1
|
Zakerzade R, Chang CH, Chatla K, Krishnapura A, Appiah SP, Zhang J, Unckless RL, Blumenstiel JP, Bachtrog D, Wei KHC. Diversification and recurrent adaptation of the synaptonemal complex in Drosophila. PLoS Genet 2025; 21:e1011549. [PMID: 39804957 PMCID: PMC11761671 DOI: 10.1371/journal.pgen.1011549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/24/2025] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover. This is puzzlingly exemplified by the SC of Drosophila, where the central elements and transverse filaments display no identifiable homologs outside of the genus. Here, we exhaustively examine the evolutionary history of the SC in Drosophila taking a comparative phylogenomic approach with high species density to circumvent obscured homology due to rapid sequence evolution. Contrasting starkly against other genes involved in meiotic chromosome pairing, SC genes show significantly elevated rates of coding evolution due to a combination of relaxed constraint and recurrent, widespread positive selection. In particular, the central element cona and transverse filament c(3)G have diversified through tandem and retro-duplications, repeatedly generating paralogs with novel germline activity. In a striking case of molecular convergence, c(3)G paralogs that independently arose in distant lineages evolved under positive selection to have convergent truncations to the protein termini and elevated testes expression. Surprisingly, the expression of SC genes in the germline is prone to change suggesting recurrent regulatory evolution which, in many species, resulted in high testes expression even though Drosophila males are achiasmic. Overall, our study recapitulates the poor conservation of SC components, and further uncovers that the lack of conservation extends to other modalities including copy number, genomic locale, and germline regulation. Considering the elevated testes expression in many Drosophila species and the common ancestor, we suggest that the activity of SC genes in the male germline, while still poorly understood, may be a prime target of constant evolutionary pressures driving repeated adaptations and innovations.
Collapse
Affiliation(s)
- Rana Zakerzade
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver British Columbia, Canada
| | - Ching-Ho Chang
- Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ananya Krishnapura
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Samuel P. Appiah
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jacki Zhang
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Kevin H-C. Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver British Columbia, Canada
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
2
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Zhao 赵 J嘉, Fu H, Wang Z, Zhang M, Liang Y, Cui X, Pan W, Ren Z, Wu Z, Zhang Y, Gui X, Huo L, Lei X, Wang C, Schnittger A, Pawlowski WP, Liu B. Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis. PLANT PHYSIOLOGY 2024; 197:kiae671. [PMID: 39711182 DOI: 10.1093/plphys/kiae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Col and Ler, their F1 hybrids, and the F2 offspring under heat stress (37 °C). At 37 °C, Col exhibits significantly reduced formation of double-strand breaks and completely abolished homolog pairing, synapsis, and crossover (CO) formation. Strikingly, Ler and Col/Ler hybrids exhibit normal CO formation and show mildly impacted homolog pairing and synapsis. Interestingly, only 10% to 20% of F2 offspring behave as Ler, revealing that heat tolerance of meiotic recombination in Arabidopsis is genetically controlled by several loci. Moreover, F2 offspring show defects in chromosome morphology and integrity and sister chromatid segregation, the levels of which exceed those in either inbreds or hybrids, thus implying a transgressive effect on heat tolerance of meiosis. Furthermore, correlation and cytogenetic analyses suggest that homolog pairing and synapsis have an impact on heat tolerance of chromosome morphology and stability at postrecombination stages. This study reveals natural heat resilience factors for meiosis in Arabidopsis, which have the great potential to be exploited in breeding programs.
Collapse
Affiliation(s)
- Jiayi 嘉怡 Zhao 赵
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Huiqi Fu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Zhengze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Yaoqiong Liang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xueying Cui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Wenjing Pan
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yujie Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xin Gui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Li Huo
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg 22609, Germany
| | | | - Bing Liu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
4
|
Tan Y, Tan T, Zhang S, Li B, Chen B, Zhou X, Wang Y, Yang X, Zhai B, Huang Q, Zhang L, Wang S. Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2426-2443. [PMID: 39048717 DOI: 10.1007/s11427-024-2671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.
Collapse
Affiliation(s)
- Yingjin Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Taicong Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Shuxian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Beiyi Chen
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China.
| |
Collapse
|
5
|
Penfield S. Beyond floral initiation: the role of flower bud dormancy in flowering time control of annual plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6056-6062. [PMID: 38795335 PMCID: PMC11480682 DOI: 10.1093/jxb/erae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
The phenology of temperate perennials, including the timing of vegetative growth and flowering, is well known to be controlled by seasonal dormancy cycles. Dormant structures are known as buds and have specialized covering structures, symplastic isolation from the plant, and often autonomous stores of carbon and nitrogen reserves. In contrast, in annual plants, our current understanding of the control of the timing of flowering focuses on the mechanisms affecting floral initiation, the transition from a vegetative apical meristem to a inflorescence meristem producing flower primordia in place of leaves. Recently we revealed that annual crops in Brassicaceae exhibit chilling-responsive growth control in a manner closely resembling bud dormancy breakage in perennial species. Here I discuss evidence that vernalization in autumn is widespread and further discuss its role in inducing flower bud set prior to winter. I also review evidence that flower bud dormancy has a more widespread role in annual plant flowering time control than previously appreciated.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Nieto-Blázquez ME, Gómez-Suárez M, Pfenninger M, Koch K. Impact of feralization on evolutionary trajectories in the genomes of feral cat island populations. PLoS One 2024; 19:e0308724. [PMID: 39137187 PMCID: PMC11321585 DOI: 10.1371/journal.pone.0308724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.
Collapse
Affiliation(s)
- María Esther Nieto-Blázquez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Manuela Gómez-Suárez
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Katrin Koch
- Department of Biodiversity, Conservation and Attractions, Former, Biodiversity and Conservation Science, Woodvale, Australia
| |
Collapse
|
7
|
De Jaeger-Braet J, Schnittger A. Heating up meiosis - Chromosome recombination and segregation under high temperatures. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102548. [PMID: 38749207 DOI: 10.1016/j.pbi.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress is one of the major constraints to plant growth and fertility. During the current climate crisis, heat waves have increased dramatically, and even more extreme conditions are predicted for the near future, considerably affecting ecosystems and seriously threatening world food security. Although heat is very well known to affect especially reproductive structures, little is known about how heat interferes with reproduction in comparison to somatic cells and tissues. Recently, the effect of heat on meiosis as a central process in sexual reproduction has been analyzed in molecular and cytological depth. Notably, these studies are not only important for applied research by laying the foundation for breeding heat-resilient crops, but also for fundamental research, revealing general regulatory mechanisms of recombination and chromosome segregation control.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
8
|
Arter M, Keeney S. Divergence and conservation of the meiotic recombination machinery. Nat Rev Genet 2024; 25:309-325. [PMID: 38036793 DOI: 10.1038/s41576-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
Sexually reproducing eukaryotes use recombination between homologous chromosomes to promote chromosome segregation during meiosis. Meiotic recombination is almost universally conserved in its broad strokes, but specific molecular details often differ considerably between taxa, and the proteins that constitute the recombination machinery show substantial sequence variability. The extent of this variation is becoming increasingly clear because of recent increases in genomic resources and advances in protein structure prediction. We discuss the tension between functional conservation and rapid evolutionary change with a focus on the proteins that are required for the formation and repair of meiotic DNA double-strand breaks. We highlight phylogenetic relationships on different time scales and propose that this remarkable evolutionary plasticity is a fundamental property of meiotic recombination that shapes our understanding of molecular mechanisms in reproductive biology.
Collapse
Affiliation(s)
- Meret Arter
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Crhak Khaitova L, Mikulkova P, Pecinkova J, Kalidass M, Heckmann S, Lermontova I, Riha K. Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis. eLife 2024; 12:RP90253. [PMID: 38629825 PMCID: PMC11023694 DOI: 10.7554/elife.90253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.
Collapse
Affiliation(s)
| | | | | | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Karel Riha
- CEITEC Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
10
|
Herbst J, Li QQ, De Veylder L. Mechanistic insights into DNA damage recognition and checkpoint control in plants. NATURE PLANTS 2024; 10:539-550. [PMID: 38503962 DOI: 10.1038/s41477-024-01652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Qian-Qian Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
11
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
12
|
Zhang Z, Guo YY, Wang YC, Zhou L, Fan J, Mao YC, Yang YM, Zhang YF, Huang XH, Zhu J, Zhang C, Yang ZN. A point mutation in the meiotic crossover formation gene HEI10/TFS2 leads to thermosensitive genic sterility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:506-518. [PMID: 38169508 DOI: 10.1111/tpj.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.
Collapse
Affiliation(s)
- Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Yi Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
13
|
Kim H, Kim J, Son N, Kuo P, Morgan C, Chambon A, Byun D, Park J, Lee Y, Park YM, Fozard JA, Guérin J, Hurel A, Lambing C, Howard M, Hwang I, Mercier R, Grelon M, Henderson IR, Choi K. Control of meiotic crossover interference by a proteolytic chaperone network. NATURE PLANTS 2024; 10:453-468. [PMID: 38379086 DOI: 10.1038/s41477-024-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Meiosis is a specialized eukaryotic division that produces genetically diverse gametes for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal exchanges, called crossovers, which recombine genetic variation. Meiotic crossovers are stringently controlled with at least one obligate exchange forming per chromosome pair, while closely spaced crossovers are inhibited by interference. In Arabidopsis, crossover positions can be explained by a diffusion-mediated coarsening model, in which large, approximately evenly spaced foci of the pro-crossover E3 ligase HEI10 grow at the expense of smaller, closely spaced clusters. However, the mechanisms that control HEI10 dynamics during meiosis remain unclear. Here, through a forward genetic screen in Arabidopsis, we identified high crossover rate3 (hcr3), a dominant-negative mutant that reduces crossover interference and increases crossovers genome-wide. HCR3 encodes J3, a co-chaperone related to HSP40, which acts to target protein aggregates and biomolecular condensates to the disassembly chaperone HSP70, thereby promoting proteasomal degradation. Consistently, we show that a network of HCR3 and HSP70 chaperones facilitates proteolysis of HEI10, thereby regulating interference and the recombination landscape. These results reveal a new role for the HSP40/J3-HSP70 chaperones in regulating chromosome-wide dynamics of recombination via control of HEI10 proteolysis.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Namil Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Chris Morgan
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngkyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - John A Fozard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julie Guérin
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Rothamsted Research, Harpenden, UK
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
14
|
Tsuruta Y, Senmatsu S, Oe H, Hoffman CS, Hirota K. Metabolic stress-induced long ncRNA transcription governs the formation of meiotic DNA breaks in the fission yeast fbp1 gene. PLoS One 2024; 19:e0294191. [PMID: 38252660 PMCID: PMC10802949 DOI: 10.1371/journal.pone.0294191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Meiotic recombination is a pivotal process that ensures faithful chromosome segregation and contributes to the generation of genetic diversity in offspring, which is initiated by the formation of double-strand breaks (DSBs). The distribution of meiotic DSBs is not uniform and is clustered at hotspots, which can be affected by environmental conditions. Here, we show that non-coding RNA (ncRNA) transcription creates meiotic DSBs through local chromatin remodeling in the fission yeast fbp1 gene. The fbp1 gene is activated upon glucose starvation stress, in which a cascade of ncRNA-transcription in the fbp1 upstream region converts the chromatin configuration into an open structure, leading to the subsequent binding of transcription factors. We examined the distribution of meiotic DSBs around the fbp1 upstream region in the presence and absence of glucose and observed several new DSBs after chromatin conversion under glucose starvation conditions. Moreover, these DSBs disappeared when cis-elements required for ncRNA transcription were mutated. These results indicate that ncRNA transcription creates meiotic DSBs in response to stress conditions in the fbp1 upstream region. This study addressed part of a long-standing unresolved mechanism underlying meiotic recombination plasticity in response to environmental fluctuation.
Collapse
Affiliation(s)
- Yusuke Tsuruta
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Satoshi Senmatsu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Hana Oe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
15
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
16
|
Kreiner JM, Hnatovska S, Stinchcombe JR, Wright SI. Quantifying the role of genome size and repeat content in adaptive variation and the architecture of flowering time in Amaranthus tuberculatus. PLoS Genet 2023; 19:e1010865. [PMID: 38150485 PMCID: PMC10775983 DOI: 10.1371/journal.pgen.1010865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/09/2024] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
Genome size variation, largely driven by repeat content, is poorly understood within and among populations, limiting our understanding of its significance for adaptation. Here we characterize intraspecific variation in genome size and repeat content across 186 individuals of Amaranthus tuberculatus, a ubiquitous native weed that shows flowering time adaptation to climate across its range and in response to agriculture. Sequence-based genome size estimates vary by up to 20% across individuals, consistent with the considerable variability in the abundance of transposable elements, unknown repeats, and rDNAs across individuals. The additive effect of this variation has important phenotypic consequences-individuals with more repeats, and thus larger genomes, show slower flowering times and growth rates. However, compared to newly-characterized gene copy number and polygenic nucleotide changes underlying variation in flowering time, we show that genome size is a marginal contributor. Differences in flowering time are reflected by genome size variation across sexes and marginally, habitats, while polygenic variation and a gene copy number variant within the ATP synthesis pathway show consistently stronger environmental clines than genome size. Repeat content nonetheless shows non-neutral distributions across the genome, and across latitudinal and environmental gradients, demonstrating the numerous governing processes that in turn influence quantitative genetic variation for phenotypes key to plant adaptation.
Collapse
Affiliation(s)
- Julia M. Kreiner
- Department of Botany, Biodiversity Research Centre, University of British Columbia
- Department of Ecology & Evolutionary Biology, University of Toronto
| | - Solomiya Hnatovska
- Department of Ecology & Evolutionary Biology, University of Toronto
- Department of Molecular Genetics, University of Toronto
| | | | | |
Collapse
|
17
|
Chowdary KVSKA, Saini R, Singh AK. Epigenetic regulation during meiosis and crossover. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1945-1958. [PMID: 38222277 PMCID: PMC10784443 DOI: 10.1007/s12298-023-01390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Meiosis is a distinctive type of cell division that reorganizes genetic material between generations. The initial stages of meiosis consist of several crucial steps which include double strand break, homologous chromosome pairing, break repair and crossover. Crossover frequency varies depending on the position on the chromosome, higher at euchromatin region and rare at heterochromatin, centromeres, telomeres and ribosomal DNA. Crossover positioning is dependent on various factors, especially epigenetic modifications. DNA methylation, histone post-translational modifications, histone variants and non-coding RNAs are most probably playing an important role in positioning of crossovers on a chromosomal level as well as hotspot level. DNA methylation negatively regulates crossover frequency and its effect is visible in centromeres, pericentromeres and heterochromatin regions. Pericentromeric chromatin and heterochromatin mark studies have been a centre of attraction in meiosis. Crossover hotspots are associated with euchromatin regions having specific chromatin modifications such as H3K4me3, H2A.Z. and H3 acetylation. This review will provide the current understanding of the epigenetic role in plants during meiotic recombination, chromosome synapsis, double strand break and hotspots with special attention to euchromatin and heterochromatin marks. Further, the role of epigenetic modifications in regulating meiosis and crossover in other organisms is also discussed.
Collapse
Affiliation(s)
- K. V. S. K. Arjun Chowdary
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ramswaroop Saini
- Department of Biotechnology, Joy University, Vadakangulam, Tirunelveli, Tamil Nadu 627116 India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
18
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
19
|
Bjerkan KN, Alling RM, Myking IV, Brysting AK, Grini PE. Genetic and environmental manipulation of Arabidopsis hybridization barriers uncovers antagonistic functions in endosperm cellularization. FRONTIERS IN PLANT SCIENCE 2023; 14:1229060. [PMID: 37600172 PMCID: PMC10433385 DOI: 10.3389/fpls.2023.1229060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Speciation involves reproductive isolation, which can occur by hybridization barriers acting in the endosperm of the developing seed. The nuclear endosperm is a nutrient sink, accumulating sugars from surrounding tissues, and undergoes coordinated cellularization, switching to serve as a nutrient source for the developing embryo. Tight regulation of cellularization is therefore vital for seed and embryonic development. Here we show that hybrid seeds from crosses between Arabidopsis thaliana as maternal contributor and A. arenosa or A. lyrata as pollen donors result in an endosperm based post-zygotic hybridization barrier that gives rise to a reduced seed germination rate. Hybrid seeds display opposite endosperm cellularization phenotypes, with late cellularization in crosses with A. arenosa and early cellularization in crosses with A. lyrata. Stage specific endosperm reporters display temporally ectopic expression in developing hybrid endosperm, in accordance with the early and late cellularization phenotypes, confirming a disturbance of the source-sink endosperm phase change. We demonstrate that the hybrid barrier is under the influence of abiotic factors, and show that a temperature gradient leads to diametrically opposed cellularization phenotype responses in hybrid endosperm with A. arenosa or A. lyrata as pollen donors. Furthermore, different A. thaliana accession genotypes also enhance or diminish seed viability in the two hybrid cross-types, emphasizing that both genetic and environmental cues control the hybridization barrier. We have identified an A. thaliana MADS-BOX type I family single locus that is required for diametrically opposed cellularization phenotype responses in hybrid endosperm. Loss of AGAMOUS-LIKE 35 significantly affects the germination rate of hybrid seeds in opposite directions when transmitted through the A. thaliana endosperm, and is suggested to be a locus that promotes cellularization as part of an endosperm based mechanism involved in post-zygotic hybrid barriers. The role of temperature in hybrid speciation and the identification of distinct loci in control of hybrid failure have great potential to aid the introduction of advantageous traits in breeding research and to support models to predict hybrid admixture in a changing global climate.
Collapse
Affiliation(s)
- Katrine N. Bjerkan
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Renate M. Alling
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida V. Myking
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne K. Brysting
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Paul E. Grini
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Thompson JB, Davis KE, Dodd HO, Wills MA, Priest NK. Speciation across the Earth driven by global cooling in terrestrial orchids. Proc Natl Acad Sci U S A 2023; 120:e2102408120. [PMID: 37428929 PMCID: PMC10629580 DOI: 10.1073/pnas.2102408120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/03/2023] [Indexed: 07/12/2023] Open
Abstract
Although climate change has been implicated as a major catalyst of diversification, its effects are thought to be inconsistent and much less pervasive than localized climate or the accumulation of species with time. Focused analyses of highly speciose clades are needed in order to disentangle the consequences of climate change, geography, and time. Here, we show that global cooling shapes the biodiversity of terrestrial orchids. Using a phylogeny of 1,475 species of Orchidoideae, the largest terrestrial orchid subfamily, we find that speciation rate is dependent on historic global cooling, not time, tropical distributions, elevation, variation in chromosome number, or other types of historic climate change. Relative to the gradual accumulation of species with time, models specifying speciation driven by historic global cooling are over 700 times more likely. Evidence ratios estimated for 212 other plant and animal groups reveal that terrestrial orchids represent one of the best-supported cases of temperature-spurred speciation yet reported. Employing >2.5 million georeferenced records, we find that global cooling drove contemporaneous diversification in each of the seven major orchid bioregions of the Earth. With current emphasis on understanding and predicting the immediate impacts of global warming, our study provides a clear case study of the long-term impacts of global climate change on biodiversity.
Collapse
Affiliation(s)
- Jamie B. Thompson
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| | - Katie E. Davis
- Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | - Harry O. Dodd
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| | - Matthew A. Wills
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| | - Nicholas K. Priest
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, BathBA2 7AY, United Kingdom
| |
Collapse
|
21
|
Schindfessel C, De Storme N, Trinh HK, Geelen D. Asynapsis and meiotic restitution in tomato male meiosis induced by heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1210092. [PMID: 37521921 PMCID: PMC10373595 DOI: 10.3389/fpls.2023.1210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Susceptibility of the reproductive system to temperature fluctuations is a recurrent problem for crop production under a changing climate. The damage is complex as multiple processes in male and female gamete formation are affected, but in general, particularly pollen production is impaired. Here, the impact of short periods of elevated temperature on male meiosis of tomato (Solanum lycopersicon L.) is reported. Meiocytes in early stage flower buds exposed to heat stress (>35°C) exhibit impaired homolog synapsis resulting in partial to complete omission of chiasmata formation. In the absence of chiasmata, univalents segregate randomly developing unbalanced tetrads and polyads resulting in aneuploid spores. However, most heat-stressed meiotic buds primarily contain balanced dyads, indicating a propensity to execute meiotic restitution. With most meiocytes exhibiting a complete loss of chiasma formation and concomitantly showing a mitotic-like division, heat stress triggers first division restitution resulting in clonal spores. These findings corroborate with the plasticity of male meiosis under heat and establish a natural route for the induction of sexual polyploidization in plants and the engineering of clonal seed.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Nico De Storme
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Danny Geelen
- Horticell Lab, Faculty of Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Zhao J, Gui X, Ren Z, Fu H, Yang C, Wang W, Liu Q, Zhang M, Wang C, Schnittger A, Liu B. ATM-mediated double-strand break repair is required for meiotic genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:403-423. [PMID: 36786716 DOI: 10.1111/tpj.16145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
In eukaryotes, meiotic recombination maintains genome stability and creates genetic diversity. The conserved Ataxia-Telangiectasia Mutated (ATM) kinase regulates multiple processes in meiotic homologous recombination, including DNA double-strand break (DSB) formation and repair, synaptonemal complex organization, and crossover formation and distribution. However, its function in plant meiotic recombination under stressful environmental conditions remains poorly understood. In this study, we demonstrate that ATM is required for the maintenance of meiotic genome stability under heat stress in Arabidopsis thaliana. Using cytogenetic approaches we determined that ATM does not mediate reduced DSB formation but does ensure successful DSB repair, and thus meiotic chromosome integrity, under heat stress. Further genetic analysis suggested that ATM mediates DSB repair at high temperature by acting downstream of the MRE11-RAD50-NBS1 (MRN) complex, and acts in a RAD51-independent but chromosome axis-dependent manner. This study extends our understanding on the role of ATM in DSB repair and the protection of genome stability in plants under high temperature stress.
Collapse
Affiliation(s)
- Jiayi Zhao
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Gui
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huiqi Fu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Wenyi Wang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Min Zhang
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Bing Liu
- 8-A506, Arameiosis Lab, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
23
|
Peters SA, Underwood CJ. Technology-driven approaches for meiosis research in tomato and wild relatives. PLANT REPRODUCTION 2023; 36:97-106. [PMID: 36149478 PMCID: PMC9957858 DOI: 10.1007/s00497-022-00450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Meiosis is a specialized cell division during reproduction where one round of chromosomal replication is followed by genetic recombination and two rounds of segregation to generate recombined, ploidy-reduced spores. Meiosis is crucial to the generation of new allelic combinations in natural populations and artificial breeding programs. Several plant species are used in meiosis research including the cultivated tomato (Solanum lycopersicum) which is a globally important crop species. Here we outline the unique combination of attributes that make tomato a powerful model system for meiosis research. These include the well-characterized behavior of chromosomes during tomato meiosis, readily available genomics resources, capacity for genome editing, clonal propagation techniques, lack of recent polyploidy and the possibility to generate hybrids with twelve related wild species. We propose that further exploitation of genome bioinformatics, genome editing and artificial intelligence in tomato will help advance the field of plant meiosis research. Ultimately this will help address emerging themes including the evolution of meiosis, how recombination landscapes are determined, and the effect of temperature on meiosis.
Collapse
Affiliation(s)
- Sander A Peters
- Business Unit Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
24
|
Huang B, Fan Y, Cui L, Li C, Guo C. Cold Stress Response Mechanisms in Anther Development. Int J Mol Sci 2022; 24:ijms24010030. [PMID: 36613473 PMCID: PMC9820542 DOI: 10.3390/ijms24010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Unlike animals that can escape threats, plants must endure and adapt to biotic and abiotic stresses in their surroundings. One such condition, cold stress, impairs the normal growth and development of plants, in which most phases of reproductive development are particularly susceptible to external low temperature. Exposed to uncomfortably low temperature at the reproductive stage, meiosis, tapetal programmed cell death (PCD), pollen viability, and fertilization are disrupted, resulting in plant sterility. Of them, cold-induced tapetal dysfunction is the main cause of pollen sterility by blocking nutrition supplements for microspore development and altering their timely PCD. Further evidence has indicated that the homeostatic imbalances of hormones, including abscisic acid (ABA) and gibberellic acid (GA), and sugars have occurred in the cold-treated anthers. Among them, cold stress gives rise to the accumulation of ABA and the decrease of active GA in anthers to affect tapetal development and represses the transport of sugar to microspores. Therefore, plants have evolved lots of mechanisms to alleviate the damage of external cold stress to reproductive development by mainly regulating phytohormone levels and sugar metabolism. Herein, we discuss the physiological and metabolic effects of low temperature on male reproductive development and the underlying mechanisms from the perspective of molecular biology. A deep understanding of cold stress response mechanisms in anther development will provide noteworthy references for cold-tolerant crop breeding and crop production under cold stress.
Collapse
|
25
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
26
|
Samuk K, Noor MAF. Gene flow biases population genetic inference of recombination rate. G3 GENES|GENOMES|GENETICS 2022; 12:6698695. [PMID: 36103705 PMCID: PMC9635666 DOI: 10.1093/g3journal/jkac236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Accurate estimates of the rate of recombination are key to understanding a host of evolutionary processes as well as the evolution of the recombination rate itself. Model-based population genetic methods that infer recombination rates from patterns of linkage disequilibrium in the genome have become a popular method to estimate rates of recombination. However, these linkage disequilibrium-based methods make a variety of simplifying assumptions about the populations of interest that are often not met in natural populations. One such assumption is the absence of gene flow from other populations. Here, we use forward-time population genetic simulations of isolation-with-migration scenarios to explore how gene flow affects the accuracy of linkage disequilibrium-based estimators of recombination rate. We find that moderate levels of gene flow can result in either the overestimation or underestimation of recombination rates by up to 20–50% depending on the timing of divergence. We also find that these biases can affect the detection of interpopulation differences in recombination rate, causing both false positives and false negatives depending on the scenario. We discuss future possibilities for mitigating these biases and recommend that investigators exercise caution and confirm that their study populations meet assumptions before deploying these methods.
Collapse
Affiliation(s)
- Kieran Samuk
- Department of Biology, Duke University , Durham, NC 27708, USA
- Department of Evolution, Ecology, and Organismal Biology, The University of California, Riverside ,Riverside, CA 92521, USA
| | | |
Collapse
|
27
|
Morales A, de Boer HJ, Douma JC, Elsen S, Engels S, Glimmerveen T, Sajeev N, Huber M, Luimes M, Luitjens E, Raatjes K, Hsieh C, Teapal J, Wildenbeest T, Jiang Z, Pareek A, Singla-Pareek S, Yin X, Evers J, Anten NPR, van Zanten M, Sasidharan R. Effects of sublethal single, simultaneous and sequential abiotic stresses on phenotypic traits of Arabidopsis thaliana. AOB PLANTS 2022; 14:plac029. [PMID: 35854681 PMCID: PMC9291396 DOI: 10.1093/aobpla/plac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/21/2022] [Indexed: 05/24/2023]
Abstract
Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits. To address this gap, our study comprehensively and categorically quantified the individual and combined effects of three major abiotic stresses associated with climate change (flooding, progressive drought and high temperature) on 12 phenotypic traits related to morphology, development, growth and fitness, at different developmental stages in four Arabidopsis thaliana accessions. Combined sublethal stresses were applied either simultaneously (high temperature and drought) or sequentially (flooding followed by drought). In total, we analysed the phenotypic responses of 1782 individuals across these stresses and different developmental stages. Overall, abiotic stresses and their combinations resulted in distinct patterns of effects across the traits analysed, with both quantitative and qualitative differences across accessions. Stress combinations had additive effects on some traits, whereas clear positive and negative interactions were observed for other traits: 9 out of 12 traits for high temperature and drought, 6 out of 12 traits for post-submergence and drought showed significant interactions. In many cases where the stresses interacted, the strength of interactions varied across accessions. Hence, our results indicated a general pattern of response in most phenotypic traits to the different stresses and stress combinations, but it also indicated a natural genetic variation in the strength of these responses. This includes novel results regarding the lack of a response to drought after submergence and a decoupling between leaf number and flowering time after submergence. Overall, our study provides a rich characterization of trait responses of Arabidopsis plants to sublethal abiotic stresses at the phenotypic level and can serve as starting point for further in-depth physiological research and plant modelling efforts.
Collapse
Affiliation(s)
| | - Hugo J de Boer
- Copernicus Institute of Sustainable Development, Utrecht University, 3584CB Utrecht, The Netherlands
| | - Jacob C Douma
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Saskia Elsen
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Sophie Engels
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Tobias Glimmerveen
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Nikita Sajeev
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Martina Huber
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Mathijs Luimes
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Emma Luitjens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Kevin Raatjes
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Chenyun Hsieh
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Juliane Teapal
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Tessa Wildenbeest
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Zhang Jiang
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Jochem Evers
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | | | | |
Collapse
|
28
|
Kim J, Park J, Kim H, Son N, Kim E, Kim J, Byun D, Lee Y, Park YM, Nageswaran DC, Kuo P, Rose T, Dang TVT, Hwang I, Lambing C, Henderson IR, Choi K. Arabidopsis HEAT SHOCK FACTOR BINDING PROTEIN is required to limit meiotic crossovers and HEI10 transcription. EMBO J 2022; 41:e109958. [PMID: 35670129 PMCID: PMC9289711 DOI: 10.15252/embj.2021109958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
The number of meiotic crossovers is tightly controlled and most depend on pro-crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome-wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM-dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5' untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Jihye Park
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Heejin Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Namil Son
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Eun‐Jung Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Jaeil Kim
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Dohwan Byun
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Youngkyung Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Yeong Mi Park
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | | | - Pallas Kuo
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Teresa Rose
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Tuong Vi T Dang
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Ildoo Hwang
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| | - Christophe Lambing
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Department of Plant SciencesRothamsted ResearchHarpendenUK
| | - Ian R Henderson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Kyuha Choi
- Department of Life SciencesPohang University of Science and TechnologyPohangKorea
| |
Collapse
|
29
|
Yang F, Wan H, Li J, Wang Q, Yang N, Zhu X, Liu Z, Yang Y, Ma W, Fan X, Yang W, Zhou Y. Pentaploidization Enriches the Genetic Diversity of Wheat by Enhancing the Recombination of AB Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:883868. [PMID: 35845672 PMCID: PMC9281561 DOI: 10.3389/fpls.2022.883868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Allohexaploidization and continuous introgression play a key role in the origin and evolution of bread wheat. The genetic bottleneck of bread wheat resulting from limited germplasms involved in the origin and modern breeding may be compensated by gene flow from tetraploid wheat through introgressive hybridization. The inter-ploidy hybridization between hexaploid and tetraploid wheat generates pentaploid hybrids first, which absorbed genetic variations both from hexaploid and tetraploid wheat and have great potential for re-evolution and improvement in bread wheat. Therefore, understanding the effects of the pentaploid hybrid is of apparent significance in our understanding of the historic introgression and in informing breeding. In the current study, two sets of F2 populations of synthetic pentaploid wheat (SPW1 and SPW2) and synthetic hexaploid wheat (SHW1 and SHW2) were created to analyze differences in recombination frequency (RF) of AB genomes and distorted segregation of polymorphic SNP markers through SNP genotyping. Results suggested that (1) the recombination of AB genomes in the SPW populations was about 3- to 4-fold higher than that in the SHW populations, resulting from the significantly (P < 0.01) increased RF between adjacent and linked SNP loci, especially the variations that occurred in a pericentromeric region which would further enrich genetic diversity; (2) the crosses of hexaploid × tetraploid wheat could be an efficient way to produce pentaploid derivatives than the crosses of tetraploid × hexaploid wheat according to the higher germination rate found in the former crosses; (3) the high proportion of distorted segregation loci that skewed in favor of the female parent genotype/allele in the SPW populations might associate with the fitness and survival of the offspring. Based on the presented data, we propose that pentaploid hybrids should increasingly be used in wheat breeding. In addition, the contribution of gene flow from tetraploid wheat to bread wheat mediated by pentaploid introgressive hybridization also was discussed in the re-evolution of bread wheat.
Collapse
Affiliation(s)
- Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ning Yang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinguo Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zehou Liu
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wujun Ma
- Australia-China Joint Centre for Wheat Improvement, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wuyun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Assessing the Heat Tolerance of Meiosis in Spanish Landraces of Tetraploid Wheat Triticum turgidum. PLANTS 2022; 11:plants11131661. [PMID: 35807613 PMCID: PMC9268776 DOI: 10.3390/plants11131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Heat stress alters the number and distribution of meiotic crossovers in wild and cultivated plant species. Hence, global warming may have a negative impact on meiosis, fertility, and crop productions. Assessment of germplasm collections to identify heat-tolerant genotypes is a priority for future crop improvement. Durum wheat, Triticum turgidum, is an important cultivated cereal worldwide and given the genetic diversity of the durum wheat Spanish landraces core collection, we decided to analyse the heat stress effect on chiasma formation in a sample of 16 landraces of T. turgidum ssp. turgidum and T. turgidum ssp. durum, from localities with variable climate conditions. Plants of each landrace were grown at 18–22 °C and at 30 °C during the premeiotic temperature-sensitive stage. The number of chiasmata was not affected by heat stress in three genotypes, but decreased by 0.3–2 chiasmata in ten genotypes and more than two chiasmata in the remaining three ones. Both thermotolerant and temperature-sensitive genotypes were found in the two subspecies, and in some of the agroecological zones studied, which supports that genotypes conferring a heat tolerant meiotic phenotype are not dependent on subspecies or geographical origin. Implications of heat adaptive genotypes in future research and breeding are discussed.
Collapse
|
31
|
Schreiber M, Gao Y, Koch N, Fuchs J, Heckmann S, Himmelbach A, Börner A, Özkan H, Maurer A, Stein N, Mascher M, Dreissig S. Recombination landscape divergence between populations is marked by larger low-recombining regions in domesticated rye. Mol Biol Evol 2022; 39:msac131. [PMID: 35687854 PMCID: PMC9218680 DOI: 10.1093/molbev/msac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The genomic landscape of recombination plays an essential role in evolution. Patterns of recombination are highly variable along chromosomes, between sexes, individuals, populations, and species. In many eukaryotes, recombination rates are elevated in sub-telomeric regions and drastically reduced near centromeres, resulting in large low-recombining (LR) regions. The processes of recombination are influenced by genetic factors, such as different alleles of genes involved in meiosis and chromatin structure, as well as external environmental stimuli like temperature and overall stress. In this work, we focused on the genomic landscapes of recombination in a collection of 916 rye (Secale cereale) individuals. By analysing population structure among individuals of different domestication status and geographic origin, we detected high levels of admixture, reflecting the reproductive biology of a self-incompatible, wind-pollinating grass species. We then analysed patterns of recombination in overlapping subpopulations, which revealed substantial variation in the physical size of LR regions, with a tendency for larger LR regions in domesticated subpopulations. Genome-wide association scans (GWAS) for LR region size revealed a major quantitative-trait-locus (QTL) at which, among 18 annotated genes, an ortholog of histone H4 acetyltransferase ESA1 was located. Rye individuals belonging to domesticated subpopulations showed increased synaptonemal complex length, but no difference in crossover frequency, indicating that only the recombination landscape is different. Furthermore, the genomic region harbouring rye ScESA1 showed moderate patterns of selection in domesticated subpopulations, suggesting that larger LR regions were indirectly selected for during domestication to achieve more homogeneous populations for agricultural use.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, 35037 Marburg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Yixuan Gao
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Natalie Koch
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Hakan Özkan
- Faculty of Agriculture, Department of Field Crops, University of Cukurova, 01330 Adana, Turkey
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
32
|
Kim H, Choi K. Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis. Mol Cells 2022; 45:273-283. [PMID: 35444069 PMCID: PMC9095510 DOI: 10.14348/molcells.2022.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
33
|
Casale F, Van Inghelandt D, Weisweiler M, Li J, Stich B. Genomic prediction of the recombination rate variation in barley - A route to highly recombinogenic genotypes. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:676-690. [PMID: 34783155 PMCID: PMC8989500 DOI: 10.1111/pbi.13746] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Meiotic recombination is not only fundamental to the adaptation of sexually reproducing eukaryotes in nature but increased recombination rates facilitate the combination of favourable alleles into a single haplotype in breeding programmes. The main objectives of this study were to (i) assess the extent and distribution of the recombination rate variation in cultivated barley (Hordeum vulgare L.), (ii) quantify the importance of the general and specific recombination effects, and (iii) evaluate a genomic selection approach's ability to predict the recombination rate variation. Genetic maps were created for the 45 segregating populations that were derived from crosses among 23 spring barley inbreds with origins across the world. The genome-wide recombination rate among populations ranged from 0.31 to 0.73 cM/Mbp. The crossing design used in this study allowed to separate the general recombination effects (GRE) of individual parental inbreds from the specific recombination effects (SRE) caused by the combinations of parental inbreds. The variance of the genome-wide GRE was found to be about eight times the variance of the SRE. This finding indicated that parental inbreds differ in the efficiency of their recombination machinery. The ability to predict the chromosome or genome-wide recombination rate of an inbred ranged from 0.80 to 0.85. These results suggest that a reliable screening of large genetic materials for their potential to cause a high extent of genetic recombination in their progeny is possible, allowing to systematically manipulate the recombination rate using natural variation.
Collapse
Affiliation(s)
- Federico Casale
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Delphine Van Inghelandt
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Marius Weisweiler
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding ResearchKölnGermany
- Strube D&S GmbHSöllingenGermany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
- Max Planck Institute for Plant Breeding ResearchKölnGermany
- Cluster of Excellence on Plant SciencesFrom Complex Traits Towards Synthetic ModulesDüsseldorfGermany
| |
Collapse
|
34
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
35
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
36
|
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1210-1228. [PMID: 34927688 PMCID: PMC8825311 DOI: 10.1093/plphys/kiab563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ziming Ren
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaohong Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Guanghui Yu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
37
|
De Jaeger-Braet J, Krause L, Buchholz A, Schnittger A. Heat stress reveals a specialized variant of the pachytene checkpoint in meiosis of Arabidopsis thaliana. THE PLANT CELL 2022; 34:433-454. [PMID: 34718750 PMCID: PMC8846176 DOI: 10.1093/plcell/koab257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/14/2021] [Indexed: 05/25/2023]
Abstract
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.
Collapse
Affiliation(s)
- Joke De Jaeger-Braet
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Buchholz
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
38
|
Mostoufi SL, Singh ND. Diet-induced changes in titer support a discrete response of Wolbachia-associated plastic recombination in Drosophila melanogaster. G3 GENES|GENOMES|GENETICS 2022; 12:6428536. [PMID: 34791181 PMCID: PMC8728003 DOI: 10.1093/g3journal/jkab375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Plastic recombination in Drosophila melanogaster has been associated with a variety of extrinsic and intrinsic factors such as temperature, starvation, and parasite infection. The bacterial endosymbiont Wolbachia pipientis has also been associated with plastic recombination in D. melanogaster. Wolbachia infection is pervasive in arthropods and this infection induces a variety of phenotypes in its hosts, the strength of which can depend on bacterial titer. Here, we test the hypothesis that the magnitude of Wolbachia-associated plastic recombination in D. melanogaster depends on titer. To manipulate titer, we raised Wolbachia-infected and uninfected flies on diets that have previously been shown to increase or decrease Wolbachia titer relative to controls. We measured recombination in treated and control individuals using a standard backcrossing scheme with two X-linked visible markers. Our results recapitulate previous findings that Wolbachia infection is associated with increased recombination rate across the yellow-vermillion interval of the X chromosome. Our data show no significant effect of diet or diet by Wolbachia interactions on recombination, suggesting that diet-induced changes in Wolbachia titer have no effect on the magnitude of plastic recombination. These findings represent one of the first steps toward investigating Wolbachia-associated plastic recombination and demonstrate that the phenotype is a discrete response rather than a continuous one.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| |
Collapse
|
39
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
40
|
Sinha R, Fritschi FB, Zandalinas SI, Mittler R. The impact of stress combination on reproductive processes in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111007. [PMID: 34482910 DOI: 10.1016/j.plantsci.2021.111007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Historically, extended droughts combined with heat waves caused severe reductions in crop yields estimated at billions of dollars annually. Because global warming and climate change are driving an increase in the frequency and intensity of combined water-deficit and heat stress episodes, understanding how these episodes impact yield is critical for our efforts to develop climate change-resilient crops. Recent studies demonstrated that a combination of water-deficit and heat stress exacerbates the impacts of water-deficit or heat stress on reproductive processes of different cereals and legumes, directly impacting grain production. These studies identified several different mechanisms potentially underlying the effects of stress combination on anthers, pollen, and stigma development and function, as well as fertilization. Here we review some of these findings focusing on unbalanced reactive oxygen accumulation, altered sugar concentrations, and conflicting functions of different hormones, as contributing to the reduction in yield during a combination of water-deficit and heat stress. Future studies focused on the effects of water-deficit and heat stress combination on reproduction of different crops are likely to unravel additional mechanisms, as well as reveal novel ways to develop stress combination-resilient crops. These could mitigate some of the potentially devastating impacts of this stress combination on agriculture.
Collapse
Affiliation(s)
- Ranjita Sinha
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Felix B Fritschi
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA.
| |
Collapse
|
41
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
42
|
Neupane S, Xu S. Adaptive Divergence of Meiotic Recombination Rate in Ecological Speciation. Genome Biol Evol 2021; 12:1869-1881. [PMID: 32857858 PMCID: PMC7594247 DOI: 10.1093/gbe/evaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Theories predict that directional selection during adaptation to a novel habitat results in elevated meiotic recombination rate. Yet the lack of population-level recombination rate data leaves this hypothesis untested in natural populations. Here, we examine the population-level recombination rate variation in two incipient ecological species, the microcrustacean Daphnia pulex (an ephemeral-pond species) and Daphnia pulicaria (a permanent-lake species). The divergence of D. pulicaria from D. pulex involved habitat shifts from pond to lake habitats as well as strong local adaptation due to directional selection. Using a novel single-sperm genotyping approach, we estimated the male-specific recombination rate of two linkage groups in multiple populations of each species in common garden experiments and identified a significantly elevated recombination rate in D. pulicaria. Most importantly, population genetic analyses show that the divergence in recombination rate between these two species is most likely due to divergent selection in distinct ecological habitats rather than neutral evolution.
Collapse
Affiliation(s)
| | - Sen Xu
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
43
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
44
|
Schindfessel C, Drozdowska Z, De Mooij L, Geelen D. Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress. PLANT REPRODUCTION 2021; 34:243-253. [PMID: 34021795 DOI: 10.1007/s00497-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Zofia Drozdowska
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Len De Mooij
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
45
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
46
|
Abstract
Sex, as well as meiotic recombination between homologous chromosomes, is nearly ubiquitous among eukaryotes. In those species that use it, recombination is important for chromosome segregation during gamete production, and thus for fertility. Strikingly, although in most species only one crossover event per chromosome is required to ensure proper segregation, recombination rates vary considerably above this minimum and show variation within and among species. However, whether this variation in recombination is adaptive or neutral and what might shape it remain unclear. Empirical studies and theory support the idea that recombination is generally beneficial but can also have costs. Here, we review variation in genome-wide recombination rates, explore what might cause this, and discuss what is known about its mechanistic basis. We end by discussing the environmental sensitivity of meiosis and recombination rates, how these features may relate to adaptation, and their implications for a broader understanding of recombination rate evolution. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland;
| |
Collapse
|
47
|
Weitz AP, Dukic M, Zeitler L, Bomblies K. Male meiotic recombination rate varies with seasonal temperature fluctuations in wild populations of autotetraploid Arabidopsis arenosa. Mol Ecol 2021; 30:4630-4641. [PMID: 34273213 PMCID: PMC9292783 DOI: 10.1111/mec.16084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022]
Abstract
Meiosis, the cell division by which eukaryotes produce haploid gametes, is essential for fertility in sexually reproducing species. This process is sensitive to temperature, and can fail outright at temperature extremes. At less extreme values, temperature affects the genome‐wide rate of homologous recombination, which has important implications for evolution and population genetics. Numerous studies in laboratory conditions have shown that recombination rate plasticity is common, perhaps nearly universal, among eukaryotes. These studies have also shown that variation in the length or timing of stresses can strongly affect results, raising the important question whether these findings translate to more variable field conditions. Moreover, lower or higher recombination rate could cause certain kinds of meiotic aberrations, especially in polyploid species—raising the additional question whether temperature fluctuations in field conditions cause problems. Here, we tested whether (1) recombination rate varies across a season in the wild in two natural populations of autotetraploid Arabidopsis arenosa, (2) whether recombination rate correlates with temperature fluctuations in nature, and (3) whether natural temperature fluctuations might cause meiotic aberrations. We found that plants in two genetically distinct populations showed a similar plastic response with recombination rate increases correlated with both high and low temperatures. In addition, increased recombination rate correlated with increased multivalent formation, especially at lower temperature, hinting that polyploids in particular may suffer meiotic problems in conditions they encounter in nature. Our results show that studies of recombination rate plasticity done in laboratory settings inform our understanding of what happens in nature.
Collapse
Affiliation(s)
- Andrew P Weitz
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Environmental Sciences, Western Washington University, Bellingham, Washington, USA
| | - Marinela Dukic
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Leo Zeitler
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Department of Biology, Ecological Genomics, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Kirsten Bomblies
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Rodrigues YK, van Bergen E, Alves F, Duneau D, Beldade P. Additive and non-additive effects of day and night temperatures on thermally plastic traits in a model for adaptive seasonal plasticity. Evolution 2021; 75:1805-1819. [PMID: 34097756 DOI: 10.1111/evo.14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Developmental plasticity can match organismal phenotypes to ecological conditions, helping populations to deal with the environmental heterogeneity of alternating seasons. In contrast to natural situations, experimental studies of plasticity often use environmental conditions that are held constant during development. To explore potential interactions between day and night temperatures, we tested effects of circadian temperature fluctuations on thermally plastic traits in a seasonally plastic butterfly, Bicyclus anynana. Comparing phenotypes for four treatments corresponding to a full-factorial analysis of cooler and warmer temperatures, we found evidence of significant interaction effects between day and night temperatures. We then focused on comparing phenotypes between individuals reared under two types of temperature fluctuations (warmer days with cooler nights, and cooler days with warmer nights) and individuals reared under a constant temperature of the same daily mean. We found evidence of additive-like effects (for body size), and different types of dominance-like effects, with one particular period of the light cycle (for development time) or one particular extreme temperature (for eyespot size) having a larger impact on phenotype. Differences between thermally plastic traits, which together underlie alternative seasonal strategies for survival and reproduction, revealed their independent responses to temperature. This study underscores the value of studying how organisms integrate complex environmental information toward a complete understanding of natural phenotypic variation and of the impact of environmental change thereon.
Collapse
Affiliation(s)
- Yara Katia Rodrigues
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Current address: Atlantic Technical University (UTA), Mindelo, São Vicente island, Cabo Verde
| | - Erik van Bergen
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Current address: Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Filipa Alves
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - David Duneau
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,UMR 5174 - CNRS, Evolution et Diversité Biologique, University Paul Sabatier, Toulouse, France
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,UMR 5174 - CNRS, Evolution et Diversité Biologique, University Paul Sabatier, Toulouse, France.,CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Portugal
| |
Collapse
|
49
|
Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, Vercauteren I, Osuna-Cruz CM, Vancaester E, Mock T, Sabbe K, Daboussi F, Bowler C, Vyverman W, Vandepoele K, De Veylder L. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol 2021; 31:3221-3232.e9. [PMID: 34102110 DOI: 10.1016/j.cub.2021.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 01/31/2023]
Abstract
Diatoms, an evolutionarily successful group of microalgae, display high levels of intraspecific genetic variability in natural populations. However, the contribution of various mechanisms generating such diversity is unknown. Here we estimated the genetic micro-diversity within a natural diatom population and mapped the genomic changes arising within clonally propagated diatom cell cultures. Through quantification of haplotype diversity by next-generation sequencing and amplicon re-sequencing of selected loci, we documented a rapid accumulation of multiple haplotypes accompanied by the appearance of novel protein variants in cell cultures initiated from a single founder cell. Comparison of the genomic changes between mother and daughter cells revealed copy number variation and copy-neutral loss of heterozygosity leading to the fixation of alleles within individual daughter cells. The loss of heterozygosity can be accomplished by recombination between homologous chromosomes. To test this hypothesis, we established an endogenous readout system and estimated that the frequency of interhomolog mitotic recombination was under standard growth conditions 4.2 events per 100 cell divisions. This frequency is increased under environmental stress conditions, including treatment with hydrogen peroxide and cadmium. These data demonstrate that copy number variation and mitotic recombination between homologous chromosomes underlie clonal variability in diatom populations. We discuss the potential adaptive evolutionary benefits of the plastic response in the interhomolog mitotic recombination rate, and we propose that this may have contributed to the ecological success of diatoms.
Collapse
Affiliation(s)
- Petra Bulankova
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| | - Mirna Sekulić
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Denis Jallet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Ilse Vercauteren
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Emmelien Vancaester
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Koen Sabbe
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Fayza Daboussi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Lieven De Veylder
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
50
|
Sims J, Schlögelhofer P, Kurzbauer MT. From Microscopy to Nanoscopy: Defining an Arabidopsis thaliana Meiotic Atlas at the Nanometer Scale. FRONTIERS IN PLANT SCIENCE 2021; 12:672914. [PMID: 34084178 PMCID: PMC8167036 DOI: 10.3389/fpls.2021.672914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Visualization of meiotic chromosomes and the proteins involved in meiotic recombination have become essential to study meiosis in many systems including the model plant Arabidopsis thaliana. Recent advances in super-resolution technologies changed how microscopic images are acquired and analyzed. New technologies enable observation of cells and nuclei at a nanometer scale and hold great promise to the field since they allow observing complex meiotic molecular processes with unprecedented detail. Here, we provide an overview of classical and advanced sample preparation and microscopy techniques with an updated Arabidopsis meiotic atlas based on super-resolution microscopy. We review different techniques, focusing on stimulated emission depletion (STED) nanoscopy, to offer researchers guidance for selecting the optimal protocol and equipment to address their scientific question.
Collapse
|