independent challenges to attention and that the brain's cholinergic system selectively modulates our ability to resist distraction. Participants with a polymorphism limiting cholinergic capacity (Ile89Val variant [rs1013940] of the choline transporter gene SLC5A7) and matched controls completed self-report measures of attention and a laboratory task that measured decrements in sustained attention with and without distraction. We found evidence that distraction and time-on-task effects are independent and that the cholinergic system is strongly linked to greater vulnerability to distraction. Ile89Val participants reported more distraction during everyday life than controls, and their task performance was more severely impacted by the presence of an ecologically valid video distractor (similar to a television playing in the background). These results are the first to demonstrate a specific impairment in cognitive control associated with the Ile89Val polymorphism and add to behavioral and cognitive neuroscience studies indicating the cholinergic system's critical role in overcoming distraction.
Collapse
|
40
|
Holmstrand EC, Lund D, Cherian AK, Wright J, Martin RF, Ennis EA, Stanwood GD, Sarter M, Blakely RD. Transgenic overexpression of the presynaptic choline transporter elevates acetylcholine levels and augments motor endurance. Neurochem Int 2013; 73:217-28. [PMID: 24274995 DOI: 10.1016/j.neuint.2013.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC-CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [(3)H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC-CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC-CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC-CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC-CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC-CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity.
Collapse
Affiliation(s)
- Ericka C Holmstrand
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Lund
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ajeesh Koshy Cherian
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Jane Wright
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rolicia F Martin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elizabeth A Ennis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
41
|
Dong Y, Dani JA, Blakely RD. Choline transporter hemizygosity results in diminished basal extracellular dopamine levels in nucleus accumbens and blunts dopamine elevations following cocaine or nicotine. Biochem Pharmacol 2013; 86:1084-8. [PMID: 23939187 PMCID: PMC4413453 DOI: 10.1016/j.bcp.2013.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
Dopamine (DA) signaling in the central nervous system mediates the addictive capacities of multiple commonly abused substances, including cocaine, amphetamine, heroin and nicotine. The firing of DA neurons residing in the ventral tegmental area (VTA), and the release of DA by the projections of these neurons in the nucleus accumbens (NAc), is under tight control by cholinergic signaling mediated by nicotinic acetylcholine (ACh) receptors (nAChRs). The capacity for cholinergic signaling is dictated by the availability and activity of the presynaptic, high-affinity, choline transporter (CHT, SLC5A7) that acquires choline in an activity-dependent matter to sustain ACh synthesis. Here, we present evidence that a constitutive loss of CHT expression, mediated by genetic elimination of one copy of the Slc5a7 gene in mice (CHT+/-), leads to a significant reduction in basal extracellular DA levels in the NAc, as measured by in vivo microdialysis. Moreover, CHT heterozygosity results in blunted DA elevations following systemic nicotine or cocaine administration. These findings reinforce a critical role of ACh signaling capacity in both tonic and drug-modulated DA signaling and argue that genetically imposed reductions in CHT that lead to diminished DA signaling may lead to poor responses to reinforcing stimuli, possibly contributing to disorders linked to perturbed cholinergic signaling including depression and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Yu Dong
- Center on Addiction, Learning, Memory; Baylor College of Medicine, Houston, TX USA 77030-3498
| | - John A. Dani
- Center on Addiction, Learning, Memory; Baylor College of Medicine, Houston, TX USA 77030-3498
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA USA 19104
| | - Randy D. Blakely
- Departments of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN USA 37232-8548
| |
Collapse
|
42
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in hippocampus as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 257:129-39. [PMID: 24095878 DOI: 10.1016/j.bbr.2013.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023]
Abstract
To identify genes involved in the development/expression of anxiety/fear, we analyzed the gene expression profile in the hippocampus of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock is a unique genetic resource for the fine mapping of quantitative trait loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety, fearfulness or other complex traits. We selected high- and low-anxious NIH-HS rats according to the number of avoidance responses they performed in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety/fearfulness tests, i.e. the elevated zero-maze and a "novel-cage activity" test. Three weeks after behavioral testing, the hippocampus was dissected and prepared for the microarray study. There appeared 29 down-regulated and 37 up-regulated SNC-related genes (fold-change>|2.19|, FDR<0.05) in the "Low-anxious" vs. the "High-anxious" group. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, nine relevant genes (Avpr1b, Accn3, Cd74, Ltb, Nrg2, Oprdl1, Slc10a4, Slc5a7 and RT1-EC12), tested for validation through qRT-PCR, have either neuroendocrinological or neuroinmunological/inflammation-related functions, or have been related with the hippocampal cholinergic system, while some of them have also been involved in the modulation of anxiety or stress-related (neurobiological and behavioral) responses (i.e. Avpr1b, Oprdl1). The present work confirms the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis or mechanisms involved in anxiety and/or fear, and suggest that some MHC-(neuroinmunological/inflammation)-related pathways, as well as the cholinergic system within the hippocampus, may play a role in shaping individual differences in trait anxiety.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J Neurosci 2013; 33:10427-38. [PMID: 23785154 DOI: 10.1523/jneurosci.0395-13.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in many forms of cognitive and motor processing. Recent studies have used bacterial artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2-EYFP) to dissect cholinergic circuit connectivity and function using optogenetic approaches. We report that a mouse line used for this purpose also carries several copies of the vesicular acetylcholine transporter gene (VAChT), which leads to overexpression of functional VAChT and consequently increased cholinergic tone. We demonstrate that these mice have marked improvement in motor endurance. However, they also present severe cognitive deficits, including attention deficits and dysfunction in working memory and spatial memory. These results suggest that increased VAChT expression may disrupt critical steps in information processing. Our studies demonstrate that ChAT-ChR2-EYFP mice show altered cholinergic tone that fundamentally differentiates them from wild-type mice.
Collapse
|
44
|
Paolone G, Mallory CS, Cherian AK, Miller TR, Blakely RD, Sarter M. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits. Neuropharmacology 2013; 75:274-85. [PMID: 23958450 DOI: 10.1016/j.neuropharm.2013.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
Abstract
Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders.
Collapse
Affiliation(s)
- Giovanna Paolone
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| | - Caitlin S Mallory
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| | - Ajeesh Koshy Cherian
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| | - Thomas R Miller
- Neuroscience Discovery, AbbVie Inc., North Chicago, IL 60064
| | - Randy D Blakely
- Departments of Pharmacology and Psychiatry, Vanderbilt University, Nashville, TN 37232-8548
| | - Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI 48103
| |
Collapse
|
45
|
Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci 2013; 33:8321-35. [PMID: 23658172 DOI: 10.1523/jneurosci.0709-13.2013] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Some rats [sign-trackers (STs)] are especially prone to attribute incentive salience to reward cues, relative to others [goal-trackers (GTs)]. Thus, reward cues are more likely to promote maladaptive reward-seeking behavior in STs than GTs. Here, we asked whether STs and GTs differ on another trait that can contribute to poor restraint over behavior evoked by reward cues. We report that, relative to GTs, STs have poor control over attentional performance, due in part to insufficient cholinergic stimulation of cortical circuitry. We found that, relative to GTs, STs showed poor performance on a sustained attention task (SAT). Furthermore, their performance fluctuated rapidly between periods of good to near-chance performance. This finding was reproduced using a separate cohort of rats. As demonstrated earlier, performance on the SAT was associated with increases in extracellular levels of cortical acetylcholine (ACh); however, SAT performance-associated increases in ACh levels were significantly attenuated in STs relative to GTs. Consistent with the view that the modulatory effects of ACh involve stimulation of α4β2* nicotinic ACh receptors (nAChRs), systemic administration of the partial nAChR agonist ABT-089 improved SAT performance in STs and abolished the difference between SAT-associated ACh levels in STs and GTs. Neither the nonselective nAChR agonist nicotine nor the psychostimulant amphetamine improved SAT performance. These findings suggest that individuals who have a propensity to attribute high-incentive salience to reward cues also exhibit relatively poor attentional control. A combination of these traits may render individuals especially vulnerable to disorders, such as obesity and addiction.
Collapse
|
46
|
Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 2013; 33:8742-52. [PMID: 23678117 DOI: 10.1523/jneurosci.5809-12.2013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously reported involvement of right prefrontal cholinergic activity in veridical signal detection. Here, we first recorded real-time acetylcholine release in prefrontal cortex (PFC) during specific trial sequences in rats performing a task requiring signal detection as well as rejection of nonsignal events. Cholinergic release events recorded with subsecond resolution ("transients") were observed only during signal-hit trials, not during signal-miss trials or nonsignal events. Moreover, cholinergic transients were not observed for consecutive hits; instead they were limited to signal-hit trials that were preceded by factual or perceived nonsignal events ("incongruent hits"). This finding suggests that these transients mediate shifts from a state of perceptual attention, or monitoring for cues, to cue-evoked activation of response rules and the generation of a cue-directed response. Next, to determine the translational significance of the cognitive operations supporting incongruent hits we used a version of the task previously validated for use in research in humans and blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging. Incongruent hits activated a region in the right rostral PFC (Brodmann area 10). Furthermore, greater prefrontal activation was correlated with faster response times for incongruent hits. Finally, we measured tissue oxygen in rats, as a proxy for BOLD, and found prefrontal increases in oxygen levels solely during incongruent hits. These cross-species studies link a cholinergic response to a prefrontal BOLD activation and indicate that these interrelated mechanisms mediate the integration of external cues with internal representations to initiate and guide behavior.
Collapse
|