1
|
Konrad JD, Lohse KR, Marrus N, Lang CE. Trial-to-trial motor behavior during a reinforcement learning task in children ages 6 to 12. Hum Mov Sci 2025; 99:103317. [PMID: 39667095 DOI: 10.1016/j.humov.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION During practice, learners use available feedback from one trial to develop and implement motor commands for the next trial. Unsuccessful trials (i.e., "misses") should be followed by different motor behavior (e.g., goal-directed changes and/or exploration of movement parameters), while successful trials (i.e., "hits") should maintain the same behavior (e.g., minimize variance and recapitulate the same motor plan to the best of one's ability). Measuring the trial-to-trial changes in motor behavior can provide insights into how the motor system uses feedback and regulates movement variability while trying to improve performance. There have been no reports on the trial-to-trial motor behavior of typically developing children despite the profound motor development that occurs in this period and its relevance to long-term functional outcomes. METHODS We recruited 72 typically developing children from ages 6 to 12 to perform a reinforcement learning beanbag toss to a target. Their target errors were used to examine their motor exploration and autocorrelation. RESULTS Comparing variability at different trial-to-trial intervals showed that children exhibit motor exploration above and beyond the effect of sampling bias. Mean autocorrelations of different lags were near zero suggesting that successive trials were largely unrelated. CONCLUSION We found evidence that children utilize motor exploration in the target space of a target throwing task. After failed trials they exhibited increased variability to search for more optimal motor solutions. After successes, they minimized variability to create the same successful performance.
Collapse
Affiliation(s)
- Jeffrey D Konrad
- Program in Physical Therapy, Washington University School of Medicine, CB 8502, 4444 Forest Park Ave., Suite 1101, St. Louis, MO 63108-2212, United States
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, CB 8502, 4444 Forest Park Ave., Suite 1101, St. Louis, MO 63108-2212, United States; Department of Neurology, Washington University School of Medicine, MSC 8111-29-9000, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, CB 8509, 660 South Euclid Ave., St. Louis, MO 63110, United States
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine, CB 8502, 4444 Forest Park Ave., Suite 1101, St. Louis, MO 63108-2212, United States; Program in Occupational Therapy, Washington University School of Medicine, MSC 8505-66-1, 4444 Forest Park Avenue, St. Louis, MO 63108-2212, United States; Department of Neurology, Washington University School of Medicine, MSC 8111-29-9000, 660 S. Euclid Ave., St. Louis, MO 63110, United States.
| |
Collapse
|
2
|
Faßbender L, Falck J, López FM, Shing YL, Triesch J, Schwarzer G. A comparison of force adaptation in toddlers and adults during a drawer opening task. Sci Rep 2025; 15:3699. [PMID: 39880910 PMCID: PMC11779916 DOI: 10.1038/s41598-025-87441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models. However, how internal models are adapted in early childhood remains largely unexplored. This study investigated a naturalistic force adaptation task in 1.5-, 3-year-olds, and young adults. Participants opened a drawer with temporarily increased resistance, creating sensory prediction errors between predicted and actual drawer dynamics. After perturbation, all age groups showed lower peak speed, longer movement time, and more movement units with trial-wise changes analyzed as adaptation process. Results revealed no age differences in adapting peak speed and movement units, but 1.5- and 3-year-olds exhibited higher trial-to-trial variability and were slower in adapting their movement time, although they also adapted their movement time more strongly. Upon removal of perturbation, we found significant aftereffects across all age groups, indicating effective internal model adaptation. These results suggest that even 1.5-year-olds form internal models of force parameters and adapt them to reduce sensory prediction errors, possibly through more exploration and with more variable movement dynamics compared to adults.
Collapse
Affiliation(s)
- Laura Faßbender
- Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.
| | - Johannes Falck
- Department of Psychology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Francisco M López
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Department of Physics, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Gießen, Darmstadt, Germany
| | - Gudrun Schwarzer
- Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany
- Center for Mind, Brain and Behavior, Universities of Marburg, Gießen, Darmstadt, Germany
| |
Collapse
|
3
|
Slade P, Atkeson C, Donelan JM, Houdijk H, Ingraham KA, Kim M, Kong K, Poggensee KL, Riener R, Steinert M, Zhang J, Collins SH. On human-in-the-loop optimization of human-robot interaction. Nature 2024; 633:779-788. [PMID: 39322732 DOI: 10.1038/s41586-024-07697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/07/2024] [Indexed: 09/27/2024]
Abstract
From industrial exoskeletons to implantable medical devices, robots that interact closely with people are poised to improve every aspect of our lives. Yet designing these systems is very challenging; humans are incredibly complex and, in many cases, we respond to robotic devices in ways that cannot be modelled or predicted with sufficient accuracy. A new approach, human-in-the-loop optimization, can overcome these challenges by systematically and empirically identifying the device characteristics that result in the best objective performance for a specific user and application. This approach has enabled substantial improvements in human-robot performance in research settings and has the potential to speed development and enhance products. In this Perspective, we describe methods for applying human-in-the-loop optimization to new human-robot interaction problems, addressing each key decision in a variety of contexts. We also identify opportunities to develop new optimization techniques and answer underlying scientific questions. We anticipate that our readers will advance human-in-the-loop optimization and use it to design robotic devices that truly enhance the human experience.
Collapse
Affiliation(s)
- Patrick Slade
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | | | - J Maxwell Donelan
- WearTech Labs, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Han Houdijk
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kimberly A Ingraham
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Myunghee Kim
- Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Kyoungchul Kong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Katherine L Poggensee
- Department of Rehabilitation Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Robert Riener
- Sensory-Motor Systems Lab, ETH Zurich, Zürich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Martin Steinert
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Juanjuan Zhang
- College of Artificial Intelligence, Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
| | - Steven H Collins
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Rossi C, Roemmich RT, Bastian AJ. Understanding mechanisms of generalization following locomotor adaptation. NPJ SCIENCE OF LEARNING 2024; 9:48. [PMID: 39043679 PMCID: PMC11266392 DOI: 10.1038/s41539-024-00258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Our nervous system has the remarkable ability to adapt our gait to accommodate changes in our body or surroundings. However, our adapted walking patterns often generalize only partially (or not at all) between different contexts. Here, we sought to understand how the nervous system generalizes adapted gait patterns from one context to another. Through a series of split-belt treadmill walking experiments, we evaluated different mechanistic hypotheses to explain the partial generalization of adapted gait patterns from split-belt treadmill to overground walking. In support of the credit assignment hypothesis, our experiments revealed the central finding that adaptation involves recalibration of two distinct forward models. Recalibration of the first model generalizes to overground walking, suggesting that the model represents the general movement dynamics of our body. On the other hand, recalibration of the second model does not generalize to overground walking, suggesting the model represents dynamics specific to treadmill walking. These findings reveal that there is a predefined portion of forward model recalibration that generalizes across context, leading to overall partial generalization of walking adaptation.
Collapse
Affiliation(s)
- Cristina Rossi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Jacobsen NA, Ferris DP. Exploring Electrocortical Signatures of Gait Adaptation: Differential Neural Dynamics in Slow and Fast Gait Adapters. eNeuro 2024; 11:ENEURO.0515-23.2024. [PMID: 38871456 PMCID: PMC11242882 DOI: 10.1523/eneuro.0515-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Individuals exhibit significant variability in their ability to adapt locomotor skills, with some adapting quickly and others more slowly. Differences in brain activity likely contribute to this variability, but direct neural evidence is lacking. We investigated individual differences in electrocortical activity that led to faster locomotor adaptation rates. We recorded high-density electroencephalography while young, neurotypical adults adapted their walking on a split-belt treadmill and grouped them based on how quickly they restored their gait symmetry. Results revealed unique spectral signatures within the posterior parietal, bilateral sensorimotor, and right visual cortices that differ between fast and slow adapters. Specifically, fast adapters exhibited lower alpha power in the posterior parietal and right visual cortices during early adaptation, associated with quicker attainment of steady-state step length symmetry. Decreased posterior parietal alpha may reflect enhanced spatial attention, sensory integration, and movement planning to facilitate faster locomotor adaptation. Conversely, slow adapters displayed greater alpha and beta power in the right visual cortex during late adaptation, suggesting potential differences in visuospatial processing. Additionally, fast adapters demonstrated reduced spectral power in the bilateral sensorimotor cortices compared with slow adapters, particularly in the theta band, which may suggest variations in perception of the split-belt perturbation. These findings suggest that alpha and beta oscillations in the posterior parietal and visual cortices and theta oscillations in the sensorimotor cortex are related to the rate of gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| |
Collapse
|
6
|
Jacobsen NA, Ferris DP. Electrocortical theta activity may reflect sensory prediction errors during adaptation to a gradual gait perturbation. PeerJ 2024; 12:e17451. [PMID: 38854799 PMCID: PMC11162180 DOI: 10.7717/peerj.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Locomotor adaptation to abrupt and gradual perturbations are likely driven by fundamentally different neural processes. The aim of this study was to quantify brain dynamics associated with gait adaptation to a gradually introduced gait perturbation, which typically results in smaller behavioral errors relative to an abrupt perturbation. Loss of balance during standing and walking elicits transient increases in midfrontal theta oscillations that have been shown to scale with perturbation intensity. We hypothesized there would be no significant change in anterior cingulate theta power (4-7 Hz) with respect to pre-adaptation when a gait perturbation is introduced gradually because the gradual perturbation acceleration and stepping kinematic errors are small relative to an abrupt perturbation. Using mobile electroencephalography (EEG), we measured gait-related spectral changes near the anterior cingulate, posterior cingulate, sensorimotor, and posterior parietal cortices as young, neurotypical adults (n = 30) adapted their gait to an incremental split-belt treadmill perturbation. Most cortical clusters we examined (>70%) did not exhibit changes in electrocortical activity between 2-50 Hz. However, we did observe gait-related theta synchronization near the left anterior cingulate cortex during strides with the largest errors, as measured by step length asymmetry. These results suggest gradual adaptation with small gait asymmetry and perturbation magnitude may not require significant cortical resources beyond normal treadmill walking. Nevertheless, the anterior cingulate may remain actively engaged in error monitoring, transmitting sensory prediction error information via theta oscillations.
Collapse
Affiliation(s)
- Noelle A. Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Daniel Perry Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
7
|
Jacobsen NA, Ferris DP. Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking. J Physiol 2023; 601:3921-3944. [PMID: 37522890 PMCID: PMC10528133 DOI: 10.1113/jp284505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Locomotor adaptation is crucial for daily gait adjustments to changing environmental demands and obstacle avoidance. Mobile brain imaging with high-density electroencephalography (EEG) now permits quantification of electrocortical dynamics during human locomotion. To determine the brain areas involved in human locomotor adaptation, we recorded high-density EEG from healthy, young adults during split-belt treadmill walking. We incorporated a dual-electrode EEG system and neck electromyography to decrease motion and muscle artefacts. Voluntary movement preparation and execution have been linked to alpha (8-13 Hz) and beta band (13-30 Hz) desynchronizations in the sensorimotor and posterior parietal cortices, whereas theta band (4-7 Hz) modulations in the anterior cingulate have been correlated with movement error monitoring. We hypothesized that relative to normal walking, split-belt walking would elicit: (1) decreases in alpha and beta band power in sensorimotor and posterior parietal cortices, reflecting enhanced motor flexibility; and (2) increases in theta band power in anterior cingulate cortex, reflecting instability and balance errors that will diminish with practice. We found electrocortical activity in multiple regions that was associated with stages of gait adaptation. Data indicated that sensorimotor and posterior parietal cortices had decreased alpha and beta band spectral power during early adaptation to split-belt treadmill walking that gradually returned to pre-adaptation levels by the end of the adaptation period. Our findings emphasize that multiple brain areas are involved in adjusting gait under changing environmental demands during human walking. Future studies could use these findings on healthy, young participants to identify dysfunctional supraspinal mechanisms that may be impairing gait adaptation. KEY POINTS: Identifying the location and time course of electrical changes in the brain correlating with gait adaptation increases our understanding of brain function and provides targets for brain stimulation interventions. Using high-density EEG in combination with 3D biomechanics, we found changes in neural oscillations localized near the sensorimotor, posterior parietal and cingulate cortices during split-belt treadmill adaptation. These findings suggest that multiple cortical mechanisms may be associated with locomotor adaptation, and their temporal dynamics can be quantified using mobile EEG. Results from this study can serve as a reference model to examine brain dynamics in individuals with movement disorders that cause gait asymmetry and reduced gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Ruitenberg MFL, Koppelmans V, Seidler RD, Schomaker J. Developmental and age differences in visuomotor adaptation across the lifespan. PSYCHOLOGICAL RESEARCH 2023; 87:1710-1717. [PMID: 36617621 PMCID: PMC10366290 DOI: 10.1007/s00426-022-01784-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/24/2022] [Indexed: 01/10/2023]
Abstract
In the present cross-sectional study, we examined age and sex differences in sensorimotor adaptation. We tested 253 individuals at a local science museum (NEMO Science Museum, Amsterdam). Participants spanned a wide age range (8-70 years old; 54% male), allowing us to examine effects of both development and healthy aging within a single study. Participants performed a visuomotor adaptation task in which they had to adapt manual joystick movements to rotated visual feedback. We assessed the rate of adaptation following the introduction of the visual perturbation (both for early and later stages of adaptation), and the rate of de-adaptation following its removal. Results showed reliable adaptation patterns which did not differ by sex. We observed a quadratic relationship between age and both early adaptation and de-adaptation rates, with younger and older adults exhibiting the fasted adaptation rates. Our findings suggest that both younger and older age are associated with poorer strategic, cognitive processes involved in adaptation. We propose that developmental and age differences in cognitive functions and brain properties may underlie these effects on sensorimotor functioning.
Collapse
Affiliation(s)
- Marit F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Pieter de La Court Building, P.O. Box 9555, 2300 RB, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Judith Schomaker
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Pieter de La Court Building, P.O. Box 9555, 2300 RB, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
9
|
Mari S, Lecomte CG, Merlet AN, Audet J, Harnie J, Rybak IA, Prilutsky BI, Frigon A. A sensory signal related to left-right symmetry modulates intra- and interlimb cutaneous reflexes during locomotion in intact cats. Front Syst Neurosci 2023; 17:1199079. [PMID: 37360774 PMCID: PMC10288215 DOI: 10.3389/fnsys.2023.1199079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction During locomotion, cutaneous reflexes play an essential role in rapidly responding to an external perturbation, for example, to prevent a fall when the foot contacts an obstacle. In cats and humans, cutaneous reflexes involve all four limbs and are task- and phase modulated to generate functionally appropriate whole-body responses. Methods To assess task-dependent modulation of cutaneous interlimb reflexes, we electrically stimulated the superficial radial or superficial peroneal nerves in adult cats and recorded muscle activity in the four limbs during tied-belt (equal left-right speeds) and split-belt (different left-right speeds) locomotion. Results We show that the pattern of intra- and interlimb cutaneous reflexes in fore- and hindlimbs muscles and their phase-dependent modulation were conserved during tied-belt and split-belt locomotion. Short-latency cutaneous reflex responses to muscles of the stimulated limb were more likely to be evoked and phase-modulated when compared to muscles in the other limbs. In some muscles, the degree of reflex modulation was significantly reduced during split-belt locomotion compared to tied-belt conditions. Split-belt locomotion increased the step-by-step variability of left-right symmetry, particularly spatially. Discussion These results suggest that sensory signals related to left-right symmetry reduce cutaneous reflex modulation, potentially to avoid destabilizing an unstable pattern.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Baudou E, Danna J, Tallet J, Pollidoro L, Tensaouti F, Bertozzi AI, Pariente J, Courbieres N, Dufour C, Grill J, Chaix Y, Laprie A. Impact of a pediatric posterior fossa tumor and its treatments on motor procedural learning. Eur J Paediatr Neurol 2023; 44:37-45. [PMID: 37060708 DOI: 10.1016/j.ejpn.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/17/2023]
Abstract
INTRODUCTION Posterior fossa tumor (PFT) survivors have difficulty learning new skills. Procedural memory is a skill learning system that allows, through training, the automatization of procedures and progressive improvement of performance. It underlies most of the motor procedures in everyday life that we perform automatically, such as riding a bike or writing. Motor procedural memory is divided into two components: motor sequence learning involving mainly cortico-striatal networks, and motor adaptation involving mainly cortico-cerebellar networks. The aim of this work was to explore the impact of a tumor and its treatment during childhood on procedural learning hypothesizing that sequence learning would be impaired in PFT survivors who have been treated with radiotherapy, whereas motor adaptation would be impaired in all PFT survivors. METHOD 22 irradiated survivors of PFT, 17 non-irradiated survivors and 21 healthy controls from the IMPALA study (NCT04324450) performed a motor sequence learning task and a motor adaptation task. Doses received by striatal and cerebellar structures were reported from the initial dosimetry plans. RESULTS Sequence learning was preserved in both tumor groups, but at the individual level 7/22 irradiated, and 4/17 non-irradiated participants failed to learn the motor sequence. Motor adaptation was impaired in both tumor groups, predominantly in the irradiated group. CONCLUSION This study sheds new light on the long-term impact of PFT treatments in childhood on a rarely-studied part of memory, which is perceptual-motor procedural learning. Our results suggest that the cerebellum and striatum could be considered as organs at risk with regard to procedural learning.
Collapse
Affiliation(s)
- Eloïse Baudou
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France.
| | - Jérémy Danna
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | - Jessica Tallet
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France
| | - Lisa Pollidoro
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Fatima Tensaouti
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Radiation Oncology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Anne-Isabelle Bertozzi
- Pediatric Oncology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Jérémie Pariente
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Nicolas Courbieres
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, University Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, University Paris-Saclay, Villejuif, France; CNRS Unit 8203, Gustave Roussy, University Paris-Saclay, Villejuif, France
| | - Yves Chaix
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Anne Laprie
- Toulouse Neuro-imaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Radiation Oncology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
11
|
Ito T, Kamiue M, Hosokawa T, Kimura D, Tsubahara A. Individual differences in processing ability to transform visual stimuli during the mental rotation task are closely related to individual motor adaptation ability. Front Neurosci 2022; 16:941942. [DOI: 10.3389/fnins.2022.941942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Mental rotation (MR) is a well-established experimental paradigm for exploring human spatial ability. Although MR tasks are assumed to be involved in several cognitive processes, it remains unclear which cognitive processes are related to the individual ability of motor adaptation. Therefore, we aimed to elucidate the relationship between the response time (RT) of MR using body parts and the adaptive motor learning capability of gait. In the MR task, dorsal hand, palmar plane, dorsal foot, and plantar plane images rotated in 45° increments were utilized to measure the RTs required for judging hand/foot laterality. A split-belt treadmill paradigm was applied, and the number of strides until the value of the asymmetrical ground reaction force reached a steady state was calculated to evaluate the individual motor adaptation ability. No significant relationship was found between the mean RT of the egocentric perspectives (0°, 45°, and 315°) or allocentric perspectives (135°, 180°, and 225°) and adaptive learning ability of gait, irrespective of body parts or image planes. Contrarily, the change rate of RTs obtained by subtracting the RT of the egocentric perspective from that of the allocentric perspective in dorsal hand/foot images that reflect the time to mentally transform a rotated visual stimulus correlated only with adaptive learning ability. Interestingly, the change rate of RTs calculated using the palmar and plantar images, assumed to reflect the three-dimensional transformation process, was not correlated. These findings suggest that individual differences in the processing capability of visual stimuli during the transformation process involved in the pure motor simulation of MR tasks are precisely related to individual motor adaptation ability.
Collapse
|
12
|
Not for kids: 2nd grade school children require more practice than adults to attain long-term gains in a graphomotor task. COGNITIVE DEVELOPMENT 2022. [DOI: 10.1016/j.cogdev.2022.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Mitoma H, Kakei S, Manto M. Development of Cerebellar Reserve. Cells 2022; 11:cells11193013. [PMID: 36230975 PMCID: PMC9562018 DOI: 10.3390/cells11193013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellar reserve is defined as the capacity of the cerebellum for compensation and restoration following injury. This unique cerebellar ability is attributed to various forms of synaptic plasticity that incorporate multimodal and redundant cerebellar inputs, two major features of the cerebellar circuitry. It is assumed that the cerebellar reserve is acquired from the age of 12 years after the maturation of both the cerebellar adaptative behaviors and cerebellar functional connectivity. However, acquiring the cerebellar reserve is also affected by two other factors: vulnerability and growth potential in the developing cerebellum. First, cerebellar injury during the critical period of neural circuit formation (especially during fetal and neonatal life and infancy) leads to persistent dysfunction of the cerebellum and its targets, resulting in the limitation of the cerebellar reserve. Secondly, growth potential appears to facilitate cerebellar reserve during the stage when the cerebellar reserve is still immature. Based on these findings, the present mini-review proposes a possible developmental trajectory underlying the acquisition of cerebellar reserve. We highlight the importance of studies dedicated to the understanding of the cerebellar resilience to injuries.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-0023, Japan
- Correspondence:
| | - Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women’s University, Tokyo 191-8510, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
14
|
Pottorf TS, Nocera JR, Eicholtz SP, Kesar TM. Locomotor Adaptation Deficits in Older Individuals With Cognitive Impairments: A Pilot Study. Front Neurol 2022; 13:800338. [PMID: 35585850 PMCID: PMC9108197 DOI: 10.3389/fneur.2022.800338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gait dysfunction and fall risk have been well documented in people with Alzheimer's Disease (AD) and individuals with mild cognitive impairment (MCI). Normal locomotor adaptation may be an important prerequisite for normal and safe community walking function, especially in older adults with age-related neural, musculoskeletal, or cardiovascular changes and cognitive impairments. The split-belt walking task is a well-studied and robust method to evaluate locomotor adaptation (e.g., the ability to adjust stepping movements to changing environmental demands). Here, we capitalized on the split-belt adaptation task to test our hypothesis that a decreased capacity for locomotor adaptation may be an important contributing factor and indicator of increased fall risk and cognitive decline in older individuals with MCI and AD. The objectives of this study were to (1) compare locomotor adaptation capacity in MCI and AD compared to healthy older adults (HOA) during split-belt treadmill walking, and (2) evaluate associations between locomotor adaptation and cognitive impairments. Our results demonstrated a significant decrease in split-belt locomotor adaptation magnitude in older individuals with MCI and AD compared to HOA. In addition, we found significant correlations between the magnitude of early adaptation and de-adaptation vs. cognitive test scores, demonstrating that individuals with greater cognitive impairment also display a reduced capacity to adapt their walking in response to the split-belt perturbation. Our study takes an important step toward understanding mechanisms underlying locomotor dysfunction in older individuals with cognitive impairment.
Collapse
Affiliation(s)
- Tana S. Pottorf
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia
| | - Joe R. Nocera
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia
- Department of Neurology, Emory University, Atlanta, Georgia
- Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia
| | - Steven P. Eicholtz
- Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
| | - Trisha M. Kesar
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia
- Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
- *Correspondence: Trisha M. Kesar
| |
Collapse
|
15
|
Ruitenberg MFL, Koppelmans V, Seidler RD, Schomaker J. Novelty exposure induces stronger sensorimotor representations during a manual adaptation task. Ann N Y Acad Sci 2022; 1510:68-78. [PMID: 34951019 PMCID: PMC9305111 DOI: 10.1111/nyas.14731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Active exploration of novel spatial environments enhances memory for subsequently presented explicit, declarative information in humans. These effects have been attributed to novelty promoting dopamine release via mesolimbic dopaminergic pathways in the brain. As procedural motor learning has been linked to dopamine as well, we predict that novelty effects extend to this domain. To test this hypothesis, the present study examined whether spatial novelty exploration benefits subsequent sensorimotor adaptation. Participants explored either two different virtual environments (i.e., novelty condition; n = 210) or two identical environments (i.e., familiar condition; n = 253). They then performed a manual adaptation task in which they had to adapt joystick movements to a visual perturbation. We assessed the rate of adaptation following the introduction of this perturbation, and the rate of deadaptation following its removal. While results showed reliable adaptation patterns and similar adaptation rates across both conditions, individuals in the novelty condition showed slower deadaptation. This suggests that exposure to spatial novelty induced stronger sensorimotor representations during adaptation, potentially through novelty-induced dopaminergic effects in mesocortical and/or nigrostriatal pathways. Novelty exposure may be employed to promote motor learning on tasks that require precision movements in altered sensory contexts, for example, in astronauts moving in microgravity or patients with impaired motor processing.
Collapse
Affiliation(s)
- Marit F. L. Ruitenberg
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural SciencesLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeidenthe Netherlands
| | | | - Rachael D. Seidler
- Department of Applied Physiology & KinesiologyUniversity of FloridaGainesvilleFlorida
| | - Judith Schomaker
- Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural SciencesLeiden UniversityLeidenthe Netherlands
- Leiden Institute for Brain and CognitionLeidenthe Netherlands
| |
Collapse
|
16
|
Mariscal DM, Vasudevan EVL, Malone LA, Torres-Oviedo G, Bastian AJ. Context-Specificity of Locomotor Learning Is Developed during Childhood. eNeuro 2022; 9:ENEURO.0369-21.2022. [PMID: 35346963 PMCID: PMC9036623 DOI: 10.1523/eneuro.0369-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Humans can perform complex movements with speed and agility in the face of constantly changing task demands. To accomplish this, motor plans are adapted to account for errors in our movements because of changes in our body (e.g., growth or injury) or in the environment (e.g., walking on sand vs ice). It has been suggested that adaptation that occurs in response to changes in the state of our body will generalize across different movement contexts and environments, whereas adaptation that occurs with alterations in the external environment will be context-specific. Here, we asked whether the ability to form generalizable versus context-specific motor memories develops during childhood. We performed a cross-sectional study of context-specific locomotor adaptation in 35 children (3-18 years old) and 7 adults (19-31 years old). Subjects first adapted their gait and learned a new walking pattern on a split-belt treadmill, which has two belts that move each leg at a different speed. Then, subjects walked overground to assess the generalization of the adapted walking pattern across different environments. Our results show that the generalization of treadmill after-effects to overground walking decreases as subjects' age increases, indicating that age and experience are critical factors regulating the specificity of motor learning. Our results suggest that although basic locomotor patterns are established by two years of age, brain networks required for context-specific locomotor learning are still being developed throughout youth.
Collapse
Affiliation(s)
- Dulce M Mariscal
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Erin V L Vasudevan
- Kennedy Krieger Institute, Baltimore, MD, 21205
- School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11794
| | - Laura A Malone
- Neurology Department, Johns Hopkins University, Baltimore, MD, 21205
- Physical Medicine, and Rehabilitation Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| | - Gelsy Torres-Oviedo
- Bioengineering Department, University of Pittsburgh, Pittsburgh, PA 15260
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213
| | - Amy J Bastian
- Neuroscience Department, Johns Hopkins University, Baltimore, MD, 21205
- Kennedy Krieger Institute, Baltimore, MD, 21205
| |
Collapse
|
17
|
Rossi C, Roemmich RT, Schweighofer N, Bastian AJ, Leech KA. Younger and Late Middle-Aged Adults Exhibit Different Patterns of Cognitive-Motor Interference During Locomotor Adaptation, With No Disruption of Savings. Front Aging Neurosci 2021; 13:729284. [PMID: 34899267 PMCID: PMC8664558 DOI: 10.3389/fnagi.2021.729284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that motor adaptation and subsequent savings (or faster relearning) of an adapted movement pattern are mediated by cognitive processes. Here, we evaluated the pattern of cognitive-motor interference that emerges when young and late middle-aged adults perform an executive working memory task during locomotor adaptation. We also asked if this interferes with savings of a newly learned walking pattern, as has been suggested by a study of reaching adaptation. We studied split-belt treadmill adaptation and savings in young (21 ± 2 y/o) and late middle-aged (56 ± 6 y/o) adults with or without a secondary 2-back task during adaptation. We found that young adults showed similar performance on the 2-back task during baseline and adaptation, suggesting no effect of the dual-task on cognitive performance; however, dual-tasking interfered with adaptation over the first few steps. Conversely, dual-tasking caused a decrement in cognitive performance in late middle-aged adults with no effect on adaptation. To determine if this effect was specific to adaptation, we also evaluated dual-task interference in late middle-aged adults that dual-tasked while walking in a complex environment that did not induce motor adaptation. This group exhibited less cognitive-motor interference than late middle-aged adults who dual-tasked during adaptation. Savings was unaffected by dual-tasking in both young and late middle-aged adults, which may indicate different underlying mechanisms for savings of reaching and walking. Collectively, our findings reveal an age-dependent effect of cognitive-motor interference during dual-task locomotor adaptation and no effect of dual-tasking on savings, regardless of age. Young adults maintain cognitive performance and show a mild decrement in locomotor adaptation, while late middle-aged adults adapt locomotion at the expense of cognitive performance.
Collapse
Affiliation(s)
- Cristina Rossi
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan T. Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Amy J. Bastian
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristan A. Leech
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, United States
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Lee MH, Patel P, Ranganathan R. Children are suboptimal in adapting motor exploration to task dimensionality during motor learning. Neurosci Lett 2021; 770:136355. [PMID: 34808270 DOI: 10.1016/j.neulet.2021.136355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Motor learning in novel tasks requires exploration to find the appropriate coordination patterns to perform the task. Prior work has shown that compared to adults, children show limited exploration when learning a task that required using upper body movements to control a 2D cursor on a screen. Here, by changing the task dimensionality to 1D, we examined two competing hypotheses: whether children show limited exploration as a general strategy, or whether children are suboptimal in adapting their exploration to task dimensionality. Two groups of children (9- and 12-year olds), and one group of adults learned a virtual task that involved learning to control a cursor on the screen using movements of the upper body. Participants practiced the task for a single session with a total of 232 reaching movements. Results showed that 9-year olds show worse task performance relative to adults, as indicated by higher movement times and path lengths. Analysis of the coordination strategies indicated that both groups of children showed lower variance along the first principal component, suggesting that they had greater exploration than adults which was suboptimal for the 1D task. These results suggest that motor learning in children is characterized not by limited exploration per se, but by a limited adaptability in matching motor exploration to task dimensionality.
Collapse
Affiliation(s)
- Mei-Hua Lee
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA.
| | - Priya Patel
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
The influence of maturation and sex on pelvis and hip kinematics in youth distance runners. J Sci Med Sport 2021; 25:272-278. [PMID: 34756802 DOI: 10.1016/j.jsams.2021.09.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate differences in stance phase pelvic and hip running kinematics based on maturation and sex among healthy youth distance runners. DESIGN Cross-Sectional. METHODS 133 uninjured youth distance runners (M = 60, F = 73; age = 13.5 ± 2.7 years) underwent a three-dimensional running analysis on a treadmill at a self-selected speed (2.8 ± 0.6 m·s-1). Participants were stratified as pre-pubertal, mid-pubertal, or post-pubertal according to the modified Pubertal Maturational Observation Scale. Stance phase pelvis and hip range of motion (RoM) and peak joint positions were extracted. Two-way ANCOVAs (sex, maturation; covariate of running velocity) were used with Bonferroni-Holm method to control for multiple comparisons with a target alpha level of 0.05. RESULTS A two-way interaction between sex and maturation was detected (p = 0.009) for frontal plane pelvic obliquity RoM. Post-hoc analysis identified a maturation main effect only among females (p˂0.008). Pelvic obliquity RoM was significantly greater among post-pubertal (p = 0.001) compared to pre-pubertal females. Significant main effects of sex (p = 0.02), and maturation (p = 0.01) were found for hip adduction RoM. Post-hoc analysis indicated a significant increase in hip adduction RoM from pre-pubertal to post-pubertal female runners (p = 0.001). A significant main effect of sex was found for peak hip adduction angle (p = 0.001) with female runners exhibiting greater maximum peak hip adduction compared to males. CONCLUSIONS Maturation influences pelvic and hip kinematics greater in female than male runners. Sex differences became more pronounced during later stages of puberty. These differences may correspond to an increased risk for running-related injuries in female runners compared to male runners.
Collapse
|
20
|
Ohashi H, Ostry DJ. Neural Development of Speech Sensorimotor Learning. J Neurosci 2021; 41:4023-4035. [PMID: 33758018 PMCID: PMC8176761 DOI: 10.1523/jneurosci.2884-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
The development of the human brain continues through to early adulthood. It has been suggested that cortical plasticity during this protracted period of development shapes circuits in associative transmodal regions of the brain. Here we considered how cortical plasticity during development might contribute to the coordinated brain activity required for speech motor learning. Specifically, we examined patterns of brain functional connectivity (FC), whose strength covaried with the capacity for speech audio-motor adaptation in children ages 5-12 and in young adults of both sexes. Children and adults showed distinct patterns of the encoding of learning in the brain. Adult performance was associated with connectivity in transmodal regions that integrate auditory and somatosensory information, whereas children rely on basic somatosensory and motor circuits. A progressive reliance on transmodal regions is consistent with human cortical development and suggests that human speech motor adaptation abilities are built on cortical remodeling, which is observable in late childhood and is stabilized in adults.SIGNIFICANCE STATEMENT A protracted period of neuro plasticity during human development is associated with extensive reorganization of associative cortex. We examined how the relationship between FC and speech motor learning capacity are reconfigured in conjunction with this cortical reorganization. Young adults and children aged 5-12 years showed distinctly different patterns. Mature brain networks related to learning included associative cortex, which integrates auditory and somatosensory feedback in speech, whereas the immature networks in children included motor regions of the brain. These patterns are consistent with the cortical reorganization that is initiated in late childhood. The result provides insights into the human biology of speech as well as to the mature neural mechanisms for multisensory integration in motor learning.
Collapse
Affiliation(s)
- Hiroki Ohashi
- Department of Psychology, McGill University, Montréal, Québec H3A 1G1, Canada
- Haskins Laboratories, New Haven, Connecticut 06511
| | - David J Ostry
- Department of Psychology, McGill University, Montréal, Québec H3A 1G1, Canada
- Haskins Laboratories, New Haven, Connecticut 06511
| |
Collapse
|
21
|
|
22
|
Effect of ankle joint fixation on tibialis anterior muscle activity during split-belt treadmill walking in healthy subjects: A pilot study. Turk J Phys Med Rehabil 2021; 67:11-16. [PMID: 33948538 PMCID: PMC8088797 DOI: 10.5606/tftrd.2021.4980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/08/2019] [Indexed: 11/21/2022] Open
Abstract
Objectives
This study aims to examine the characteristics of muscle activity change of the tibialis anterior (TA) muscle in healthy adults while they walked on a split-belt treadmill with one fixed ankle.
Patients and methods
This randomized controlled trial was conducted between November 2017 and July 2018. Fourteen healthy male individuals (mean age 31.4 years; range, 23 to 50 years) were divided into two groups: right ankle joint fixed by ankle-foot orthosis (fixation group) and no orthosis (control group). Both groups were asked to walk on a treadmill with the same belt speed. After familiarizing with walking on both belts at 5.0 km/h, they walked for 6 min with the right belt slower (2.5 km/h) and the left faster (5.0 km/h). For analysis, the 6 min were divided equally among three time periods. The TA muscle activity was calculated at first and last time periods. We compared muscle activities in time periods (early and late phase) and in groups (fixation and control) using two-way mixed analysis of variance.
Results
The TA muscle activity decreased in the late phase regardless of ankle joint fixation, and also decreased in the fixation group regardless of the time periods. There was an interaction between these factors.
Conclusion
These data show that changes in the TA muscle activity were smaller in the fixation group, suggesting that the ankle joint fixation reduces the adaptation.
Collapse
|
23
|
Ke D, Lu D, Cai G, Wang X, Zhang J, Suzuki K. Chronological and Skeletal Age in Relation to Physical Fitness Performance in Preschool Children. Front Pediatr 2021; 9:641353. [PMID: 34055684 PMCID: PMC8160222 DOI: 10.3389/fped.2021.641353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Physical fitness is an adaptive state that varies with an individual's growth and maturity status. Considering that the difference in skeletal maturity already existed among preschool children, this study was designed to determine the influence of skeletal age and chronological age on preschoolers' physical fitness performance. Methods: This cross-sectional study was conducted in 945 healthy preschoolers (509 males, 436 females) aged between 3.0 and 6.0 years in Shanghai, China. We used the method of TW3-C RUS to determine skeletal age. Chronological age was measured by subtracting the date of birth from the test date. Sit and reach, 2 × 10 m shuttle run test, standing long jump, tennis ball throw, 5 m jump on both feet, and balance beam walk were considered for physical fitness performance. Correlation coefficients and partial correlations adjusting height and weight were used to determine the relationships among the variables of skeletal age/ relative skeletal age, chronological age/relative chronological age, and physical fitness items. Results: Skill-related physical fitness was weakly to moderately associated with skeletal age (the absolute value of r: 0.225-0.508, p < 0.01) and was moderately to strongly associated with chronological age (the absolute value of r: 0.405-0.659, p < 0.01). Health-related physical fitness items (BMI and sit and reach) showed a fairly weak to no correlation with skeletal age and chronological age. After adjusting the height and weight, an extremely weak to no correlation was observed between skeletal age and both health- and skill-related physical fitness, and weak-moderate correlations were noted between chronological age and skill-related physical fitness (the absolute value of r: 0.220-0.419, p < 0.01). In children in Grade 1, skill-related physical fitness (except for balance beam walk) showed a weak to moderate correlation with relative chronological age (the absolute value of r: 0.227-0.464, p < 0.05). Conclusion: (1) both skeletal age and chronological age are associated with skill-related rather than health-related physical fitness performance, and after adjusting height and weight, chronological age, rather than skeletal age, is associated with skill-related physical fitness performance; (2) for preschool children, skill-related physical fitness performance is influenced by relative chronological age rather than individual differences in skeletal maturation, especially in the lower grades.
Collapse
Affiliation(s)
- Dandan Ke
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Dajiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guang Cai
- Shanghai Research Institute of Sports Science, Shanghai, China
| | - Xiaofei Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jing Zhang
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Koya Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| |
Collapse
|
24
|
Spatiotemporal characteristics of locomotor adaptation of walking with two handheld poles. Exp Brain Res 2020; 238:2973-2982. [PMID: 33074403 DOI: 10.1007/s00221-020-05954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/10/2020] [Indexed: 02/04/2023]
Abstract
Pole walking (PW) has received attention not only as a whole-body exercise that can be adapted for elderly people with poor physical fitness but also as a possible intervention for the restoration of gait function in normal walking without the use of poles (i.e., conventional walking CW). However, the characteristics of PW, especially how and why PW training affects CW, remain unclear. The purpose of this study was to examine the characteristics of locomotor adaptation in PW from the perspective of kinematic variables. For this purpose, we compared the locomotor adaptation in PW and CW to that when walking on a split-belt treadmill in terms of spatial and temporal coordination. The result showed that adaptations to the split-belt treadmill in PW and CW were found only in interlimb parameters (step length and double support time ratios (fast/slow limb)), not in intralimb parameters (stride length and stance time ratios). In these interlimb parameters, the movement patterns acquired through split-belt locomotor adaptations (i.e., the aftereffects) were transferred between CW and PW regardless of whether the novel movement patterns were learned in CW or PW. The aftereffects of double support time and step length learned in CW were completely washed out by the subsequent execution in PW. On the other hand, the aftereffect of double support time learned in PW was not completely washed out by the subsequent execution in CW, whereas the aftereffect of step length learned in PW was completely washed out by the subsequent execution in CW. These results suggest that the neural mechanisms related to controlling interlimb parameters are shared between CW and PW, and it is possible that, in interlimb coordination, temporal coordination is preferentially stored in adaptation during PW.
Collapse
|
25
|
Rashid U, Kumari N, Signal N, Taylor D, Vandal AC. On Nonlinear Regression for Trends in Split-Belt Treadmill Training. Brain Sci 2020; 10:E737. [PMID: 33066492 PMCID: PMC7602156 DOI: 10.3390/brainsci10100737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/20/2022] Open
Abstract
Single and double exponential models fitted to step length symmetry series are used to evaluate the timecourse of adaptation and de-adaptation in instrumented split-belt treadmill tasks. Whilst the nonlinear regression literature has developed substantially over time, the split-belt treadmill training literature has not been fully utilising the fruits of these developments. In this research area, the current methods of model fitting and evaluation have three significant limitations: (i) optimisation algorithms that are used for model fitting require a good initial guess for regression parameters; (ii) the coefficient of determination (R2) is used for comparing and evaluating models, yet it is considered to be an inadequate measure of fit for nonlinear regression; and, (iii) inference is based on comparison of the confidence intervals for the regression parameters that are obtained under the untested assumption that the nonlinear model has a good linear approximation. In this research, we propose a transformed set of parameters with a common language interpretation that is relevant to split-belt treadmill training for both the single and double exponential models. We propose parameter bounds for the exponential models which allow the use of particle swarm optimisation for model fitting without an initial guess for the regression parameters. For model evaluation and comparison, we propose the use of residual plots and Akaike's information criterion (AIC). A method for obtaining confidence intervals that does not require the assumption of a good linear approximation is also suggested. A set of MATLAB (MathWorks, Inc., Natick, MA, USA) functions developed in order to apply these methods are also presented. Single and double exponential models are fitted to both the group-averaged and participant step length symmetry series in an experimental dataset generating new insights into split-belt treadmill training. The proposed methods may be useful for research involving analysis of gait symmetry with instrumented split-belt treadmills. Moreover, the demonstration of the suggested statistical methods on an experimental dataset may help the uptake of these methods by a wider community of researchers that are interested in timecourse of motor training.
Collapse
Affiliation(s)
- Usman Rashid
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Nitika Kumari
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Nada Signal
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Denise Taylor
- Health & Rehabilitation Research Institute, Auckland University of Technology, Auckland 1010, New Zealand; (N.K.); (N.S.); (D.T.)
| | - Alain C. Vandal
- Department of Statistics, The University of Auckland, Auckland 1010, New Zealand;
| |
Collapse
|
26
|
Abstract
BACKGROUND AND PURPOSE The optimal characteristics of learning to promote recovery of walking have yet to be defined for the poststroke population. We examined characteristics of task practice that limit or promote learning of a novel locomotor pattern. METHODS Thirty-two persons with chronic hemiparesis were randomized to 2 conditions (constant and variable practice) and participated in two 15-minute sessions of split-belt treadmill walking. On day 1, subjects in the constant condition walked on the split-belt treadmill at a constant 2:1 speed ratio, while subjects in the variable condition walked on the split-belt treadmill at 3 different speed ratios. On day 2, both groups participated in 15 minutes of split-belt treadmill walking at the 2:1 speed ratio. Step length and limb phase symmetry metrics were measured to assess within-session learning (ie, adaptation) on day 1 and the ability to retain this new pattern of walking (ie, retention) on day 2. RESULTS The amount of adaptation on day 1 did not differ depending upon practice structure (constant and variable) for step length or limb phase (a)symmetry. The magnitude of reduction in asymmetry from day 1 to day 2 did not differ between groups for step and limb phase (a)symmetry. DISCUSSION AND CONCLUSIONS The results suggest that variable practice utilizing alternating belt speed ratios does not influence the ability of those with chronic stroke to adapt and retain a novel locomotor pattern. The effects of other forms of variable practice within other locomotor learning paradigms should be explored in those with chronic hemiparesis after stroke.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A257).
Collapse
|
27
|
Barbier G, Perrier P, Payan Y, Tiede MK, Gerber S, Perkell JS, Ménard L. What anticipatory coarticulation in children tells us about speech motor control maturity. PLoS One 2020; 15:e0231484. [PMID: 32287289 PMCID: PMC7156059 DOI: 10.1371/journal.pone.0231484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study aimed to evaluate the role of motor control immaturity in the speech production characteristics of 4-year-old children, compared to adults. Specifically, two indices were examined: trial-to-trial variability, which is assumed to be linked to motor control accuracy, and anticipatory extra-syllabic vowel-to-vowel coarticulation, which is assumed to be linked to the comprehensiveness, maturity and efficiency of sensorimotor representations in the central nervous system. METHOD Acoustic and articulatory (ultrasound) data were recorded for 20 children and 10 adults, all native speakers of Canadian French, during the production of isolated vowels and vowel-consonant-vowel (V1-C-V2) sequences. Trial-to-trial variability was measured in isolated vowels. Extra-syllabic anticipatory coarticulation was assessed in V1-C-V2 sequences by measuring the patterns of variability of V1 associated with variations in V2. Acoustic data were reported for all subjects and articulatory data, for a subset of 6 children and 2 adults. RESULTS Trial-to-trial variability was significantly larger in children. Systematic and significant anticipation of V2 in V1 was always found in adults, but was rare in children. Significant anticipation was observed in children only when V1 was /a/, and only along the antero-posterior dimension, with a much smaller magnitude than in adults. A closer analysis of individual speakers revealed that some children showed adult-like anticipation along this dimension, whereas the majority did not. CONCLUSION The larger trial-to-trial variability and the lack of anticipatory behavior in most children-two phenomena that have been observed in several non-speech motor tasks-support the hypothesis that motor control immaturity may explain a large part of the differences observed between speech production in adults and 4-year-old children, apart from other causes that may be linked with language development.
Collapse
Affiliation(s)
- Guillaume Barbier
- Grenoble INP, CNRS, GIPSA-Lab UMR 5216, Univ. Grenoble Alpes, Grenoble, France
| | - Pascal Perrier
- Grenoble INP, CNRS, GIPSA-Lab UMR 5216, Univ. Grenoble Alpes, Grenoble, France
- * E-mail:
| | - Yohan Payan
- Grenoble INP, CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France
| | - Mark K. Tiede
- Haskins Laboratories, New Haven, Connecticut, United States of America
| | - Silvain Gerber
- Grenoble INP, CNRS, GIPSA-Lab UMR 5216, Univ. Grenoble Alpes, Grenoble, France
| | - Joseph S. Perkell
- Boston University, Boston, Massachusetts, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lucie Ménard
- Department of Linguistics, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Thibaudier Y, Tan AQ, Peters DM, Trumbower RD. Differential deficits in spatial and temporal interlimb coordination during walking in persons with incomplete spinal cord injury. Gait Posture 2020; 75:121-128. [PMID: 31675554 PMCID: PMC6883355 DOI: 10.1016/j.gaitpost.2019.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Returning to community walking remains a major challenge for persons with incomplete spinal cord injury (iSCI) due, in part, to impaired interlimb coordination. Here, we examined spatial and temporal features of interlimb coordination during walking and their associations to gait deficits in persons with chronic iSCI. RESEARCH QUESTION Do deficits in spatial and temporal interlimb coordination correspond differentially to clinical indicators of walking performance in persons with iSCI? METHODS Sixteen persons with chronic iSCI and eleven able-bodied individuals participated in this study. Participants walked at self-selected gait speeds along an instrumented walkway that recorded left and right step lengths and times. We quantified interlimb coordination in terms of normalized differences between left and right step lengths (spatial asymmetry index) and step times (temporal asymmetry index), as well as, gap and phase coordination indices. We then assessed the extent to which these indices independently associated with clinical measures of walking performance. RESULTS Participants with iSCI demonstrated greater spatial and temporal asymmetry, as well as, reduced gap and phase interlimb coordination as compared to age-matched controls (p < 0.001). We found no linear relationships between spatial and temporal asymmetry indices (p > 0.05) or between gap and phase coordination indices (p > 0.05). Spatial and temporal asymmetry indices weakly correlated with SCI-FAI composite scores (r2 = 0.26; p = 0.04). However, only spatial asymmetry indices strongly correlated with slower walking speed (r2 = 0.51; p < 0.002). We also found participants who used a hand-held assistive device (walker) demonstrated great spatial asymmetry as compared to those who did not (p < 0.03). SIGNIFICANCE Differential impairments in spatial and temporal interlimb coordination correspond to overground walking deficits in persons with chronic iSCI. Spatial asymmetry associated with decreased walking speed and increased reliance on hand-held assistive devices. Gait training methods that target well-defined space and time domains of interlimb coordination may enhance overground gait training in persons with iSCI.
Collapse
Affiliation(s)
| | - Andrew Q Tan
- Department of Physical Medicine & Rehabilitation Harvard Medical School and Spaulding Rehabilitation Hospital USA
| | - Denise M Peters
- Department of Rehabilitation & Movement Science University of Vermont USA
| | - Randy D Trumbower
- Department of Physical Medicine & Rehabilitation Harvard Medical School and Spaulding Rehabilitation Hospital USA.
| |
Collapse
|
29
|
Sathyanesan A, Gallo V. Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective. Neurobiol Learn Mem 2019; 165:106861. [PMID: 29723669 PMCID: PMC7303045 DOI: 10.1016/j.nlm.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/06/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior.
Collapse
Affiliation(s)
- Aaron Sathyanesan
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Health System, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, USA
| |
Collapse
|
30
|
Charalambous CC, French MA, Morton SM, Reisman DS. A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories. Exp Brain Res 2019; 237:2799-2810. [PMID: 31444538 PMCID: PMC6801096 DOI: 10.1007/s00221-019-05635-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/19/2019] [Indexed: 01/05/2023]
Abstract
A single exercise bout has been found to improve the retention of a skill-based upper extremity motor task up to a week post-practice. This effect is the greatest when exercise intensity is high and exercise is administered immediately after motor practice (i.e., early in consolidation). Whether exercise can affect other motor learning types (e.g., sensorimotor adaptation) and tasks (e.g., walking) is still unclear as previous studies have not optimally refined the exercise parameters and long-term retention testing. Therefore, we investigated whether a single high-intensity exercise bout during early consolidation would improve the long-term retention and relearning of sensorimotor adaptation during split-belt treadmill walking. Twenty-six neurologically intact adults attended three sessions; sessions 2 and 3 were 1 day and 7 days after session 1, respectively. Participants were allocated either to Rest (REST) or to Exercise (EXE) group. In session 1, all groups walked on a split-belt treadmill in a 2:1 speed ratio (1.5:0.75 m/s). Then, half of the participants exercised for 5 min (EXE), while the other half rested for 5 min (REST). A short exercise bout during early consolidation did not improve retention or relearning of locomotor memories one or seven days after session 1. This result reinforces previous findings that the effect of exercise on motor learning may differ between sensorimotor locomotor adaptation and skilled-based upper extremity tasks; thus, the utility of exercise as a behavioral booster of motor learning may depend on the type of motor learning and task.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine, 222 E 41st St, 10th Floor, New York, NY, 10017, USA
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Margaret A French
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Susanne M Morton
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
- Biomechanics and Movement Science Program, University of Delaware, 540 South College Ave, Newark, DE, 19713, USA.
| |
Collapse
|
31
|
Conradsson D, Hinton DC, Paquette C. The effects of dual-tasking on temporal gait adaptation and de-adaptation to the split-belt treadmill in older adults. Exp Gerontol 2019; 125:110655. [PMID: 31299212 DOI: 10.1016/j.exger.2019.110655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND It has been well established that with aging, walking becomes more challenging when dividing attention towards other tasks (i.e. dual-tasks) and when adapting walking to environmental demands. Although these gait-related features are believed to contribute to an increased risk of falling in older adults, little is known about the interplay between dual-tasking and gait adaptation. OBJECTIVE To investigate whether the rate and variability of temporal gait adaptation to a split-belt treadmill and ensuing aftereffects are altered by dual-tasking in healthy older adults. METHODS Split-belt walking was assessed in 28 healthy older adults (mean age 69 years) who were free of any ongoing medical conditions affecting gait. Participants adapted their walking pattern to a split-belt treadmill at a 2:1 speed ratio (10 min) followed by 3 min of de-adaptation (both belts at the same speed) to assess aftereffects. Half of the participants performed an intermittent dual-task (auditory cognitive task) during the adaptation period, whereas the other half completed the adaptation period as a single task. Double support symmetry magnitude and variability were used to compare group differences in rate of adaptation to the split-belt condition and retention of aftereffects during de-adaptation. RESULTS During adaptation, the presence of a dual-task slowed the rate of adaptation to the split-belts and was characterized by greater variability in the dual-task group compared to the single-task group. During the first minute of de-adaptation, both groups similarly decreased their double support asymmetry towards baseline performance. Still, the dual-task group had a significant decrease in asymmetry during the end of de-adaptation and spent less steps within baseline performance during the entire de-adaptation period compared to the single-task group (35% vs 50%). CONCLUSION Dual-tasking led to slower and more variable temporal gait adaptation to the split-belt treadmill and larger variability during de-adaptation. Our findings indicate that in older adults, gait adaptation is affected by a competing cognitive task and highlights the importance of being aware of the influence of dual-task on short-term learning when developing rehabilitation programs for cognitive-motor interference.
Collapse
Affiliation(s)
- David Conradsson
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave West, Montreal, Quebec, H2W 1S4, Canada; Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden; Function Area Occupational Therapy & Physiotherapy, Allied Health Professionals Function, Karolinska University Hospital, Stockholm, Sweden; Centre de Recherche Interdisciplinaire en Réadaptation de Montréal (CRIR), Montreal, Canada.
| | - Dorelle C Hinton
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave West, Montreal, Quebec, H2W 1S4, Canada; Centre de Recherche Interdisciplinaire en Réadaptation de Montréal (CRIR), Montreal, Canada
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave West, Montreal, Quebec, H2W 1S4, Canada; Centre de Recherche Interdisciplinaire en Réadaptation de Montréal (CRIR), Montreal, Canada
| |
Collapse
|
32
|
Online and offline contributions to motor learning change with practice, but are similar across development. Exp Brain Res 2019; 237:2865-2873. [PMID: 31468063 DOI: 10.1007/s00221-019-05639-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Children show motor learning deficits relative to adults across a diverse range of tasks. One mechanism that has been proposed to underlie these differences is the contribution of online and offline components to overall learning; however, these tasks have almost focused exclusively on sequence learning paradigms which are characterized by performance gains in the offline phase. Here, we examined the role of online and offline learning in a novel motor task which was characterized by warm-up decrement, i.e., a performance loss, during the offline phase. In particular, using a relatively extended practice period, we examined if differences between children and adults persist across relatively long practice periods, and if the contribution of online and offline learning is affected by age and by practice itself. Two groups of children, 8-10 years and 11-13 years old, and one group of young adults (N = 30, n = 10/group) learned a novel task that required control of upper body movements to control a cursor on a screen. Participants learned the task over 5 days and we measured movement time as the primary task performance variable. Consistent with prior results, we found that 8-10 year olds had longer movement times compared to both 11-13 year olds and adults. We also found distinct changes in online and offline learning with practice; the amount of online learning decreased with practice, whereas offline learning was relatively stable across practice. However, there was no detectable effect of age group on either online or offline learning. These results suggest that age-related differences in learning among children 8-10 years old are persistent even after extended practice but are not necessarily accounted for by differences in online and offline learning.
Collapse
|
33
|
Gonzalez-Rubio M, Velasquez NF, Torres-Oviedo G. Explicit Control of Step Timing During Split-Belt Walking Reveals Interdependent Recalibration of Movements in Space and Time. Front Hum Neurosci 2019; 13:207. [PMID: 31333429 PMCID: PMC6619396 DOI: 10.3389/fnhum.2019.00207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Split-belt treadmills that move the legs at different speeds are thought to update internal representations of the environment, such that this novel condition generates a new locomotor pattern with distinct spatio-temporal features compared to those of regular walking. It is unclear the degree to which such recalibration of movements in the spatial and temporal domains is interdependent. In this study, we explicitly altered subjects' limb motion in either space or time during split-belt walking to determine its impact on the adaptation of the other domain. Interestingly, we observed that motor adaptation in the spatial domain was susceptible to altering the temporal domain, whereas motor adaptation in the temporal domain was resilient to modifying the spatial domain. This non-reciprocal relation suggests a hierarchical organization such that the control of timing in locomotion has an effect on the control of limb position. This is of translational interest because clinical populations often have a greater deficit in one domain compared to the other. Our results suggest that explicit changes to temporal deficits cannot occur without modifying the spatial control of the limb.
Collapse
Affiliation(s)
| | | | - Gelsy Torres-Oviedo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
34
|
The capacity to learn new motor and perceptual calibrations develops concurrently in childhood. Sci Rep 2019; 9:9322. [PMID: 31249379 PMCID: PMC6597729 DOI: 10.1038/s41598-019-45074-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Learning new movements through an error-based process called motor adaptation is thought to involve multiple mechanisms which are still largely not understood. Previous studies have shown that young children adapt movement more slowly than adults, perhaps supporting the involvement of distinct neural circuits that come online at different stages of development. Recent studies in adults have shown that in addition to recalibrating a movement, motor adaptation also leads to changes in the perception of that movement. However, we do not yet understand the relationship between the processes that underlie motor and perceptual recalibration. Here we studied motor and perceptual recalibration with split-belt walking adaptation in adults and children aged 6-8 years. Consistent with previous work, we found that this group of children adapted their walking patterns more slowly than adults, though individual children ranged from slow to adult-like in their adaptation rates. Perceptual recalibration was also reduced in the same group of children compared to adults, with individual children ranging from having no recalibration to having adult-like recalibration. In sum, faster motor adaptation and the ability to recalibrate movement perception both come online within a similar age-range, raising the possibility that the same sensorimotor mechanisms underlie these processes.
Collapse
|
35
|
Spatial and Temporal Locomotor Learning in Mouse Cerebellum. Neuron 2019; 102:217-231.e4. [DOI: 10.1016/j.neuron.2019.01.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/16/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
36
|
Making Sense of Cerebellar Contributions to Perceptual and Motor Adaptation. THE CEREBELLUM 2019; 17:111-121. [PMID: 28840476 DOI: 10.1007/s12311-017-0879-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cerebellum is thought to adapt movements to changes in the environment in order to update an implicit understanding of the association between our motor commands and their sensory consequences. This trial-by-trial motor recalibration in response to external perturbations is frequently impaired in people with cerebellar damage. In healthy people, adaptation to motor perturbations is also known to induce a form of sensory perceptual recalibration. For instance, hand-reaching adaptation tasks produce transient changes in the sense of hand position, and walking adaptation tasks can lead to changes in perceived leg speed. Though such motor adaptation tasks are heavily dependent on the cerebellum, it is not yet understood how the cerebellum is associated with these accompanying sensory recalibration processes. Here we asked if the cerebellum is required for the recalibration of leg-speed perception that normally occurs alongside locomotor adaptation, as well as how ataxia severity is related to sensorimotor recalibration deficits in patients with cerebellar damage. Cerebellar patients performed a speed-matching task to assess perception of leg speed before and after walking on a split-belt treadmill, which has two belts driving each leg at a different speed. Healthy participants update their perception of leg speed following split-belt walking such that the "fast" leg during adaptation feels slower afterwards, whereas cerebellar patients have significant deficits in this sensory perceptual recalibration. Furthermore, our analysis demonstrates that ataxia severity is a crucial factor for both the sensory and motor adaptation impairments that affect patients with cerebellar damage.
Collapse
|
37
|
Vervoort D, den Otter AR, Buurke TJW, Vuillerme N, Hortobágyi T, Lamoth CJC. Effects of Aging and Task Prioritization on Split-Belt Gait Adaptation. Front Aging Neurosci 2019; 11:10. [PMID: 30760998 PMCID: PMC6361861 DOI: 10.3389/fnagi.2019.00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/11/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Age-related changes in the sensorimotor system and cognition affect gait adaptation, especially when locomotion is combined with a cognitive task. Performing a dual-task can shift the focus of attention and thus require task prioritization, especially in older adults. To gain a better understanding of the age-related changes in the sensorimotor system, we examined how age and dual-tasking affect adaptive gait and task prioritization while walking on a split-belt treadmill. Methods: Young (21.5 ± 1.0 years, n = 10) and older adults (67.8 ± 5.8 years, n = 12) walked on a split-belt treadmill with a 2:1 belt speed ratio, with and without a cognitive Auditory Stroop task. Symmetry in step length, limb excursion, and double support time, and strategy variables swing time and swing speed were compared between the tied-belt baseline (BL), early (EA) and late split-belt adaptation (LA), and early tied-belt post-adaptation (EP). Results: Both age groups adapted to split-belt walking by re-establishing symmetry in step length and double support time. However, young and older adults differed on adaptation strategy. Older vs. young adults increased swing speed of the fast leg more during EA and LA (0.10–0.13 m/s), while young vs. older adults increased swing time of the fast leg more (2%). Dual-tasking affected limb excursion symmetry during EP. Cognitive task performance was 5–6% lower during EA compared to BL and LA in both age groups. Older vs. young adults had a lower cognitive task performance (max. 11% during EA). Conclusion: Healthy older adults retain the ability to adapt to split-belt perturbations, but interestingly age affects adaptation strategy during split-belt walking. This age-related change in adaptation strategy possibly reflects a need to increase gait stability to prevent falling. The decline in cognitive task performance during early adaptation suggests task prioritization, especially in older adults. Thus, a challenging motor task, like split-belt adaptation, requires prioritization between the motor and cognitive task to prevent adverse outcomes. This suggests that task prioritization and adaptation strategy should be a focus in fall prevention interventions.
Collapse
Affiliation(s)
- Danique Vervoort
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,AGEIS, University Grenoble-Alpes, Grenoble, France
| | - A Rob den Otter
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tom J W Buurke
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolas Vuillerme
- AGEIS, University Grenoble-Alpes, Grenoble, France.,Institut Universitaire de France, Paris, France
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Claudine J C Lamoth
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Battaglia G, Alesi M, Tabacchi G, Palma A, Bellafiore M. The Development of Motor and Pre-literacy Skills by a Physical Education Program in Preschool Children: A Non-randomized Pilot Trial. Front Psychol 2019; 9:2694. [PMID: 30687164 PMCID: PMC6333915 DOI: 10.3389/fpsyg.2018.02694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
It is known in the literature that fundamental motor skill acquisition is strongly associated with the development of neuromotor, cognitive, social, and emotional aspects in childhood. Unfortunately, in Italy, the physical education teacher is not included in the school's core personnel, and it is very hard to find a specific physical education program (PEP) that could improve preschool children's motor and cognitive status. The aim of this study was to investigate whether the quotient of gross motor development (QGMD) and pre-literacy skills concerning visual analysis and spatial orientation abilities changed after 16 weeks of PEP (2 h/week) in preschool children. We conducted a school-based non-randomized pilot trial. It involved 119 preschool children, clustered in a control group [CG, n = 29, body mass index (BMI): 16.90 ± 3.16 Kg/m2] and an intervention group (IG, n = 90, BMI: 16.00 ± 1.75 kg/m2). Participants were assessed for literacy readiness, locomotor and object control skills before and after the experimental period. IG increased the locomotor, object-control skills and QGMD in response to PEP. As concerns the pre-literacy domain, no significant difference was found in visual analysis and spatial orientation skills between IG and CG groups. However, we detected improvements from baseline to post-test in IG children. In conclusion, this study contributes additional evidence suggesting how a PEP could affect not only motor skills, but also cognitive ones. Consistently with the growing research, interventions based on structured ludic-motor activities ensure health benefits for preschool children. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01274117.
Collapse
Affiliation(s)
- Giuseppe Battaglia
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
- Regional Sports School of CONI Sicilia, Palermo, Italy
| | - Marianna Alesi
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Garden Tabacchi
- Department of Sciences for Health Promotion and Mother Child Care “G. D’Alessandro”, Palermo, Italy
| | - Antonio Palma
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
- Regional Sports School of CONI Sicilia, Palermo, Italy
| | - Marianna Bellafiore
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
- Regional Sports School of CONI Sicilia, Palermo, Italy
| |
Collapse
|
39
|
Corso M. Developmental changes in the youth athlete: implications for movement, skills acquisition, performance and injuries. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2018; 62:150-160. [PMID: 30662070 PMCID: PMC6319435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This narrative review summarizes the current literature on early sport specialization and changes that occur in the musculoskeletal system throughout growth and maturation. It discusses the impact of development on the motor and sensory systems and how this contributes to movement and coordination in the young athlete. With the increasing number of youth athletes in organized sport and the popularization of early sport specialization, the purpose of this paper is to educate those involved with the youth and adolescent athlete to important changes that are occurring at this time in development and the implications they have on movement, performance and injury. It is important for coaches, parents and athletes to understand and acknowledge the changes that are occurring, and to expect some difficulty in adaptation, which may be evident as either a plateau or deterioration in performance, or typical overuse injuries that are seen in the adolescent athlete.
Collapse
Affiliation(s)
- Melissa Corso
- Division of Graduate Studies, Canadian Memorial Chiropractic College
| |
Collapse
|
40
|
Kipping JA, Tuan TA, Fortier MV, Qiu A. Asynchronous Development of Cerebellar, Cerebello-Cortical, and Cortico-Cortical Functional Networks in Infancy, Childhood, and Adulthood. Cereb Cortex 2018; 27:5170-5184. [PMID: 27733542 DOI: 10.1093/cercor/bhw298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Evidence from clinical studies shows that early cerebellar injury can cause abnormal development of the cerebral cortex in children. Characterization of normative development of the cerebellar and cerebello-cortical organization in early life is of great clinical importance. Here, we analyzed cerebellar, cerebello-cortical, and cortico-cortical functional networks using resting-state functional magnetic resonance imaging data of healthy infants (6 months, n = 21), children (4-10 years, n = 68), and adults (23-38 years, n = 25). We employed independent component analysis and identified 7 cerebellar functional networks in infants and 12 in children and adults. We revealed that the cerebellum was functionally connected with the sensorimotor cortex in infants but with the sensorimotor, executive control, and default mode systems of the cortex in children and adults. The functional connectivity strength in the cerebello-cortical functional networks of sensorimotor, executive control, and default mode systems was the strongest in middle childhood, but was weaker in adulthood. In contrast, the functional coherence of the cortico-cortical networks was stronger in adulthood. These findings suggest early synchronization of the cerebello-cortical networks in infancy, particularly in the early developing primary sensorimotor system. Conversely, age-related differences of cerebellar, cerebello-cortical, and cortico-cortical functional networks in childhood and adulthood suggest potential asynchrony of the cerebellar and cortical functional maturation.
Collapse
Affiliation(s)
- Judy A Kipping
- Department of Biomedical Engineering, National University of Singapore, Singapore117575, Singapore
| | - Ta Ahn Tuan
- Department of Biomedical Engineering, National University of Singapore, Singapore117575, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital (KKH), Singapore229899, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.,Singapore Institute for Clinical Sciences, Singapore 117609, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
41
|
Boisgontier MP, Cheval B, van Ruitenbeek P, Cuypers K, Leunissen I, Sunaert S, Meesen R, Zivari Adab H, Renaud O, Swinnen SP. Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiol Aging 2018; 65:109-120. [DOI: 10.1016/j.neurobiolaging.2018.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 02/02/2023]
|
42
|
Yokoyama H, Sato K, Ogawa T, Yamamoto SI, Nakazawa K, Kawashima N. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans. PLoS One 2018; 13:e0194875. [PMID: 29694404 PMCID: PMC5918641 DOI: 10.1371/journal.pone.0194875] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan.,Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Koji Sato
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan.,Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Minuma, Saitama, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Shin-Ichiro Yamamoto
- Department of Bioscience and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Minuma, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
43
|
Casamento-Moran A, Fleeman R, Chen YT, Kwon M, Fox EJ, Yacoubi B, Christou EA. Neuromuscular variability and spatial accuracy in children and older adults. J Electromyogr Kinesiol 2018; 41:27-33. [PMID: 29723799 DOI: 10.1016/j.jelekin.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022] Open
Abstract
Our ability to control movements is influenced by the developmental status of the neuromuscular system. Consequently, movement control improves from childhood to early adulthood but gradually declines thereafter. However, no study has compared movement accuracy between children and older adults. The purpose of this study was to compare endpoint accuracy during a fast goal-directed movement task in children and older adults. Ten pre-adolescent children (9.7 ± 0.67 yrs) and 19 older adults (71.95 ± 6.99 yrs) attempted to accurately match a peak displacement of the foot to a target (9° in 180 ms) with a dorsiflexion movement. We recorded electromyographic activity from the tibialis anterior (agonist) and soleus (antagonist) muscles. We quantified position error (i.e. spatial accuracy) as well as the coordination, magnitude, and variability of the antagonistic muscles. Children exhibited greater position error than older adults (36.4 ± 13.4% vs. 27.0 ± 9.8%). This age-related difference in spatial accuracy, was related to a more variable activation of the agonist muscle (R2: 0.358; P < 0.01). These results suggest that an immature neuromuscular system, compared to an aged one, affects the generation and refinement of the motor plan which increases the variability in the neural drive to the muscle and reduces spatial accuracy in children.
Collapse
Affiliation(s)
| | - Rebecca Fleeman
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Yen-Ting Chen
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - MinHyuk Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, FL, USA.
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA; Department of Physical Therapy, University of Florida, FL, USA.
| |
Collapse
|
44
|
Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia. Clin Neurophysiol 2018; 129:516-525. [DOI: 10.1016/j.clinph.2017.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/16/2017] [Accepted: 11/24/2017] [Indexed: 11/19/2022]
|
45
|
Abstract
More than a century after the description of its cardinal components, the cerebellar motor syndrome (CMS) remains a cornerstone of daily clinical ataxiology, in both children and adults. Anatomically, motor cerebellum involves lobules I-V, VI, and VIII. CMS is typically associated with errors in the metrics of voluntary movements and a lack of coordination. Symptoms and motor signs consist of speech deficits, impairments of limb movements, and abnormalities of posture/gait. Ataxic dysarthria has a typical scanning (explosive with staccato) feature, voice has a nasal character, and speech is slurred. Cerebellar mutism is most common in children and occurs after resection of a large midline cerebellar tumor. Ataxia of limbs includes at various degrees dysmetria (hypermetria: overshoot, hypometria: undershoot), dysdiadochokinesia, cerebellar tremor (action tremor, postural tremor, kinetic tremor, some forms of orthostatic tremor), isometrataxia, disorders of muscle tone (both hypotonia and cerebellar fits), and impaired check and rebound. Handwriting is irregular and some patients exhibit megalographia. Cerebellar patients show an increased body sway with a broad-based stance (ataxia of stance). Gait is irregular and staggering. Delayed learning of complex motor skills may be a prominent feature in children. CMS is currently explained by the inability of the cerebellum to handle feedback signals during slow movements and to create, store, select, and update internal models during fast movements. The cerebellum is embedded in large-scale brain networks and is essential to perform accurate motor predictions related to body dynamics and environmental stimuli. Overall, the observations in children and adults exhibiting a CMS fit with the hypothesis that the cerebellum contains neural representations reproducing the dynamic properties of body, and generates and calibrates sensorimotor predictions. Therapies aiming at a reinforcement or restoration of internal models should be implemented to cancel CMS in cerebellar ataxias. The developmental trajectory of the cerebellum, the immature motor behavior in children, and the networks implicated in CMS need to be taken into account.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| |
Collapse
|
46
|
Serrao M, Chini G, Iosa M, Casali C, Morone G, Conte C, Bini F, Marinozzi F, Coppola G, Pierelli F, Draicchio F, Ranavolo A. Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia. Clin Biomech (Bristol, Avon) 2017; 48:15-23. [PMID: 28704694 DOI: 10.1016/j.clinbiomech.2017.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The harmony of the human gait was recently found to be related to the golden ratio value (ϕ). The ratio between the duration of the stance and that of the swing phases of a gait cycle was in fact found to be close to ϕ, which implies that, because of the fractal property of autosimilarity of that number, the gait ratios stride/stance, stance/swing, swing/double support, were not significantly different from one another. We studied a group of patients with cerebellar ataxia to investigate how the differences between their gait ratios and the golden ratio are related to efficiency and stability of their gait, assessed by energy expenditure and stride-to-stride variability, respectively. METHODS The gait of 28 patients who were affected by degenerative cerebellar ataxia and of 28 healthy controls was studied using a stereophotogrammetric system. The above mentioned gait ratios, the energy expenditure estimated using the pelvis reconstructed method and the gait variability in terms of the stride length were computed, and their relationships were analyzed. Matching procedures have also been used to avoid multicollinearity biases. FINDINGS The gait ratio values of the patients were farther from the controls (and hence from ϕ), even in speed matched conditions (P=0.011, Cohen's D=0.76), but not when the variability and energy expenditure were matched between the two groups (Cohen's D=0.49). In patients with cerebellar ataxia, the farther the stance-swing ratio was from ϕ, the larger the total mechanical work (R2adj=0.64). Further, a significant positive correlation was observed between the difference of the gait ratio from the golden ratio and the severity of the disease (R=0.421, P=0.026). INTERPRETATION Harmony of gait appears to be a benchmark of physiological gait leading to physiological energy recovery and gait reliability. Neurorehabilitation of patients with ataxia might benefit from the restoration of harmony of their locomotor patterns.
Collapse
Affiliation(s)
- Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Via Faggiana 34, 40100 Latina, Italy; Rehabilitation Centre Policlinico Italia, Piazza del Campidano 6, 00162 Rome, Italy.
| | - Giorgia Chini
- Biolab3, Department of Engineering, Roma TRE University, Via Vito Volterra 62, 00149 Roma, Italy
| | - Marco Iosa
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Via Faggiana 34, 40100 Latina, Italy.
| | - Giovanni Morone
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | | | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
| | - Gianluca Coppola
- G.B. Bietti Foundation-IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Via Livenza 3, 00198 Rome, Italy
| | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Via Faggiana 34, 40100 Latina, Italy.
| | - Francesco Draicchio
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00040 Monte Porzio Catone, Italy.
| | - Alberto Ranavolo
- INAIL, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00040 Monte Porzio Catone, Italy.
| |
Collapse
|
47
|
Lee M, Farshchiansadegh A, Ranganathan R. Children show limited movement repertoire when learning a novel motor skill. Dev Sci 2017; 21:e12614. [DOI: 10.1111/desc.12614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/03/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Mei‐Hua Lee
- Department of Kinesiology Michigan State University East Lansing MI USA
| | | | - Rajiv Ranganathan
- Department of Kinesiology Michigan State University East Lansing MI USA
| |
Collapse
|
48
|
Vasudevan EVL, Hamzey RJ, Kirk EM. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation. J Vis Exp 2017. [PMID: 28872105 DOI: 10.3791/55424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.
Collapse
Affiliation(s)
- Erin V L Vasudevan
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network;
| | - Rami J Hamzey
- Physical Therapy, School of Health Technology and Management, Stony Brook University; Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| | - Eileen M Kirk
- Motor Learning Lab, Moss Rehabilitation Research Institute, Einstein Healthcare Network
| |
Collapse
|
49
|
Kuczynski V, Telonio A, Thibaudier Y, Hurteau MF, Dambreville C, Desrochers E, Doelman A, Ross D, Frigon A. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat. J Physiol 2017. [PMID: 28643899 DOI: 10.1113/jp274518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS During split-belt locomotion in humans where one leg steps faster than the other, the symmetry of step lengths and double support periods of the slow and fast legs is gradually restored. When returning to tied-belt locomotion, there is an after-effect, with a reversal in the asymmetry observed in the early split-belt period, indicating that the new pattern was stored within the central nervous system. In this study, we investigated if intact and spinal-transected cats show a similar pattern of adaptation to split-belt locomotion by measuring kinematic variables and electromyography before, during and after 10 min of split-belt locomotion. The results show that cats do not adapt to prolonged split-belt locomotion. Our results suggest an important physiological difference in how cats and humans respond to prolonged asymmetric locomotion. ABSTRACT In humans, gait adapts to prolonged walking on a split-belt treadmill, where one leg steps faster than the other, by gradually restoring the symmetry of interlimb kinematic variables, such as double support periods and step lengths, and by reducing muscle activity (EMG, electromyography). The adaptation is also characterized by reversing the asymmetry of interlimb variables observed during the early split-belt period when returning to tied-belt locomotion, termed an after-effect. To determine if cats adapt to prolonged split-belt locomotion and to assess if spinal locomotor circuits participate in the adaptation, we measured interlimb variables and EMG in intact and spinal-transected cats before, during and after 10 min of split-belt locomotion. In spinal cats, only the hindlimbs performed stepping with the forelimbs stationary. In intact and spinal cats, step lengths and double support periods were, on average, symmetric, during tied-belt locomotion. They became asymmetric during split-belt locomotion and remained asymmetric throughout the split-belt period. Upon returning to tied-belt locomotion, symmetry was immediately restored. In intact cats, the mean EMG amplitude of hindlimb extensors increased during split-belt locomotion and remained increased throughout the split-belt period, whereas in spinal cats, EMG amplitude did not change. Therefore, the results indicate that the locomotor pattern of cats does not adapt to prolonged split-belt locomotion, suggesting an important physiological difference in the control of locomotion between cats and humans. We propose that restoring left-right symmetry is not required to maintain balance during prolonged asymmetric locomotion in the cat, a quadruped, as opposed to human bipedal locomotion.
Collapse
Affiliation(s)
- Victoria Kuczynski
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Alessandro Telonio
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Yann Thibaudier
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Marie-France Hurteau
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Charline Dambreville
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Etienne Desrochers
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Adam Doelman
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Declan Ross
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada, J1H 5N4
| |
Collapse
|
50
|
The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiol Learn Mem 2017; 144:77-85. [PMID: 28668279 DOI: 10.1016/j.nlm.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases with high intensity exercise, nor did it moderate the relationship between high intensity exercise and locomotor learning.
Collapse
|