1
|
Li S, Yuan S, Zhang J, Xu F, Zhu F. The effect of periodic resistance training on obese patients with type 2 diabetic nephropathy. Sci Rep 2024; 14:2761. [PMID: 38307949 PMCID: PMC10837148 DOI: 10.1038/s41598-024-53333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Resistance training is an exercise against resistance designed to train the endurance and strength of muscle. To observe the effect of intervention of periodic resistance training on obese patients with type 2 diabetic nephropathy. A total of 60 obese patients with type 2 diabetic nephropathy were randomized into resistance training group and aerobic exercise group (30 patients each group) for observing the changes of blood glucose, body weight, blood lipid, insulin resistance, serum creatinine (Scr), urinary microalbumin, urinary albumin excretion rate (UAER) calculated by urinary creatinine, and glomerular filtration rate (GFR) after 12 weeks of intervention, and relevant significance as well. The number of patients with hypoglycemia during the intervention was also recorded. After 12 weeks of intervention, the weight, Body mass index (BMI), Waist, Triglyceride (TG), Cholesterol (TC), Low-density lipoprotein cholesterol (LDL), Fasting glucose (FBG), Fasting insulin (FINS), Glycosylated hemoglobin (HbA1c) and urine Albumin-Creatinine Ratio (uACR) were decreased and GFR was increased in both groups (P < 0.05), but the effect was more significant in the resistance training group. GFR was increased from 92.21 ± 10.67 mL/(min·1.73 m2) to 100.13 ± 12.99 mL/(min·1.73 m2) in resistance training group (P < 0.05). In the aerobic exercise group, GFR was increased from 89.98 ± 9.48 mL/(min·1.73 m2) to 92.51 ± 11.35 mL/(min·1.73 m2) (P > 0.05). Periodic resistance training can not only control the weight, blood sugar and blood lipid of obese patients with type 2 diabetic nephropathy, but also improve the urinary albumin excretion rate and glomerular filtration rate of early obese patients with type 2 diabetic nephropathy, and delay the progression of diabetic nephropathy. It is an effective non-drug intervention.
Collapse
Affiliation(s)
- Sumei Li
- Department of Endocrinology, Teaching Hospital, The First Hospital of Putian City, Fujian Medical University, Putian, Fujian, China
| | - Shouping Yuan
- Department of Endocrinology, Teaching Hospital, The First Hospital of Putian City, Fujian Medical University, Putian, Fujian, China.
| | - Jintian Zhang
- Department of Pathology, Putian University, Medical University, Putian, Fujian, China
| | - Feipeng Xu
- Department of Endocrinology, Teaching Hospital, The First Hospital of Putian City, Fujian Medical University, Putian, Fujian, China
| | - Feng Zhu
- Department of Endocrinology, Teaching Hospital, The First Hospital of Putian City, Fujian Medical University, Putian, Fujian, China
| |
Collapse
|
2
|
Tincknell JB, Kugler BA, Spicuzza H, Berger N, Yan H, You T, Zou K. High-intensity interval training attenuates impairment in regulatory protein machinery of mitochondrial quality control in skeletal muscle of diet-induced obese mice. Appl Physiol Nutr Metab 2024; 49:236-249. [PMID: 37852013 DOI: 10.1139/apnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were assigned to low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD + HIIT) groups for another 10 weeks (n = 9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration, and protein markers of mitochondrial quality control processes were determined. HFD-fed mice exhibited lower ADP-stimulated mitochondrial respiration (p < 0.05). However, 10 weeks of HIIT prevented this impairment (p < 0.05). Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was significantly higher in HFD-fed mice (p < 0.05), but such increase was attenuated in HFD-HIIT compared to HFD (-35.7%, p < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in the HFD group than the LFD group (-35.1%, p < 0.05); however, such reduction was disappeared in the HFD + HIIT group. In addition, LC3B II/I ratio was higher in the HFD group than the LFD group (15.5%, p < 0.05) but was ameliorated in the HFD + HIIT group (-29.9%, p < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 phosphorylations and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
Affiliation(s)
- James B Tincknell
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Haley Spicuzza
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicolas Berger
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Huimin Yan
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tongjian You
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kai Zou
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
3
|
Boyer W, Toth L, Brenton M, Augé R, Churilla J, Fitzhugh E. The role of resistance training in influencing insulin resistance among adults living with obesity/overweight without diabetes: A systematic review and meta-analysis. Obes Res Clin Pract 2023; 17:279-287. [PMID: 37331899 DOI: 10.1016/j.orcp.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
The purpose of this study was to systematically examine the independent effect of resistance training (RT) on markers of insulin resistance (IR) (fasting insulin and HOMA-IR) among individuals with overweight/obesity without diabetes. PubMed, SPORTdiscus, SCOPUS, Prospero, and clinicaltrials.gov were searched through December 19, 2022. Article screening was conducted in three phases: title screen (n = 5020), abstract screen (n = 202), and full text screen (n = 73). A total of 27 studies with 402 individual data points were used for the meta-analysis. Comprehensive Meta-Analysis software version 3.0 was used to interpret pre- and post-IR measurements with a random-effects model. Exploratory sub-analyses were conducted on studies for only females, only males, and age (< 40 and ≥ 40 years). RT had a significant effect on fasting insulin (- 1.03, 95 % CI - 1.03, - 0.75 p < 0.001) and HOMA-IR (- 1.05, 95 % CI - 1.33, - 0.76, p < 0.001). Sub-analyses revealed that males had a more pronounced effect compared to females and those < 40 years of age had a more pronounced effect compared to those ≥ 40 years. The results of this meta-analysis illustrate that RT plays an independent role in improving IR among adults with overweight/obesity. RT should continue to be recommended as part of preventive measures among these populations. Future studies examining the effect of RT on IR should consider dose centered on the current U.S. physical activity guidelines.
Collapse
Affiliation(s)
- William Boyer
- California Baptist University, Department of Kinesiology, 8432 Magnolia Ave., Riverside, CA 92504, United States of America.
| | - Lindsay Toth
- University of North Florida, Department of Clinical and Applied Movement Sciences, 1 UNF Dr., Jacksonville, FL 32224, United States of America
| | - Madison Brenton
- California Baptist University, Department of Kinesiology, 8432 Magnolia Ave., Riverside, CA 92504, United States of America
| | - Robert Augé
- University of Tennessee, Department of Plant Sciences, 2505 E J. Chapman Dr., Knoxville, TN 37919, United States of America
| | - James Churilla
- University of North Florida, Department of Clinical and Applied Movement Sciences, 1 UNF Dr., Jacksonville, FL 32224, United States of America
| | - Eugene Fitzhugh
- University of Tennessee, Department of Kinesiology, Recreation and Sports Studies, 1914 Andy Holt Ave, Knoxville, TN 37996, United States of America
| |
Collapse
|
4
|
Tincknell JB, Kugler B, Spicuzza H, Yan H, You T, Zou K. High-Intensity Interval Training Attenuates Impairment in Regulatory Protein Machinery of Mitochondrial Quality Control in Skeletal Muscle of Diet-Induced Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546902. [PMID: 37425824 PMCID: PMC10326985 DOI: 10.1101/2023.06.28.546902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of HIIT on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were randomly assigned to a low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD+HIIT) groups and remained on HFD for another 10 weeks (n=9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration and regulatory protein markers of mitochondrial quality control processes were determined by immunoblots. Ten weeks of HIIT enhanced ADP-stimulated mitochondrial respiration in diet-induced obese mice (P < 0.05) but did not improve whole-body insulin sensitivity. Importantly, the ratio of Drp1(Ser 616 ) over Drp1(Ser 637 ) phosphorylation, an indicator of mitochondrial fission, was attenuated in HFD-HIIT compared to HFD (-35.7%, P < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in HFD group than LFD group (-35.1%, P < 0.05), however, such reduction was disappeared in HFD+HIIT group. In addition, LC3B II/I ratio was higher in HFD than LFD group (15.5%, P < 0.05) but was ameliorated in HFD+HIIT group (-29.9%, P < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 activity and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
|
5
|
Liu X, Yang Y, Shao H, Liu S, Niu Y, Fu L. Globular adiponectin ameliorates insulin resistance in skeletal muscle by enhancing the LKB1-mediated AMPK activation via SESN2. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:34-41. [PMID: 36994173 PMCID: PMC10040333 DOI: 10.1016/j.smhs.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Adiponectin has been demonstrated to be a mediator of insulin sensitivity; however, the underlined mechanisms remain unclear. SESN2 is a stress-inducible protein that phosphorylates AMPK in different tissues. In this study, we aimed to validate the amelioration of insulin resistance by globular adiponectin (gAd) and to reveal the role of SESN2 in the improvement of glucose metabolism by gAd. We used a high-fat diet-induced wild-type and SESN2-/- C57BL/6J insulin resistance mice model to study the effects of six-week aerobic exercise or gAd administration on insulin resistance. In vitro study, C2C12 myotubes were used to determine the potential mechanism by overexpressing or inhibiting SESN2. Similar to exercise, six-week gAd administration decreased fasting glucose, triglyceride and insulin levels, reduced lipid deposition in skeletal muscle and reversed whole-body insulin resistance in mice fed on a high-fat diet. Moreover, gAd enhanced skeletal muscle glucose uptake by activating insulin signaling. However, these effects were diminished in SESN2-/- mice. We found that gAd administration increased the expression of SESN2 and Liver kinase B1 (LKB1) and increased AMPK-T172 phosphorylation in skeletal muscle of wild-type mice, while in SESN2-/- mice, LKB1 expression was also increased but the pAMPK-T172 was unchanged. At the cellular level, gAd increased cellular SESN2 and pAMPK-T172 expression. Immunoprecipitation experiment suggested that SESN2 promoted the formation of complexes of AMPK and LKB1 and hence phosphorylated AMPK. In conclusion, our results revealed that SESN2 played a critical role in gAd-induced AMPK phosphorylation, activation of insulin signaling and skeletal muscle insulin sensitization in mice with insulin resistance.
Collapse
Affiliation(s)
- Xinmeng Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Heng Shao
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
He P, Gan X, Ye Z, Liu M, Zhou C, Wu Q, Zhang Y, Yang S, Zhang Y, Qin X. Combined handgrip strength and walking pace, genetic susceptibility, and incident hypertension: A prospective study in UK Biobank. Scand J Med Sci Sports 2023; 33:989-999. [PMID: 36775263 DOI: 10.1111/sms.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/14/2023]
Abstract
INTRODUCTION We aimed to investigate the relations of handgrip strength, walking pace and the combination of handgrip strength and walking pace with incident hypertension, and to explore whether this association was modified by the genetic risk of hypertension. METHODS 214 214 participants without prior hypertension in the UK Biobank were included. Handgrip strength was assessed by dynamometer. Walking pace was self-defined as slow, average, or brisk. The study outcome was incident hypertension. A genetic risk score for hypertension was generated using a Bayesian approach applied to meta-analyzed summary statistics GWAS data. RESULTS Over a median follow-up of 11.9 years, 13 344 (6.2%) participants developed incident hypertension. When handgrip strength was assessed as sex-specific quartiles, compared with those with the lowest handgrip strength (quartile 1), the adjusted HRs (95% CI) of incident hypertension in quartile 2, quartile 3, and quartile 4 were 0.80 (0.69, 0.93), 0.74 (0.64, 0.86), and 0.72 (0.61, 0.84), respectively. Compared with those with slow walking pace, participants with average (HR, 0.52; 95% CI: 0.40, 0.67) or brisk (HR, 0.43; 95% CI: 0.32, 0.56) walking pace had significantly lower risks of hypertension. Moreover, compared with those with both lower handgrip strength (quartile 1) and slow walking pace, the lowest risk of incident hypertension was observed in participants with both high handgrip strength (quartiles 2-4) and fast (average or brisk) walking pace (HR, 0.36; 95% CI: 0.25, 0.52). Genetic risks of hypertension did not significantly modify the association (p-interaction = 0.300). CONCLUSION Both higher handgrip strength and faster walking pace were significantly associated with a lower risk of incident hypertension, independent of genetic risks of hypertension.
Collapse
Affiliation(s)
- Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Qimeng Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| |
Collapse
|
7
|
Kon M, Tanimura Y. Responses of complement C1q/tumor necrosis factor-related proteins to acute aerobic exercise. Cytokine 2023; 161:156083. [PMID: 36356496 DOI: 10.1016/j.cyto.2022.156083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Aerobic exercise is an effective therapeutic strategy to manage metabolic disorders. However, the mechanisms of aerobic exercise-induced improvements in metabolic diseases are not completely understood. Complement C1q/tumor necrosis factor-related protein (CTRP) 1, CTRP3, CTRP5, and CTRP9 have important roles in improving metabolic disorders via the adenosine monophosphate-activated protein kinase signaling pathway. In this study, we investigated the effects of acute aerobic exercise on circulating CTRP1, CTRP3, CTRP5, and CTRP9 levels in human participants. Eight healthy males with an age of 20.4 ± 0.2 years, height 173.1 ± 1.7 cm, body mass 68.0 ± 1.8 kg, body mass index 22.7 ± 0.7 kg/m2, and maximal oxygen uptake (VO2max) 51.3 ± 2.5 mL/kg/min performed acute aerobic cycling exercise at 75 % of their VO2max for 30 min (data are mean ± standard error). Blood samples were obtained before; immediately after; and 30, 60, and 120 min after exercising. Serum concentrations of CTRP1, CTRP3, CTRP5, CTRP9, tumor necrosis factor-α (TNF-α), and insulin were measured. The CTRP1 concentration significantly increased immediately after exercising and remained elevated for up to 120 min (p < 0.01). The CTRP3 concentration significantly increased at 60 min after exercise (p < 0.05), and the increasing trend continued until at least 120 min after exercise (p < 0.01). The CTRP5, CTRP9, TNF-α, and insulin concentrations significantly increased immediately after exercise (p < 0.05, p < 0.01, p < 0.05, and p < 0.05, respectively) and decreased thereafter. A significant correlation was observed between the peak post-exercise concentrations of CTRP1 and TNF-α (p < 0.05); however, no correlation was observed between the peak post-exercise concentrations of CTRP3 and insulin. The results of this study indicate that acute aerobic exercise may enhance the secretion of CTRP1, CTRP3, CTRP5, and CTRP9 in healthy adults.
Collapse
Affiliation(s)
- Michihiro Kon
- Department of Health Care and Sports, Faculty of Human Life Design, Toyo University, 1-7-11, Akabanedai, Kita-ku, Tokyo 115-0053, Japan.
| | - Yuko Tanimura
- Department of Sports Research, Japan Institute of Sports Sciences, 3-15-1 Nishigaoka, Kita-ku, Tokyo 115-0056, Japan
| |
Collapse
|
8
|
Zhang B, Wang X, Gu Y, Zhang Q, Liu L, Meng G, Wu H, Zhang S, Zhang T, Li H, Zhang J, Sun S, Wang X, Zhou M, Jia Q, Song K, Huang J, Huo J, Zhang B, Ding G, Niu K. The association between grip strength and incident carotid atherosclerosis in middle-aged and older adults: The TCLSIH cohort study. Maturitas 2022; 167:53-59. [DOI: 10.1016/j.maturitas.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
9
|
D'Agostino EM, Day SE, Konty KJ, Armstrong SC, Skinner AC, Neshteruk CD. Longitudinal Association between Weight Status, Aerobic Capacity, Muscular Strength, and Endurance among New York City Youth, 2010-2017. Child Obes 2022; 19:203-212. [PMID: 35758762 DOI: 10.1089/chi.2022.0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Child weight status is inversely associated with fitness, but less is known about this relationship across fitness domains. This study examined the longitudinal association between weight status and fitness domains in a large, diverse sample of children. Methods: Data were drawn from the New York City Fitnessgram (2010-2011 to 2017-2018). Height and weight were collected annually and converted to weight status using Centers for Disease Control and Prevention growth charts. Aerobic capacity, muscular strength, and endurance were measured as age and sex standardized z-scores based on the fitness performance tests. Repeated-measures multilevel models were run testing the association between weight status and 1-year lagged fitness domains. Results: The sample included 917,554 children (51.8% male, 39.3% Hispanic, 29.9% non-Hispanic Black, 13.9%, 4.7%, and 1.7% class I, II, and III obesity, respectively). For each fitness domain, fitness scores decreased with increasing weight status across all demographic categories, with the lowest fitness scores observed in children with the most severe obesity, and highest magnitude of effects for aerobic capacity, and particularly among boys, non-Hispanic Whites, and older youth. For example, compared with youth with healthy weight, youth with overweight had 0.28 standard deviation lower aerobic capacity performance [confidence interval (95% CI): -0.29 to -0.28], followed by class 1 obesity (β = -0.57, 95% CI: -0.58 to -0.57), class 2 obesity (β = -0.88, 95% CI: -0.88 to -0.88), and class 3 obesity (β = -1.19, 95% CI: -1.20 to -1.18). Conclusions: Compared with youth with healthy weight, youth at every other weight status had lower subsequent fitness, with the magnitude of the relationship increasing as weight status increased. Future research should examine interventions targeting aerobic capacity to reduce fitness disparities.
Collapse
Affiliation(s)
- Emily M D'Agostino
- Department of Orthopaedic Surgery, Duke University Medical School, Durham, NC, USA.,Department of Population Health Sciences, Duke University Medical School, Durham, NC, USA
| | - Sophia E Day
- New York City Department of Health and Mental Hygiene, Office of School Health, New York, NY, USA
| | - Kevin J Konty
- New York City Department of Health and Mental Hygiene, Office of School Health, New York, NY, USA
| | - Sarah C Armstrong
- Duke Clinical Research Institute, Duke University, Durham, NC, USA.,Department of Pediatrics, Duke University Medical School, Durham, NC, USA.,Duke Global Health Institute, Durham, NC, USA
| | - Asheley C Skinner
- Department of Population Health Sciences, Duke University Medical School, Durham, NC, USA.,Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Cody D Neshteruk
- Department of Population Health Sciences, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
10
|
Effting PS, Thirupathi A, Müller AP, Pereira BC, Sepa-Kishi DM, Marqueze LFB, Vasconcellos FTF, Nesi RT, Pereira TCB, Kist LW, Bogo MR, Ceddia RB, Pinho RA. Resistance Exercise Training Improves Metabolic and Inflammatory Control in Adipose and Muscle Tissues in Mice Fed a High-Fat Diet. Nutrients 2022; 14:nu14112179. [PMID: 35683979 PMCID: PMC9182921 DOI: 10.3390/nu14112179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigates whether ladder climbing (LC), as a model of resistance exercise, can reverse whole-body and skeletal muscle deleterious metabolic and inflammatory effects of high-fat (HF) diet-induced obesity in mice. To accomplish this, Swiss mice were fed for 17 weeks either standard chow (SC) or an HF diet and then randomly assigned to remain sedentary or to undergo 8 weeks of LC training with progressive increases in resistance weight. Prior to beginning the exercise intervention, HF-fed animals displayed a 47% increase in body weight (BW) and impaired ability to clear blood glucose during an insulin tolerance test (ITT) when compared to SC animals. However, 8 weeks of LC significantly reduced BW, adipocyte size, as well as glycemia under fasting and during the ITT in HF-fed rats. LC also increased the phosphorylation of AktSer473 and AMPKThr172 and reduced tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL1-β) contents in the quadriceps muscles of HF-fed mice. Additionally, LC reduced the gene expression of inflammatory markers and attenuated HF-diet-induced NADPH oxidase subunit gp91phox in skeletal muscles. LC training was effective in reducing adiposity and the content of inflammatory mediators in skeletal muscle and improved whole-body glycemic control in mice fed an HF diet.
Collapse
Affiliation(s)
- Pauline S. Effting
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Graduate Program in Health Science, Medical School, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil;
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Correspondence: (A.T.); (R.A.P.)
| | - Alexandre P. Müller
- Graduate de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis 88020-302, SC, Brazil;
| | - Bárbara C. Pereira
- Graduate Program in Health Science, Medical School, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil;
| | - Diane M. Sepa-Kishi
- Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; (D.M.S.-K.); (R.B.C.)
| | - Luis F. B. Marqueze
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
| | - Franciane T. F. Vasconcellos
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
| | - Renata T. Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
| | - Talita C. B. Pereira
- Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (T.C.B.P.); (L.W.K.); (M.R.B.)
| | - Luiza W. Kist
- Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (T.C.B.P.); (L.W.K.); (M.R.B.)
| | - Maurício R. Bogo
- Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (T.C.B.P.); (L.W.K.); (M.R.B.)
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Rolando B. Ceddia
- Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; (D.M.S.-K.); (R.B.C.)
| | - Ricardo A. Pinho
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
- Correspondence: (A.T.); (R.A.P.)
| |
Collapse
|
11
|
de Lima TR, González-Chica DA, D' Orsi E, Moreno YMF, Sui X, Silva DAS. Muscle Strength Assessed by Handgrip Strength Moderates the Relationship Between Overweight and Obesity With Cardiometabolic Risk Markers Among Adults and Older Adults. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022:1-9. [PMID: 35404780 DOI: 10.1080/02701367.2021.2002246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Background and aims: Few population-based studies have studied whether muscle strength (MS) levels influence the relationship between cardiometabolic markers with excess body weight. We investigate the possible moderator role of MS in the relationship between overweight and obesity with cardiometabolic markers. Methods: Cross-sectional analysis using data from two studies in Florianópolis, Brazil (EpiFloripa Adult Cohort Study, n = 862, 39.3 ± 11.4 years; EpiFloripa Aging Cohort Study, n = 1,197, 69.7 ± 7.1 years). MS was assessed by handgrip strength. Body mass index (BMI) was classified as overweight or obesity (BMI 25.0-29.9 or ≥30.0 kg/m2, respectively). Cardiometabolic markers included systolic (SBP) and diastolic blood pressure (DBP), C-reactive protein (CRP), lipids, glucose markers, and carotid intima-media thickness (CIMT). Linear regression models stratified by age groups (adults: <60 years; older adults: ≥60 years) and adjusted for confounders were used. Results: Compared to those with a normal BMI, overweight and obesity were related to higher SBP, DBP, lnCRP, ln triglycerides, fasting glucose (FG), and glicated hemoglobin (HbA1c), and inversely associated with HDL-C among adults and older adults (p value < .05 for all). Additionally, BMI was positively associated with LDL-C and CIMT only among adults (p value < .05). Among adults and older adults, elevated MS attenuated the adverse relationship between excess body weight with FG and HbA1c. Conclusion: Higher MS might help adults and older adults with overweight or obesity reduce their cardiovascular risk by keeping their FG and HbA1c at the same levels of those with a normal BMI.
Collapse
|
12
|
Obesity, Body Image Dissatisfaction, and Sexual Dysfunction: A Narrative Review. SEXES 2022. [DOI: 10.3390/sexes3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With approximately two-thirds of the United States adult population classified as overweight or obese, obesity remains a critical public health concern. Obesity not only contributes to several health complications including type 2 diabetes mellitus and cardiovascular disease, but the condition is also associated with sexual dysfunction in both women and men. Despite evidence linking obesity and its concomitant pathophysiology to sexual problems, the potential roles of psychosocial factors such as body image are understudied. This narrative review evaluates the research linkages between obesity and sexual dysfunction, with particular attention to the potential effects of body image dissatisfaction. A literature search of biomedical and psychological databases was used to identify research pertaining to obesity, sexual function, and/or body image constructs. The pathophysiological effects of obesity on sexual function are well-documented in mechanistic studies and animal trials, often with corroboration in human clinical samples. However, very few studies examine obesity, body image, and sexual function in tandem. Body image dissatisfaction appears to independently impinge upon the sexual response cycle and mental health outcomes, irrespective of body weight. While obesity is often associated with negative body image appraisal, it is unclear whether these constructs exert additive, synergistic, or antagonistic effects on sexual responsivity. Additionally, overweight/obese individuals who exhibit higher levels of body image satisfaction or self-confidence appear to be protected from the deleterious effects of obesity on sexual satisfaction, at least to some extent. Greater reliance upon conceptual/theoretical models from the body image literature may better clarify the relationships between these constructs.
Collapse
|
13
|
Bajes HR, Hakooz NM, Dardeer KT, Al-Dujaili EAS. The effect of endurance, resistance training, and supplements on mitochondria and bioenergetics of muscle cells. J Basic Clin Physiol Pharmacol 2021; 33:673-681. [PMID: 34687594 DOI: 10.1515/jbcpp-2021-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
Bioenergetics is the study of energy flow between biological systems and the surroundings and is measured quantitatively. Energy flow can be affected by many variables, including lifestyle and exercise, where exercise comes in different types; endurance and resistance training play significant roles in enhancing bioenergetics and promoting health. In addition, a supplementary diet supports recovery and energy production. This review aims to study the effect of endurance training, resistance training, and supplement intake on the muscle cell's bioenergetics. As a conclusion of the information presented in this mini-review, it was found that resistance, endurance training, and supplements can increase mitochondrial biogenesis, fat oxidation, myofibril synthesis, and increase VO2 max.
Collapse
Affiliation(s)
- Hana R Bajes
- Department of Science, Atlantic Cape Community College, Mays Landing, NJ, USA.,Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Nancy M Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
14
|
Stanisic J, Koricanac G, Culafic T, Romic S, Stojiljkovic M, Kostic M, Ivkovic T, Tepavcevic S. The effects of low-intensity exercise on cardiac glycogenesis and glycolysis in male and ovariectomized female rats on a fructose-rich diet. J Food Biochem 2021; 45:e13930. [PMID: 34494282 DOI: 10.1111/jfbc.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
We previously reported that low-intensity exercise prevented cardiac insulin resistance induced by a fructose-rich diet (FRD). To examine whether low-intensity exercise could prevent the disturbances of key molecules of cardiac glucose metabolism induced by FRD in male and ovariectomized (ovx) female rats, animals were exposed to 10% fructose solution (SF) or underwent both fructose diet and exercise (EF). Exercise prevented a decrease in cardiac GSK-3β phosphorylation induced by FRD in males (p < .001 vs. SF). It also prevented a decrease in PFK-2 phosphorylation in ovx females (p < .001 vs. SF) and increased the expression of PFK-2 in males (p < .05 vs. control). Exercise did not prevent a decrease in plasma membrane GLUT1 and GLUT4 levels in ovx females on FRD. The only effect of exercise on glucose transporters that could be indicated as beneficial is an augmented GLUT4 protein expression in males (p < .05 vs. control). Obtained results suggest that low-intensity exercise prevents harmful effects of FRD towards cardiac glycogenesis in males and glycolysis in ovx females. PRACTICAL APPLICATIONS: Low-intensity exercise, equivalent to brisk walking, was able to prevent disturbances in cardiac glycolysis regulation in ovx female and the glycogen synthesis pathway in male rats. In terms of human health, although molecular mechanisms of beneficial effects of exercise on cardiac glucose metabolism vary between genders, low-intensity running may be a useful non-pharmacological approach in the prevention of cardiac metabolic disorders in both men and postmenopausal women.
Collapse
Affiliation(s)
- Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Mendham AE, Goedecke JH, Zeng Y, Larsen S, George C, Hauksson J, Fortuin-de Smidt MC, Chibalin AV, Olsson T, Chorell E. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 2021; 64:1642-1659. [PMID: 33770195 PMCID: PMC8187207 DOI: 10.1007/s00125-021-05430-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in women with obesity. METHODS This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups. Pre- and post-intervention testing included peak oxygen consumption, whole-body insulin sensitivity (intravenous glucose tolerance test), skeletal muscle mitochondrial respiration (high-resolution respirometry), lipidomics and metabolomics (mass spectrometry) and lipid content (magnetic resonance imaging and spectroscopy). Proteins involved in glucose transport (i.e. GLUT4) and lipid turnover (i.e. sphingomyelin synthase 1 and 2) were assessed by western blotting. RESULTS The original randomised controlled trial showed that exercise training increased insulin sensitivity (median [IQR]; 3.4 [2.0-4.6] to 3.6 [2.4-6.2] x10-5 pmol l-1 min-1), peak oxygen consumption (mean ± SD; 24.9 ± 2.4 to 27.6 ± 3.4 ml kg-1 min-1), and decreased body weight (84.1 ± 8.7 to 83.3 ± 9.7 kg), with an increase in weight (pre intervention, 87.8± 10.9 to post intervention 88.8 ± 11.0 kg) in the control group (interaction p < 0.05). The current study shows an increase in mitochondrial respiration and content in response to exercise training (interaction p < 0.05). The metabolite and lipid signature at baseline were significantly associated with mitochondrial respiratory capacity (p < 0.05) but were not associated with whole-body insulin sensitivity or GLUT4 protein content. Exercise training significantly altered the skeletal muscle lipid profile, increasing specific diacylglycerol(32:2) and ceramide(d18:1/24:0) levels, without changes in other intermediates or total content of diacylglycerol and ceramide. The total content of cardiolipin, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased with exercise training with a decrease in the PC:PE ratios containing 22:5 and 20:4 fatty acids. These changes were associated with content-driven increases in mitochondrial respiration (p < 0.05), but not with the increase in whole-body insulin sensitivity or GLUT4 protein content. Exercise training increased sphingomyelin synthase 1 (p < 0.05), with no change in plasma-membrane-located sphingomyelin synthase 2. CONCLUSIONS/INTERPRETATION The major findings of our study were that exercise training altered specific intramuscular lipid intermediates, associated with content-driven increases in mitochondrial respiration but not whole-body insulin sensitivity. This highlights the benefits of exercise training and presents putative target pathways for preventing lipotoxicity in skeletal muscle, which is typically associated with the development of type 2 diabetes.
Collapse
Affiliation(s)
- Amy E Mendham
- MRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Julia H Goedecke
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Yingxu Zeng
- Hainan Tropical Ocean University, Sanya, Hainan, China
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Cindy George
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Jon Hauksson
- Department of Radiation Sciences, Radiation Physics and Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Melony C Fortuin-de Smidt
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
16
|
Sgrò P, Emerenziani GP, Antinozzi C, Sacchetti M, Di Luigi L. Exercise as a drug for glucose management and prevention in type 2 diabetes mellitus. Curr Opin Pharmacol 2021; 59:95-102. [PMID: 34182427 DOI: 10.1016/j.coph.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Physical inactivity and sedentary behavior are risk factors for type 2 diabetes mellitus (T2DM). Therefore, physical exercise (PE) together with medical treatment might be considered as a key strategy to counteract T2DM. Glycemic control is a central objective in the prevention and management of T2DM, and PE might be able to substantially affect the processes that determine it. Just like a drug, exercise can be dosed based on the characteristics of the individual to increase its benefits and reduce side effects. In this brief review, the mechanisms underlying the effects of PE on glucose metabolism in muscle are illustrated, and the effects of modulation of the parameters characterizing this atypical "drug" on glucose homeostasis are described.
Collapse
Affiliation(s)
- Paolo Sgrò
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Cristina Antinozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
17
|
Gu Y, Dong J, Meng G, Zhang Q, Liu L, Wu H, Zhang S, Wang Y, Zhang T, Wang X, Sun S, Wang X, Jia Q, Song K, Liu Q, Niu K. Handgrip strength as a predictor of incident hypertension in the middle-aged and older population: The TCLSIH cohort study. Maturitas 2021; 150:7-13. [PMID: 34274077 DOI: 10.1016/j.maturitas.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The independent role of muscular strength in the prevention of chronic disease is increasingly being recognized. However, no cohort study has assessed the relationship between handgrip strength and the incidence of hypertension among the middle-aged and older population. The aim of this prospective cohort study was to investigate whether handgrip strength is related to incident hypertension among people aged 40 years and over. STUDY DESIGN This prospective cohort study (n = 8,480) was performed between 2013 and 2019 as part of the Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) Cohort Study, Tianjin, China. MAIN OUTCOME MEASURES Participants without baseline hypertension were followed up for ~6 years (median 4.0 years). Hypertension was defined according to the JNC7 criteria. Handgrip strength was measured using a hydraulic handheld dynamometer. Adjusted Cox proportional hazards regression models were used to assess the relationships between weight-adjusted handgrip strength and the risk of incident hypertension. RESULTS The incidence rate of hypertension per 1000 person-years was 70. The fully adjusted hazards ratios (95% confidence interval) of the incidence of hypertension for increasing quartiles of weight-adjusted handgrip strength were: 1.00(reference), 0.84 (0.75-0.95), 0.78 (0.69-0.88), and 0.66 (0.58-0.75) (P for trend<0.0001). Moreover, the adjusted hazards ratio (95% confidence interval) of incident hypertension for per unit increase in weight-adjusted handgrip strength was 0.17 (0.10-0.27) (P<0.0001). Similar results were observed in males and females. CONCLUSIONS The present cohort study is the first to find that high weight-adjusted handgrip strength, but not absolute handgrip strength, is significantly and independently related to low risk of incident hypertension among the middle-aged and older population.
Collapse
Affiliation(s)
- Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Dong
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Kaijun Niu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China; Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
18
|
Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nat Commun 2021; 12:3471. [PMID: 34108459 PMCID: PMC8190306 DOI: 10.1038/s41467-021-23579-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2021] [Indexed: 01/07/2023] Open
Abstract
Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource (www.extrameta.org) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes. Regular exercise promotes overall health and prevents non-communicable diseases, but the adaptation mechanisms are unclear. Here, the authors perform a meta-analysis to reveal time-specific patterns of the acute and long-term exercise response in human skeletal muscle, and identify sex- and age-specific changes.
Collapse
|
19
|
Kugler BA, Deng W, Francois B, Nasta M, Hinkley JM, Houmard JA, Gona PN, Zou K. Distinct Adaptations of Mitochondrial Dynamics to Electrical Pulse Stimulation in Lean and Severely Obese Primary Myotubes. Med Sci Sports Exerc 2021; 53:1151-1160. [PMID: 33315810 PMCID: PMC8656367 DOI: 10.1249/mss.0000000000002580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skeletal muscle from lean and obese subjects elicits differential adaptations in response to exercise/muscle contractions. In order to determine whether obesity alters the adaptations in mitochondrial dynamics in response to exercise/muscle contractions and whether any of these distinct adaptations are linked to alterations in insulin sensitivity, we compared the effects of electrical pulse stimulation (EPS) on mitochondrial network structure and regulatory proteins in mitochondrial dynamics in myotubes from lean humans and humans with severe obesity and evaluated the correlations between these regulatory proteins and insulin signaling. METHODS Myotubes from human skeletal muscle cells obtained from lean humans (body mass index, 23.8 ± 1.67 kg·m-2) and humans with severer obesity (45.5 ± 2.26 kg·m-2; n = 8 per group) were electrically stimulated for 24 h. Four hours after EPS, mitochondrial network structure, protein markers of insulin signaling, and mitochondrial dynamics were assessed. RESULTS EPS enhanced insulin-stimulated AktSer473 phosphorylation, reduced the number of nonnetworked individual mitochondria, and increased the mitochondrial network size in both groups (P < 0.05). Mitochondrial fusion marker mitofusin 2 was significantly increased in myotubes from the lean subjects (P < 0.05) but reduced in subjects with severe obesity (P < 0.05). In contrast, fission marker dynamin-related protein 1 (Drp1Ser616) was reduced in myotubes from subjects with severe obesity (P < 0.05) but remained unchanged in lean subjects. Reductions in DrpSer616 phosphorylation were correlated with improvements in insulin-stimulated AktSer473 phosphorylation after EPS (r = -0.679, P = 0.004). CONCLUSIONS Our data demonstrated that EPS induces more fused mitochondrial networks, which are associated with differential adaptations in mitochondrial dynamic processes in myotubes from lean humans and human with severe obesity. It also suggests that improved insulin signaling after muscle contractions may be linked to the reduction in Drp1 activity.
Collapse
Affiliation(s)
- Benjamin A. Kugler
- Department of Exercise and Health Sciences, College of
Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125,
USA
| | - Wenqian Deng
- Department of Exercise and Health Sciences, College of
Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125,
USA
- School of Sports Medicine and Health, Chengdu Sport
Institute, Chengdu, Sichuan 610041, China
| | - Bergomi Francois
- Department of Exercise and Health Sciences, College of
Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125,
USA
| | - Meaghan Nasta
- Department of Exercise and Health Sciences, College of
Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125,
USA
| | | | - Joseph A. Houmard
- Department of Kinesiology, Human Performance Laboratory,
East Carolina University, Greenville, NC 27858, USA
| | - Philimon N. Gona
- Department of Exercise and Health Sciences, College of
Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125,
USA
| | - Kai Zou
- Department of Exercise and Health Sciences, College of
Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125,
USA
| |
Collapse
|
20
|
Headid Iii RJ, Park SY. The impacts of exercise on pediatric obesity. Clin Exp Pediatr 2021; 64:196-207. [PMID: 32777917 PMCID: PMC8103043 DOI: 10.3345/cep.2020.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Over the last few decades, the rates of pediatric obesity have more than doubled regardless of sociodemographic categorization, and despite these rates plateauing in recent years there continues to be an increase in the severity of obesity in children and adolescents. This review will discuss the pediatric obesity mediated cardiovascular disease (CVD) risk factors such as attenuated levels of satiety and energy metabolism hormones, insulin resistance, vascular endothelial dysfunction, and arterial stiffness. Additionally, early intervention to combat pediatric obesity is critical as obesity has been suggested to track into adulthood, and these obese children and adolescents are at an increased risk of early mortality. Current suggested strategies to combat pediatric obesity are modifying diet, limiting sedentary behavior, and increasing physical activity. The effects of exercise intervention on metabolic hormones such as leptin and adiponectin, insulin sensitivity/resistance, and body fat in obese children and adolescents will be discussed along with the exercise modality, intensity, and duration. Specifically, this review will focus on the differential effects of aerobic exercise, resistance training, and combined exercise on the cardiovascular risks in pediatric obesity. This review outlines the evidence that exercise intervention is a beneficial therapeutic strategy to reduce the risk factors for CVD and the ideal exercise prescription to combat pediatric obesity should contain both muscle strengthening and aerobic components with an emphasis on fat mass reduction and long-term adherence.
Collapse
Affiliation(s)
- Ronald J Headid Iii
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
21
|
Ghanemi A, Yoshioka M, St-Amand J. Obese Animals as Models for Numerous Diseases: Advantages and Applications. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:399. [PMID: 33919006 PMCID: PMC8142996 DOI: 10.3390/medicina57050399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
With the advances in obesity research, a variety of animal models have been developed to investigate obesity pathogenesis, development, therapies and complications. Such obese animals would not only allow us to explore obesity but would also represent models to study diseases and conditions that develop with obesity or where obesity represents a risk factor. Indeed, obese subjects, as well as animal models of obesity, develop pathologies such as cardiovascular diseases, diabetes, inflammation and metabolic disorders. Therefore, obese animals would represent models for numerous diseases. Although those diseases can be induced in animals by chemicals or drugs without obesity development, having them developed as consequences of obesity has numerous advantages. These advantages include mimicking natural pathogenesis processes, using diversity in obesity models (diet, animal species) to study the related variabilities and exploring disease intensity and reversibility depending on obesity development and treatments. Importantly, therapeutic implications and pharmacological tests represent key advantages too. On the other hand, obesity prevalence is continuously increasing, and, therefore, the likelihood of having a patient suffering simultaneously from obesity and a particular disease is increasing. Thus, studying diverse diseases in obese animals (either induced naturally or developed) would allow researchers to build a library of data related to the patterns or specificities of obese patients within the context of pathologies. This may lead to a new branch of medicine specifically dedicated to the diseases and care of obese patients, similar to geriatric medicine, which focuses on the elderly population.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada;
| |
Collapse
|
22
|
Lee EK, Koo B, Hwangbo Y, Lee YJ, Baek JY, Cha YJ, Kim SY, Sim SH, Lee KS, Park IH, Lee H, Joo J, Go S, Heo SC, Moon MK. Incidence and disease course of new-onset diabetes mellitus in breast and colorectal cancer patients undergoing chemotherapy: A prospective multicenter cohort study. Diabetes Res Clin Pract 2021; 174:108751. [PMID: 33722701 DOI: 10.1016/j.diabres.2021.108751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
AIMS To investigate the incidence of and risk factors for new-onset type 2 diabetes mellitus (DM) developed during chemotherapy that included steroids in cancer patients without DM. METHODS This multicenter, prospective, and observational cohort study enrolled 299 cancer patients without DM (aged > 18 years), planning 4-8 cycles of adjuvant chemotherapy. The endpoints were the incidence, remission rate, and independent determinants of new-onset DM during chemotherapy. RESULTS Between April 2015 and March 2018, 270 subjects with colorectal cancer or breast cancer (mean age, 51.0 years) completed the follow up (mean 39 months). Of whom, 17 subjects (6.3%) developed DM within a median time of 90 days (range, 17-359 days). Male sex (hazard ratio [HR], 15.839; 95% confidence interval [CI], 2.004-125.20) and impaired fasting glucose (IFG) at baseline (HR, 8.307; CI, 1.826-37.786) were independent risk factors. Six months after chemotherapy completion, 11/17 subjects (64.7%) experienced DM remission, associated with a significantly higher C-peptide level at baseline (C-peptide levels, 1.3 ng/mL in subjects with remission and 0.9 ng/mL in subjects without remission, age- and sex-adjusted P = 0.007). CONCLUSIONS DM incidence was 6.3% in patients who received chemotherapy with dexamethasone. Close monitoring for hyperglycemia is recommended, especially for men with IFG. TRIAL REGISTRATION ClinicalTrials.gov (NCT03062072).
Collapse
Affiliation(s)
- Eun Kyung Lee
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Thyroid Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Bokyung Koo
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yul Hwangbo
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Thyroid Cancer, National Cancer Center, Goyang, Republic of Korea
| | - You Jin Lee
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Thyroid Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Ji Yeon Baek
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Colorectal Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Yong Jun Cha
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Colorectal Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sun Young Kim
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Colorectal Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sung Hoon Sim
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Breast Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Keun Seok Lee
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Breast Cancer, National Cancer Center, Goyang, Republic of Korea
| | - In Hae Park
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea; Center for Breast Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Hyewon Lee
- Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea
| | - Jungnam Joo
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Sujeong Go
- Center for Thyroid Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Min Kyong Moon
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Hu H, Garcia-Barrio M, Jiang ZS, Chen YE, Chang L. Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxid Redox Signal 2021; 34:736-749. [PMID: 32390459 PMCID: PMC7910418 DOI: 10.1089/ars.2020.8103] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Perivascular adipose tissue (PVAT), which is present surrounding most blood vessels, from the aorta to the microvasculature of the dermis, is mainly composed of fat cells, fibroblasts, stem cells, mast cells, and nerve cells. Although the PVAT is objectively present, its physiological and pathological significance has long been ignored. Recent Advances: PVAT was considered as a supporting component of blood vessels and a protective cushion to the vessel wall from the neighboring tissues during relaxation and contraction. Nonetheless, further extensive research found that PVAT actively regulates blood vessel tone through PVAT-derived vasoactive factors, including both relaxing and contracting factors. In addition, PVAT contributes to atherosclerosis through paracrine secretion of a large number of bioactive factors such as adipokines and cytokines. Thereby, PVAT regulates the functions of blood vessels through various mechanisms operating directly on PVAT or on the underlying vessel layers, including vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Critical Issues: PVAT is a unique adipose tissue that plays an essential role in maintaining the vascular structure and regulating vascular function and homeostasis. This review focuses on recent updates on the various PVAT roles in hypertension and atherosclerosis. Future Directions: Future studies should further investigate the actual contribution of alterations in PVAT metabolism to the overall systemic outcomes of cardiovascular disease, which remains largely unknown. In addition, the messengers and underlying mechanisms responsible for the crosstalk between PVAT and ECs and VSMCs in the vascular wall should be systematically addressed, as well as the contributions of PVAT aging to vascular dysfunction.
Collapse
Affiliation(s)
- Hengjing Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yuqing Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Fast walking is a preventive factor against new-onset diabetes mellitus in a large cohort from a Japanese general population. Sci Rep 2021; 11:716. [PMID: 33436978 PMCID: PMC7804125 DOI: 10.1038/s41598-020-80572-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Based on questionnaires from 197,825 non-diabetic participants in a large Japanese cohort, we determined impact of (1) habit of exercise, (2) habit of active physical activity (PA) and (3) walking pace on new-onset of type 2 diabetes mellitus. Unadjusted and multivariable-adjusted logistic regression models were used to determine the odds ratio of new-onset diabetes mellitus incidence in a 3-year follow-up. There were two major findings. First, habits of exercise and active PA were positively associated with incidence of diabetes mellitus. Second, fast walking, even after adjusting for multiple covariates, was associated with low incidence of diabetes mellitus. In the subgroup analysis, the association was also observed in participants aged ≥ 65 years, in men, and in those with a body mass index ≥ 25. Results suggest that fast walking is a simple and independent preventive factor for new-onset of diabetes mellitus in the health check-up and guidance system in Japan. Future studies may be warranted to verify whether interventions involving walking pace can reduce the onset of diabetes in a nation-wide scale.
Collapse
|
25
|
Darpolor MM, Singh M, Covington J, Hanet S, Ravussin E, Carmichael OT. Molecular correlates of MRS-based 31 phosphocreatine muscle resynthesis rate in healthy adults. NMR IN BIOMEDICINE 2021; 34:e4402. [PMID: 32875687 PMCID: PMC8491428 DOI: 10.1002/nbm.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/25/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Dynamic phosphorus MRS (31 P-MRS) is a method used for in vivo studies of skeletal muscle energetics including measurements of phosphocreatine (PCr) resynthesis rate during recovery of submaximal exercise. However, the molecular events associated with the PCr resynthesis rate are still under debate. We assessed vastus lateralis PCr resynthesis rate from 31 P-MRS spectra collected from healthy adults as part of the CALERIE II study (caloric restriction), and assessed associations between PCr resynthesis and muscle mitochondrial signature transcripts and proteins (NAMPT, NQO1, PGC-1α, and SIRT1). Regression analysis indicated that higher concentration of nicotinamide phosphoribosyltransferase (NAMPT) protein, a mitochondrial capacity marker, was associated with faster PCr resynthesis. However, PCr resynthesis was not associated with greater physical fitness (VO2 peak) or messenger ribonucleic acid levels of mitochondrial function markers such as NQO1, PGC-1α, and SIRT1, suggesting that the impact of these molecular signatures on PCr resynthesis may be minimal in the context of an acute exercise bout. Together, these findings suggest that 31 P-MRS based PCr resynthesis may represent a valid non-invasive surrogate marker of mitochondrial NAMPT in human skeletal muscle.
Collapse
Affiliation(s)
- Moses M Darpolor
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Maninder Singh
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jeffrey Covington
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Sebastian Hanet
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Owen T Carmichael
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
26
|
Sun Y, Ding S. ER-Mitochondria Contacts and Insulin Resistance Modulation through Exercise Intervention. Int J Mol Sci 2020; 21:ijms21249587. [PMID: 33339212 PMCID: PMC7765572 DOI: 10.3390/ijms21249587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) makes physical contacts with mitochondria at specific sites, and the hubs between the two organelles are called mitochondria-associated ER membranes (MAMs). MAMs are known to play key roles in biological processes, such as intracellular Ca2+ regulation, lipid trafficking, and metabolism, as well as cell death, etc. Studies demonstrated that dysregulation of MAMs significantly contributed to insulin resistance. Alterations of MAMs’ juxtaposition and integrity, impaired expressions of insulin signaling molecules, disruption of Ca2+ homeostasis, and compromised metabolic flexibility are all actively involved in the above processes. In addition, exercise training is considered as an effective stimulus to ameliorate insulin resistance. Although the underlying mechanisms for exercise-induced improvement in insulin resistance are not fully understood, MAMs may be critical for the beneficial effects of exercise.
Collapse
Affiliation(s)
- Yi Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China;
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China;
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Correspondence:
| |
Collapse
|
27
|
Zhong F, Wen X, Yang M, Lai HY, Momma H, Cheng L, Sun X, Nagatomi R, Huang C. Effect of an 8-week Exercise Training on Gut Microbiota in Physically Inactive Older Women. Int J Sports Med 2020; 42:610-623. [PMID: 33321523 DOI: 10.1055/a-1301-7011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exercise can alter the composition of gut microbiota. However, studies examining the effects of exercise on gut microbiota in the elderly are lacking. This study aims to investigate whether an 8-week exercise training affect gut microbiota in physically inactive elderly women. Fourteen women were randomly assigned to either exercise group or control group. Repeated-measures analysis of variance was used to reveal changes in gut microbiota. Alpha diversity did not change significantly. A tendency to form 2 clusters was observed for operational taxonomic units (OTU) after intervention. At phylum, class, and order levels, a significant difference was observed between two groups for Fusobacteria (F=5.257, P=0.045), Betaproteobacteria (F=5.149, P=0.047), and Bifidobacteriales (F=7.624, P=0.020). A significant interaction was observed between two groups for Actinobacteria (F=8.434, P=0.016). At family and genus levels, a significant main effect of groups was observed in Bifidobacteriaceae (F=7.624, P=0.020), Bifidobacterium (F=7.404, P=0.022), and Gemmiger (F=5.881, P=0.036). These findings indicate that an 8-week exercise training may induce partial changes in relative abundance and OTU clustering of gut microbiota in physically inactive elderly women. Also, exercise may increase the abundance of bacteria associated with anti-inflammation such as Verrucomicrobia, reduce the abundance of bacteria associated with pro-inflammation such as Proteobacteria.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Xu Wen
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Min Yang
- Department of Nutrition and Food Hygiene, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haruki Momma
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lei Cheng
- Department of Ecology, Zhejiang University, Hangzhou, China
| | - Xiaomin Sun
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Cong Huang
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China.,Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Banach W, Nitschke K, Krajewska N, Mongiałło W, Matuszak O, Muszyński J, Skrypnik D. The Association between Excess Body Mass and Disturbances in Somatic Mineral Levels. Int J Mol Sci 2020; 21:E7306. [PMID: 33022938 PMCID: PMC7582962 DOI: 10.3390/ijms21197306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Obesity and excess body weight are significant epidemiological issues, not only because they are costly to treat, but also because they are among the leading causes of death worldwide. In 2016, an estimated 40% of the global population was overweight, reflecting the importance of the issue. Obesity is linked to metabolism malfunction and concomitantly with altered mineral levels in the body. In this paper, we review alterations in somatic levels of iron, calcium, magnesium, copper, iodine, chromium, selenium, and zinc in relation to excess body mass. METHODOLOGY An electronic literature search was performed using PubMed. Our search covered original English research articles published over the past five years, culminating in 63 papers included for study. RESULTS The reviewed papers presented correlation between obesity and hypomagnesemia and hypozincemia. They also indicated that patients with excess body mass present increased body copper levels. Studies have similarly indicated that obesity appears to be associated with lower selenium levels in both blood and urine, which may be correlated with the decline and weakening of defenses against oxidative stress. It has been found that decreased level of chromium is connected with metabolic syndrome. Chromium supplementation influences body mass, but the effect of the supplementation depends on the chemical form of the chromium. It is hypothesized that obesity poses a risk of iodine deficiency and iodine absorption may be disrupted by increased fat intake in obese women. A range of studies have suggested that obesity is correlated with iron deficiency. On the other hand, some reports have indicated that excess body mass may coexist with iron excess. The relation between obesity and body iron level requires further investigation. Calcium signaling seems to be disturbed in obesity, due to the increased production of reactive oxygen species and low level of fast troponin isoform responsible for mediating calcium sensitivity of muscle relaxation. Correlation between excess body mass and calcium levels needs further research. CONCLUSIONS Excess body mass is associated with alterations in mineral levels in the body, in particular hypomagnesemia and decreased selenium (Se) and zinc (Zn) levels. Chromium (Cr) deficiency is associated with metabolic syndrome. Obese patients are at risk of iodine deficiency. Excess body mass is associated with elevated levels of copper (Cu). Data on the association between obesity and iron (Fe) levels are contradictory. Obesity coexists with disturbed calcium (Ca) signaling pathways. The association between obesity and body Ca levels has not been investigated in detail.
Collapse
Affiliation(s)
- Weronika Banach
- Faculty of Medicine, Poznań University of Medical Sciences, Fredry St. 10, 61-701 Poznań, Poland; (W.B.); (K.N.); (N.K.); (W.M.); (O.M.); (J.M.)
| | - Karolina Nitschke
- Faculty of Medicine, Poznań University of Medical Sciences, Fredry St. 10, 61-701 Poznań, Poland; (W.B.); (K.N.); (N.K.); (W.M.); (O.M.); (J.M.)
| | - Natalia Krajewska
- Faculty of Medicine, Poznań University of Medical Sciences, Fredry St. 10, 61-701 Poznań, Poland; (W.B.); (K.N.); (N.K.); (W.M.); (O.M.); (J.M.)
| | - Wojciech Mongiałło
- Faculty of Medicine, Poznań University of Medical Sciences, Fredry St. 10, 61-701 Poznań, Poland; (W.B.); (K.N.); (N.K.); (W.M.); (O.M.); (J.M.)
| | - Oskar Matuszak
- Faculty of Medicine, Poznań University of Medical Sciences, Fredry St. 10, 61-701 Poznań, Poland; (W.B.); (K.N.); (N.K.); (W.M.); (O.M.); (J.M.)
| | - Józef Muszyński
- Faculty of Medicine, Poznań University of Medical Sciences, Fredry St. 10, 61-701 Poznań, Poland; (W.B.); (K.N.); (N.K.); (W.M.); (O.M.); (J.M.)
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznań University of Medical Sciences, Szamarzewskiego St. 82/84, 60-569 Poznań, Poland
| |
Collapse
|
29
|
Tu G, Dai C, Qu H, Wang Y, Liao B. Role of exercise and rapamycin on the expression of energy metabolism genes in liver tissues of rats fed a high‑fat diet. Mol Med Rep 2020; 22:2932-2940. [PMID: 32945385 PMCID: PMC7453655 DOI: 10.3892/mmr.2020.11362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway serves an important role in the development of insulin resistance induced by obesity. Exercise improves obesity-associated insulin resistance and hepatic energy metabolism; however, the precise mechanism of this process remains unknown. Therefore, the present study investigated the role of rapamycin, an inhibitor of mTOR, on exercise-induced expression of hepatic energy metabolism genes in rats fed a high-fat diet (HFD). A total of 30 male rats were divided into the following groups: Normal group (n=6) fed chow diets and HFD group (n=24) fed an HFD for 6 weeks. The HFD rats performed exercise adaptation for 1 week and were randomly divided into the four following groups (each containing six rats): i) Group of HFD rats with sedentary (H group); ii) group of HFD rats with exercise (HE group); iii) group of HFD rats with rapamycin (HR group); and iv) group of HFD rats with exercise and rapamycin (HER group). Both HE and HER rats were placed on incremental treadmill training for 4 weeks (from week 8–11). Both HR and HER rats were injected with rapamycin intraperitoneally at the dose of 2 mg/kg once a day for 2 weeks (from week 10–11). All rats were sacrificed following a 12–16 h fasting period at the end of week 11. The levels of mitochondrial and oxidative enzyme activities, as well as of the expression of genes involved in energy metabolism were assessed in liver tissues. Biochemical assays and oil red staining were used to assess the content of hepatic triglycerides (TGs). The results indicated that exercise, but not rapamycin, reduced TG content in the liver of HFD rats. Further analysis indicated that rapamycin reduced the activity of cytochrome c oxidase, but not the activities of succinate dehydrogenase and β-hydroxyacyl-CoA dehydrogenase in the liver of HFD rats. Exercise significantly upregulated the mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1 β, while rapamycin exhibited no effect on the mRNA expression levels of hepatic transcription factors associated with energy metabolism enzymes in the liver of HFD rats. Collectively, the results indicated that exercise reduced TG content and upregulated mitochondrial metabolic gene expression in the liver of HFD rats. Moreover, this mechanism may not involve the mTOR pathway.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Chunyan Dai
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Haofei Qu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Yunzhen Wang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
30
|
Basic Studies on the Oxidative Stress Markers in Two Types of Horse Breed: Semi-isolated Population of Huculs Is Different from Commercially Used Arabian Horses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7542384. [PMID: 32733953 PMCID: PMC7376404 DOI: 10.1155/2020/7542384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
Hucul and Arabian horses differ in the physiological constitution and exposition to environmental conditions. Oxidative stress plays a pathogenic role in many diseases and enables further injuries. The objective of this study was to compare the levels of enzymatic and nonenzymatic oxidative stress markers in Hucul horses living in seminatural conditions and in commercially handled Arabian horses. We tested the serum samples for total superoxide dismutase (total SOD), Cu-Zn-superoxide dismutase (CuZnSOD), and Mn-dependent superoxide dismutase (MnSOD) activity; for lipofuscin (LPS), ceruloplasmin (CER) and malondialdehyde (MDA) concentration; and for total antioxidant capacity (TAC) and total oxidant status (TOS). Total SOD (p < 0.001), MnSOD (p < 0.001), and CuZnSOD (p < 0.001) activities were significantly higher whereas LPS (p < 0.05), TAC (p < 0.001), TOS (p < 0.001), and MDA (p < 0.001) concentrations were significantly lower in the serum samples collected from Huculs vs. Arabian horses, regardless of the gender. Gender, regardless of the breed, had no significant impact on the antioxidants' activity and concentration. Total SOD and MnSOD activities were significantly higher in Hucul's mares when compared to Hucul's stallions. Concentrations of TAC and TOS were significantly lower in Arabian stallions than in Arabian mares. Commercially handled horses expressed a higher level of oxidative stress markers in comparison to breeds living in seminatural conditions. We conclude that antioxidants are important biomarkers of animal health, whether they are under maintenance care or performing physical exercise.
Collapse
|
31
|
Hu B, Ye C, Leung ELH, Zhu L, Hu H, Zhang Z, Zheng J, Liu H. Bletilla striata oligosaccharides improve metabolic syndrome through modulation of gut microbiota and intestinal metabolites in high fat diet-fed mice. Pharmacol Res 2020; 159:104942. [PMID: 32504835 DOI: 10.1016/j.phrs.2020.104942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
As traditional Chinese medicine, Bletilla striata has been widely applied to clinical treatment for its unique pharmacological profiles. This study aimed to investigate the beneficial role of Bletilla striata oligosaccharides (BO) in improving the metabolic syndrome by regulation of gut microbiota and intestinal metabolites. Treatment of HFD-fed mice with BO prevented weight gain, reversed the glucose intolerance and insulin resistance, and inhibited adipocyte hypertrophy. BO-treated mice also suppressed chronic inflammation and protected intestinal barrier from damage. These effects were linked to the reversal of gut microbiota dysbiosis, which contributed to the homeostasis of intestinal metabolites including bile acids, short-chain fatty acids and tryptophan catabolites. The depletion and reconstitution of intestinal flora from BO- or HFD-treated mice confirmed the significance of gut microbiota in regulation of HFD-induced metabolic disorders. We demonstrated for the first time that BO improved metabolic syndrome through the regulation of gut microbiota and intestinal metabolites. The modulation initiated by BO represents a promising strategy for treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Baifei Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Qintai Avenue 588, Wuhan 430050, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, SAR, China
| | - Lin Zhu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Haiming Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Zhigang Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Junping Zheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China.
| |
Collapse
|
32
|
Abstract
Through diverse mechanisms, obesity contributes to worsened cardiometabolic health and increases rates of cardiovascular events. Effective treatment of obesity is necessary to reduce the associated burdens of diabetes mellitus, cardiovascular disease, and death. Despite increasing cardiovascular outcome data on obesity interventions, only a small fraction of the population with obesity are optimally treated. This is a primary impetus for this article in which we describe the typical weight loss, as well as the associated impact on both traditional and novel cardiovascular disease risk factors, provided by the 4 primary modalities for obtaining weight loss in obesity-dietary modification, increasing physical activity, pharmacotherapy, and surgery. We also attempt to highlight instances where changes in metabolic risk are relatively specific to particular interventions and appear at least somewhat independent of weight loss. Finally, we suggest important areas for further research to reduce and prevent adverse cardiovascular consequences due to obesity.
Collapse
Affiliation(s)
- Sean P. Heffron
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY,NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY,Corresponding author: Sean P. Heffron, 227 East 30 St., #834, New York, NY 10016, 646-501-2735 ,
| | - Johnathon S. Parham
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY
| | - Jay Pendse
- Department of Medicine, Division of Endocrinology, NYU Grossman School of Medicine, New York, NY,Medical Service, Veterans Affairs New York Harbor Healthcare System, New York, NY
| | - José O. Alemán
- Department of Medicine, Division of Endocrinology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
33
|
Jeppesen TD. Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy. Front Physiol 2020; 11:349. [PMID: 32508662 PMCID: PMC7253634 DOI: 10.3389/fphys.2020.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
In patients with mitochondrial DNA (mtDNA) mutation, a pathogenic mtDNA mutation is heteroplasmically distributed among tissues. The ratio between wild-type and mutated mtDNA copies determines the mtDNA mutation load of the tissue, which correlates inversively with oxidative capacity of the tissue. In patients with mtDNA mutation, the mutation load is often very high in skeletal muscle compared to other tissues. Additionally, skeletal muscle can increase its oxygen demand up to 100-fold from rest to exercise, which is unmatched by any other tissue. Thus, exercise intolerance is the most common symptom in patients with mtDNA mutation. The impaired oxidative capacity in skeletal muscle in patients with mtDNA mutation results in limitation in physical capacity that interferes with daily activities and impairs quality of life. Additionally, patients with mitochondrial disease due to mtDNA mutation often live a sedentary lifestyle, which further impair oxidative capacity and exercise tolerance. Since aerobic exercise training increase mitochondrial function and volume density in healthy individuals, studies have investigated if aerobic training could be used to counteract the progressive exercise intolerance in patients with mtDNA mutation. Overall studies investigating the effect of aerobic training in patients with mtDNA mutation have shown that aerobic training is an efficient way to improve oxidative capacity in this condition, and aerobic training seems to be safe even for patients with high mtDNA mutation in skeletal muscle.
Collapse
Affiliation(s)
- Tina Dysgaard Jeppesen
- Copenhagen Neuromuscular Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Mitochondrial dysfunction is the cause of one of the earliest changes seen on magnetic resonance imaging in Charcot neuroarthopathy - Oedema of the small muscles in the foot. Med Hypotheses 2019; 134:109439. [PMID: 31644972 DOI: 10.1016/j.mehy.2019.109439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
The hypothesis laid out in this thesis states that the early changes seen on an MR imaging in those with early Charcot neuroarthopathy may be due to mitochondrial dysfunction. In a Charcot foot, there is movement between bones. In an attempt to prevent this movement, the small muscles of the foot contract continuously when the foot is weight bearing. This contraction takes energy in the form of ATP. However, the reduction of glucose transport into the muscle cells due to insulin resistance / insufficiency, leads to reduction in the ATP producing capacity of the mitochondria. The ATP depletion affects the cell membrane gradient leading to mitochondrial and cellular swelling. These early cellular changes could then be picked up with MR imaging as muscle oedema.
Collapse
|
35
|
Guedes JM, Pieri BLDS, Luciano TF, Marques SDO, Guglielmo LGA, Souza CTD. Muscular resistance, hypertrophy and strength training equally reduce adiposity, inflammation and insulin resistance in mice with diet-induced obesity. EINSTEIN-SAO PAULO 2019; 18:eAO4784. [PMID: 31553356 PMCID: PMC6905165 DOI: 10.31744/einstein_journal/2020ao4784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Objective To evaluate the effect of three types of muscular resistance training on adiposity, inflammation levels and insulin activity in Swiss mice with fat-rich diet-induced obesity. Methods Lean and obese male Swiss mice were selected and allocated to one of eight groups comprising eight mice each, as follows: standard diet + no training; standard diet + muscular resistance training; standard diet + hypertrophy training; standard diet + strength training; high-fat diet + no training; high-fat diet + muscular resistance training; high-fat diet + hypertrophy training; high-fat diet + strength training. The training protocol consisted of stair climbing for a 10-week period. Blood samples were collected for lactate analysis, glucose level measurement and insulin tolerance test. After euthanasia, adipose tissues were removed and weighed for adiposity index determination. Fragments of epididymal adipose tissue were then embedded for histological analysis or homogenized for tumor necrosis factor alpha level determination using the ELISA method. Results Ausency of differences in total training volume and blood lactate levels overall emphasize the similarity between the different resistance training protocols. Body weight loss, reduced adipocyte area and lower adiposity index were observed in trained obese mice, regardless of training modality. Different training protocols also improved insulin sensitivity and reduced inflammation levels. Conclusion Resistance training protocols were equally effective in reducing body fat, inflammation levels and insulin resistance in obese mice.
Collapse
|
36
|
Xiang A, Chu G, Zhu Y, Ma G, Yang G, Sun S. IGFBP5 suppresses oleate-induced intramyocellular lipids deposition and enhances insulin signaling. J Cell Physiol 2019; 234:15288-15298. [PMID: 30684263 DOI: 10.1002/jcp.28174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Excess intramyocellular lipids are often accompanied by muscle insulin resistance (IR) and type 2 diabetes. The mechanism of the formation of intramyocellular lipids is unclear yet. In this study, we optimized the cellular model of intramyocellular lipids from differentiated C2C12 cells and identified that the expression of insulin-like growth factor-binding protein 5 (IGFBP5) is diminished in this process. Then, we added exogenous recombinant IGFBP5 during myocyte triglyceride (TAG) formation and found decreased lipids accumulation. In addition, IGFBP5 could promote lipolysis when added to the cellular model after the formation of intramyocellular lipids. Moreover, IGFBP5 could enhance myocyte insulin sensitivity by inhibiting the expression of the thioredoxin-interacting protein (TXNIP) and arrestin domain-containing 4 (ARRDC4), which are a negative regulator of insulin signaling in both cases. Meanwhile, IGFBP5 also inhibited the expression of glycerol-3-phosphate acyltransferase (GPAM) and diglyceride acyltransferase 2 (DGAT2), which were involved in TAG synthesis from a fatty acid. IGFBP5 also reduced TAG storage by promoting lipolysis. Therefore, IGFBP5 may play a role in the excess accumulation of lipid in muscle cells of diabetic patients and serve as a reference for further research and treatment of muscle IR and diabetes.
Collapse
Affiliation(s)
- Aoqi Xiang
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Youbo Zhu
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangjun Ma
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiduo Sun
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
37
|
Park H, Lee HW, Yoo J, Lee HS, Nam HS, Kim YD, Heo JH. Body Mass Index and Prognosis in Ischemic Stroke Patients With Type 2 Diabetes Mellitus. Front Neurol 2019; 10:563. [PMID: 31231300 PMCID: PMC6560048 DOI: 10.3389/fneur.2019.00563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Overweight contributes to type 2 diabetes mellitus (T2DM) development. Although the obesity paradox has been suggested in many vascular diseases, little information is available about stroke patients with T2DM. We investigated whether body mass index (BMI) has a differential impact on the incidence of major adverse cardiovascular events (MACE) in patients with ischemic stroke and T2DM. Methods: This retrospective study used a prospective cohort of patients with acute ischemic stroke and included consecutive patients with T2DM after excluding those with active cancer or who died within 1 month of an index stroke. We investigated the long-term risk of MACE (stroke, myocardial infarction, unstable angina, coronary revascularization procedure, and death) according to BMI. Results: Among the 1,338 patients, MACE occurred in 415 patients (31.1%) during a median follow-up of 3.6 years. Compared to the normal weight group, MACE occurred more frequently in the underweight group [adjusted hazard ratio (HR) 1.55, 95% confidence interval (CI): 1.01–2.38], but less frequently in the overweight group (adjusted HR: 0.87, 95% CI: 0.70–1.08) and obese group (adjusted HR: 0.58, 95% CI: 0.41–0.86) group. In analyses of association between BMI and each component of MACE, stroke and cardiovascular mortality indicated an L- and a U-shaped pattern, respectively. However, fatal or non-fatal stroke showed an inverse pattern, and fatal or non-fatal cardiovascular events showed a reversed J-shaped pattern. Discussions: This study showed the overall presence of the obesity paradox in stroke patients with T2DM. However, obese patients had different risks of cardiovascular events and stroke.
Collapse
Affiliation(s)
- Hyungjong Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea
| | - Hyung Woo Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Joonsang Yoo
- Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Effting PS, Brescianini SMS, Sorato HR, Fernandes BB, Fidelis GDSP, Silva PRLD, Silveira PCL, Nesi RT, Ceddia RB, Pinho RA. Resistance Exercise Modulates Oxidative Stress Parameters and TNF-α Content in the Heart of Mice with Diet-Induced Obesity. Arq Bras Cardiol 2019; 112:545-552. [PMID: 31038529 PMCID: PMC6555563 DOI: 10.5935/abc.20190072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/02/2018] [Indexed: 01/13/2023] Open
Abstract
Background Obesity can be characterized by low-grade chronic inflammation and is
associated with an excesso production of reactive oxygen species, factors
that contribute to coronary heart disease and other cardiomyopathies. Objective To verify the effects of resistance exercise training on oxidative stress and
inflammatory parameters on mice with obesity induced by a high-fat diet
(HFD). Methods 24 Swiss mice were divided into 4 groups: standard diet (SD), SD + resistance
exercise (SD + RE), diet-induced obesity (DIO), DIO + RE. The animals were
fed SD or HFD for 26 weeks and performed resistance exercises in the last 8
weeks of the study. The insulin tolerance test (ITT) and body weight
monitoring were performed to assess the clinical parameters. Oxidative
stress and inflammation parameters were evaluated in the cardiac tissue.
Data were expressed by mean and standard deviation (p < 0.05). Results The DIO group had a significant increase in reactive oxygen species levels
and lipid peroxidation with reduction after exercise. Superoxide dismutase
and the glutathione system showed no significant changes in DIO animals,
with an increase in SD + RE. Only catalase activity decreased with both diet
and exercise influence. There was an increase in tumor necrosis factor-alpha
(TNF-α) in the DIO group, characterizing a possible inflammatory
condition, with a decrease when exposed to resistance training (DIO+RE). Conclusion The DIO resulted in a redox imbalance in cardiac tissue, but the RE was able
to modulate these parameters, as well as to control the increase in
TNF-α levels.
Collapse
Affiliation(s)
- Pauline Souza Effting
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Stella M S Brescianini
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Helen R Sorato
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Bruna Barros Fernandes
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Giulia Dos S Pedroso Fidelis
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Paulo Roberto L da Silva
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Paulo César L Silveira
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil.,Laboratório de Fisiopatologia Experimental - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Renata T Nesi
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil
| | - Rolando B Ceddia
- Muscle Health Research Center, School of Kinesiology and Health Center - York University, Toronto, ON - Canadá
| | - Ricardo A Pinho
- Laboratório de Fisiologia e Bioquímica do Exercício (LAFIBE) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC - Brazil.,Laboratório de Bioquímica do Exercício em Saúde (BioEx) - Programa de Pós-Graduação em Ciências da Saúde (PPGCS) - Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR - Brazil
| |
Collapse
|
39
|
Venditti P, Reed TT, Victor VM, Di Meo S. Insulin resistance and diabetes in hyperthyroidism: a possible role for oxygen and nitrogen reactive species. Free Radic Res 2019; 53:248-268. [PMID: 30843740 DOI: 10.1080/10715762.2019.1590567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to insulin, glycemic control involves thyroid hormones. However, an excess of thyroid hormone can disturb the blood glucose equilibrium, leading to alterations of carbohydrate metabolism and, eventually, diabetes. Indeed, experimental and clinical hyperthyroidism is often accompanied by abnormal glucose tolerance. A common characteristic of hyperthyroidism and type 2 diabetes is the altered mitochondrial efficiency caused by the enhanced production of reactive oxygen and nitrogen species. It is known that an excess of thyroid hormone leads to increased oxidant production and mitochondrial oxidative damage. It can be hypothesised that these species represent the link between hyperthyroidism and development of insulin resistance and diabetes, even though direct evidence of this relationship is lacking. In this review, we examine the literature concerning the effects of insulin and thyroid hormones on glucose metabolism and discuss alterations of glucose metabolism in hyperthyroid conditions and the cellular and molecular mechanisms that may underline them.
Collapse
Affiliation(s)
- Paola Venditti
- a Dipartimento di Biologia , Università di Napoli Federico II , Napoli , Italy
| | - Tanea T Reed
- b Department of Chemistry , Eastern Kentucky University , Richmond , KY , USA
| | - Victor M Victor
- c Service of Endocrinology, Dr. Peset University Hospital, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO) , Valencia , Spain.,d Department of Physiology , University of Valencia , Valencia , Spain
| | - Sergio Di Meo
- a Dipartimento di Biologia , Università di Napoli Federico II , Napoli , Italy
| |
Collapse
|
40
|
Wang R, Guo S, Tian H, Huang Y, Yang Q, Zhao K, Kuo CH, Hong S, Chen P, Liu T. Hypoxic Training in Obese Mice Improves Metabolic Disorder. Front Endocrinol (Lausanne) 2019; 10:527. [PMID: 31440207 PMCID: PMC6694298 DOI: 10.3389/fendo.2019.00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
Hypoxic training has been reported to lower obesity morbidity without clear underlying mechanisms. This study investigates the effect of hypoxic training on metabolic changes, particularly, on liver metabolism of high fat diet (HFD)-induced obese mice. We compared the hypoxic training group with normoxic sedentary, normoxic training, and hypoxic sedentary groups. Body weight, fat mass, glucose tolerance and liver physiology were determined after 4 weeks intervention. In both normoxic training and hypoxic training groups, body weight was lower than the normoxic sedentary group, with less fat mass. Insulin sensitivity was improved after hypoxic training. Moreover, liver metabolomics revealed insights into the protective effect of hypoxic training on HFD-induced fatty liver. Taken together, these findings provide a molecular metabolic mechanism for hypoxic training.
Collapse
Affiliation(s)
- Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Ru Wang
| | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yiru Huang
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Qin Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Kewei Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Peijie Chen
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Tiemin Liu
| |
Collapse
|
41
|
Wang QY, Tong AH, Pan YY, Zhang XD, Ding WY, Xiong W. The effect of cassia seed extract on the regulation of the LKB1-AMPK-GLUT4 signaling pathway in the skeletal muscle of diabetic rats to improve the insulin sensitivity of the skeletal muscle. Diabetol Metab Syndr 2019; 11:108. [PMID: 31890042 PMCID: PMC6924081 DOI: 10.1186/s13098-019-0504-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study aimed to observe the hypoglycemic effect of cassia seed extract in rats with type-2 diabetes mellitus and its effect on reducing insulin resistance in the skeletal muscle. METHODS 50 rats were randomly divided into the normal, model, high-dose, middle-dose, and low-dose groups of cassia seed extract (n = 10 each). A high-fat diet combined with streptozotocin administration was adopted to build type 2 diabetes models. The cassia seed extract groups were fed different concentrations cassia seed extract while the normal and model groups were fed the same volume of normal saline. The weight, FINS, GIR, insulin tolerance, blood glucose and blood lipid level, oxidative stress indices and expressions related to the LKB1-AMPK-GLUT4 pathway were detected and compared between the two groups. RESULTS Compared with the normal group, the model group showed lower weight, glucose infusion rate and expressions related to LKB1-AMPK-GLUT4 pathway and higher FINS, insulin tolerance, blood glucose and blood lipid level and oxidative stress indices (all P < 0.05). Compared with the model group, higher weight, glucose infusion rate and expressions related to LKB1-AMPK-GLUT4 pathway and lower FINS, insulin tolerance, blood glucose and blood lipid level and oxidative stress indices were observed in all groups that were administered cassia see extract (all P < 0.05). CONCLUSION Cassia seed extract could noticeably improve the insulin resistance of diabetic rats and enhance the insulin sensitivity of their skeletal muscles. Its mechanism may be related to damage repair of the LKB1-AMPK-GLUT4 signaling pathway and oxidative stress in the skeletal muscle.
Collapse
Affiliation(s)
- Qiu-Ying Wang
- Endocrine Department, Heze Traditional Chinese Medicine Hospital, Heze, Shandong China
| | - Ai-Hua Tong
- Endocrinology Department, Linyi Central Hospital, Linyi, Shandong China
| | - Ying-Ying Pan
- Renal Rheumatism Immune Intervention Department, The People’s Hospital of Zhangqiu District, Jinan, Shandong China
| | - Xian-Dang Zhang
- Endocrine Department, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Lixia District, Jinan, 250062 China
| | - Wen-Yu Ding
- Endocrine Department, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Lixia District, Jinan, 250062 China
| | - Wen Xiong
- Endocrine Department, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Lixia District, Jinan, 250062 China
| |
Collapse
|
42
|
Bao F, Slusher AL, Whitehurst M, Huang CJ. Circulating microRNAs are upregulated following acute aerobic exercise in obese individuals. Physiol Behav 2018; 197:15-21. [DOI: 10.1016/j.physbeh.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/07/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
|
43
|
Tsuzuki T, Yoshihara T, Ichinoseki-Sekine N, Kakigi R, Takamine Y, Kobayashi H, Naito H. Body temperature elevation during exercise is essential for activating the Akt signaling pathway in the skeletal muscle of type 2 diabetic rats. PLoS One 2018; 13:e0205456. [PMID: 30304029 PMCID: PMC6179285 DOI: 10.1371/journal.pone.0205456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
This study examined the effect of changes in body temperature during exercise on signal transduction-related glucose uptake in the skeletal muscle of type 2 diabetic rats. Otsuka Long-Evans Tokushima Fatty rats (25 weeks of age), which have type 2 diabetes, were divided into the following four weight-matched groups; control (CON, n = 6), exercised under warm temperature (WEx, n = 8), exercised under cold temperature (CEx, n = 8), and heat treatment (HT, n = 6). WEx and CEx animals were subjected to running on a treadmill at 20 m/min for 30 min under warm (25°C) or cold (4°C) temperature. HT animals were exposed to single heat treatment (40–41°C for 30 min) in a heat chamber. Rectal and muscle temperatures were measured immediately after exercise and heat treatment, and the gastrocnemius muscle was sampled under anesthesia. Rectal and muscle temperatures increased significantly in rats in the WEx and HT, but not the CEx, groups. The phosphorylation levels of Akt, AS160, and TBC1D1 (Thr590) were significantly higher in the WEx and HT groups than the CON group (p < 0.05). In contrast, the phosphorylation levels of AMP-activated protein kinase, ACC, and TBC1D1 (Ser660) were significantly higher in rats in the WEx and CEx groups than the CON group (p < 0.05) but did not differ significantly between rats in the WEx and CEx groups. Body temperature elevation by heat treatment did not activate the AMPK signaling. Our data suggest that body temperature elevation during exercise is essential for activating the Akt signaling pathway in the skeletal muscle of rats with type 2 diabetic rats.
Collapse
Affiliation(s)
- Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Faculty of Pharmacy, Meijo University, Aichi, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Noriko Ichinoseki-Sekine
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Faculty of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuri Takamine
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroyuki Kobayashi
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of General Medicine, Mito Medical Center, Tsukuba University Hospital, Ibaraki, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- * E-mail:
| |
Collapse
|
44
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Kim YA, Jin SW, Oh SH, Lee GH, Pham HT, Choi JH, Chung YC, Lee WL, Kim SK, Jeong HG. Platycodon grandiflorum-derived saponin enhances exercise function, skeletal muscle protein synthesis, and mitochondrial function. Food Chem Toxicol 2018; 118:94-104. [PMID: 29723585 DOI: 10.1016/j.fct.2018.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
Abstract
Lower physical performance is an important risk factor in hypokinetic-related chronic disease, metabolic syndrome, and muscle atrophy. Our previous research demonstrated that Platycodon grandiflorum-derived saponin (PS) protects against eccentric exercise-induced muscle damage and mitochondrial function-related peroxisomal acyl-coenzme A oxidase (ACOX-1) and carnitine palmitoyltransferase (CPT-1) in high-fat diet-induced non-alcoholic steatohepatitis, and it inhibits osteoclast differentiation. However, the effects of PS on physical performance remain unknown. Therefore, we investigated whether PS enhances physical activity and skeletal muscle function. Supplementation with PS (2 mg/kg for 4 weeks) increased grip strength, wheel running repetition, and time to exhaustion in treadmill and swimming exercises. Marked increases in the synthesis of skeletal muscle proteins and muscle stem cell-related paired-box 7 (PAX7) were observed, and a decrease in the negative regulator myostatin was associated with enhanced muscle regeneration. Furthermore, PS induced expression of mitochondrial function proteins, including OXPHOS-III and -IV, in vivo and in vitro. These results suggest that PS enhances exercise function by ameliorating skeletal muscle protein synthesis and mitochondrial function.
Collapse
Affiliation(s)
- Yong An Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Suck Hoon Oh
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hoa Thi Pham
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Wang Lok Lee
- Department of Sport Science, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
46
|
|
47
|
Long Non-Coding RNAs in Metabolic Organs and Energy Homeostasis. Int J Mol Sci 2017; 18:ijms18122578. [PMID: 29189723 PMCID: PMC5751181 DOI: 10.3390/ijms18122578] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/15/2022] Open
Abstract
Single cell organisms can surprisingly exceed the number of human protein-coding genes, which are thus not at the origin of the complexity of an organism. In contrast, the relative amount of non-protein-coding sequences increases consistently with organismal complexity. Moreover, the mammalian transcriptome predominantly comprises non-(protein)-coding RNAs (ncRNA), of which the long ncRNAs (lncRNAs) constitute the most abundant part. lncRNAs are highly species- and tissue-specific with very versatile modes of action in accordance with their binding to a large spectrum of molecules and their diverse localization. lncRNAs are transcriptional regulators adding an additional regulatory layer in biological processes and pathophysiological conditions. Here, we review lncRNAs affecting metabolic organs with a focus on the liver, pancreas, skeletal muscle, cardiac muscle, brain, and adipose organ. In addition, we will discuss the impact of lncRNAs on metabolic diseases such as obesity and diabetes. In contrast to the substantial number of lncRNA loci in the human genome, the functionally characterized lncRNAs are just the tip of the iceberg. So far, our knowledge concerning lncRNAs in energy homeostasis is still in its infancy, meaning that the rest of the iceberg is a treasure chest yet to be discovered.
Collapse
|