1
|
Sun ZC, Han WJ, Dou ZW, Lu N, Wang X, Wang FD, Ma SB, Tian ZC, Xian H, Liu WN, Liu YY, Wu WB, Chu WG, Guo H, Wang F, Ding H, Liu YY, Tao HR, Freichel M, Birnbaumer L, Li ZZ, Xie RG, Wu SX, Luo C. TRPC3/6 Channels Mediate Mechanical Pain Hypersensitivity via Enhancement of Nociceptor Excitability and of Spinal Synaptic Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404342. [PMID: 39340833 DOI: 10.1002/advs.202404342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Patients with tissue inflammation or injury often experience aberrant mechanical pain hypersensitivity, one of leading symptoms in clinic. Despite this, the molecular mechanisms underlying mechanical distortion are poorly understood. Canonical transient receptor potential (TRPC) channels confer sensitivity to mechanical stimulation. TRPC3 and TRPC6 proteins, coassembling as heterotetrameric channels, are highly expressed in sensory neurons. However, how these channels mediate mechanical pain hypersensitivity has remained elusive. It is shown that in mice and human, TRPC3 and TRPC6 are upregulated in DRG and spinal dorsal horn under pathological states. Double knockout of TRPC3/6 blunts mechanical pain hypersensitivity, largely by decreasing nociceptor hyperexcitability and spinal synaptic potentiation via presynaptic mechanism. In corroboration with this, nociceptor-specific ablation of TRPC3/6 produces comparable pain relief. Mechanistic analysis reveals that upon peripheral inflammation, TRPC3/6 in primary sensory neurons get recruited via released bradykinin acting on B1/B2 receptors, facilitating BDNF secretion from spinal nociceptor terminals, which in turn potentiates synaptic transmission through TRPC3/6 and eventually results in mechanical pain hypersensitivity. Antagonizing TRPC3/6 in DRG relieves mechanical pain hypersensitivity in mice and nociceptor hyperexcitability in human. Thus, TRPC3/6 in nociceptors is crucially involved in pain plasticity and constitutes a promising therapeutic target against mechanical pain hypersensitivity with minor side effects.
Collapse
Affiliation(s)
- Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurosurgery, Xi'an Daxing Hospital, Xi'an, 710016, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Wei Dou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Lu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, 710000, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Cheng Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wan-Neng Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Bin Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui-Ren Tao
- Department of Orthopedic Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, C1107AVV, Argentina
- Signal Transduction Laboratory, National institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Weinberg RL, Kim S, Pang Z, Awad S, Hanback T, Pan B, Bettin L, Chang D, Polydefkis MJ, Qu L, Caterina MJ. Pain Hypersensitivity in SLURP1 and SLURP2 Knock-out Mouse Models of Hereditary Palmoplantar Keratoderma. J Neurosci 2024; 44:e0260232024. [PMID: 38866482 PMCID: PMC11236581 DOI: 10.1523/jneurosci.0260-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss-of-function mutations in SLURP1 lead to a rare autosomal recessive palmoplantar keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as pachyonychia congenita and Olmsted syndrome show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knock-out and Slurp2X knock-out, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals includes augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed slightly reduced glabrous skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knock-out mice. Primary sensory neurons innervating hindpaw glabrous skin from Slurp2X knock-out mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knock-out mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.
Collapse
Affiliation(s)
- Rachel L Weinberg
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Suyeon Kim
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zixuan Pang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sandy Awad
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tyger Hanback
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| | - Baohan Pan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leonie Bettin
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
4
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
5
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
6
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
7
|
Liu F, Zhang L, Su S, Fang Y, Yin X, Cui H, Sun J, Xie Y, Ma C. Neuronal C-Reactive Protein/FcγRI Positive Feedback Proinflammatory Signaling Contributes to Nerve Injury Induced Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205397. [PMID: 36727833 PMCID: PMC10074098 DOI: 10.1002/advs.202205397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is difficult to treat in clinical practice, and the underlying mechanisms are insufficiently elucidated. Previous studies have demonstrated that the neuronal Fc-gamma-receptor type I (FcγRI) of the dorsal root ganglion (DRG) mediates antigen-specific pain. However, the mechanisms of neuronal FcγRI in neuropathic pain remain to be explored. Here, it is found that the activation of FcγRI-related signals in primary neurons induces neuropathic pain in a rat model. This work first reveals that sciatic nerve injury persistently activates neuronal FcγRI-related signaling in the DRG, and conditional knockout (CKO) of the FcγRI-encoding gene Fcgr1 in rat DRG neurons significantly alleviates neuropathic pain after nerve injury. C-reactive protein (CRP) is increased in the DRG after nerve injury, and CRP protein of the DRG evokes pain by activating neuronal FcγRI-related signals. Furthermore, microinjection of naive IgG into the DRG alleviates neuropathic pain by suppressing the activation of neuronal FcγRI. These results indicate that the activation of neuronal CRP/FcγRI-related signaling plays an important role in the development of neuropathic pain in chronic constriction injury (CCI) rats. The findings may provide novel insights into the neuroimmune responses after peripheral nerve injury and suggest potential therapeutic targets for neuropathic pain.
Collapse
Affiliation(s)
- Fan Liu
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Li Zhang
- Department of AnesthesiologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Si Su
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Yehong Fang
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Xiang‐sha Yin
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Huan Cui
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Jianru Sun
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Yikuan Xie
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
| | - Chao Ma
- National Human Brain Bank for Development and FunctionDepartment of Human AnatomyHistology and EmbryologyNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005P. R. China
- Chinese Institute for Brain ResearchBeijing102206P. R. China
| |
Collapse
|
8
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Sensory neuron-expressed TRPC3 mediates acute and chronic itch. Pain 2023; 164:98-110. [PMID: 35507377 DOI: 10.1097/j.pain.0000000000002668] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represents a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators. Yet, the role of TRPC3 in acute and chronic itch is still not well defined. Here, we show that, among mouse trigeminal ganglion (TG) neurons, Trpc3 mRNA is predominantly expressed in nonpeptidergic small diameter TG neurons of mice. Moreover, Trpc3 mRNA signal was present in most presumptively itch sensing neurons. TRPC3 agonism induced TG neuronal activation and acute nonhistaminergic itch-like and pain-like behaviors in naive mice. In addition, genetic deletion of Trpc3 attenuated acute itch evoked by certain common nonhistaminergic pruritogens, including endothelin-1 and SLIGRL-NH2. In a murine model of contact hypersensitivity (CHS), the Trpc3 mRNA expression level and function were upregulated in the TG after CHS. Pharmacological inhibition and global knockout of Trpc3 significantly alleviated spontaneous scratching behaviors without affecting concurrent cutaneous inflammation in the CHS model. Furthermore, conditional deletion of Trpc3 in primary sensory neurons but not in keratinocytes produced similar antipruritic effects in this model. These findings suggest that TRPC3 expressed in primary sensory neurons may contribute to acute and chronic itch through a histamine independent mechanism and that targeting neuronal TRPC3 might benefit the treatment of chronic itch associated with ACD and other inflammatory skin disorders.
Collapse
|
10
|
Tan PH, Ji J, Hsing CH, Tan R, Ji RR. Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int J Mol Sci 2022; 23:ijms232214394. [PMID: 36430870 PMCID: PMC9696119 DOI: 10.3390/ijms232214394] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-β are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-β produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, MA 02482, USA
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Radika Tan
- Kaohsiung American School, Kaohsiung 81354, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation 2022; 19:55. [PMID: 35197064 PMCID: PMC8867756 DOI: 10.1186/s12974-022-02417-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Classical understanding of allergic conjunctivitis (ACJ) suggests that ocular itch results from a mast cell-dependent inflammatory process. However, treatments that target inflammatory mediators or immune cells are often unsatisfying in relieving the stubborn itch symptom. This suggests that additional mechanisms are responsible for ocular itch in ACJ. In this study, we aim to determine the role of neuronal FcεRIa in allergic ocular itch. Methods Calcium imaging was applied to observe the effect of IgE-immune complex in trigeminal neurons. Genomic FcεRIa knockout mice and adeno-associated virus (AAV) mediated sensory neuron FcεRIa knockdown mice were used in conjunction with behavioral tests to determine ocular itch. In addition, immunohistochemistry, Western blot and quantitative RT-PCR were used for in vitro experiments. Results We found that FcεRIα was expressed in a subpopulation of conjunctiva sensory neurons. IgE-IC directly activated trigeminal neurons and evoked acute ocular itch without detectible conjunctival inflammation. These effects were attenuated in both a global FcεRIa-knockout mice and after sensory neuronal-specific FcεRIa-knockdown in the mouse trigeminal ganglion. In an ovalbumin (OVA) induced murine ACJ model, FcεRIα was found upregulated in conjunctiva-innervating CGRP+ sensory neurons. Sensory neuronal-specific knockdown of FcεRIa significantly alleviated ocular itch in the ACJ mice without affecting the immune cell infiltration and mast cell activation in conjunctiva. Although FcεRIα mRNA expression was not increased by IgE in dissociated trigeminal ganglion neurons, FcεRIα protein level was enhanced by IgE in a cycloheximide-resistance manner, with concordant enhancement of neuronal responses to IgE-IC. In addition, incremental sensitization gradually enhanced the expression of FcεRIα in small-sized trigeminal neurons and aggravated OVA induced ocular itch. Conclusions Our study demonstrates that FcεRIα in pruriceptive neurons directly mediates IgE-IC evoked itch and plays an important role in ocular itch in a mouse model of ACJ. These findings reveal another axis of neuroimmune interaction in allergic itch condition independent to the classical IgE-mast cell pathway, and might suggest novel therapeutic strategies for the treatment of pruritus in ACJ and other immune-related disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02417-x.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
12
|
TRPC3 Antagonizes Pruritus in a Mouse Contact Dermatitis Model. J Invest Dermatol 2021; 142:1136-1144. [PMID: 34570999 DOI: 10.1016/j.jid.2021.08.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
Contact dermatitis (CD), including allergic and irritant CD, are common dermatological diseases and are characterized by an erythematous rash and severe itch. In this study, we investigated the function of TRPC3, a canonical transient receptor potential channel highly expressed in type 1 nonpeptidergic (NP1) nociceptive primary afferents and other cell types, in a mouse CD model. Although TrpC3 null mice had little deficits in acute somatosensation, they showed significantly increased scratching with CD. In addition, TrpC3 null mice displayed no differences in mechanical and thermal hypersensitivity in an inflammatory pain model, suggesting that this channel preferentially functions to antagonize CD-induced itch. Using dorsal root ganglia and panimmune-specific TrpC3 conditional knockout mice, we determined that TrpC3 in dorsal root ganglia neurons but not in immune cells is required for this phenotype. Furthermore, the number of MRGPRD+ NP1 afferents in CD-affected dorsal root ganglia is significantly reduced in TrpC3-mutant mice. Taken together, our results suggest that TrpC3 plays a critical role in NP1 afferents to cope with CD-induced excitotoxicity and that the degeneration of NP1 fibers may lead to an increased itch of CD. Our study identified a role of TrpC3 and NP1 afferents in CD pathology.
Collapse
|
13
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Crosson T, Wang JC, Doyle B, Merrison H, Balood M, Parrin A, Pascal M, Mindt BC, Seehus CR, Ozcan A, Huang X, Semenara E, Lai NYY, Majdoubi A, Abdulnour REE, Rajchgot T, Rafei M, Foster SL, Thibodeau J, Fritz JH, Levy BD, Woolf CJ, Talbot S. FcεR1-expressing nociceptors trigger allergic airway inflammation. J Allergy Clin Immunol 2021; 147:2330-2342. [PMID: 33453289 DOI: 10.1016/j.jaci.2020.12.644] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lung nociceptor neurons amplify immune cell activity and mucus metaplasia in response to an inhaled allergen challenge in sensitized mice. OBJECTIVE We sought to identify the cellular mechanisms by which these sensory neurons are activated subsequent to allergen exposure. METHODS We used calcium microscopy and electrophysiologic recording to assess whether vagal neurons directly respond to the model allergen ovalbumin (OVA). Next, we generated the first nociceptor-specific FcεR1γ knockdown (TRPV1Cre::FcεR1γfl/fl) mice to assess whether this targeted invalidation would affect the severity of allergic inflammation in response to allergen challenges. RESULTS Lung-innervating jugular nodose complex ganglion neurons express the high-affinity IgE receptor FcεR1, the levels of which increase in OVA-sensitized mice. FcεR1γ-expressing vagal nociceptor neurons respond directly to OVA complexed with IgE with depolarization, action potential firing, calcium influx, and neuropeptide release. Activation of vagal neurons by IgE-allergen immune complexes, through the release of substance P from their peripheral terminals, directly amplifies TH2 cell influx and polarization in the airways. Allergic airway inflammation is decreased in TRPV1Cre::FcεR1γfl/fl mice and in FcεR1α-/- mice into which bone marrow has been transplanted. Finally, increased in vivo circulating levels of IgE following allergen sensitization enhances the responsiveness of FcεR1 to immune complexes in both mouse jugular nodose complex ganglion neurons and human induced pluripotent stem cell-derived nociceptors. CONCLUSIONS Allergen sensitization triggers a feedforward inflammatory loop between IgE-producing plasma cells, FcεR1-expressing vagal sensory neurons, and TH2 cells, which helps to both initiate and amplify allergic airway inflammation. These data highlight a novel target for reducing allergy, namely, FcεR1γ expressed by nociceptors.
Collapse
Affiliation(s)
- Theo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Benjamin Doyle
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Hannah Merrison
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Alexandre Parrin
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Maud Pascal
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Barbara C Mindt
- McGill University Research Center on Complex Traits, Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
| | - Corey R Seehus
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Alp Ozcan
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Xuan Huang
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Elise Semenara
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Nicole Y Y Lai
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Abdelilah Majdoubi
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada
| | - Simmie L Foster
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass
| | - Jacques Thibodeau
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jörg H Fritz
- McGill University Research Center on Complex Traits, Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, Mass; Department of Neurobiology, Harvard Medical School, Boston, Mass.
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
15
|
The Neuroimmunology of Chronic Pain: From Rodents to Humans. J Neurosci 2020; 41:855-865. [PMID: 33239404 DOI: 10.1523/jneurosci.1650-20.2020] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neuropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuroimmune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new technological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.
Collapse
|
16
|
Liu F, Shen X, Su S, Cui H, Fang Y, Wang T, Zhang L, Huang Y, Ma C. Fcγ Receptor I-Coupled Signaling in Peripheral Nociceptors Mediates Joint Pain in a Rat Model of Rheumatoid Arthritis. Arthritis Rheumatol 2020; 72:1668-1678. [PMID: 32510872 DOI: 10.1002/art.41386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is often accompanied by joint pain and inflammation. Previous studies have demonstrated that functional Fcγ receptor I (FcγRI) is expressed in dorsal root ganglion (DRG) neurons and might contribute to pain in rodent models of antigen-induced arthritis (AIA). This study was undertaken to elucidate the roles of nociceptive neuronal FcγRI-coupled signaling in the development of joint pain in AIA. METHODS RNA sequencing was used to investigate the transcriptome profile changes in the DRG in a rat model of AIA. A primary sensory neuron-specific Fcgr1a conditional-knockout (CKO) rat was established by crossing rats carrying a loxP-flanked Fcgr1a with a Pirt-specific Cre line. Behavioral, morphologic, and molecular studies were conducted to evaluate the differences between wild-type (WT) and CKO rats after AIA. RESULTS We first showed that AIA induced a transcriptome profile change in the DRG, involving a number of key proteins downstream of the FcγRI-related signaling pathway. Compared to the WT rats, both the IgG immune complex-induced acute pain and AIA-induced pain were alleviated in CKO rats. Moreover, the AIA-induced activation of FcγRI-related signaling in DRGs was significantly reduced in CKO rats. In addition, CKO rats showed attenuated joint swelling after AIA. CONCLUSION These results indicate that activation of FcγRI-coupled signaling in DRG neurons plays an important role in the development of joint pain in AIA. Our findings may provide novel insights into the interactions between the peripheral nervous system and the immune system in pathologic conditions and might suggest potential biotargets for the treatment of pain in RA.
Collapse
Affiliation(s)
- Fan Liu
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences and Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Xinhua Shen
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Si Su
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences and Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Huan Cui
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences and Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences and Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences and Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, and Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Peking Union Medical College Hospital, and Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences and Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Canonical Transient Receptor Potential (TRPC) Channels in Nociception and Pathological Pain. Neural Plast 2020; 2020:3764193. [PMID: 32273889 PMCID: PMC7115173 DOI: 10.1155/2020/3764193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/26/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.
Collapse
|
18
|
Li C, Liu F, Liu S, Pan H, Du H, Huang J, Xie Y, Li Y, Zhao R, Wei Y. Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine 2020; 53:102695. [PMID: 32143182 PMCID: PMC7058526 DOI: 10.1016/j.ebiom.2020.102695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
Background Left ventricular noncompaction cardiomyopathy (LVNC) is a hereditary heart disease characterized by an excessive trabecular meshwork of deep intertrabecular recesses within the ventricular myocardium. The guidelines for management of LVNC patients aim to improve quality of life by preventing cardiac heart failure. However, the mechanism underlying LVNC-associated heart failure remains poorly understood. Methods Using protein mass spectrometry analysis, we established that Sorbin And SH3 Domain Containing 2 (SORBS2) is up-regulated in LVNC hearts without changes to structure proteins. We conducted in vivo experiments wherein the heart tissues of wild-type mice were injected with an AAV9 vector to overexpress SORBS2, followed by analysis using echocardiography, T-tubule analysis and Ca2+ imaging to identify functional and morphological changes. In addition, we analyzed the function and structure of SORBS2 overexpressing human embryonic stem cell (hESC) derived cardiomyocytes (hESC-CM) via immunoblotting, immunohistochemistry, immunofluorescence, and confocal Ca2+ imaging. Findings LVNC myocardial tissues feature strongly elevated expression of SORBS2, microtubule densification and redistribution of Junctophilin 2 (JP2). SORBS2 interacts with β-tubulin, promoting its polymerization in 293T cells and hESC-derived CMs. In vivo, cardiac dysfunction, β-tubulin densification, JP2 translocation, T-tubule disorganization and Ca2+ handling dysfunction were observed in mice overexpressing SORBS2. Interpretation We identified a novel mechanism through which SORBS2 interacts with β-tubulin and promotes microtubule densification, eventually effecting JP2 distribution and T-tubule, potentially contributing to heart failure in LVNC disease. Fund This work was supported by a CAMS Initiative for Innovative Medicine grant (CAMS-I2M, 2016-I2M-1-015 to Y.J.Wei)
Collapse
Affiliation(s)
- Chunyan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Fan Liu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shenghua Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Haizhou Pan
- Children's Heart Center, the Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiwei Du
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Jian Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Yuanyuan Xie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Yanfen Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Ranxu Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| |
Collapse
|
19
|
Goodwin G, Bove GM, Dayment B, Dilley A. Characterizing the Mechanical Properties of Ectopic Axonal Receptive Fields in Inflamed Nerves and Following Axonal Transport Disruption. Neuroscience 2020; 429:10-22. [PMID: 31874241 DOI: 10.1016/j.neuroscience.2019.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/11/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022]
Abstract
Radiating pain is a significant feature of chronic musculoskeletal pain conditions such as radiculopathies, repetitive motion disorders and whiplash associated disorders. It is reported to be caused by the development of mechanically-sensitive ectopic receptive fields along intact nociceptor axons at sites of peripheral neuroinflammation (neuritis). Since inflammation disrupts axonal transport, we have hypothesised that anterogradely-transported mechanically sensitive ion channels accumulate at the site of disruption, which leads to axonal mechanical sensitivity (AMS). In this study, we have characterised the mechanical properties of the ectopic axonal receptive fields in the rat and have examined the contribution of mechanically sensitive ion channels to the development of AMS following neuritis and vinblastine-induced axonal transport disruption. In both models, there was a positive force-discharge relationship and mechanical thresholds were low (∼9 mN/mm2). All responses were attenuated by Ruthenium Red and FM1-43, which block mechanically sensitive ion channels. In both models, the transport of TRPV1 and TRPA1 was disrupted, and intraneural injection of agonists of these channels caused responses in neurons with AMS following neuritis but not vinblastine treatment. In summary, these data support a role for mechanically sensitive ion channels in the development of AMS.
Collapse
Affiliation(s)
- George Goodwin
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | | | - Bryony Dayment
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK
| | - Andrew Dilley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PS, UK.
| |
Collapse
|
20
|
Youn DH, Weon H. Endogenous TRPC channels mediate Ca 2+ signals and trigeminal synaptic plasticity induced by mGluR5. Life Sci 2019; 231:116567. [PMID: 31202839 DOI: 10.1016/j.lfs.2019.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022]
Abstract
AIMS Metabotropic glutamate receptor 5 (mGluR5), a member of group I mGluR, exerts its effect via elevation of intracellular Ca2+ level. We here characterized Ca2+ signals in the tsA201 cells transfected with mGluR5 and investigated the role of passages for mGluR5-induced Ca2+ signals in synaptic plasticity. MAIN METHODS Using a genetically encoded Ca2+ indicator, GCamp2, Ca2+ signals were reliably induced by bath application of (S)-3,5-dihydroxyphenylglycine, the group I mGluR agonist, in the tsA201 cells transfected with mGluR5. Using whole-cell recordings in the substantia gelatinosa (SG) neurons of the spinal trigeminal subnucleus caudalis (Vc), excitatory postsynaptic currents were recorded by stimulating the trigeminal tract. KEY FINDINGS Ca2+ signals were mediated by "classical" or "canonical" transient receptor potential (TRPC) channels, particularly TRPC1/3/4/6, but not TRPC5, naturally existing in the tsA201 cells. Interestingly, the induction of Ca2+ signals was independent of the phospholipase C signaling pathway; instead, it critically involves the cyclic adenosine diphosphate ribose/ryanodine receptor-dependent signaling pathway and only partially protein kinase C. On the other hand, both TRPC3 and TRPC4 mediated mGluR1/5-induced long-lasting potentiation of excitatory synaptic transmission from the trigeminal primary afferents to the SG neurons of the Vc. SIGNIFICANCE This study demonstrates that endogenous TRPC channels contribute to mGluR5-induced Ca2+ signals in tsA201 cells and synaptic plasticity at excitatory synapses.
Collapse
Affiliation(s)
- Dong-Ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| | - Haein Weon
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea
| |
Collapse
|
21
|
Bersellini Farinotti A, Wigerblad G, Nascimento D, Bas DB, Morado Urbina C, Nandakumar KS, Sandor K, Xu B, Abdelmoaty S, Hunt MA, Ängeby Möller K, Baharpoor A, Sinclair J, Jardemark K, Lanner JT, Khmaladze I, Borm LE, Zhang L, Wermeling F, Cragg MS, Lengqvist J, Chabot-Doré AJ, Diatchenko L, Belfer I, Collin M, Kultima K, Heyman B, Jimenez-Andrade JM, Codeluppi S, Holmdahl R, Svensson CI. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J Exp Med 2019; 216:1904-1924. [PMID: 31196979 PMCID: PMC6683987 DOI: 10.1084/jem.20181657] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/metabolism
- Arthralgia/drug therapy
- Arthralgia/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoantibodies/immunology
- Autoantibodies/therapeutic use
- Behavior, Animal/drug effects
- Cartilage/immunology
- Cartilage Oligomeric Matrix Protein/immunology
- Collagen Type II/immunology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Neurons/metabolism
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
Collapse
Affiliation(s)
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Nascimento
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Duygu B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sally Abdelmoaty
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Azar Baharpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon Sinclair
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ia Khmaladze
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars E Borm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wermeling
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Johan Lengqvist
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Quebec, Canada
| | - Inna Belfer
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kim Kultima
- Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Juan Miguel Jimenez-Andrade
- Department of Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Simone Codeluppi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Jiang H, Cui H, Wang T, Shimada SG, Sun R, Tan Z, Ma C, LaMotte RH. CCL2/CCR2 signaling elicits itch- and pain-like behavior in a murine model of allergic contact dermatitis. Brain Behav Immun 2019; 80:464-473. [PMID: 30981714 DOI: 10.1016/j.bbi.2019.04.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
Spontaneous itch and pain are the most common symptoms in various skin diseases, including allergic contact dermatitis (ACD). The chemokine (C-C motif) ligand 2 (CCL2, also referred to as monocyte chemoattractant protein 1 (MCP-1)) and its receptor CCR2 are involved in the pathophysiology of ACD, but little is known of the role of CCL2/CCR2 for the itch- and pain-behaviors accompanying the murine model of this disorder, termed contact hypersensitivity (CHS). C57BL/6 mice previously sensitized to the hapten, squaric acid dibutyl ester, applied to the abdomen were subsequently challenged twice with the hapten delivered to either the cheek or to the hairy skin of the hind paw resulting in CHS at that site. By 24 h after the 2nd challenge to the hind paw CCL2 and CCR2 mRNA, protein, and signaling activity were upregulated in the dorsal root ganglion (DRG). Calcium imaging and whole-cell current-clamp recordings revealed that CCL2 directly acted on its neuronal receptor, CCR2 to activate a subset of small-diameter, nociceptive-like DRG neurons retrogradely labeled from the CHS site. Intradermal injection of CCL2 into the site of CHS on the cheek evoked site-directed itch- and pain-like behaviors which could be attenuated by prior delivery of an antagonist of CCR2. In contrast, CCL2 failed to elicit either type of behavior in control mice. Results are consistent with the hypothesis that CHS upregulates CCL2/CCR2 signaling in a subpopulation of cutaneous small diameter DRG neurons and that CCL2 can activate these neurons through neuronal CCR2 to elicit itch- and pain-behavior. Targeting the CCL2/CCR2 signaling might be beneficial for the treatment of the itch and pain sensations accompanying ACD in humans.
Collapse
Affiliation(s)
- Haowu Jiang
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Huan Cui
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tao Wang
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Steven G Shimada
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rui Sun
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06510, USA
| | - Zhiyong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chao Ma
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
The structure, specificity and function of anti-citrullinated protein antibodies. Nat Rev Rheumatol 2019; 15:503-508. [PMID: 31253945 DOI: 10.1038/s41584-019-0244-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 01/14/2023]
Abstract
In this Perspectives article, we outline a proposed model for understanding the specificity and function of anti-citrullinated protein antibodies (ACPAs). We suggest that ACPAs vary in specificity between two extremes: some are 'promiscuous' in that they are highly specific for the citrulline side chain, but cross-react with a range of citrullinated peptides, whereas others are 'private' in that their recognition of citrulline as well as proximal amino acid side chains enables protein-specific interactions. Promiscuous ACPAs tend to dominate in the sera both before and after the onset of rheumatoid arthritis, but their functional role has not been clarified. No firm evidence exists that these ACPAs are pathogenic. By contrast, private ACPAs encompass antibodies that specifically recognize citrullinated epitopes on joint proteins or that cross-react with joint proteins, thereby opening up the possibility that these private ACPAs are arthritogenic. These joint-reactive antibodies are more likely to target joints by binding to joint tissues and to promote the formation of local immune complexes leading to bone erosions, pain and arthritis.
Collapse
|
24
|
Wang L, Jiang X, Zheng Q, Jeon SM, Chen T, Liu Y, Kulaga H, Reed R, Dong X, Caterina MJ, Qu L. Neuronal FcγRI mediates acute and chronic joint pain. J Clin Invest 2019; 129:3754-3769. [PMID: 31211699 DOI: 10.1172/jci128010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although joint pain in rheumatoid arthritis (RA) is conventionally thought to result from inflammation, arthritis pain and joint inflammation are at least partially uncoupled. This suggests that additional pain mechanisms in RA remain to be explored. Here we show that FcγRI, an immune receptor for IgG immune complex (IgG-IC), is expressed in a subpopulation of joint sensory neurons and that, under naïve conditions, FcγRI crosslinking by IgG-IC directly activates the somata and peripheral terminals of these neurons to evoke acute joint hypernociception without obvious concurrent joint inflammation. These effects were diminished in both global and sensory neuron-specific Fcgr1 knockout mice. In murine models of inflammatory arthritis, FcγRI signaling was upregulated in joint sensory neurons. Acute blockade or global genetic deletion of Fcgr1 significantly attenuated arthritis pain and hyperactivity of joint sensory neurons without measurably altering joint inflammation. Conditional deletion of Fcgr1 in sensory neurons produced similar analgesic effects in these models. We therefore suggest that FcγRI expressed in sensory neurons contributes to arthritis pain independently of its functions in inflammatory cells. These findings expand our understanding of the immunosensory capabilities of sensory neurons and imply that neuronal FcγRI merits consideration as a target for treating RA pain.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurosurgery and Neurosurgery Pain Research Institute
| | - Xiaohua Jiang
- Department of Neurosurgery and Neurosurgery Pain Research Institute
| | - Qin Zheng
- Solomon H. Snyder Department of Neuroscience
| | - Sang-Min Jeon
- Department of Neurosurgery and Neurosurgery Pain Research Institute
| | - Tiane Chen
- Department of Neurosurgery and Neurosurgery Pain Research Institute
| | - Yan Liu
- Department of Neurosurgery and Neurosurgery Pain Research Institute
| | | | - Randall Reed
- Department of Molecular Biology and Genetics, and
| | | | - Michael J Caterina
- Department of Neurosurgery and Neurosurgery Pain Research Institute.,Solomon H. Snyder Department of Neuroscience.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lintao Qu
- Department of Neurosurgery and Neurosurgery Pain Research Institute
| |
Collapse
|
25
|
Photopharmacology and opto-chemogenetics of TRPC channels-some therapeutic visions. Pharmacol Ther 2019; 200:13-26. [PMID: 30974125 DOI: 10.1016/j.pharmthera.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
Non-selective cation conductances formed by transient receptor potential canonical (TRPC) proteins govern the function and fate of a wide range of human cell types. In the past decade, evidence has accumulated for a pivotal role of these channels in human diseases, raising substantial interest in their therapeutic targeting. As yet, an appreciable number of small molecules for block and modulation of recombinant TRPC conductances have been identified. However, groundbreaking progress in TRPC pharmacology towards therapeutic applications is lagging behind due to incomplete understanding of their molecular pharmacology and their exact role in disease. A major breakthrough that is expected to overcome these hurdles is the recent success in obtaining high-resolution structure information on TRPC channel complexes and the advent of TRP photopharmacology and optogenetics. Here, we summarize current concepts of enhancing the precision of therapeutic interference with TRPC signaling and TRPC-mediated pathological processes.
Collapse
|
26
|
Stamou M, Lein PJ. Commentary: Fc Gamma Receptors are Expressed in the Developing Rat Brain and Activate Downstream Signaling Molecules upon Cross-Linking with Immune Complex. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2019; 4:26-29. [PMID: 31131371 PMCID: PMC6532780 DOI: 10.29245/2572.942x/2019/1.1243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California, Davis, CA 95616
| | - Pamela J Lein
- ETH Zurich, Department of Health Sciences and Technology, Institute of Molecular Systems Biology, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Mei Y, Barrett JE, Hu H. Calcium release-activated calcium channels and pain. Cell Calcium 2018; 74:180-185. [PMID: 30096536 DOI: 10.1016/j.ceca.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022]
Abstract
Calcium release-activated calcium (CRAC) channels are unique among ion channels that are activated in response to depletion of intracellular calcium stores and are highly permeable to Ca2+ compared to other cations. CRAC channels mediate an important calcium signal for a wide variety of cell types and are well studied in the immune system. They have been implicated in a number of disorders such as immunodeficiency, musculosketal disorders and cancer. There is growing evidence showing that CRAC channels are expressed in the nervous system and are involved in pathological conditions including pain. This review summarizes the expression, distribution, and function of the CRAC channel family in the dorsal root ganglion, spinal cord and some brain regions, and discusses their functional significance in neurons and glial cells and involvement in nociception and chronic pain. Although further studies are needed to understand how these channels are activated under physiological conditions, the recent findings indicate that the CRAC channel Orai1 is an important player in pain modulation and could represent a new target for pathological pain.
Collapse
Affiliation(s)
- Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA 19102, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States.
| |
Collapse
|
28
|
Gunasekaran M, Chatterjee PK, Shih A, Imperato GH, Addorisio M, Kumar G, Lee A, Graf JF, Meyer D, Marino M, Puleo C, Ashe J, Cox MA, Mak TW, Bouton C, Sherry B, Diamond B, Andersson U, Coleman TR, Metz CN, Tracey KJ, Chavan SS. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Front Immunol 2018; 9:638. [PMID: 29755449 PMCID: PMC5932385 DOI: 10.3389/fimmu.2018.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.
Collapse
Affiliation(s)
- Manojkumar Gunasekaran
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Prodyot K. Chatterjee
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Andrew Shih
- Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gavin H. Imperato
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Meghan Addorisio
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Gopal Kumar
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Annette Lee
- Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - John F. Graf
- GE Global Research Center, Niskayuna, NY, United States
| | - Dan Meyer
- GE Global Research Center, Niskayuna, NY, United States
| | | | | | - Jeffrey Ashe
- GE Global Research Center, Niskayuna, NY, United States
| | - Maureen A. Cox
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Chad Bouton
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Barbara Sherry
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Thomas R. Coleman
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Christine N. Metz
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kevin J. Tracey
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S. Chavan
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Elmezzi Graduate School, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
29
|
Dong P, Guo C, Huang S, Ma M, Liu Q, Luo W. TRPC3 Is Dispensable for β-Alanine Triggered Acute Itch. Sci Rep 2017; 7:13869. [PMID: 29066740 PMCID: PMC5654773 DOI: 10.1038/s41598-017-12770-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023] Open
Abstract
The detection of pruritic (itchy) stimuli is mediated by a variety of receptors and channels expressed by primary sensory neurons. The G protein-coupled receptor (GPCR) MRGPRD is selectively expressed by a subset of mouse non-peptidergic nociceptors and functions as the molecular receptor for the itch-inducing chemical β-alanine. However, the channels responsible for generating electrical signals downstream of MRGPRD remain unclear. Here, we found that a member of the canonical TRP channel family, TRPC3, is highly expressed in MRGPRD+ non-peptidergic nociceptors, raising the possibility of whether TRPC3 functions as a downstream channel in the MRGPRD signaling pathway. We tested TrpC3 null mice for β-alanine induced itch, and found that these mice exhibit normal responses to β-alanine. At the cellular level, calcium influx triggered by β-alanine is also unchanged in cultured DRG neurons from TrpC3 null mice compared to wild type. Together, our results demonstrate that mouse TrpC3 is dispensable for β-alanine-induced acute itch.
Collapse
Affiliation(s)
- Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changxiong Guo
- Department of Anesthesiology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shengxiang Huang
- Department of Anesthesiology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Wuhan University, Wuhan, Hubei, China
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Department of Anesthesiology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Jiang H, Shen X, Chen Z, Liu F, Wang T, Xie Y, Ma C. Nociceptive neuronal Fc-gamma receptor I is involved in IgG immune complex induced pain in the rat. Brain Behav Immun 2017; 62:351-361. [PMID: 28263785 DOI: 10.1016/j.bbi.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Antigen-specific immune diseases such as rheumatoid arthritis are often accompanied by pain and hyperalgesia. Our previous studies have demonstrated that Fc-gamma-receptor type I (FcγRI) is expressed in a subpopulation of rat dorsal root ganglion (DRG) neurons and can be directly activated by IgG immune complex (IgG-IC). In this study we investigated whether neuronal FcγRI contributes to antigen-specific pain in the naïve and rheumatoid arthritis model rats. In vitro calcium imaging and whole-cell patch clamp recordings in dissociated DRG neurons revealed that only the small-, but not medium- or large-sized DRG neurons responded to IgG-IC. Accordingly, in vivo electrophysiological recordings showed that intradermal injection of IgG-IC into the peripheral receptive field could sensitize only the C- (but not A-) type sensory neurons and evoke action potential discharges. Pain-related behavioral tests showed that intradermal injection of IgG-IC dose-dependently produced mechanical and thermal hyperalgesia in the hindpaw of rats. These behavioral effects could be alleviated by localized administration of non-specific IgG or an FcγRI antibody, but not by mast cell stabilizer or histamine antagonist. In a rat model of antigen-induced arthritis (AIA) produced by methylated bovine serum albumin, FcγRI were found upregulated exclusively in the small-sized DRG neurons. In vitro calcium imaging revealed that significantly more small-sized DRG neurons responded to IgG-IC in the AIA rats, although there was no significant difference between the AIA and control rats in the magnitude of calcium changes in the DRG neurons. Moreover, in vivo electrophysiological recordings showed that C-nociceptive neurons in the AIA rats exhibited a greater incidence of action potential discharges and stronger responses to mechanical stimuli after IgG-IC was injected to the receptive fields. These results suggest that FcγRI expressed in the peripheral nociceptors might be directly activated by IgG-IC and contribute to antigen-specific pain in pathological conditions.
Collapse
Affiliation(s)
- Haowu Jiang
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinhua Shen
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhiyong Chen
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fan Liu
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tao Wang
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yikuan Xie
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chao Ma
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
31
|
Qu L, Fu K, Shimada SG, LaMotte RH. Cl - channel is required for CXCL10-induced neuronal activation and itch response in a murine model of allergic contact dermatitis. J Neurophysiol 2017; 118:619-624. [PMID: 28446581 DOI: 10.1152/jn.00187.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Persistent itch often accompanies allergic contact dermatitis (ACD), but the underlying mechanisms remain largely unexplored. We previously demonstrated that CXCL10/CXCR3 signaling activated a subpopulation of cutaneous primary sensory neurons and mediated itch response after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. The purpose of this study was to determine the ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch. In whole cell recordings, CXCL10 triggered a current in dorsal root ganglion (DRG) neurons innervating the area of CHS. This current was modulated by intracellular Cl- and blocked by the general Cl- channel inhibitors. Moreover, increasing Ca2+ buffering capacity reduced this current. In addition, blockade of Cl- channels significantly suppressed CXCL10-induced Ca2+ response. In behavioral tests, injection of CXCL10 into CHS site exacerbated itch-related scratching behaviors. Moreover, the potentiating behavioral effects of CXCL10 were attenuated by either of two Cl- channel blockers. Thus we suggest that the Cl- channel acts as a downstream target mediating the excitatory and pruritic behavioral effects of CXCL10. Cl- channels may provide a promising therapeutic target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.NEW & NOTEWORTHY The ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch are largely unexplored. This study revealed that CXCL10 evoked an ionic current mainly carried by Cl- channels. We suggest that Cl- channels are likely key molecular candidates responsible for the CXCL10-evoked neuronal activation and itch-like behaviors in a murine model of allergic contact dermatitis induced by the antigen squaric acid dibutylester. Cl- channels may emerge as a promising drug target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.
Collapse
Affiliation(s)
- Lintao Qu
- Departments of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland; and .,Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Kai Fu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Steven G Shimada
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
32
|
Otsu A, Kawasaki H, Tominaga M, Shigenaga A, Matsuda H, Takahashi N, Nakajima T, Naito H, Baba T, Ogawa H, Tomooka Y, Yamakura F, Takamori K. Accumulation of immunoglobulin G against Dermatophagoides farinae tropomyosin in dorsal root ganglia of NC/Nga mice with atopic dermatitis-like symptoms. Biochem Biophys Res Commun 2017; 485:707-712. [PMID: 28237704 DOI: 10.1016/j.bbrc.2017.02.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, manifests as intractable itch, but its underlying mechanisms are poorly understood. This study assessed the relationship between immunoglobulin G (IgG) and dorsal root ganglia (DRG) in NC/Nga mice, a model of AD that manifests AD-like symptoms including itch. Immunohistochemical analysis showed large amounts of IgG in DRG extracts of NC/Nga mice with AD-like dermatitis, with a large fraction of the IgG distributed in satellite glial cells of the DRG. Proteomic analysis showed that this IgG was reactive against tropomyosin of Dermatophagoides farinae. These findings indicate that the accumulation of anti-tropomyosin IgG in DRG of atopic NC/Nga mice may be associated with the pathogenesis of AD-like symptoms, including itch.
Collapse
Affiliation(s)
- Ayaka Otsu
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Hiroaki Kawasaki
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Mitsutoshi Tominaga
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Hironori Matsuda
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Nobuaki Takahashi
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hisashi Naito
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Takeshi Baba
- Juntendo University, School of Medicine, 1-1 Hirakagakuendai, Inzai, Chiba 270-1695, Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Fumiyuki Yamakura
- Juntendo University Faculty of International Liberal Arts, 2-1-1, Bunkyoku, Hongo, Tokyo 113-8421, Japan.
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan; Department of Dermatology, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba 279-0021, Japan.
| |
Collapse
|
33
|
Neuronal Fc-epsilon receptor I contributes to antigen-evoked pruritus in a murine model of ocular allergy. Brain Behav Immun 2017; 61:165-175. [PMID: 27865948 DOI: 10.1016/j.bbi.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/30/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Pruritus is the major symptom of ocular allergy but currently available treatments are often ineffective. Previous studies demonstrated that subpopulations of primary sensory neurons express Fc receptors and may contribute to antigen-specific pain. We investigated the role of neuronal Fc-epsilon Receptor I (FcεRI) in allergic ocular pruritus. Ovalbumin (OVA) was used as allergen together with alum adjuvant (OVA+alum) to produce a mouse model of ocular allergy with a significant elevation in the serum levels of both antigen-specific IgE and IgG. Mice sensitized by OVA without alum only induced elevation of serum IgG but not IgE. Scratching behavior toward the eyes with the hindlimb was used as an indicator of ocular itch. Topical OVA challenging to the eye dose-dependently induced scratching toward the eye in the OVA+alum sensitized mice, but not those sensitized by OVA only. The antigen-induced scratching was largely abolished by topical application of the blocking antibody to FcεRIα, but was only partially alleviated by pretreatment of mast cell stabilizer or histamine I receptor antagonist. The expression of FcεRI was detected in subpopulations of trigeminal ganglion (TG) neurons including those expressing pruriceptive markers and innervating the conjunctiva in the naïve mice. Moreover, FcεRI was found significantly upregulated in small-sized TG neurons in the OVA+alum sensitized mice. In acutely dissociated TG neurons, IgE-immune complex (IC), but not the antibody or antigen alone, induced intracellular calcium increase. The neuronal responses to IgE-IC could be specifically blocked by pre-application of a siRNA for FcεRIα. Our results indicate that FcεRI expressed on peripheral nociceptive neurons in the TG may be directly activated by IgE-IC and contribute to allergic ocular pruritus. This study may suggest a novel mechanism for the development of pathological itch in allergic diseases.
Collapse
|
34
|
TRPC Channels and Neuron Development, Plasticity, and Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:95-110. [PMID: 28508316 DOI: 10.1007/978-94-024-1088-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this chapter, we mainly focus on the functions of TRPC channels in brain development, including neural progenitor proliferation, neurogenesis, neuron survival, axon guidance, dendritic morphology, synaptogenesis, and neural plasticity. We also notice emerging advances in understanding the functions of TRPC channels in periphery, especially their functions in sensation and nociception in dorsal root ganglion (DRG). Because TRPC channels are expressed in all major types of glial cells, which account for at least half of total cells in the brain, TRPC channels may act as modulators for glial functions as well. The future challenges for studying these channels could be (1) the detailed protein structures of these channels, (2) their cell type-specific functions, (3) requirement for their specific blockers or activators, and (4) change in the channel conformation in the brain.
Collapse
|
35
|
TRP Channels in Skin Biology and Pathophysiology. Pharmaceuticals (Basel) 2016; 9:ph9040077. [PMID: 27983625 PMCID: PMC5198052 DOI: 10.3390/ph9040077] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body of evidence implicating abnormal TRP channel function, as a product of excessive or deficient channel activity, in pathological skin conditions such as chronic pain and itch, dermatitis, vitiligo, alopecia, wound healing, skin carcinogenesis, and skin barrier compromise. These diverse functions, coupled with the fact that many TRP channels possess pharmacologically accessible sites, make this family of proteins appealing therapeutic targets for skin disorders.
Collapse
|
36
|
Li Q, Michel K, Annahazi A, Demir IE, Ceyhan GO, Zeller F, Komorowski L, Stöcker W, Beyak MJ, Grundy D, Farrugia G, De Giorgio R, Schemann M. Anti-Hu antibodies activate enteric and sensory neurons. Sci Rep 2016; 6:38216. [PMID: 27905561 PMCID: PMC5131267 DOI: 10.1038/srep38216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-β-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker ω-Conotoxin GVIA. Ca++ imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction.
Collapse
Affiliation(s)
- Qin Li
- Human Biology, Technical University of Munich, Freising, Germany.,Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Klaus Michel
- Human Biology, Technical University of Munich, Freising, Germany
| | - Anita Annahazi
- Human Biology, Technical University of Munich, Freising, Germany
| | - Ihsan E Demir
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich; Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich; Munich, Germany
| | | | - Lars Komorowski
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Michael J Beyak
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | - Roberto De Giorgio
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Michael Schemann
- Human Biology, Technical University of Munich, Freising, Germany
| |
Collapse
|
37
|
Kim HJ, Woo J, Nam Y, Nam JH, Kim WK. Differential modulation of TWIK-related K+ channel (TREK) and TWIK-related acid-sensitive K+ channel 2 (TASK2) activity by pyrazole compounds. Eur J Pharmacol 2016; 791:686-695. [DOI: 10.1016/j.ejphar.2016.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/29/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
|
38
|
Qu L, Caterina MJ. Enhanced excitability and suppression of A-type K(+) currents in joint sensory neurons in a murine model of antigen-induced arthritis. Sci Rep 2016; 6:28899. [PMID: 27363579 PMCID: PMC4929491 DOI: 10.1038/srep28899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Pain is a dominant symptom of rheumatoid arthritis (RA) and its adequate treatment represents a major unmet need. However, the cellular mechanisms that drive arthritis pain are largely unexplored. Here, we examined the changes in the activity of joint sensory neurons and the associated ionic mechanisms using an animal model of antigen-induced arthritis (AIA). Methylated-bovine serum albumin (mBSA), but not vehicle challenge, in the ankle of previously immunized mice produced time-dependent symptoms of arthritis, including joint inflammation, primary mechanical hyperalgesia in the ipsilateral ankle, and secondary mechanical and heat hyperalgesia in the ipsilateral hindpaw. In vivo electrophysiological recordings revealed that Dil-labeled joint sensory neurons in AIA mice exhibited a greater incidence of spontaneous activity, mechanically evoked after-discharges, and/or increased responses to mechanical stimulation of their receptive fields, compared to control animals. Whole-cell recordings in vitro showed that AIA enhanced the excitability of joint sensory neurons. These signs of neuronal hyperexcitability were associated with a significant reduction in the density of A-type K+ currents. Thus, our data suggest that neuronal hyperexcitability, brought about in part by reduced A-type K+ currents, may contribute to pain-related behaviors that accompany antigen-induced arthritis and/or other antigen-mediated diseases.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
39
|
Abstract
Persistent itch is a common symptom of allergic contact dermatitis (ACD) and represents a significant health burden. The chemokine CXCL10 is predominantly produced by epithelial cells during ACD. Although the chemokine CXCL10 and its receptor CXCR3 are implicated in the pathophysiology of ACD, it is largely unexplored for itch and pain accompanying this disorder. Here, we showed that CXCL10 and CXCR3 mRNA, protein, and signaling activity were upregulated in the dorsal root ganglion after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. CXCL10 directly activated a subset of cutaneous dorsal root ganglion neurons innervating the area of CHS through neuronal CXCR3. In behavioral tests, a CXCR3 antagonist attenuated spontaneous itch- but not pain-like behaviors directed to the site of CHS. Injection of CXCL10 into the site of CHS elicited site-directed itch- but not pain-like behaviors, but neither type of CXCL10-evoked behaviors was observed in control mice. These results suggest that CXCL10/CXCR3 signaling mediates allergic itch but not inflammatory pain in the context of skin inflammation. Thus, upregulation of CXCL10/CXCR3 signaling in sensory neurons may contribute to itch associated with ACD. Targeting the CXCL10/CXCR3 signaling might be beneficial for the treatment of allergic itch.
Collapse
|
40
|
Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016; 61:2-16. [PMID: 26724974 PMCID: PMC4884561 DOI: 10.1016/j.jbior.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
41
|
Sawamura S, Hatano M, Takada Y, Hino K, Kawamura T, Tanikawa J, Nakagawa H, Hase H, Nakao A, Hirano M, Rotrattanadumrong R, Kiyonaka S, Mori MX, Nishida M, Hu Y, Inoue R, Nagata R, Mori Y. Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds. Mol Pharmacol 2016; 89:348-63. [PMID: 26733543 DOI: 10.1124/mol.115.102863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a new class of synthetic neurotrophic drugs.
Collapse
Affiliation(s)
- Seishiro Sawamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Masahiko Hatano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Yoshinori Takada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Kyosuke Hino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Tetsuya Kawamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Jun Tanikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Hiroshi Nakagawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Hideharu Hase
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Mitsuru Hirano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Rachapun Rotrattanadumrong
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Motohiro Nishida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Yaopeng Hu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Ryuji Inoue
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Ryu Nagata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering (S.S., Ma.H., Y.T., H.H., Mi.H., R.R., S.K., M.X.M., Y.M.), and Department of Technology and Ecology, Hall of Global Environmental Studies (S.K., Y.M.), Kyoto University, Kyoto, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan (Y.T., K.H., T.K., J.T., H.N., R.N.); Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan (A.N.); Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan (M.N.); and Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (Y.H., R.I.)
| |
Collapse
|
42
|
Peripheral Nociceptors as Immune Sensors in the Development of Pain and Itch. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:77-85. [PMID: 26900064 DOI: 10.1007/978-94-017-7537-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The peripheral nervous system and the immune system perform a series of similar functionalities such as recognizing, responding, and adapting to external or internal stimuli despite significant morphological differences. The peripheral nervous system actively communicates and coordinates with the immune system to function as a unified defense system. The peripheral nervous system is highly regulated by the immune system, especially under inflammatory conditions. On the other hand, the nervous system can modulate the immune system via neurotransmitters and chemokines released by the peripheral nerve endings, particularly from nociceptors. In both physiological and pathological conditions, peripheral nociceptive (including pruriceptive) neurons may express a variety of immune-related receptors, such as chemokine receptors and immunoglobulin (Fc) receptors that are usually found on immune cells. Certain ligands such as chemokines and immune complexes may induce abnormal neuronal hyperexcitability and even ectopic action potential discharges, therefore producing the sensation of pain and/or itch in immune-related diseases. The immune-sensing mechanisms of peripheral nociceptors may play an important role in the development of chronic pain and pruritus and may indicate novel therapeutic strategies for these pathological conditions.
Collapse
|
43
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Qu L. Neuronal Fc gamma receptor I as a novel mediator for IgG immune complex-induced peripheral sensitization. Neural Regen Res 2015; 7:2075-9. [PMID: 25624839 PMCID: PMC4296428 DOI: 10.3969/j.issn.1673-5374.2012.26.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/30/2012] [Indexed: 12/23/2022] Open
Abstract
Chronic pain often accompanies immune-related diseases with an elevated level of IgG immune complex (IgG-IC) in the serum and/or the affected tissues though the underlying mechanisms are largely unknown. Fc gamma receptors (FcγRs), known as the receptors for the Fc domain of immunoglobulin G (IgG), are typically expressed on immune cells. A general consensus is that the activation of FcγRs by IgG-IC in such immune cells induces the release of proinflammatory cytokines from the immune cells, which may contribute to the IgG-IC-mediated peripheral sensitization. In addition to the immune cells, recent studies have revealed that FcγRI, but not FcγRII and FcγRIII, is also expressed in a subpopulation of primary sensory neurons. Moreover, IgG-IC directly excites the primary sensory neurons through neuronal FcγRI. These findings indicate that neuronal FcγRI provides a novel direct linkage between immunoglobulin and primary sensory neurons, which may be a novel target for the treatment of pain in the immune-related disorders. In this review, we summarize the expression pattern, functions, and the associated cellular signaling of FcγRs in the primary sensory neurons.
Collapse
Affiliation(s)
- Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
45
|
Zhang X, Beckel JM, Daugherty SL, Wang T, Woodcock SR, Freeman BA, de Groat WC. Activation of TRPC channels contributes to OA-NO2-induced responses in guinea-pig dorsal root ganglion neurons. J Physiol 2014; 592:4297-312. [PMID: 25128576 DOI: 10.1113/jphysiol.2014.271783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Effects of nitro-oleic acid (OA-NO2) on TRP channels were examined in guinea-pig dissociated dorsal root ganglia (DRG) neurons using calcium imaging and patch clamp techniques. OA-NO2 increased intracellular Ca(2+) in 60-80% DRG neurons. 1-Oleoyl-2acetyl-sn-glycerol (OAG), a TRPC agonist, elicited responses in 36% of OA-NO2-sensitive neurons while capsaicin (TRPV1 agonist) or allyl-isothiocyanate (AITC, TRPA1 agonist) elicited responses in only 16% and 10%, respectively, of these neurons. A TRPV1 antagonist (diarylpiperazine, 5 μm) in combination with a TRPA1 antagonist (HC-030031, 30 μm) did not change the amplitude of the Ca(2+) transients or percentage of neurons responding to OA-NO2; however, a reducing agent DTT (50 mm) or La(3+) (50 μm) completely abolished OA-NO2 responses. OA-NO2 also induced a transient inward current associated with a membrane depolarization followed by a prolonged outward current and hyperpolarization in 80% of neurons. The reversal potentials of inward and outward currents were approximately -20 mV and -60 mV, respectively. Inward current was reduced when extracellular Na(+) was absent, but unchanged by niflumic acid (100 μm), a Cl(-) channel blocker. Outward current was abolished in the absence of extracellular Ca(2+) or a combination of two Ca(2+)-activated K(+) channel blockers (iberiotoxin, 100 nm and apamin, 1 μm). BTP2 (1 or 10 μm), a broad spectrum TRPC antagonist, or La(3+) (50 μm) completely abolished OA-NO2 currents. RT-PCR performed on mRNA extracted from DRGs revealed the expression of all seven subtypes of TRPC channels. These results support the hypothesis that OA-NO2 activates TRPC channels other than the TRPV1 and TRPA1 channels already known to be targets in rat and mouse sensory neurons and challenge the prevailing view that electrophilic compounds act specifically on TRPA1 or TRPV1 channels. The modulation of sensory neuron excitability via actions on multiple TRP channels can contribute to the anti-inflammatory effect of OA-NO2.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ting Wang
- Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Stephen R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
46
|
Qi D, Atsina K, Qu L, Hu X, Wu X, Xu B, Piecychna M, Leng L, Fingerle-Rowson G, Zhang J, Bucala R, Young LH. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. J Clin Invest 2014; 124:3540-50. [PMID: 24983315 DOI: 10.1172/jci73061] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomyocytes and secreted by the heart after ischemic stress. Antibody-dependent neutralization of secreted DDT exacerbated both ischemia-induced cardiac contractile dysfunction and necrosis. We generated cardiomyocyte-specific DDT knockout mice (Myh6-Cre Ddtfl/fl), which demonstrated normal baseline cardiac size and function, but had an impaired physiologic response to ischemia-reperfusion. Hearts from Myh6-Cre Ddtfl/fl mice exhibited more necrosis and LV contractile dysfunction than control hearts after coronary artery ligation and reperfusion. Furthermore, treatment with DDT protected isolated hearts against injury and contractile dysfunction after ischemia-reperfusion. The protective effect of DDT required activation of the metabolic stress enzyme AMP-activated protein kinase (AMPK), which was mediated by a CD74/CaMKK2-dependent mechanism. Together, our data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.
Collapse
|
47
|
Nilius B, Szallasi A. Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacol Rev 2014; 66:676-814. [DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Jankowski MP, Ross JL, Weber JD, Lee FB, Shank AT, Hudgins RC. Age-dependent sensitization of cutaneous nociceptors during developmental inflammation. Mol Pain 2014; 10:34. [PMID: 24906209 PMCID: PMC4059454 DOI: 10.1186/1744-8069-10-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/22/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It is well-documented that neonates can experience pain after injury. However, the contribution of individual populations of sensory neurons to neonatal pain is not clearly understood. Here we characterized the functional response properties and neurochemical phenotypes of single primary afferents after injection of carrageenan into the hairy hindpaw skin using a neonatal ex vivo recording preparation. RESULTS During normal development, we found that individual afferent response properties are generally unaltered. However, at the time period in which some sensory neurons switch their neurotrophic factor responsiveness, we observe a functional switch in slowly conducting, broad spiking fibers ("C"-fiber nociceptors) from mechanically sensitive and thermally insensitive (CM) to polymodal (CPM). Cutaneous inflammation induced prior to this switch (postnatal day 7) specifically altered mechanical and heat responsiveness, and heat thresholds in fast conducting, broad spiking ("A"-fiber) afferents. Furthermore, hairy skin inflammation at P7 transiently delayed the functional shift from CM to CPM. Conversely, induction of cutaneous inflammation after the functional switch (at P14) caused an increase in mechanical and thermal responsiveness exclusively in the CM and CPM neurons. Immunocytochemical analysis showed that inflammation at either time point induced TRPV1 expression in normally non-TRPV1 expressing CPMs. Realtime PCR and western blotting analyses revealed that specific receptors/channels involved in sensory transduction were differentially altered in the DRGs depending on whether inflammation was induced prior to or after the functional changes in afferent prevalence. CONCLUSION These data suggest that the mechanisms of neonatal pain development may be generated by different afferent subtypes and receptors/channels in an age-related manner.
Collapse
Affiliation(s)
- Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Qu L, Fan N, Ma C, Wang T, Han L, Fu K, Wang Y, Shimada SG, Dong X, LaMotte RH. Enhanced excitability of MRGPRA3- and MRGPRD-positive nociceptors in a model of inflammatory itch and pain. Brain 2014; 137:1039-50. [PMID: 24549959 PMCID: PMC3959553 DOI: 10.1093/brain/awu007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/11/2013] [Accepted: 12/01/2013] [Indexed: 11/13/2022] Open
Abstract
Itch is a common symptom of diseases of the skin but can also accompany diseases of other tissues including the nervous system. Acute itch from chemicals experimentally applied to the skin is initiated and maintained by action potential activity in a subset of nociceptive neurons. But whether these pruriceptive neurons are active or might become intrinsically more excitable under the pathological conditions that produce persistent itch and nociceptive sensations in humans is largely unexplored. Recently, two distinct types of cutaneous nociceptive dorsal root ganglion neurons were identified as responding to pruritic chemicals and playing a role in itch sensation. One expressed the mas-related G-coupled protein receptor MRGPRA3 and the other MRGPRD (MRGPRA3+ and MRGPRD+ neurons, respectively). Here we tested whether these two distinct pruriceptive nociceptors exhibited an enhanced excitability after the development of contact hypersensitivity, an animal model of allergic contact dermatitis, a common pruritic disorder in humans. The characteristics of increased excitability of pruriceptive neurons during this disorder may also pertain to the same types of neurons active in other pruritic diseases or pathologies that affect the nervous system and other tissues or organs. We found that challenging the skin of the calf of the hind paw or the cheek of previously sensitized mice with the hapten, squaric acid dibutyl ester, produced symptoms of contact hypersensitivity including an increase in skin thickness and site-directed spontaneous pain-like (licking or wiping) and itch-like (biting or scratching) behaviours. Ablation of MRGPRA3+ neurons led to a significant reduction in spontaneous scratching of the hapten-challenged nape of the neck of previously sensitized mice. In vivo, electrophysiological recordings revealed that MRGPRA3+ and MRGPRD+ neurons innervating the hapten-challenged skin exhibited a greater incidence of spontaneous activity and/or abnormal after-discharges in response to mechanical and heat stimuli applied to their receptive fields compared with neurons from the vehicle-treated control animals. Whole-cell recordings in vitro showed that both MRGPRA3+ and MRGPRD+ neurons from hapten-challenged mice displayed a significantly more depolarized resting membrane potential, decreased rheobase, and greater number of action potentials at twice rheobase compared with neurons from vehicle controls. These signs of neuronal hyperexcitability were associated with a significant increase in the peak amplitude of tetrodotoxin-sensitive and resistant sodium currents. Thus, the hyperexcitability of MRGPRA3+ and MRGPRD+ neurons, brought about in part by enhanced sodium currents, may contribute to the spontaneous itch- and pain-related behaviours accompanying contact hypersensitivity and/or other inflammatory diseases in humans.
Collapse
Affiliation(s)
- Lintao Qu
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ni Fan
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- 2 Guangzhou Brain Hospital, the Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China 510370
| | - Chao Ma
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- 3 Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Tao Wang
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
- 3 Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Department of Anatomy, Histology and Embryology, Beijing, China
| | - Liang Han
- 4 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kai Fu
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yingdi Wang
- 5 Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Steven G. Shimada
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinzhong Dong
- 4 Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert H. LaMotte
- 1 Department of Anaesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
50
|
Abstract
TRPC3 represents one of the first identified mammalian relative of the Drosophila trp gene product. Despite extensive biochemical and biophysical characterization as well as ambitious attempts to uncover its physiological role in native cell systems, the channel protein still represents a rather enigmatic member of the TRP superfamily. TRPC3 is significantly expressed in the brain and heart and appears of (patho)physiological importance in both non-excitable and excitable cells, being potentially involved in a wide spectrum of Ca(2+) signaling mechanisms. TRPC3 cation channels display unique gating and regulatory properties that allow for recognition and integration of multiple input stimuli including lipid mediators, cellular Ca(2+) gradients, as well as redox signals. Physiological/pathophysiological functions of this highly versatile cation channel protein are as yet incompletely understood. Its ability to associate in a dynamic manner with a variety of partner proteins enables TRPC3 to serve coordination of multiple downstream signaling pathways and control of divergent cellular functions. Here, we summarize current knowledge on ion channel features as well as possible signaling functions of TRPC3 and discuss the potential biological relevance of this signaling molecule.
Collapse
Affiliation(s)
- Michaela Lichtenegger
- Institute of Pharmaceutical Sciences - Pharmacology and Toxicology, University of Graz, A-8010, Graz, Austria
| | | |
Collapse
|