1
|
Spencer JV, Liu J, Deyarmin B, Hu H, Shriver CD, Somiari S. Cytokine levels in breast cancer are highly dependent on cytomegalovirus (CMV) status. Breast Cancer Res Treat 2024; 208:631-641. [PMID: 39172306 PMCID: PMC11522175 DOI: 10.1007/s10549-024-07459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Breast cancer accounts for 30% of all female cancers in the US. Cytomegalovirus (CMV), a herpesvirus that establishes lifelong infection, may play a role in breast cancer. CMV is not oncogenic, yet viral DNA and proteins have been detected in breast tumors, indicating possible contribution to tumor development. CMV encodes cmvIL-10, a homolog of human cellular IL-10 (cIL-10) with potent immunosuppressive activities. We investigated the relationship between CMV infection, cytokines, and breast cancer. METHODS We evaluated CMV serostatus and cytokine levels in plasma of women with benign breast disease (n = 38), in situ carcinoma (n = 41), invasive carcinoma, no lymph node involvement (Inv/LN-; n = 41), and invasive with lymph node involvement (Inv/LN+; n = 37). RESULTS Fifty percent of the patient samples (n = 79) were CMV seropositive. There was no correlation between CMV status and diagnosis (p = 0.75). For CMV+ patients, there was a trend toward higher CMV IgG levels in invasive disease (p = 0.172). CmvIL-10 levels were higher in CMV+ in situ patients compared to the Inv/LN- and Inv/LN+ groups (p = 0.020). Similarly, cIL-10 levels were higher in CMV+ in situ patients compared to the Inv/LN- and Inv/LN+ groups (p = 0.043). The results were quite different in CMV- patients where cIL-10 levels were highest in Inv/LN- compared to benign, in situ, or Inv/LN+ (p = 0.019). African American patients were significantly associated with CMV+ status (p = 0.001) and had lower cmvIL-10 levels than Caucasian patients (p = 0.046). CONCLUSION No association was observed between CMV IgG and diagnosis, but CMV infection influences cytokine production and contributes to altered cytokine profiles in breast cancer.
Collapse
Affiliation(s)
- Juliet V Spencer
- Department of Biology, Texas Woman's University, Denton, TX, USA.
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Brenda Deyarmin
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Craig D Shriver
- Murtha Cancer Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stella Somiari
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| |
Collapse
|
2
|
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis Oncol 2024; 8:213. [PMID: 39343770 PMCID: PMC11439950 DOI: 10.1038/s41698-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Glioblastoma (GBM) is one of the deadliest brain cancers with a median survival of only 15 months. This poor prognosis has prompted exploration of novel therapeutic targets for GBM patients. Human cytomegalovirus (HCMV) has been implicated in GBM; however, its impact remains poorly defined, and there is conflicting data over the presence of HCMV in tumors. Nonetheless, clinical trials targeting HCMV have shown promising initial data, and evidence suggests that HCMV may negatively impact GBM patient survival by multiple mechanisms including changes in GBM cell behavior and the tumor microenvironment (TME) that potentiate tumor progression as well as therapy-induced virus reactivation. Moreover, HCMV has many effects on host immunity that could impact tumor behavior by altering the TME, which are largely unexplored. The goal of this review is to describe these potential interactions between HCMV and GBM. Better understanding of these processes may allow the development of new therapeutic modalities to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Noe B Mercado
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacqueline N Real
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacob Kaiserman
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Sean E Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US.
- The Warren Alpert Medical School, Brown University, Providence, RI, US.
| |
Collapse
|
3
|
Herbein G, El Baba R. Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains. Viruses 2024; 16:1225. [PMID: 39205199 PMCID: PMC11360263 DOI: 10.3390/v16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
- Department of Virology, CHU Besançon, 250000 Besancon, France
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
| |
Collapse
|
4
|
Guimarães ACS, Raposo Vedovi JV, de Almeida Ribeiro CR, Martinelli KG, Pelajo Machado M, de Abreu Manso PP, Euzebio Pereira Dias de Oliveira BC, Bergamini ML, de Rosa CS, Tozetto-Mendoza TR, Fernandes de Souza ACM, Martins MT, Braz-Silva PH, de Paula VS. Cytomegalovirus in Adenoma and Carcinoma Lesions: Detecting Mono-Infection and Co-Infection in Salivary Glands. Int J Mol Sci 2024; 25:7502. [PMID: 39062747 PMCID: PMC11276870 DOI: 10.3390/ijms25147502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 07/28/2024] Open
Abstract
Salivary glands' neoplasms are hard to diagnose and present a complex etiology. However, several viruses have been detected in these neoplasms, such as HCMV, which can play a role in certain cancers through oncomodulation. The co-infections between HCMV with betaherpesviruses (HHV-6 and HHV-7) and polyomaviruses (JCV and BKV) has been investigated. The aim of the current study is to describe the frequency of HCMV and co-infections in patients presenting neoplastic and non-neoplastic lesions, including in the salivary gland. Multiplex quantitative polymerase chain reaction was used for betaherpesvirus and polyomavirus quantification purposes after DNA extraction. In total, 50.7% of the 67 analyzed samples were mucocele, 40.3% were adenoma pleomorphic, and 8.9% were mucoepidermoid carcinoma. Overall, 20.9% of samples presented triple-infections with HCMV/HHV-6/HHV-7, whereas 9.0% were co-infections with HCMV/HHV-6 and HCMV/HHV-7. The largest number of co-infections was detected in pleomorphic adenoma cases. All samples tested negative for polyomaviruses, such as BKV and JCV. It was possible to conclude that HCMV can be abundant in salivary gland lesions. A high viral load can be useful to help better understand the etiological role played by viruses in these lesions. A lack of JCV and BKV in the samples analyzed herein does not rule out the involvement of these viruses in one or more salivary gland lesion subtypes.
Collapse
Affiliation(s)
- Ana Carolina Silva Guimarães
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| | - Jéssica Vasques Raposo Vedovi
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| | - Camilla Rodrigues de Almeida Ribeiro
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| | | | - Marcelo Pelajo Machado
- Pathology Laboratory, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (M.P.M.); (P.P.d.A.M.); (B.C.E.P.D.d.O.)
| | - Pedro Paulo de Abreu Manso
- Pathology Laboratory, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (M.P.M.); (P.P.d.A.M.); (B.C.E.P.D.d.O.)
| | | | - Mariana Lobo Bergamini
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
| | - Catharina Simioni de Rosa
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
| | - Tania Regina Tozetto-Mendoza
- Virology Laboratory, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (T.R.T.-M.); (A.C.M.F.d.S.)
| | - Ana Carolina Mamana Fernandes de Souza
- Virology Laboratory, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (T.R.T.-M.); (A.C.M.F.d.S.)
| | - Marília Trierveiler Martins
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
| | - Paulo Henrique Braz-Silva
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
- Virology Laboratory, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (T.R.T.-M.); (A.C.M.F.d.S.)
| | - Vanessa Salete de Paula
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| |
Collapse
|
5
|
Ullah Khan N, Sadiq A, Khan J, Basharat N, Hassan ZU, Ali I, Shah TA, Bourhia M, Bin Jardan YA, Wondmie GF. Molecular characterization of plasma virome of hepatocellular carcinoma (HCC) patients. AMB Express 2024; 14:46. [PMID: 38664337 PMCID: PMC11045709 DOI: 10.1186/s13568-024-01696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the most common cancer type, arising from various causes, and responsible for a substantial number of cancer-related fatalities. Recent advancements in viral metagenomics have empowered scientists to delve into the intricate diversity of the virosphere, viral evolution, interactions between viruses and their hosts, and the identification of viral causes behind disease outbreaks, the development of specific symptoms, and their potential role in altering the host's physiology. The present study had the objective of "Molecular Characterization of HBV, HCV, anelloviruses, CMV, SENV-D, SENV-H, HEV, and HPV viruses among individuals suffering from HCC." A total of 381 HCC patients contributed 10 cc of blood each for this study. The research encompassed the assessment of tumor markers, followed by molecular characterization of HBV, HCV, Anelloviruses (TTV, TTMV, and TTMDV), SENV-H and SENV-D viruses, HEV, CMV, and HPV, as well as histopathological examinations. The outcomes of this study revealed that majority of the HCC patients 72.4% (276/381) were male as compared to females. HCV infection, at 76.4% (291 out of 381), exhibited a significant association (p < 0.05) with HCC. Most patients displayed singular lesions in the liver, with Child Pugh Score Type B being the predominant finding in 45.2% of cases. Plasma virome analysis indicated the prevalence of TTMDV (75%), followed by TTMV (70%) and TTV (42.1%) among anelloviruses in HCC patients. Similarly, SENV-H (52%) was followed by SENV-D (20%), with co-infections at 15%. The presence of CMV and HEV among the HCC patients was recorded 5% each however 3.5% of the patients showed the presence of HPV. In conclusion, this study underscores that HCC patients serve as reservoirs for various pathogenic and non-pathogenic viruses, potentially contributing to the development, progression, and severity of the disease.
Collapse
Affiliation(s)
- Niamat Ullah Khan
- Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asma Sadiq
- Department of Microbiology, University of Jhang, Punjab, Pakistan
| | - Jadoon Khan
- Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad, Pakistan.
- Department of Allied Health Sciences, Iqra University, Chak Shahzad Campus, Islamabad, Pakistan.
| | - Nosheen Basharat
- Department of Microbiology, University of Jhang, Punjab, Pakistan
| | - Zulfiqar Ul Hassan
- Department of Allied Health Sciences, Iqra University, Chak Shahzad Campus, Islamabad, Pakistan
| | - Ijaz Ali
- Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, West Mishref, Kuwait
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, 80060, Morocco.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Trivic A, Milovanovic J, Kablar D, Tomic A, Folic M, Jotic A, Tomanovic N, Tomic AM, Djoric I, Jankovic M. Friend or Foe? Exploring the Role of Cytomegalovirus (HCMV) Infection in Head and Neck Tumors. Biomedicines 2024; 12:872. [PMID: 38672226 PMCID: PMC11048144 DOI: 10.3390/biomedicines12040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Although not regarded as an oncogenic pathogen, the human cytomegalovirus (HCMV) has been associated with a wide array of malignancies. Conversely, a number of studies report on possible anti-tumor properties of the virus, apparently mediated via HCMV-galvanized T-cell tumor killing; these were recently being investigated in clinical trials for the purposes of anti-cancer treatment by means of dendritic cell vaccines and HCMV-specific cytotoxic T cells. In the present study, we have analyzed the relation between a complement of head-and-neck tumors and HCMV infection across 73 countries worldwide using Spearman correlation, univariate and multivariate regression analysis. Intriguingly, HCMV was found to be pro-oncogenic in patients with nasopharyngeal carcinoma; contrarywise, the virus manifested an inverse (i.e., anti-tumor) association with the tumors of the lip/oral region and the salivary glands. Although this putative protective effect was noted initially for thyroid neoplasia and hypopharyngeal tumors as well, after multivariate regression analysis the connection did not hold. There was no association between laryngeal cancer and HCMV infection. It would appear that, depending on the tissue, HCMV may exert both protective and oncogenic effects. The globally observed protective feature of the virus could potentially be utilized in future therapeutic approaches for salivary tumors and neoplasia in the lip/oral region. As correlation does not necessarily imply causation, more in-depth molecular analyses from comprehensive clinical studies are warranted to substantiate our findings.
Collapse
Affiliation(s)
- Aleksandar Trivic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Jovica Milovanovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Djurdjina Kablar
- Department for Pathology, Pathohistology and Medical Cytology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Ana Tomic
- Center for Radiology Imaging, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia;
| | - Miljan Folic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Ana Jotic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center of Serbia, 2 Pasterova Street, 11000 Belgrade, Serbia; (A.T.); (J.M.); (M.F.); (A.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
| | - Nada Tomanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Institute of Pathology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| | - Ana Marija Tomic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Institute of Pathology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| | - Igor Djoric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Clinic of Neurosurgery, University Clinical Center of Serbia, Institute of Radiology, 4 Dr. Koste Todorovića Street, 11000 Belgrade, Serbia
| | - Marko Jankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.T.); (A.M.T.); (I.D.)
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr. Subotica Street, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Jankovic M, Knezevic T, Tomic A, Milicevic O, Jovanovic T, Djunic I, Mihaljevic B, Knezevic A, Todorovic-Balint M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. Int J Mol Sci 2024; 25:3741. [PMID: 38612552 PMCID: PMC11012084 DOI: 10.3390/ijms25073741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The oncogenicity of the human cytomegalovirus (CMV) is currently being widely debated. Most recently, mounting clinical evidence suggests an anti-cancer effect via CMV-induced T cell-mediated tumor destruction. However, the data were mostly obtained from single-center studies and in vitro experiments. Broad geographic coverage is required to offer a global perspective. Our study examined the correlation between country-specific CMV seroprevalence (across 73 countries) and the age-standardized incidence rate (of 34 invasive tumors). The populations studied were stratified according to decadal age periods as the immunologic effects of CMV seropositivity may depend upon age at initial infection. The International Agency for Research on Cancer of the World Health Organization (IARC WHO) database was used. The multivariate linear regression analysis revealed a worldwide inverse correlation between CMV seroprevalence and the incidences of 62.8% tumors. Notably, this inverse link persists for all cancers combined (Spearman's ρ = -0.732, p < 0.001; β = -0.482, p < 0.001, adjusted R2 = 0.737). An antithetical and significant correlation was also observed in particular age groups for the vast majority of tumors. Our results corroborate the conclusions of previous studies and indicate that this oncopreventive phenomenon holds true on a global scale. It applies to a wide spectrum of cancer histologies, additionally supporting the idea of a common underlying mechanism-CMV-stimulated T cell tumor targeting. Although these results further advance the notion of CMV-based therapies, in-depth investigation of host-virus interactions is still warranted.
Collapse
Affiliation(s)
- Marko Jankovic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Tara Knezevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ana Tomic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Ognjen Milicevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Institute of Medical Statistics and Informatics, 15 Dr Subotica Street, 11000 Belgrade, Serbia
| | - Tanja Jovanovic
- Institute for Biocides and Medical Ecology, 16 Trebevicka Street, 11000 Belgrade, Serbia;
| | - Irena Djunic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Biljana Mihaljevic
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| | - Aleksandra Knezevic
- Department of Virology, Institute of Microbiology and Immunology, 1 Dr Subotica Street, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
| | - Milena Todorovic-Balint
- Faculty of Medicine, University of Belgrade, 8 Dr Subotica Street, 11000 Belgrade, Serbia; (T.K.); (A.T.); (O.M.); (I.D.); (B.M.); (M.T.-B.)
- Clinic of Hematology, University Clinical Centre of Serbia, 2 Dr Koste Todorovica Street, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
9
|
Isaguliants MG, Ivanov AV, Buonaguro FM. Chronic Viral Infections and Cancer, Openings for Therapies and Vaccines. Cancers (Basel) 2024; 16:818. [PMID: 38398209 PMCID: PMC10886681 DOI: 10.3390/cancers16040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
Infections are responsible for approximately one out of six cases of cancer worldwide [...].
Collapse
Affiliation(s)
- Maria G. Isaguliants
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy;
| |
Collapse
|
10
|
Huang X, Meng Y, Hu X, Zhang A, Ji Q, Liang Z, Fang F, Zhan Y. Association between cytomegalovirus seropositivity and all-cause mortality: An original cohort study. J Med Virol 2024; 96:e29444. [PMID: 38294040 DOI: 10.1002/jmv.29444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
To examine the association between cytomegalovirus (CMV) seropositivity and all-cause mortality in a nationwide cohort of US adults. We obtained data from the National Health and Nutrition Examination Survey III (1988-1994), including 16,547 participants aged 18-90 years old with CMV serology assessments. Mortality status was ascertained until December 2019 using the National Death Index linkage data. The Cox proportional hazard model was applied to estimate the association between CMV seropositivity and mortality. During a median follow-up of 26.3 years, 6,930 deaths were recorded. CMV seropositivity was associated with a higher hazard of all-cause mortality after adjusting for attained age, sex, and ethnicity (HR: 1.22, 95% CI: 1.10, 1.36, p < 0.001). The magnitude of the association attenuated slightly after adjusting further for body mass index, family income, smoking status, diabetes, and self-reported cancer history (HR = 1.11, 95% CI: 1.00, 1.23, p = 0.04). While the association was observed for both men and women, it was only statistically significant among non-Hispanic white people (HR: 1.16, 95% CI: 1.06, 1.26, p = 0.001) but not among other ethnic populations. CMV seropositivity might be an independent risk factor for all-cause mortality among US adults. If the findings are validated in an independent population, further research is needed to unveil the biological mechanisms driving the increased mortality with CMV seropositivity.
Collapse
Affiliation(s)
- Xiaoping Huang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xinyi Hu
- School of Medicine, Lishui University, Lishui, China
| | - Aijie Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhirou Liang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
12
|
Rinaldi I, Muthalib A, Sutandar JW, Kuncoro HA, Harsono BI, Susanto N, Setiawan T, Winston K, Dewantara IR, Amin IF, Shufiyani YM. Cytomegalovirus Infection in Patient with Clear Cell Renal Cell Carcinoma. Case Rep Med 2023; 2023:5560673. [PMID: 38023618 PMCID: PMC10661874 DOI: 10.1155/2023/5560673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) infection is a widespread condition that can affect individuals of all ages. Most cases of CMV infection are mild and resolve on their own. However, in immunocompromised individuals, such as post-transplant patients or those with cancer, severe infections can occur. While there have been several studies on CMV infection in post-transplant patients, there is limited literature on CMV infection in cancer, particularly in kidney cancer. Case Report. In this case report, we present the case of a 61-year-old man with clear cell renal cell carcinoma who underwent targeted therapy with the receptor tyrosine kinase (RTK) inhibitor lenvatinib and the mammalian target of rapamycin (mTOR) inhibitor everolimus. The patient was hospitalized for 26 days and admitted to the intensive care unit (ICU) due to shortness of breath, decreased oxygen saturation, and irregular breathing. Cytomegalovirus polymerase chain reaction (PCR) test results were positive. Given the high prevalence of CMV infection in developing countries, it is likely that the patient had a reactivation of CMV. As such, the patient was subsequently treated with ganciclovir for 14 days and showed improvement in symptoms such as shortness of breath, cough, fever, and increased oxygen saturation. Following recovery, the patient received maintenance therapy with oral valganciclovir for 7 days. No further symptoms appeared during subsequent cancer treatments. Conclusion Cancer patients who are undergoing treatment are at a higher risk for developing opportunistic infections, which can result in morbidity and mortality. Therefore, healthcare professionals should be aware of the possibility of CMV infection in cancer patients and be prepared to diagnose and treat the infection, particularly in areas where the prevalence of CMV infection is high.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Abdul Muthalib
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | | | | - Nelly Susanto
- Department of Radiology, Gading Pluit Hospital, Jakarta, Indonesia
| | - Tjondro Setiawan
- Department of Radiology, Gading Pluit Hospital, Jakarta, Indonesia
| | - Kevin Winston
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | | | |
Collapse
|
13
|
Mardente S, Romeo MA, Asquino A, Po A, Gilardini Montani MS, Cirone M. HHV-6A Infection of Papillary Thyroid Cancer Cells Induces Several Effects Related to Cancer Progression. Viruses 2023; 15:2122. [PMID: 37896899 PMCID: PMC10612057 DOI: 10.3390/v15102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies have shown that thyrocytes are permissive to HHV-6A infection and that the virus may contribute to the pathogenesis of autoimmune thyroiditis. Thyroid autoimmune diseases increase the risk of papillary cancer, which is not surprising considering that chronic inflammation activates pathways that are also pro-oncogenic. Moreover, in this condition, cell proliferation is stimulated as an attempt to repair tissue damage caused by the inflammatory process. Interestingly, it has been reported that the well-differentiated papillary thyroid carcinoma (PTC), the less aggressive form of thyroid tumor, may progress to the more aggressive follicular thyroid carcinoma (FTC) and eventually to the anaplastic thyroid carcinoma (ATC), and that to such progression contributes the presence of an inflammatory/immune suppressive tumor microenvironment. In this study, we investigated whether papillary tumor cells (BCPAP) could be infected by human herpes virus-6A (HHV-6A), and if viral infection could induce effects related to cancer progression. We found that the virus dysregulated the expression of several microRNAs, such as miR-155, miR-9, and the miR-221/222 cluster, which are involved in different steps of carcinogenesis, and increased the secretion of pro-inflammatory cytokines, particularly IL-6, which may also sustain thyroid tumor cell growth and promote cancer progression. Genomic instability and the expression of PTEN, reported to act as an oncogene in mutp53-carrying cells such as BCPAP, also increased following HHV-6A-infection. These findings suggest that a ubiquitous herpesvirus such as HHV-6A, which displays a marked tropism for thyrocytes, could be involved in the progression of PTC towards more aggressive forms of thyroid tumor.
Collapse
Affiliation(s)
- Stefania Mardente
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Angela Asquino
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, 00161 Rome, Italy;
| | | | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy; (S.M.); (M.A.R.); (A.A.); (M.S.G.M.)
| |
Collapse
|
14
|
Bergkamp ND, van Senten JR, Brink HJ, Bebelman MP, van den Bor J, Çobanoğlu TS, Dinkla K, Köster J, Klau G, Siderius M, Smit MJ. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P 1 signaling axis. Sci Signal 2023; 16:eade6737. [PMID: 37582160 DOI: 10.1126/scisignal.ade6737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
The G protein-coupled receptor (GPCR) US28 encoded by the human cytomegalovirus (HCMV) is associated with accelerated progression of glioblastomas, aggressive brain tumors with a generally poor prognosis. Here, we showed that US28 increased the malignancy of U251 glioblastoma cells by enhancing signaling mediated by sphingosine-1-phosphate (S1P), a bioactive lipid that stimulates oncogenic pathways in glioblastoma. US28 expression increased the abundance of the key components of the S1P signaling axis, including an enzyme that generates S1P [sphingosine kinase 1 (SK1)], an S1P receptor [S1P receptor 1 (S1P1)], and S1P itself. Enhanced S1P signaling promoted glioblastoma cell proliferation and survival by activating the kinases AKT and CHK1 and the transcriptional regulators cMYC and STAT3 and by increasing the abundance of cancerous inhibitor of PP2A (CIP2A), driving several feed-forward signaling loops. Inhibition of S1P signaling abrogated the proliferative and anti-apoptotic effects of US28. US28 also activated the S1P signaling axis in HCMV-infected cells. This study uncovers central roles for S1P and CIP2A in feed-forward signaling that contributes to the US28-mediated exacerbation of glioblastoma.
Collapse
Affiliation(s)
- Nick D Bergkamp
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeffrey R van Senten
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hendrik J Brink
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten P Bebelman
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuğçe S Çobanoğlu
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Johannes Köster
- Algorithms for Reproducible Bioinformatics, Institute of Human Genetics, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Medical Oncology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gunnar Klau
- Algorithmic Bioinformatics, Department of Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Siderius
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
16
|
Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, cytokines and cytomegalovirus in breast cancer progression. Cancer Cell Int 2023; 23:119. [PMID: 37340387 DOI: 10.1186/s12935-023-02971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Breast cancer is the most common cancer among women. Accumulated evidence over the past decades indicates a very high prevalence of human cytomegalovirus (HCMV) in breast cancer. High-risk HCMV strains possess a direct oncogenic effect displayed by cellular stress, polyploid giant cancer cells (PGCCs) generation, stemness, and epithelial-to-mesenchymal transition (EMT) leading to cancer of aggressive phenotype. Breast cancer development and progression have been regulated by several cytokines where the latter can promote cancer cell survival, help in tumor immune evasion, and initiate the EMT process, thereby resulting in invasion, angiogenesis, and breast cancer metastasis. In the present study, we screened cytokines expression in cytomegalovirus-transformed HMECs (CTH cells) cultures infected with HCMV high-risk strains namely, HCMV-DB and BL, as well as breast cancer biopsies, and analyzed the association between cytokines production, PGCCs count, and HCMV presence in vitro and in vivo. METHODS In CTH cultures and breast cancer biopsies, HCMV load was quantified by real-time qPCR. PGCCs count in CTH cultures and breast cancer biopsies was identified based on cell morphology and hematoxylin and eosin staining, respectively. CTH supernatants were evaluated for the production of TGF-β, IL-6, IL1-β, and IL-10 by ELISA assays. The above-mentioned cytokines expression was assessed in breast cancer biopsies using reverse transcription-qPCR. The correlation analyses were performed using Pearson correlation test. RESULTS The revealed PGCCs/cytokine profile in our in vitro CTH model matched that of the breast cancer biopsies, in vivo. Pronounced cytokine expression and PGCCs count were detected in particularly CTH-DB cultures and basal-like breast cancer biopsies. CONCLUSIONS The analysis of cytokine profiles in PGCCs present mostly in basal-like breast cancer biopsies and derived from CTH cells chronically infected with the high-risk HCMV strains might have the potential to provide novel therapies such as cytokine-based immunotherapy which is a promising field in cancer treatments.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, University of France-Comté, 16 Route de Gray, 25030, Besançon Cedex, France.
- Department of Virology, CHRU Besancon, Besancon, France.
| |
Collapse
|
17
|
Rashid S, Ardeljan A, Frankel LR, Cardeiro M, Kim E, Nagel BM, Takabe K, Rashid O. Human Cytomegalovirus (CMV) Infection Associated With Decreased Risk of Bronchogenic Carcinoma: Understanding How a Previous CMV Infection Leads to an Enhanced Immune Response Against Malignancy. Cureus 2023; 15:e37265. [PMID: 37162767 PMCID: PMC10164441 DOI: 10.7759/cureus.37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Cytomegalovirus (CMV) causes a long-lasting, asymptomatic infection that reportedly has both advantageous and deleterious effects on tumor progression. The purpose of this study was to evaluate the correlation between CMV infection and the incidence of bronchogenic carcinoma. METHODS The study was conducted using a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to identify patients both with and without histories of CMV infection using International Classification of Diseases (ICD-10 and ICD-9) codes. Access to the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research with standard statistical methods used to analyze the data. 14,319 patients were included in both the control and CMV-exposed groups and matched by age range and Charlson Comorbidity Index (CCI) scores. RESULTS The incidence of bronchogenic carcinoma was 1.69% (243/14,319 patients) in the CMV group and 6.08% (871/14,319 patients) in the control group. The difference was statistically significant by a p-value of less than 2.6x10-16 with an odds ratio of 0.26 (95% CI: 0.24-0.30). The two groups were also matched for treatment. Further evaluation of the CMV-specific treatment effects on outcomes was limited due to the insufficient number of treated patients in the control group. CONCLUSION This study found a statistically significant correlation between a prior CMV infection and a reduced incidence of bronchogenic carcinoma. This study demonstrates the need for further investigation into how the tumor microenvironment and host immune system are altered by the presence of a latent CMV infection.
Collapse
Affiliation(s)
- Selena Rashid
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Amalia Ardeljan
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
| | - Lexi R Frankel
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Matthew Cardeiro
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Enoch Kim
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Brittany M Nagel
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, USA
| | - Omar Rashid
- Department of Surgery, Michael and Dianne Bienes Comprehensive Cancer Center, Holy Cross Health, Fort Lauderdale, USA
- Department of Allopathic Medicine, Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
- Department of Medicine, University of Miami, Leonard Miami School of Medicine, Miami, USA
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, USA
- Department of Surgical Oncology, Broward Health, Fort Lauderdale, USA
- Department of Complex General Surgical Oncology and General Surgery, Topline MD Alliance, Fort Lauderdale, USA
- Department of Surgical Oncology, Memorial Healthcare, Pembroke Pines, USA
- Department of Surgical Oncology, Delray Medical Center, Delray, USA
| |
Collapse
|
18
|
Rousselière A, Charreau B. Persistent CD8 T Cell Marks Caused by the HCMV Infection in Seropositive Adults: Prevalence of HLA-E-Reactive CD8 T Cells. Cells 2023; 12:cells12060889. [PMID: 36980230 PMCID: PMC10047643 DOI: 10.3390/cells12060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the frequency and peptide specificity of long-lasting HCMV-specific CD8 T cells in a cohort of 120 cytomegalovirus seropositive (HCMV+) healthy carriers with the aim of deciphering the relative contribution of unconventional HLA-E- versus conventional HLA-A2-specific CD8 T cells to long-term T cell memory expansion in HCMV immunity. The presence of HCMV-specific CD8 T cells was investigated by flow cytometry using five MHC/peptide tetramer complexes (HLA-A2/pp65, HLA-A2/IE1 and three different HLA-E/UL40). Here, we report that 50% of HCMV+ healthy individuals possess HCMV-specific CD8 T cells, representing ≥0.1% of total blood CD8 T cells years post-infection. Around a third (30.8%) of individuals possess HLA-A2-restricted (A2pp65 or A2IE1) and an equal proportion (27.5%) possess an HLA-E/UL40 CD8 T response. Concomitant HLA-E- and HLA-A2-reactive CD8 T cells were frequently found, and VMAPRTLIL peptide was the major target. The frequency of HLA-E/VMAPRTLIL among total blood CD8 T cells was significantly higher than the frequency of HLA-A2pp65 T cells (mean values: 5.9% versus 2.3%, p = 0.0354). HLA-EUL40 CD8 T cells display lower TCR avidity but similar levels of CD3 and CD8 coreceptors. In conclusion, HLA-E-restricted CD8 T cells against the VMAPRTLIL UL40 peptide constitute a predominant subset among long-lasting anti-HCMV CD8 T cells.
Collapse
Affiliation(s)
- Amélie Rousselière
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
| | - Béatrice Charreau
- Centre de Recherche Translationnelle en Transplantation et Immunologie (CR2TI), Nantes Université, CHU Nantes, Inserm, UMR 1064, 44093 Nantes, France
- CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), CEDEX 1, 44093 Nantes, France
- Correspondence:
| |
Collapse
|
19
|
Touma J, Pantalone MR, Rahbar A, Liu Y, Vetvik K, Sauer T, Söderberg-Naucler C, Geisler J. Human Cytomegalovirus Protein Expression Is Correlated with Shorter Overall Survival in Breast Cancer Patients: A Cohort Study. Viruses 2023; 15:v15030732. [PMID: 36992442 PMCID: PMC10054688 DOI: 10.3390/v15030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Human cytomegalovirus (HCMV) is increasingly suggested to be involved in human carcinogenesis and onco-modulation due to its ability to contribute to all hallmarks of cancer. Growing evidence demonstrates a link between HCMV infection and various malignancies, including breast cancer, which incidence and mortality are still on the rise. The etiology of breast cancer remains mostly unclear, leaving 80% of breast cancer cases considered to be sporadic. Identifying novel risk- and prognostic factors for improved breast cancer treatment and increased survival rates, were the objectives of this study. Methods: Automated immunohistochemical staining results for HCMV proteins in 109 breast tumors and lymph node metastasis were correlated with clinical follow-up data (>10 years). Statistical analyses for median Overall Survival (OS) were performed. Results: Survival analyses revealed shorter median OS for patients with HCMV-IE positive tumors of 118.4 months compared to 202.4 months for HCMV-IE negative tumors. A higher number of HCMV-LA positive cells in the tumors was also associated with a shorter OS in patients (146.2 months vs. 151.5 months). Conclusions: Our findings suggest a link between HCMV-infections and breast cancer prognosis, which paves the way for potential novel clinical intervention and targeted therapy that may prolong the overall survival of selected patients with breast cancer.
Collapse
Affiliation(s)
- Joel Touma
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Yan Liu
- Department of Clinical Molecular Biology, University of Oslo, 0315 Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Pathology, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and Immunology, MediCity Research Laboratory, Turku University, 20520 Turku, Finland
- Correspondence: (C.S.-N.); (J.G.); Tel.: +46-8-5177-9816 (C.S.-N.); +47-9118-7447 (J.G.)
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Correspondence: (C.S.-N.); (J.G.); Tel.: +46-8-5177-9816 (C.S.-N.); +47-9118-7447 (J.G.)
| |
Collapse
|
20
|
Eladwy RA, Vu HT, Shah R, Li CG, Chang D, Bhuyan DJ. The Fight against the Carcinogenic Epstein-Barr Virus: Gut Microbiota, Natural Medicines, and Beyond. Int J Mol Sci 2023; 24:1716. [PMID: 36675232 PMCID: PMC9862477 DOI: 10.3390/ijms24021716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Despite recent advances in oncology, cancer has remained an enormous global health burden, accounting for about 10 million deaths in 2020. A third of the cancer cases in developing counties are caused by microbial infections such as human papillomavirus (HPV), Epstein-Barr Virus (EBV), and hepatitis B and C viruses. EBV, a member of the human gamma herpesvirus family, is a double-stranded DNA virus and the primary cause of infectious mononucleosis. Most EBV infections cause no long-term complications. However, it was reported that EBV infection is responsible for around 200,000 malignancies worldwide every year. Currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection. Recently, the gut microbiota has been investigated for its pivotal roles in pathogen protection and regulating metabolic, endocrine, and immune functions. Several studies have investigated the efficacy of antiviral agents, gut microbial metabolites, and natural products against EBV infection. In this review, we aim to summarise and analyse the reported molecular mechanistic and clinical studies on the activities of gut microbial metabolites and natural medicines against carcinogenic viruses, with a particular emphasis on EBV. Gut microbial metabolites such as short-chain fatty acids were reported to activate the EBV lytic cycle, while bacteriocins, produced by Enterococcus durans strains, have shown antiviral properties. Furthermore, several natural products and dietary bioactive compounds, such as curcumin, epigallocatechin gallate, resveratrol, moronic acid, and andrographolide, have shown antiviral activity against EBV. In this review, we proposed several exciting future directions for research on carcinogenic viruses.
Collapse
Affiliation(s)
- Radwa A. Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hang Thi Vu
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Ravi Shah
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
21
|
Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci 2022; 23:ijms232213891. [PMID: 36430369 PMCID: PMC9693824 DOI: 10.3390/ijms232213891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
22
|
Prognosis of Human Cytomegalovirus in Cancer Patients Undergoing Chemotherapeutic Treatment in Egypt and an Emergent Prevalence of Glycoprotein B-5. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The human cytomegalovirus (HCMV) is a global opportunistic β-herpes virus causing severe diseases in immune-compromised patients, such as malignant tumor patients, especially those undergoing chemotherapeutic treatment. This study aimed to determine the prevalence of HCMV-DNA in chemotherapeutic treatment naive cancer patients, and after chemotherapy, to compare between conventional nested PCR and ELISA techniques for the detection of HCMV, and to detect glycoprotein B genotypes. Plasma and serum samples before and after three chemotherapy cycles were collected from 49 chemotherapy-naive cancer patients. DNA was extracted from plasma samples using QIAamp® DNA Mini kit. HCMV-DNA was detected using a nested PCR technique. Multiplex nested PCR was used for HCMV-glycoprotein B (gB) genotyping. HCMV-IgG and -IgM were detected using ELISA technique. Thirty one (63.3 %) of the 49 plasma samples of the chemotherapy-naïve cancer patients were positive for HCMV-DNA; 21 of which remained positive after chemotherapy. However, 18 samples were negative of which 16 became positive after chemotherapy. gB-5 was the most common glycoprotein genotype detected (80.6 %), followed by gB-1, gB-3, gB-4, and gB-2. HCMV IgG was detected in the 49 serum samples of chemotherapy-naïve patients, and after exposure to chemotherapy. HCMV-DNA is commonly identified in cancer patients. Its detection after chemotherapy exposure may suggest HCMV reactivation. The most common genotype detected in cancer patients in Egypt is gB-5 in contrast to earlier research. IgG was detected in all patients. This indicates that HCMV is endemic in Egypt, necessitating the development of public awareness campaigns about HCMV infection and preventive strategies.
Collapse
|
23
|
Janković M, Knežević A, Todorović M, Đunić I, Mihaljević B, Soldatović I, Protić J, Miković N, Stoiljković V, Jovanović T. Cytomegalovirus infection may be oncoprotective against neoplasms of B-lymphocyte lineage: single-institution experience and survey of global evidence. Virol J 2022; 19:155. [PMID: 36171605 PMCID: PMC9520857 DOI: 10.1186/s12985-022-01884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although cytomegalovirus (CMV) is not considered tumorigenic, there is evidence for its oncomodulatory effects and association with hematological neoplasms. Conversely, a number of experimental and clinical studies suggest its putative anti-tumour effect. We investigated the potential connection between chronic CMV infection in patients with B-lymphocyte (B-cell) malignancies in a retrospective single-center study and extracted relevant data on CMV prevalences and the incidences of B-cell cancers the world over. Methods In the clinical single-center study, prevalence of chronic CMV infection was compared between patients with B-cell leukemia/lymphoma and the healthy controls. Also, global data on CMV seroprevalences and the corresponding country-specific incidences of B- lineage neoplasms worldwide were investigated for potential correlations. Results Significantly higher CMV seropositivity was observed in control subjects than in patients with B-cell malignancies (p = 0.035). Moreover, an unexpected seroepidemiological evidence of highly significant inverse relationship between country-specific CMV prevalence and the annual incidence of B-cell neoplasms was noted across the populations worldwide (ρ = −0.625, p < 0.001). Conclusions We try to draw attention to an unreported interplay between CMV infection and B-cell lymphomagenesis in adults. A large-scale survey across > 70 countries disclosed a link between CMV and B-cell neoplasms. Our evidence hints at an antagonistic effect of chronic CMV infection against B-lymphoproliferation.
Collapse
Affiliation(s)
- Marko Janković
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia.
| | - Aleksandra Knežević
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia
| | - Milena Todorović
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Irena Đunić
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Biljana Mihaljević
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Ivan Soldatović
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, dr Subotića 15, Belgrade, 11000, Republic of Serbia
| | - Jelena Protić
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Nevenka Miković
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Tanja Jovanović
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia
| |
Collapse
|
24
|
Yamashina T, Shimatani M, Takeo M, Sasaki K, Orino M, Saito N, Matsumoto H, Kasai T, Kano M, Horitani S, Sumimoto K, Mitsuyama T, Yuba T, Seki T, Naganuma M. Viral Infection in Esophageal, Gastric, and Colorectal Cancer. Healthcare (Basel) 2022; 10:healthcare10091626. [PMID: 36141238 PMCID: PMC9498567 DOI: 10.3390/healthcare10091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
The human gastrointestinal tract, which constitutes the digestive system, contains a large number of virus particles that maintain organizational homeostasis and health. Conversely, viral pathogens have also attracted attention for their involvement in the pathogenesis of certain cancers, including gastrointestinal cancers. To aid prevention and treatment of these cancers, the relevance of gastrointestinal viral factors as potential risk factors needs to be carefully investigated. This review summarizes and discusses the available literature on the relationship between the development of esophageal, gastric, and colorectal cancers and their corresponding viruses. This review reveals that research on the association between colorectal cancer and viruses, in particular, is still in its infancy compared to the association between HPV and esophageal cancer and between EBV and gastric cancer.
Collapse
Affiliation(s)
- Takeshi Yamashina
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Masaaki Shimatani
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
- Correspondence: ; Tel.: +81-6-6992-1001; Fax: +81-6-6993-9677
| | - Masahiro Takeo
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Kotaro Sasaki
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Masahiro Orino
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Natsuko Saito
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Hironao Matsumoto
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Takeshi Kasai
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Masataka Kano
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Shunsuke Horitani
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Kimi Sumimoto
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Toshiyuki Mitsuyama
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Takafumi Yuba
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Toshihito Seki
- Division of Liver Disease Center, Kansai Medical University Medical Center, Moriguchi 570-8507, Osaka, Japan
| | - Makoto Naganuma
- The Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
25
|
Coghill AE, Kim Y, Hodge JM, Bender N, Smith-Warner SA, Teras LR, Grimsrud TK, Waterboer T, Egan KM. Prospective investigation of herpesvirus infection and risk of glioma. Int J Cancer 2022; 151:222-228. [PMID: 35225352 PMCID: PMC10777426 DOI: 10.1002/ijc.33987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/12/2022]
Abstract
Glioma is an aggressive neoplasm of the brain with poorly understood etiology. A limited number of pathogens have been examined as glioma risk factors, but data from prospective studies with infection status determined before disease are lacking. Herpesviruses comprise a large family of DNA viruses that infect humans and are linked to a range of chronic diseases. We conducted a prospective evaluation of the association between antibody to six human herpesviruses and glioma risk in the Janus Serum Bank (Janus) and the Cancer Prevention Study-II (CPS-II). In Janus and CPS-II, the risk for glioma was not related to seroprevalence of herpes simplex virus-1, varicella zoster virus, or human herpes viruses 6A or 6B. In Janus, seropositivity to either the Epstein Barr virus (EBV) EA[D] or VCAp18 antigen was associated with a lower risk of glioma (ORs: 0.55 [95% CI 0.32-0.94] and 0.57 [95% CI 0.38-0.85]). This inverse association was consistent by histologic subtype and was observed for gliomas diagnosed up to two decades following antibody measurement. In Janus, seropositivity to at least one of three examined cytomegalovirus (CMV) antigens (pp150, pp52, pp28) was associated with an increased risk of nonglioblastoma (OR: 2.08 [95% CI 1.07-4.03]). This association was limited to tumors diagnosed within 12 years of antibody measurement. In summary, we report evidence of an inverse association between exposure to EBV and glioma. We further report that CMV exposure may be related to a higher likelihood of the nonglioblastoma subtype.
Collapse
Affiliation(s)
- Anna E. Coghill
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Youngchul Kim
- Biostatistics and Bioinformatics Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - James M. Hodge
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Noemi Bender
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie A. Smith-Warner
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Tom K. Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathleen M. Egan
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
26
|
Ahn J, Shin C, Kim YS, Park JS, Jeun SS, Ahn S. Cytomegalovirus-Specific Immunotherapy for Glioblastoma Treatments. Brain Tumor Res Treat 2022; 10:135-143. [PMID: 35929110 PMCID: PMC9353163 DOI: 10.14791/btrt.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, numerous studies have investigated the presence of human cytomegalovirus (CMV) within glioblastoma or gliomas; however, the results are severely conflicting. While a few researchers have suggested the potential benefits of cytotoxic T lymphocyte or dendritic cell-based vaccines for recurrent or newly diagnosed glioblastoma patients, several studies did not at all agree with the existence of CMV in glioblastoma cells. In this review, we summarized the conflicting results and issues about the detection of CMV in glioblastoma or glioma patients. We also provided the clinical data of published and unpublished clinical trials using CMV-specific immunotherapy for glioblastomas.
Collapse
Affiliation(s)
- Jaehyun Ahn
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Christopher Shin
- College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeo Song Kim
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
27
|
Chu P, Cadogan SL, Warren-Gash C. Antibodies to Human Herpesviruses and Rate of Incident Cardiovascular Events and All-Cause Mortality in the UK Biobank Infectious Disease Pilot Study. Open Forum Infect Dis 2022; 9:ofac294. [PMID: 35873304 PMCID: PMC9301583 DOI: 10.1093/ofid/ofac294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Background Associations between human herpesviruses (HHVs) and cardiovascular disease/mortality have been reported, but evidence is inconsistent. We investigated associations between 3 common herpesviruses and (1) incident stroke or myocardial infarction (MI) and (2) all-cause mortality. Methods We included participants from the UK Biobank Infectious Disease pilot study with valid serum antibody (IgG) measurements taken at cohort entry (2006-2010) for herpes simplex virus type 1 (HSV1), varicella zoster virus (VZV), and cytomegalovirus (CMV). Linked hospital and mortality records up to December 30 2019 provided information on rates of (1) incident first stroke or MI and (2) all-cause mortality. Hazard ratios (HRs) from Cox proportional hazards regression models were used to assess relationships between (1) HHV seropositivity, (2) HHV titer and incident stroke/MI, and death outcomes. Fully adjusted models accounted for sociodemographic information (age, sex, ethnicity, education, deprivation quintile, birthplace, population density), baseline comorbidities (including diabetes and hypertension), smoking status, body mass index, and serum cholesterol. Results Of 9429 study participants (56% female, 95% White, median age 58 years), 41% were seropositive for all 3 HHVs. Human herpesvirus seropositivity was not associated with stroke/MI (fully adjusted HRs and 95% confidence intervals [CIs]: HSV1 = 0.93 [CI, 0.72-1.22], VZV = 0.78 [CI, 0.51-1.20], CMV = 0.91 [CI, 0.71-1.16]) or all-cause mortality (HSV1 = 1.21 [CI, 1.00-1.47], VZV = 0.79 [CI, 0.58-1.07], CMV = 0.90 [CI, 0.76-1.06]). Human herpesvirus titers were not associated with outcomes. Conclusions In this mostly White UK Biobank subset, neither HHV seropositivity nor titers were associated with stroke/MI or all-cause mortality.
Collapse
Affiliation(s)
- Petrina Chu
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Sharon Louise Cadogan
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Charlotte Warren-Gash
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| |
Collapse
|
28
|
Evaluation of the Mechanism of Jiedu Huazhuo Quyu Formula in Treating Wilson's Disease-Associated Liver Fibrosis by Network Pharmacology Analysis and Molecular Dynamics Simulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9363131. [PMID: 35707473 PMCID: PMC9192323 DOI: 10.1155/2022/9363131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
The Jiedu Huazhuo Quyu formula (JHQ) shows significant beneficial effects against liver fibrosis caused by Wilson's disease (WD). Hence, this study aimed to clarify the mechanisms of the JHQ treatment in WD-associated liver fibrosis. First, we collected 103 active compounds and 527 related targets of JHQ and 1187 targets related to WD-associated liver fibrosis from multiple databases. Next, 113 overlapping genes (OGEs) were obtained. Then, we built a protein-protein interaction (PPI) network with Cytoscape 3.7.2 software and performed the Gene Ontology (GO) term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses with GENE DENOVO online sites. Furthermore, module analysis was performed, and the core target genes in the JHQ treatment of WD-associated liver fibrosis were obtained. Pathway and functional enrichment analyses, molecular docking studies, molecular dynamic (MD) simulation, and Western blot (WB) were then performed. The results indicated that 8 key active compounds including quercetin, luteolin, and obacunone in JHQ might affect the 6 core proteins including CXCL8, MAPK1, and AKT1 and 107 related signaling pathways including EGFR tyrosine kinase inhibitor resistance, Kaposi sarcoma-associated herpesvirus infection, and human cytomegalovirus infection signaling pathways to exhibit curative effects on WD-associated liver fibrosis. Mechanistically, JHQ might inhibit liver inflammatory processes and vascular hyperplasia, regulate the cell cycle, and suppress both the activation and proliferation of hepatic stellate cells (HSCs). This study provides novel insights for researchers to systematically explore the mechanism of JHQ in treating WD-associated liver fibrosis.
Collapse
|
29
|
Classon J, Zamboni M, Engblom C, Alkass K, Mantovani G, Pou C, Nkulikiyimfura D, Brodin P, Druid H, Mold J, Frisén J. Prostate cancer disease recurrence after radical prostatectomy is associated with HLA type and local cytomegalovirus immunity. Mol Oncol 2022; 16:3452-3464. [PMID: 35712787 PMCID: PMC9533687 DOI: 10.1002/1878-0261.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer is a heterogeneous disease with a need for new prognostic biomarkers. Human leukocyte antigen (HLA) genes are highly polymorphic genes central to antigen presentation to T‐cells. Two alleles, HLA‐A*02:01 and HLA‐A*24:02, have been associated with prognosis in patients diagnosed with de novo metastatic prostate cancer. We leveraged the next‐generation sequenced cohorts CPC‐GENE and TCGA‐PRAD to examine HLA alleles, antiviral T‐cell receptors and prostate cancer disease recurrence after prostatectomy. Carrying HLA‐A*02:01 (111/229; 48% of patients) was independently associated with disease recurrence in patients with low‐intermediate risk prostate cancer. HLA‐A*11 (carried by 42/441; 10% of patients) was independently associated with rapid disease recurrence in patients with high‐risk prostate cancer. Moreover, HLA‐A*02:01 carriers in which anti‐cytomegalovirus T‐cell receptors (CMV‐TCR) were identified in tumors (13/144; 10% of all patients in the cohort) had a higher risk of disease recurrence than CMV‐TCR‐negative patients. These findings suggest that HLA‐type and CMV immunity may be valuable biomarkers for prostate cancer progression.
Collapse
Affiliation(s)
- Johanna Classon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Mantovani
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dieudonné Nkulikiyimfura
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | - Jeff Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Nehme Z, Pasquereau S, Haidar Ahmad S, El Baba R, Herbein G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine 2022; 80:104056. [PMID: 35596973 PMCID: PMC9121245 DOI: 10.1016/j.ebiom.2022.104056] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023] Open
Abstract
Background Human cytomegalovirus (HCMV) infection has been actively implicated in complex neoplastic processes. Beyond oncomodulation, the molecular mechanisms that might underlie HCMV-induced oncogenesis are being extensively studied. Polycomb repressive complex 2 (PRC2) proteins, in particular enhancer of zeste homolog 2 (EZH2) are associated with cancer progression. Nevertheless, little is known about EZH2 activation in the context of HCMV infection and breast oncogenesis. Methods Herein, we identified EZH2 as a downstream target for HCMV-induced Myc upregulation upon acute and chronic infection with high-risk strains using a human mammary epithelial model. Findings We detected polyploidy and CMV-transformed HMECs (CTH) cells harboring HCMV and dynamically undergoing the giant cells cycle. Acquisition of embryonic stemness markers positively correlated with EZH2 and Myc expression. EZH2 inhibitors curtail sustained CTH cells’ malignant phenotype. Besides harboring polyploid giant cancer cells (PGCCs), tumorigenic breast biopsies were characterized by an enhanced EZH2 and Myc expression, with a strong positive correlation between EZH2 and Myc expression, and between PGCC count and EZH2/Myc expression in the presence of HCMV. Further, we isolated two HCMV strains from EZH2HighMycHigh basal-like tumors which replicate in MRC5 cells and transform HMECs toward CTH cells after acute infection. Interpretation Our data establish a potential link between HCMV-induced Myc activation, the subsequent EZH2 upregulation, and polyploidy induction. These data support the proposed tumorigenesis properties of EZH2/Myc, and allow the isolation of two oncogenic HCMV strains from EZH2HighMycHigh basal breast tumors while identifying EZH2 as a potential therapeutic target in the management of breast cancer, particularly upon HCMV infection. Funding This work was supported by grants from the University of Franche-Comté (UFC) (CR3300), the Région Franche-Comté (2021-Y-08292 and 2021-Y-08290) and the Ligue contre le Cancer (CR3304) to Georges Herbein. Zeina Nehme is a recipient of a doctoral scholarship from the municipality of Habbouch. Sandy Haidar Ahmad is recipient of a doctoral scholarship from Lebanese municipality. Ranim El Baba is a recipient of a doctoral scholarship from Hariri foundation for sustainable human development.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sébastien Pasquereau
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Sandy Haidar Ahmad
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Ranim El Baba
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France
| | - Georges Herbein
- Department Pathogens and Inflammation-EPILAB, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 16 route de Gray, Besançon F-25030, France; Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
31
|
Human cytomegalovirus-induced immune regulation is correlated with poor prognosis in patients with colorectal cancer. Clin Exp Med 2022; 23:427-436. [PMID: 35437646 DOI: 10.1007/s10238-022-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/23/2022] [Indexed: 11/03/2022]
Abstract
Evidence suggests that human cytomegalovirus (HCMV) infection may be implicated in the progression of colorectal cancer (CRC). However, the correlation between HCMV infection and survival outcomes in patients with CRC remains unclear. Here, we constructed a flow algorithm to identify HCMV sequences based on the RNA-seq data of patients with CRC derived from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The patients' clinical information matrix was used to calculate the Euclidean distance to filter out suitable patients not infected with HCMV, combined with patients' survival outcomes, to reveal how HCMV infection is involved in CRC progression. HCMV infection is widespread in patients with CRC, and the prevalence of HCMV infection ranges from 10 to 36% in four independent CRC datasets, with infection being concentrated in carcinoma tissue rather than in normal tissue. In addition, HCMV-positive patients had a poor survival prognosis, with three HCMV genes, UL82, UL42, and UL117, associated with poor patient survival outcomes. Most importantly, we suppose that the regulation of immune function by HCMV may be key to the poor prognosis of patients with CRC. We found that HCMV infection was associated with poor prognosis in CRC patients and identified three prognosis-associated HCMV genes. The regulation of immune function caused by HCMV infection was the key factor, while HCMV-positive patients with CRC mostly presented with a state of immunosuppression. This may provide new ideas for the personalized treatment of patients with CRC, especially with respect to immunotherapy.
Collapse
|
32
|
Human Cytomegalovirus Seropositivity and Viral DNA in Breast Tumors Are Associated with Poor Patient Prognosis. Cancers (Basel) 2022; 14:cancers14051148. [PMID: 35267456 PMCID: PMC8909033 DOI: 10.3390/cancers14051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Human cytomegalovirus (HCMV) infects 40–70% of adult populations in developed countries and this is thought to be involved in breast cancer progression; however, reports of detection of the viral genome in breast tumors ranges from 0–100%. We optimized a method that is both sensitive and specific to detect HCMV DNA in tissues from Canadian breast cancer patients. Only ~42% of HCMV-seropositive patients expressed viral DNA in their breast tumors. Viral transcription was not detected in any HCMV-infected breast tumors, indicating a latent infection; however, HCMV seropositivity and the presence of latent infections in breast tumors were independently, and in combination, associated with increased metastasis. HCMV DNA-positive tumors were also associated with lower relapse-free survival. Therefore, HCMV infection status should be accounted for during the monitoring and treatment of breast cancer patients. Prevention or reducing the effects of HCMV infection could decrease morbidity and mortality from metastatic disease. Abstract Human cytomegalovirus (HCMV) infects 40–70% of adults in developed countries. Detection of HCMV DNA and/or proteins in breast tumors varies considerably, ranging from 0–100%. In this study, nested PCR to detect HCMV glycoprotein B (gB) DNA in breast tumors was shown to be sensitive and specific in contrast to the detection of DNA for immediate early genes. HCMV gB DNA was detected in 18.4% of 136 breast tumors while 62.8% of 94 breast cancer patients were seropositive for HCMV. mRNA for the HCMV immediate early gene was not detected in any sample, suggesting viral latency in breast tumors. HCMV seropositivity was positively correlated with age, body mass index and menopause. Patients who were HCMV seropositive or had HCMV DNA in their tumors were 5.61 (CI 1.77–15.67, p = 0.003) or 5.27 (CI 1.09–28.75, p = 0.039) times more likely to develop Stage IV metastatic tumors, respectively. Patients with HCMV DNA in tumors experienced reduced relapse-free survival (p = 0.042). Being both seropositive with HCMV DNA-positive tumors was associated with vascular involvement and metastasis. We conclude that determining the seropositivity for HCMV and detection of HCMV gB DNA in the breast tumors could identify breast cancer patients more likely to develop metastatic cancer and warrant special treatment.
Collapse
|
33
|
Hossain SMM, Khatun L, Ray S, Mukhopadhyay A. Pan-cancer classification by regularized multi-task learning. Sci Rep 2021; 11:24252. [PMID: 34930937 PMCID: PMC8688544 DOI: 10.1038/s41598-021-03554-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023] Open
Abstract
Classifying pan-cancer samples using gene expression patterns is a crucial challenge for the accurate diagnosis and treatment of cancer patients. Machine learning algorithms have been considered proven tools to perform downstream analysis and capture the deviations in gene expression patterns across diversified diseases. In our present work, we have developed PC-RMTL, a pan-cancer classification model using regularized multi-task learning (RMTL) for classifying 21 cancer types and adjacent normal samples using RNASeq data obtained from TCGA. PC-RMTL is observed to outperform when compared with five state-of-the-art classification algorithms, viz. SVM with the linear kernel (SVM-Lin), SVM with radial basis function kernel (SVM-RBF), random forest (RF), k-nearest neighbours (kNN), and decision trees (DT). The PC-RMTL achieves 96.07% accuracy and 95.80% MCC score for a completely unknown independent test set. The only method that appears as the real competitor is SVM-Lin, which nearly equalizes the accuracy in prediction of PC-RMTL but only when complete feature sets are provided for training; otherwise, PC-RMTL outperformed all other classification models. To the best of our knowledge, this is a significant improvement over all the existing works in pan-cancer classification as they have failed to classify many cancer types from one another reliably. We have also compared gene expression patterns of the top discriminating genes across the cancers and performed their functional enrichment analysis that uncovers several interesting facts in distinguishing pan-cancer samples.
Collapse
Affiliation(s)
| | - Lutfunnesa Khatun
- Computer Science and Engineering, University of Kalyani, Kalyani, 741235, India
| | - Sumanta Ray
- Computer Science and Engineering, Aliah University, Kolkata, 700160, India.
| | - Anirban Mukhopadhyay
- Computer Science and Engineering, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
34
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
35
|
Smibert OC, Allison CC, Doerflinger M, Pellegrini M, Rischin D, Thai A, Slavin MA, Kotton CN. Pseudotumor presentation of CMV disease: Diagnostic dilemma and association with immunomodulating therapy. Transpl Infect Dis 2021; 23:e13531. [PMID: 33249726 DOI: 10.1111/tid.13531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/23/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Cytomegalovirus (CMV) is a significant cause of morbidity and mortality in the immunocompromised host. Atypical presentations which include pseudotumors or "cancer mimics" have been described. The etiology of these lesions remains unclear. The authors describe two previously unpublished cases that have arisen in the context of newer immunomodulating therapy and review the existing non-HIV-associated CMV pseudotumors described in the literature.
Collapse
Affiliation(s)
- Olivia C Smibert
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Danny Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Vic., Australia
| | - Alesha Thai
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Vic., Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Center, Melbourne, Vic., Australia
| | - Camille N Kotton
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
36
|
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan ST. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses 2021; 13:v13061014. [PMID: 34071559 PMCID: PMC8229678 DOI: 10.3390/v13061014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human herpesviruses are known to induce a broad spectrum of diseases, ranging from common cold sores to cancer, and infections with some types of these viruses, known as human oncogenic herpesviruses (HOHVs), can cause cancer. Challenges with viral latency, recurrent infections, and drug resistance have generated the need for finding new drugs with the ability to overcome these barriers. Berberine (BBR), a naturally occurring alkaloid, is known for its multiple biological activities, including antiviral and anticancer effects. This paper comprehensively compiles all studies that have featured anti-HOHV properties of BBR along with promising preventive effects against the associated cancers. The mechanisms and pathways induced by BBR via targeting the herpesvirus life cycle and the pathogenesis of the linked malignancies are reviewed. Approaches to enhance the therapeutic efficacy of BBR and its use in clinical practice as an anti-herpesvirus drug are also discussed.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic;
| | - Kateřina Berchová-Bímová
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: ; Tel.: +420-774-630-604
| |
Collapse
|
37
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
38
|
Productive Infection of Human Breast Cancer Cell Lines with Human Cytomegalovirus (HCMV). Pathogens 2021; 10:pathogens10060641. [PMID: 34070980 PMCID: PMC8224681 DOI: 10.3390/pathogens10060641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of cancer deaths among women worldwide. There are many known risk factors for breast cancer, but the role of infectious disease remains unclear. Human cytomegalovirus (HCMV) is a widespread herpesvirus that usually causes little disease. Because HCMV has been detected in breast tumor biopsy samples and is frequently transmitted via human breast milk, we investigated HCMV replication in breast tumor cells. Four human breast cancer cell lines with different expression profiles for the key diagnostic markers of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), were infected with a bacterial artificial chromosome-derived HCMV clinical strain TB40/E tagged with green fluorescent protein (GFP). Fluorescence microscopy confirmed that all four breast cancer cell lines supported virus entry. RNA was isolated from infected cells and the expression of immediate early (UL123), early (UL54), and late (UL111A) genes was confirmed using PCR. Viral proteins were detected by immunoblotting, and viral progeny were produced during the infection of breast tumor cells, as evidenced by subsequent infection of fibroblasts with culture supernatants. These results demonstrate that breast tumor cells support productive HCMV infection and could indicate that HCMV replication may play a role in breast cancer progression.
Collapse
|
39
|
Detection of Human Cytomegalovirus Proteins in Paraffin-Embedded Breast Cancer Tissue Specimens-A Novel, Automated Immunohistochemical Staining Protocol. Microorganisms 2021; 9:microorganisms9051059. [PMID: 34068349 PMCID: PMC8153275 DOI: 10.3390/microorganisms9051059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence supports a significant association between human cytomegalovirus (HCMV) and human malignancies, suggesting HCMV as a human oncomodulatory virus. HCMV gene products are found in >90% of breast cancer tumors and seem to be correlated with more aggressive disease. The definitive diagnosis of HCMV relies on identification of virus inclusions and/or viral proteins by different techniques including immunohistochemical staining. In order to reduce biases and improve clinical value of HCMV diagnostics in oncological pathology, automation of the procedure is needed and this was the purpose of this study. Tumor specimens from 115 patients treated for primary breast cancer at Akershus University Hospital in Norway were available for the validation of the staining method in this retrospective study. We demonstrate that our method is highly sensitive and delivers excellent reproducibility for staining of HCMV late antigen (LA), which makes this method useful for future routine diagnostics and scientific applications.
Collapse
|
40
|
Chen C, Chen S, Han Z, Xie W, Zhang T, Mao C, Zhang L, Sun X, Kwok T, Shen X, Xue X. Patients with Helicobacter pylori-positive gastric cancer with human cytomegalovirus infection have a low tendency of advanced lymphatic metastasis in a Chinese population. Oncol Lett 2021; 21:402. [PMID: 33777225 PMCID: PMC7988662 DOI: 10.3892/ol.2021.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Recognized as a group I carcinogen for gastric cancer (GC) and a factor involved in the development of GC, Helicobacter pylori serves a major part in GC research. However, most studies have focused on H. pylori itself, ignoring the complicated pathogenic microbiological environment of GC and neglecting the synergistic or antagonistic effects of H. pylori with other pathogenic microorganisms. Increasing evidence has revealed that the human cytomegalovirus (HCMV) is present in several types of tumors and serves an important role in the neoplastic process of certain human malignant tumors, including GC. The aim of the present study was to explore the role of HCMV and H. pylori co-infection in GC. HCMV and H. pylori infection was analyzed in paired gastric tumor and peri-tumoral tissues from 134 (98 male and 36 female) patients using PCR. The results revealed that a total of 74 (55.2%) patients had H. pylori infection, 58 patients (43.3%) had HCMV infection, and 34 (25.4%) patients had both HCMV and H. pylori infection. Univariate and multivariate analyses demonstrated that H. pylori infection was independently associated with advanced lymphatic metastasis [P=0.007; odds ratio (OR)=3.51]. Furthermore, compared with HCMV-/H. pylori -, neither HCMV+/H. pylori - nor HCMV+/H. pylori + were associated with metastasis, but HCMV-/H. pylori + co-infection status was an independent risk factor for advanced lymphatic metastasis (P=0.005; OR=6.00). In conclusion, GC co-infected with HCMV and H. pylori exhibited a low tendency of lymph node metastasis. HCMV may interact with H. pylori to inhibit the process of lymphatic metastasis, and the mechanism requires further investigation.
Collapse
Affiliation(s)
- Chao Chen
- Department of Oncology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Sian Chen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zheng Han
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wangkai Xie
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Teming Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chenchen Mao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liang Zhang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangwei Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Terry Kwok
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- Cancer Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Xian Shen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
41
|
Perera MR, Wills MR, Sinclair JH. HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses 2021; 13:817. [PMID: 34062863 PMCID: PMC8147263 DOI: 10.3390/v13050817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. In healthy people, primary infection is generally asymptomatic, and the virus can go on to establish lifelong latency in cells of the myeloid lineage. However, HCMV often causes severe disease in the immunosuppressed: transplant recipients and people living with AIDS, and also in the immunonaive foetus. At present, there are several antiviral drugs licensed to control HCMV disease. However, these are all faced with problems of poor bioavailability, toxicity and rapidly emerging viral resistance. Furthermore, none of them are capable of fully clearing the virus from the host, as they do not target latent infection. Consequently, reactivation from latency is a significant source of disease, and there remains an unmet need for treatments that also target latent infection. This review briefly summarises the most common HCMV antivirals used in clinic at present and discusses current research into targeting the latent HCMV reservoir.
Collapse
Affiliation(s)
| | | | - John H. Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (M.R.P.); (M.R.W.)
| |
Collapse
|
42
|
Ye S, Hu Y, Chen C, Chen S, Tong X, Zhu H, Deng B, Hu X, Sun X, Chen X, Shi X, Gu R, Xie W, Guo G, Xing D, Shen X, Xue X, Shen S. The Human Cytomegalovirus US31 Gene Predicts Favorable Survival and Regulates the Tumor Microenvironment in Gastric Cancer. Front Oncol 2021; 11:614925. [PMID: 33959494 PMCID: PMC8093799 DOI: 10.3389/fonc.2021.614925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/09/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an oncogenic virus associated with tumorigenesis. Our previous study revealed that the HCMV US31 gene interacted with NF-κB2 and mediated inflammation through macrophages. However, there are few reports on the role of US31 in gastric cancer (GC). The aim of this study was to investigate the expression of the US31 gene in GC tissue and assess its role in the occurrence and development of GC. US31 expression in 573 cancer tissues was analyzed using immunohistochemistry. Results showed that US31 was significantly associated with tumor size (P = 0.005) and distant metastasis (P < 0.001). Higher US31 expression indicated better overall survival in GC patients. Overexpression of US31 significantly inhibited the proliferation, migration, and invasion of GC cells in vitro (P < 0.05). Furthermore, expression levels of CD4, CD66b, and CD166 were positively correlated with US31, suggesting that it was involved in regulating the tumor immune microenvironment of GC. RNA sequencing, along with quantitative real-time polymerase chain reaction, confirmed that the expression of US31 promoted immune activation and secretion of inflammatory cytokines. Overall, US31 inhibited the malignant phenotype and regulated tumor immune cell infiltration in GC; these results suggest that US31 could be a potential prognostic factor for GC and may open the door for a new immunotherapy strategy.
Collapse
Affiliation(s)
- Sisi Ye
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Precision Medical Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sian Chen
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Huanbo Zhu
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Deng
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xianjing Hu
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangwei Sun
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiadong Chen
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Ruihong Gu
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wangkai Xie
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Dong Xing
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China.,Department of Gastrointestinal Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shurong Shen
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
43
|
Murakami D, Harada H, Yamato M, Amano Y. Cytomegalovirus-associated esophagitis on early esophageal cancer in immunocompetent host: a case report. Gut Pathog 2021; 13:24. [PMID: 33863376 PMCID: PMC8051061 DOI: 10.1186/s13099-021-00418-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background Cytomegalovirus (CMV)-associated gastrointestinal diseases usually occur in immunocompromised patients; however, few cases has also been described in healthy hosts despite still unclear pathological mechanisms. CMV esophagitis causes various lesions, such as erythematous mucosa, erosions, and ulcers, although such inflammatory changes can appear in superficial esophageal cancers or in surrounding areas. CMV-associated esophagitis has been also reported in cancer patients, but typically in those with advanced and/or terminal stage cancers secondary to chemoradiotherapy-induced immunosuppression or the physiologic demands of the malignancy itself. To our best knowledge, we firstly report on an immunocompetent patient subject to endoscopic submucosal dissection (ESD) for early esophageal cancer complicated with CMV infection. Case presentation A 77-year-old man underwent esophagogastroduodenoscopy (EGD) at a local clinic. EGD revealed a lugol-unstained reddish lesion with whitish exudates in the middle-distal esophagus. Histological evaluation of lesion biopsy revealed atypical squamous epithelium with CMV-positive granulation tissue and aggregates of macrophages, prompting referral for further examination and treatment. Magnifying endoscopy with narrow-band imaging showed an erosive lesion with white moss in a well-demarcated brownish area with irregular mesh-like microvessels. ESD was performed for diagnosis and treatment. Histopathological examination of the resected specimen revealed superficial, moderately differentiated squamous cell carcinoma (SCC) with multiple lymphatic infiltration, and few CMV-positive cells were found in the erosive part of the SCC. Interestingly, he had no underlying conditions to predispose to CMV infection and no risk factors for esophageal cancer, other than gender and age. He received neither steroids for stricture prevention nor antiviral agents post-EGD and 4-month follow-up was negative for esophagitis. Conclusions This is the first report of a case of CMV esophagitis superimposed on early esophageal cancer in an immunocompetent host and might provide valuable information for possible adverse effects of steroid administration during ESD procedures, despite their common use for prevention of post-ESD stricture.
Collapse
Affiliation(s)
- Daisuke Murakami
- Department of Gastroenterology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan. .,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. .,Department of Gastroenterology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba, 276-8524, Japan.
| | - Hideaki Harada
- Department of Gastroenterology, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuji Amano
- Department of Endoscopy, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan
| |
Collapse
|
44
|
Haidar Ahmad S, Al Moussawi F, El Baba R, Nehme Z, Pasquereau S, Kumar A, Molimard C, Monnien F, Algros MP, Karaky R, Stamminger T, Diab Assaf M, Herbein G. Identification of UL69 Gene and Protein in Cytomegalovirus-Transformed Human Mammary Epithelial Cells. Front Oncol 2021; 11:627866. [PMID: 33937031 PMCID: PMC8085531 DOI: 10.3389/fonc.2021.627866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence addressing the involvement of human cytomegalovirus (HCMV) in malignancies had directed attention to the oncomodulation paradigm. HCMV-DB infected human mammary epithelial cells (HMECs) in culture showed the emergence of clusters of rapidly proliferating, spheroid-shaped transformed cells named CTH (CMV-Transformed HMECs) cells. CTH cells assessment suggests a direct contribution of HCMV to oncogenesis, from key latent and lytic genes activating oncogenic pathways to fueling tumor evolution. We hypothesized that the presence of HCMV genome in CTH cells is of pivotal importance for determining its oncogenic potential. We previously reported the detection of a long non-coding (lnc) RNA4.9 gene in CTH cells. Therefore, we assessed here the presence of UL69 gene, located nearby and downstream of the lncRNA4.9 gene, in CTH cells. The HCMV UL69 gene in CTH cells was detected using polymerase chain reaction (PCR) and sequencing of UL69 gene was performed using Sanger method. The corresponding amino acid sequence was then blasted against the UL69 sequence derived from HCMV-DB genome using NCBI Protein BLAST tool. A 99% identity was present between the nucleotide sequence present in CTH cells and HCMV-DB genome. UL69 transcript was detected in RNA extracts of CTH cells, using a reverse transcription polymerase chain reaction (RT-PCR) assay, and pUL69 protein was identified in CTH lysates using western blotting. Ganciclovir-treated CTH cells showed a decrease in UL69 gene detection and cellular proliferation. In CTH cells, the knockdown of UL69 with siRNA was assessed by RT-qPCR and western blot to reveal the impact of pUL69 on HCMV replication and CTH cell proliferation. Finally, UL69 gene was detected in breast cancer biopsies. Our results indicate a close link between the UL69 gene detected in the HCMV-DB isolate used to infect HMECs, and the UL69 gene present in transformed CTH cells and tumor biopsies, further highlighting a direct role for HCMV in breast tumor development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Amit Kumar
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Racha Karaky
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | | | - Mona Diab Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beyrouth, Lebanon
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.,Department of Virology, CHRU Besancon, Besancon, France
| |
Collapse
|
45
|
Nehme Z, Pasquereau S, Haidar Ahmad S, Coaquette A, Molimard C, Monnien F, Algros MP, Adotevi O, Diab Assaf M, Feugeas JP, Herbein G. Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene 2021; 40:3030-3046. [PMID: 33767437 DOI: 10.1038/s41388-021-01715-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
A growing body of evidence is recognizing human cytomegalovirus (HCMV) as a potential oncogenic virus. We hereby provide the first experimental in vitro evidence for HCMV as a reprogramming vector, through the induction of dedifferentiation of mature human mammary epithelial cells (HMECs), generation of a polyploid giant cancer cell (PGCC) phenotype characterized by sustained growth of blastomere-like cells, in concordance with the acquisition of embryonic stem cells characteristics and epithelial-mesenchymal plasticity. HCMV presence parallels the succession of the observed cellular and molecular events potentially ensuing the transformation process. Correlation between PGCCs detection and HCMV presence in breast cancer tissue further validates our hypothesis in vivo. Our study indicates that some clinical HCMV strains conserve the potential to transform HMECs and fit with a "blastomere-like" model of oncogenesis, which may be relevant in the pathophysiology of breast cancer and other adenocarcinoma, especially of poor prognosis.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
- Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
- Lebanese University, Beyrouth, Lebanon
| | | | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | | | - Jean-Paul Feugeas
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.
- Department of Virology, CHRU Besançon, Besançon, France.
| |
Collapse
|
46
|
Abstract
Purpose of Review Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. Recent Findings Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. Summary This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.
Collapse
|
47
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
48
|
Fulkerson HL, Nogalski MT, Collins-McMillen D, Yurochko AD. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol Biol 2021; 2244:1-18. [PMID: 33555579 DOI: 10.1007/978-1-0716-1111-1_1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus with a global seroprevalence of 60-90%. HCMV is the leading cause of congenital infections and poses a great health risk to immunocompromised individuals. Although HCMV infection is typically asymptomatic in the immunocompetent population, infection can result in mononucleosis and has also been associated with the development of certain cancers, as well as chronic inflammatory diseases such as various cardiovascular diseases. In immunocompromised patients, including AIDS patients, transplant recipients, and developing fetuses, HCMV infection is associated with increased rates of morbidity and mortality. Currently there is no vaccine for HCMV and there is a need for new pharmacological treatments. Ongoing research seeks to further define the complex aspects of HCMV pathogenesis, which could potentially lead to the generation of new therapeutics to mitigate the disease states associated with HCMV infection. The following chapter reviews the advancements in our understanding of HCMV pathogenesis in the immunocompetent and immunocompromised hosts.
Collapse
Affiliation(s)
- Heather L Fulkerson
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
49
|
HSATII RNA is induced via a noncanonical ATM-regulated DNA damage response pathway and promotes tumor cell proliferation and movement. Proc Natl Acad Sci U S A 2020; 117:31891-31901. [PMID: 33257565 DOI: 10.1073/pnas.2017734117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pericentromeric human satellite II (HSATII) repeats are normally silent but can be actively transcribed in tumor cells, where increased HSATII copy number is associated with a poor prognosis in colon cancer, and in human cytomegalovirus (HCMV)-infected fibroblasts, where the RNA facilitates viral replication. Here, we report that HCMV infection or treatment of ARPE-19 diploid epithelial cells with DNA-damaging agents, etoposide or zeocin, induces HSATII RNA expression, and a kinase-independent function of ATM is required for the induction. Additionally, various breast cancer cell lines growing in adherent, two-dimensional cell culture express HSATII RNA at different levels, and levels are markedly increased when cells are infected with HCMV or treated with zeocin. High levels of HSATII RNA expression correlate with enhanced migration of breast cancer cells, and knockdown of HSATII RNA reduces cell migration and the rate of cell proliferation. Our investigation links high expression of HSATII RNA to the DNA damage response, centered on a noncanonical function of ATM, and demonstrates a role for the satellite RNA in tumor cell proliferation and movement.
Collapse
|
50
|
Human Cytomegalovirus and Human Herpesvirus-6 and Wilms Tumor: Is There a Link? ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2020. [DOI: 10.5812/pedinfect.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Identifying etiologic factors contributing to Wilms tumor (WT) is necessary for its prevention and treatment. Oncogenic viruses cause nearly 20% of all human cancers. Although trials on preventing virus-caused cancers are complex and difficult, but they are not impossible to conduct. Human Cytomegalovirus (HCMV) and human herpes virus-6 (HHV6) can cause different types of cancers. Objectives: The current study aimed to investigate whether HCMV and HHV6-DNA are present in patients with WT. This is the first study of this kind in Iran. Methods: This study was performed on patients with kidney disorders who were referring to Mofid Pediatrics Hospital, Tehran (Iran), during 2010-16. In total, 98 kidney samples (49 patients with WT and 49 normal kidneys (autopsy) and kidneys with benign noninfectious lesions) were investigated to identify HCMV and HHV6-DNA. Qualitative Polymerase Chain reaction (PCR) method and nested polymerase chain reaction (nested-PCR) technique were used to identify HCMV and HHV6, respectively. Results: No significant difference was found between WT patients and controls concerning the HCMV or HHV6. Conclusions: Based on the findings, it can be concluded that there is no association between these viruses and WT.
Collapse
|