1
|
Porter CM, Qian GC, Grindel SH, Hughes AJ. Highly parallel production of designer organoids by mosaic patterning of progenitors. Cell Syst 2024; 15:649-661.e9. [PMID: 38981488 PMCID: PMC11257788 DOI: 10.1016/j.cels.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Organoids derived from human stem cells are a promising approach for disease modeling, regenerative medicine, and fundamental research. However, organoid variability and limited control over morphological outcomes remain as challenges. One open question is the extent to which engineering control over culture conditions can guide organoids to specific compositions. Here, we extend a DNA "velcro" cell patterning approach, precisely controlling the number and ratio of human induced pluripotent stem cell-derived progenitors contributing to nephron progenitor (NP) organoids and mosaic NP/ureteric bud (UB) tip cell organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints. We then show emergent trends in organoid tissue proportions that depend on initial progenitor cell composition. These include higher nephron and stromal cell representation in mosaic NP/UB organoids vs. NP-only organoids and a "goldilocks" initial cell ratio in mosaic organoids that optimizes the formation of proximal tubule structures.
Collapse
Affiliation(s)
- Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace C Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
3
|
Vanslambrouck JM, Neil JA, Rudraraju R, Mah S, Tan KS, Groenewegen E, Forbes TA, Karavendzas K, Elliott DA, Porrello ER, Subbarao K, Little MH. Kidney organoids reveal redundancy in viral entry pathways during ACE2-dependent SARS-CoV-2 infection. J Virol 2024; 98:e0180223. [PMID: 38334329 PMCID: PMC10949421 DOI: 10.1128/jvi.01802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024] Open
Abstract
With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Jessica A. Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Sophia Mah
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - Ker Sin Tan
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - Ella Groenewegen
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - Thomas A. Forbes
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
| | - Katerina Karavendzas
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - David A. Elliott
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Australia Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Enzo R. Porrello
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children’s Hospital, Melbourne, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Melissa H. Little
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Pahuja A, Goux Corredera I, Moya-Rull D, Garreta E, Montserrat N. Engineering physiological environments to advance kidney organoid models from human pluripotent stem cells. Curr Opin Cell Biol 2024; 86:102306. [PMID: 38194750 DOI: 10.1016/j.ceb.2023.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
During embryogenesis, the mammalian kidney arises because of reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (MM), driving UB branching and nephron induction. These morphogenetic processes involve a series of cellular rearrangements that are tightly controlled by gene regulatory networks and signaling cascades. Here, we discuss how kidney developmental studies have informed the definition of procedures to obtain kidney organoids from human pluripotent stem cells (hPSCs). Moreover, bioengineering techniques have emerged as potential solutions to externally impose controlled microenvironments for organoid generation from hPSCs. Next, we summarize some of these advances with major focus On recent works merging hPSC-derived kidney organoids (hPSC-kidney organoids) with organ-on-chip to develop robust models for drug discovery and disease modeling applications. We foresee that, in the near future, coupling of different organoid models through bioengineering approaches will help advancing to recreate organ-to-organ crosstalk to increase our understanding on kidney disease progression in the human context and search for new therapeutics.
Collapse
Affiliation(s)
- Anisha Pahuja
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Davis SN, Grindel SH, Viola JM, Liu GY, Liu J, Qian G, Porter CM, Hughes AJ. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568157. [PMID: 38045273 PMCID: PMC10690271 DOI: 10.1101/2023.11.21.568157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/β-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/β-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.
Collapse
Affiliation(s)
- Sachin N Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Y Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
6
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Viola JM, Liu J, Huang A, Grindel SH, Prahl LS, Hughes AJ. Rho/ROCK activity tunes cell compartment segregation and differentiation in nephron-forming niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566308. [PMID: 37986773 PMCID: PMC10659296 DOI: 10.1101/2023.11.08.566308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Controlling the time and place of nephron formation in vitro would improve nephron density and connectivity in next-generation kidney replacement tissues. Recent developments in kidney organoid technology have paved the way to achieving self-sustaining nephrogenic niches in vitro. The physical and geometric structure of the niche are key control parameters in tissue engineering approaches. However, their relationship to nephron differentiation is unclear. Here we investigate the relationship between niche geometry, cell compartment mixing, and nephron differentiation by targeting the Rho/ROCK pathway, a master regulator of the actin cytoskeleton. We find that the ROCK inhibitor Y-27632 increases mixing between nephron progenitor and stromal compartments in native mouse embryonic kidney niches, and also increases nephrogenesis. Similar increases are also seen in reductionist mouse primary cell and human induced pluripotent stem cell (iPSC)-derived organoids perturbed by Y-27632, dependent on the presence of stromal cells. Our data indicate that niche organization is a determinant of nephron formation rate, bringing renewed focus to the spatial context of cell-cell interactions in kidney tissue engineering efforts.
Collapse
Affiliation(s)
- John M. Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Aria Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H. Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
8
|
Vanslambrouck JM, Tan KS, Mah S, Little MH. Generation of proximal tubule-enhanced kidney organoids from human pluripotent stem cells. Nat Protoc 2023; 18:3229-3252. [PMID: 37770563 DOI: 10.1038/s41596-023-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/26/2023] [Indexed: 09/30/2023]
Abstract
Kidney organoids derived from human pluripotent stem cells (hPSCs) are now being used as models of renal disease and nephrotoxicity screening. However, the proximal tubules (PTs), which are responsible for most kidney reabsorption functions, remain immature in kidney organoids with limited expression of critical transporters essential for nephron functionality. Here, we describe a protocol for improved specification of nephron progenitors from hPSCs that results in kidney organoids with elongated proximalized nephrons displaying improved PT maturity compared with those generated using standard kidney organoid protocols. We also describe a methodology for assessing the functionality of the PTs within the organoids and visualizing maturation markers via immunofluorescence. Using these assays, PT-enhanced organoids display increased expression of a range of critical transporters, translating to improved functionality measured by substrate uptake and transport. This protocol consists of an extended (13 d) monolayer differentiation phase, during which time hPSCs are exposed to nephron progenitor maintenance media (CDBLY2), better emulating human metanephric progenitor specification in vivo. Following nephron progenitor specification, the cells are aggregated and cultured as a three-dimensional micromass on an air-liquid interface to facilitate further differentiation and segmentation into proximalized nephrons. Experience in culturing hPSCs is required to conduct this protocol and expertise in kidney organoid generation is advantageous.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sophia Mah
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Melissa H Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Porter CM, Qian GC, Grindel SH, Hughes AJ. Highly-parallel production of designer organoids by mosaic patterning of progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564017. [PMID: 37961546 PMCID: PMC10634829 DOI: 10.1101/2023.10.25.564017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human organoids are a promising approach for disease modeling and regenerative medicine. However, organoid variability and limited control over morphological outcomes remain significant challenges. Here we extend a DNA 'velcro' cell patterning approach, precisely controlling the number and ratio of human stem cell-derived progenitors contributing to nephron and mosaic nephron/ureteric bud organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints.
Collapse
Affiliation(s)
- Catherine M. Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace C. Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H. Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
10
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Streeter E, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little M, Humphreys BD, Watson A, Stolz DB, Kiani S, Davidson AJ, Carroll TJ, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. Genetically engineering endothelial niche in human kidney organoids enables multilineage maturation, vascularization and de novo cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542848. [PMID: 37333155 PMCID: PMC10274893 DOI: 10.1101/2023.05.30.542848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Vascularization plays a critical role in organ maturation and cell type development. Drug discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby hinges on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcome this hurdle by combining an inducible ETS translocation variant 2 (ETV2) human induced pluripotent stem cell (iPSC) line, which directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive vascularization by endothelial cells with an identity most closely related to endogenous kidney endothelia. Vascularized organoids also show increased maturation of nephron structures including more mature podocytes with improved marker expression, foot process interdigitation, an associated fenestrated endothelium, and the presence of renin+ cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Furthermore, this approach is orthogonal to native tissue differentiation paths, hence readily adaptable to other organoid systems and thus has the potential for a broad impact on basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aneta Przepiorski
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christopher Chaney
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan Streeter
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melissa Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Thomas J Carroll
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neil A Hukriede
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
11
|
Sun S, Wijanarko K, Liani O, Strumila K, Ng ES, Elefanty AG, Stanley EG. Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunol Rev 2023; 315:154-170. [PMID: 36939073 PMCID: PMC10952469 DOI: 10.1111/imr.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kevin Wijanarko
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Oniko Liani
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kathleen Strumila
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elizabeth S. Ng
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andrew G. Elefanty
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Edouard G. Stanley
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
12
|
Lam EHY, Yu F, Zhu S, Wang Z. 3D Bioprinting for Next-Generation Personalized Medicine. Int J Mol Sci 2023; 24:ijms24076357. [PMID: 37047328 PMCID: PMC10094501 DOI: 10.3390/ijms24076357] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
In the past decade, immense progress has been made in advancing personalized medicine to effectively address patient-specific disease complexities in order to develop individualized treatment strategies. In particular, the emergence of 3D bioprinting for in vitro models of tissue and organ engineering presents novel opportunities to improve personalized medicine. However, the existing bioprinted constructs are not yet able to fulfill the ultimate goal: an anatomically realistic organ with mature biological functions. Current bioprinting approaches have technical challenges in terms of precise cell deposition, effective differentiation, proper vascularization, and innervation. This review introduces the principles and realizations of bioprinting with a strong focus on the predominant techniques, including extrusion printing and digital light processing (DLP). We further discussed the applications of bioprinted constructs, including the engraftment of stem cells as personalized implants for regenerative medicine and in vitro high-throughput drug development models for drug discovery. While no one-size-fits-all approach to bioprinting has emerged, the rapid progress and promising results of preliminary studies have demonstrated that bioprinting could serve as an empowering technology to resolve critical challenges in personalized medicine.
Collapse
Affiliation(s)
- Ethan Hau Yin Lam
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fengqing Yu
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Sabrina Zhu
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zongjie Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
- McCormick School of Engineering, Northwestern University, Chicago, IL 60611, USA
- Correspondence: or
| |
Collapse
|
13
|
The "3Ds" of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells 2023; 12:cells12040549. [PMID: 36831216 PMCID: PMC9954122 DOI: 10.3390/cells12040549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.
Collapse
|
14
|
Tubuloid culture enables long-term expansion of functional human kidney tubule epithelium from iPSC-derived organoids. Proc Natl Acad Sci U S A 2023; 120:e2216836120. [PMID: 36724260 PMCID: PMC9963523 DOI: 10.1073/pnas.2216836120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney organoids generated from induced pluripotent stem cells (iPSC) have proven valuable for studies of kidney development, disease, and therapeutic screening. However, specific applications have been hampered by limited expansion capacity, immaturity, off-target cells, and inability to access the apical side. Here, we apply recently developed tubuloid protocols to purify and propagate kidney epithelium from d7+18 (post nephrogenesis) iPSC-derived organoids. The resulting 'iPSC organoid-derived (iPSCod)' tubuloids can be exponentially expanded for at least 2.5 mo, while retaining expression of important tubular transporters and segment-specific markers. This approach allows for selective propagation of the mature tubular epithelium, as immature cells, stroma, and undesirable off-target cells rapidly disappeared. iPSCod tubuloids provide easy apical access, which enabled functional evaluation and demonstration of essential secretion and electrolyte reabsorption processes. In conclusion, iPSCod tubuloids provide a different, complementary human kidney model that unlocks opportunities for functional characterization, disease modeling, and regenerative nephrology.
Collapse
|
15
|
Dorison A, Forbes TA, Little MH. What can we learn from kidney organoids? Kidney Int 2022; 102:1013-1029. [PMID: 35970244 DOI: 10.1016/j.kint.2022.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
The ability to generate 3-dimensional models of the developing human kidney via the directed differentiation of pluripotent stem cells-termed kidney organoids-has been hailed as a major advance in experimental nephrology. Although these provide an opportunity to interrogate human development, model-specific kidney diseases facilitate drug screening and even deliver bioengineered tissue; most of these prophetic end points remain to be realized. Indeed, at present we are still finding out what we can learn and what we cannot learn from this approach. In this review, we will summarize the approaches available to generate models of the human kidney from stem cells, the existing successful applications of kidney organoids, their limitations, and remaining challenges.
Collapse
Affiliation(s)
- Aude Dorison
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas A Forbes
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Department of Nephrology, Royal Children's Hospital, Parkville, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Wang G, Heijs B, Kostidis S, Rietjens RG, Koning M, Yuan L, Tiemeier GL, Mahfouz A, Dumas SJ, Giera M, Kers J, Chuva de Sousa Lopes SM, van den Berg CW, van den Berg BM, Rabelink TJ. Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation. Cell Stem Cell 2022; 29:1580-1593.e7. [DOI: 10.1016/j.stem.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
17
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat Commun 2022; 13:5943. [PMID: 36209212 PMCID: PMC9547573 DOI: 10.1038/s41467-022-33623-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/27/2022] [Indexed: 01/08/2023] Open
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sophia Mah
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Montalbetti N, Przepiorski AJ, Shi S, Sheng S, Baty CJ, Maggiore JC, Carattino MD, Vanichapol T, Davidson AJ, Hukriede NA, Kleyman TR. Functional characterization of ion channels expressed in kidney organoids derived from human induced pluripotent stem cells. Am J Physiol Renal Physiol 2022; 323:F479-F491. [PMID: 35979965 PMCID: PMC9529267 DOI: 10.1152/ajprenal.00365.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023] Open
Abstract
Kidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca2+-activated K+ (BKCa) channel, the renal outer medullary K+ (ROMK, Kir1.1) channel, and the epithelial Na+ channel (ENaC). RNA-sequencing analyses showed that genes encoding the pore-forming subunits of these transporters, and for BKCa channels, key accessory subunits, are expressed in kidney organoids. Expression and localization of selected ion channels was confirmed by immunofluorescence microscopy and immunoblot analysis. Electrophysiological analysis showed that BKCa and ROMK channels are expressed in different cell populations. These two cell populations also expressed other unidentified Ba2+-sensitive K+ channels. BKCa expression was confirmed at a single channel level, based on its high conductance and voltage dependence of activation. We also found a population of cells expressing amiloride-sensitive ENaC currents. In summary, our results show that human kidney organoids functionally produce key distal nephron K+ and Na+ channels.NEW & NOTEWORTHY Our results show that human kidney organoids express key K+ and Na+ channels that are expressed on the apical membranes of cells in the aldosterone-sensitive distal nephron, including the large-conductance Ca2+-activated K+ channel, renal outer medullary K+ channel, and epithelial Na+ channel.
Collapse
Affiliation(s)
| | - Aneta J Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Catherine J Baty
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph C Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N. Assessing kidney development and disease using kidney organoids and CRISPR engineering. Front Cell Dev Biol 2022; 10:948395. [PMID: 36120564 PMCID: PMC9479189 DOI: 10.3389/fcell.2022.948395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.
Collapse
Affiliation(s)
- Wajima Safi
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Andrés Marco
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Patricia Prado
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| |
Collapse
|
20
|
Koning M, Dumas SJ, Avramut MC, Koning RI, Meta E, Lievers E, Wiersma LE, Borri M, Liang X, Xie L, Liu P, Chen F, Lin L, Luo Y, Mulder J, Spijker HS, Jaffredo T, van den Berg BM, Carmeliet P, van den Berg CW, Rabelink TJ. Vasculogenesis in kidney organoids upon transplantation. NPJ Regen Med 2022; 7:40. [DOI: 10.1038/s41536-022-00237-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractHuman induced pluripotent stem cell-derived kidney organoids have potential for disease modeling and to be developed into clinically transplantable auxiliary tissue. However, they lack a functional vasculature, and the sparse endogenous endothelial cells (ECs) are lost upon prolonged culture in vitro, limiting maturation and applicability. Here, we use intracoelomic transplantation in chicken embryos followed by single-cell RNA sequencing and advanced imaging platforms to induce and study vasculogenesis in kidney organoids. We show expansion of human organoid-derived ECs that reorganize into perfused capillaries and form a chimeric vascular network with host-derived blood vessels. Ligand-receptor analysis infers extensive potential interactions of human ECs with perivascular cells upon transplantation, enabling vessel wall stabilization. Perfused glomeruli display maturation and morphogenesis to capillary loop stage. Our findings demonstrate the beneficial effect of vascularization on not only epithelial cell types, but also the mesenchymal compartment, inducing the expansion of ´on target´ perivascular stromal cells, which in turn are required for further maturation and stabilization of the neo-vasculature. The here described vasculogenic capacity of kidney organoids will have to be deployed to achieve meaningful glomerular maturation and kidney morphogenesis in vitro.
Collapse
|
21
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
22
|
Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res Ther 2022; 13:355. [PMID: 35883199 PMCID: PMC9327311 DOI: 10.1186/s13287-022-03040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation. However, these methods have major variations in media composition and have not been compared. METHODS We characterized our accelerated protocol by guiding the cells through differentiation with four different medias into MIXL1+ primitive streak cells with Activin A and CHIR for Wnt activation, intermediate mesoderm PAX8+ cells via increasing the CHIR concentration, nephron progenitors with FGF9 and Heparin for stabilization, and finally into differentiated podocytes with Activin A, BMP-7, VEGF, reduced CHIR, and retinoic acid. The podocyte morphology was characterized by scanning and transmission electron microscopy and by flow cytometry analysis for podocyte markers. To confirm cellular identity and niche localization, we performed cell recombination assays combining iPSC-podocytes with dissociated mouse embryonic kidney cells. Finally, to test iPSC-derived podocytes for the modeling of diabetic kidney disease, human podocytes were exposed to high glucose. RESULTS Podocyte markers were expressed at similar or higher levels for our accelerated protocol as compared to previously published protocols that require longer periods of tissue culture. We confirmed that the human podocytes derived from induced pluripotent stem cells in twelve days integrated into murine glomerular structures formed following seven days of culture of cellular recombinations. We found that the high glucose-treated human podocytes displayed actin rearrangement, increased cytotoxicity, and decreased viability. CONCLUSIONS We found that our accelerated 12-day method for the differentiation of podocytes from human-induced pluripotent stem cells yields podocytes with comparable marker expression to longer podocytes. We also demonstrated that podocytes created with this protocol have typical morphology by electron microscopy. The podocytes have utility for diabetes modeling as evidenced by lower viability and increased cytotoxicity when treated with high glucose. We found that multiple, diverse methods may be utilized to create iPSC-podocytes, but closely mimicking developmental cues shortened the time frame required for differentiation.
Collapse
Affiliation(s)
- Julie Bejoy
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Justin M Farry
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jennifer L Peek
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mariana C Cabatu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Felisha M Williams
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Richard C Welch
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eddie S Qian
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Lauren E Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|
23
|
Pode-Shakked N, Devarajan P. Human Stem Cell and Organoid Models to Advance Acute Kidney Injury Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23137211. [PMID: 35806216 PMCID: PMC9266524 DOI: 10.3390/ijms23137211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, occurring in over 20% of non-critically ill hospitalized patients and >30% of children and >50% of adults in critical care units. AKI is associated with serious short-term and long-term consequences, and current therapeutic options are unsatisfactory. Large gaps remain in our understanding of human AKI pathobiology, which have hindered the discovery of novel diagnostics and therapeutics. Although animal models of AKI have been extensively studied, these differ significantly from human AKI in terms of molecular and cellular responses. In addition, animal models suffer from interspecies differences, high costs and ethical considerations. Static two-dimensional cell culture models of AKI also have limited utility since they have focused almost exclusively on hypoxic or cytotoxic injury to proximal tubules alone. An optimal AKI model would encompass several of the diverse specific cell types in the kidney that could be targets of injury. Second, it would resemble the human physiological milieu as closely as possible. Third, it would yield sensitive and measurable readouts that are directly applicable to the human condition. In this regard, the past two decades have seen a dramatic shift towards newer personalized human-based models to study human AKI. In this review, we provide recent developments using human stem cells, organoids, and in silico approaches to advance personalized AKI diagnostics and therapeutics.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
24
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
25
|
Nunez-Nescolarde AB, Nikolic-Paterson DJ, Combes AN. Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:738-749. [PMID: 35181335 DOI: 10.1016/j.ajpath.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Kidney organoids derived from pluripotent stem cells and epithelial organoids derived from adult tissue (tubuloids) have been used to study various kidney disorders with a strong genetic component, such as polycystic kidney disease, Wilms tumor, and congenital nephrotic syndrome. However, complex disorders without clear genetic associations, such as acute kidney injury and many forms of chronic kidney disease, are only just beginning to be investigated using these in vitro approaches. Although organoids are a reductionist model, they contain clinically relevant cell populations that may help to elucidate human-specific pathogenic mechanisms. Thus, organoids may complement animal disease models to accelerate the translation of laboratory proof-of-concept research into clinical practice. This review discusses whether kidney organoids and tubuloids are suitable models for the study of complex human kidney disease and highlights their advantages and limitations compared with monolayer cell culture and animal models.
Collapse
Affiliation(s)
- Ana B Nunez-Nescolarde
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
26
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022. [PMID: 35189942 DOI: 10.1101/2021.01.20.427346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. METHODS The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC ( github.com/KidneyRegeneration/DevKidCC ), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. RESULTS DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. CONCLUSIONS The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
27
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022; 14:19. [PMID: 35189942 PMCID: PMC8862535 DOI: 10.1186/s13073-022-01023-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. Methods The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC (github.com/KidneyRegeneration/DevKidCC), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. Results DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. Conclusions The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01023-z.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia. .,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia. .,Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
28
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
29
|
Bejoy J, Qian ES, Woodard LE. Accelerated protocol for the differentiation of podocytes from human pluripotent stem cells. STAR Protoc 2021; 2:100898. [PMID: 34746862 PMCID: PMC8551929 DOI: 10.1016/j.xpro.2021.100898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several kidney diseases including congenital nephrotic syndrome, Alport syndrome, and diabetic nephropathy are linked to podocyte dysfunction. Human podocytopathies may be modeled in either primary or immortalized podocyte cell lines. Human induced pluripotent stem cell (hiPSC)-derived podocytes are a source of human podocytes, but the existing protocols have variable efficiency and expensive media components. We developed an accelerated, feeder-free protocol for deriving functional, mature podocytes from hiPSCs in only 12 days, saving time and money compared with other approaches.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eddie Spencer Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren Elizabeth Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Human induced pluripotent stem cell-derived kidney organoids toward clinical implementations. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells. Curr Opin Genet Dev 2021; 72:22-29. [PMID: 34781071 DOI: 10.1016/j.gde.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022]
Abstract
During kidney development the emergence of complex multicellular shapes such as the nephron (the functional unit of the kidney) rely on spatiotemporally coordinated developmental programs. These involve gene regulatory networks, signaling pathways and mechanical forces, that work in concert to shape and form the nephron(s). The generation of kidney organoids from human pluripotent stem cells now represent an unprecedented experimental set up to study these processes. Here we discuss the potential applications of kidney organoids to advance our knowledge of how mechanical forces and cell fate specification spatiotemporally interact to orchestrate nephron patterning and morphogenesis in humans. Progress in innovative techniques for quantifying and perturbing these processes in a controlled manner will be crucial. A mechanistic understanding of the multicellular dynamic processes occurring during nephrogenesis will pave the way to unveil new mechanisms of human kidney disease.
Collapse
|
32
|
Little MH, Howden SE, Lawlor KT, Vanslambrouck JM. Determining lineage relationships in kidney development and disease. Nat Rev Nephrol 2021; 18:8-21. [PMID: 34594045 DOI: 10.1038/s41581-021-00485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
The lineage relationships of cells provide information about the origins of component cell types during development and repair as well as the source of aberrant cells during disease. Genetic approaches to lineage tracing applied in the mouse have revealed much about how the mammalian kidney forms, including the identification of key progenitors for the nephrons and stromal compartments. Inducible Cre systems have also facilitated lineage tracing studies in the postnatal animal that illustrate the changes in cellular fate that can occur during kidney injury. With the advent of single-cell transcriptional profiling and trajectory analyses, predictions of cellular relationships across development are now being made in model systems, such as the mouse, as well as in human fetal kidney. Importantly, these approaches provide predictions of lineage relationships rather than definitive evidence. Although genetic approaches to the study of lineage have not previously been possible in a human setting, the application of CRISPR-Cas9 gene editing of pluripotent stem cells is beginning to teach us about human lineage relationships.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sara E Howden
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | |
Collapse
|
33
|
Djenoune L, Tomar R, Dorison A, Ghobrial I, Schenk H, Hegermann J, Beverly-Staggs L, Hidalgo-Gonzalez A, Little MH, Drummond IA. Autonomous Calcium Signaling in Human and Zebrafish Podocytes Controls Kidney Filtration Barrier Morphogenesis. J Am Soc Nephrol 2021; 32:1697-1712. [PMID: 33911000 PMCID: PMC8425667 DOI: 10.1681/asn.2020101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocytes are critical to maintaining the glomerular filtration barrier, and mutations in nephrotic syndrome genes are known to affect podocyte calcium signaling. However, the role of calcium signaling during podocyte development remains unknown. METHODS We undertook live imaging of calcium signaling in developing podocytes, using zebrafish larvae and human kidney organoids. To evaluate calcium signaling during development and in response to channel blockers and genetic defects, the calcium biosensor GCaMP6s was expressed in zebrafish podocytes. We used electron microscopy to evaluate filtration barrier formation in zebrafish, and Fluo-4 to detect calcium signals in differentiating podocytes in human kidney organoids. RESULTS Immature zebrafish podocytes (2.5 days postfertilization) generated calcium transients that correlated with interactions with forming glomerular capillaries. Calcium transients persisted until 4 days postfertilization, and were absent after glomerular barrier formation was complete. We detected similar calcium transients in maturing human organoid glomeruli, suggesting a conserved mechanism. In both models, inhibitors of SERCA or IP3 receptor calcium-release channels blocked calcium transients in podocytes, whereas lanthanum was ineffective, indicating the calcium source is from intracellular podocyte endoplasmic-reticulum stores. Calcium transients were not affected by blocking heartbeat or by blocking development of endothelium or endoderm, and they persisted in isolated glomeruli, suggesting podocyte-autonomous calcium release. Inhibition of expression of phospholipase C-γ1, but not nephrin or phospholipase C-ε1, led to significantly decreased calcium activity. Finally, blocking calcium release affected glomerular shape and podocyte foot process formation, supporting the critical role of calcium signaling in glomerular morphogenesis. CONCLUSIONS These findings establish podocyte cell-autonomous calcium signaling as a prominent and evolutionarily conserved feature of podocyte differentiation and demonstrate its requirement for podocyte foot process formation.
Collapse
Affiliation(s)
- Lydia Djenoune
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ritu Tomar
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Aude Dorison
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Irene Ghobrial
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Lynne Beverly-Staggs
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| | | | - Melissa H. Little
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia,Department of Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Iain A. Drummond
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| |
Collapse
|
34
|
Little MH. Returning to kidney development to deliver synthetic kidneys. Dev Biol 2021; 474:22-36. [PMID: 33333068 PMCID: PMC8052282 DOI: 10.1016/j.ydbio.2020.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
There is no doubt that the development of transplantable synthetic kidneys could improve the outcome for the many millions of people worldwide suffering from chronic kidney disease. Substantial progress has been made in the last 6 years in the generation of kidney tissue from stem cells. However, the limited scale, incomplete cellular complexity and functional immaturity of such structures suggests we are some way from this goal. While developmental biology has successfully guided advances to date, these human kidney models are limited in their capacity for ongoing nephrogenesis and lack corticomedullary definition, a unified vasculature and a coordinated exit path for urinary filtrate. This review will reassess our developmental understanding of how the mammalian embryo manages to create kidneys, how this has informed our progress to date and how both engineering and developmental biology can continue to guide us towards a synthetic kidney.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Hendriks D, Clevers H, Artegiani B. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell 2021; 27:705-731. [PMID: 33157047 DOI: 10.1016/j.stem.2020.10.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized biological research and holds great therapeutic potential. Here, we review CRISPR-Cas systems and their latest developments with an emphasis on application to human cells. We also discuss how different CRISPR-based strategies can be used to accomplish a particular genome engineering goal. We then review how different CRISPR tools have been used in genome engineering of human stem cells in vitro, covering both the pluripotent (iPSC/ESC) and somatic adult stem cell fields and, in particular, 3D organoid cultures. Finally, we discuss the progress and challenges associated with CRISPR-based genome editing of human stem cells for therapeutic use.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Rizki-Safitri A, Traitteur T, Morizane R. Bioengineered Kidney Models: Methods and Functional Assessments. FUNCTION 2021; 2:zqab026. [PMID: 35330622 PMCID: PMC8788738 DOI: 10.1093/function/zqab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023] Open
Abstract
Investigations into bioengineering kidneys have been extensively conducted owing to their potential for preclinical assays and regenerative medicine. Various approaches and methods have been developed to improve the structure and function of bioengineered kidneys. Assessments of functional properties confirm the adequacy of bioengineered kidneys for multipurpose translational applications. This review is to summarize the studies performed in kidney bioengineering in the past decade. We identified 84 original articles from PubMed and Mendeley with keywords of kidney organoid or kidney tissue engineering. Those were categorized into 5 groups based on their approach: de-/recellularization of kidney, reaggregation of kidney cells, kidney organoids, kidney in scaffolds, and kidney-on-a-chip. These models were physiologically assessed by filtration, tubular reabsorption/secretion, hormone production, and nephrotoxicity. We found that bioengineered kidney models have been developed from simple cell cultures to multicellular systems to recapitulate kidney function and diseases. Meanwhile, only about 50% of these studies conducted functional assessments on their kidney models. Factors including cell composition and organization are likely to alter the applicability of physiological assessments in bioengineered kidneys. Combined with recent technologies, physiological assessments importantly contribute to the improvement of the bioengineered kidney model toward repairing and refunctioning the damaged kidney.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tamara Traitteur
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
37
|
Przepiorski A, Crunk AE, Espiritu EB, Hukriede NA, Davidson AJ. The Utility of Human Kidney Organoids in Modeling Kidney Disease. Semin Nephrol 2021; 40:188-198. [PMID: 32303281 DOI: 10.1016/j.semnephrol.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of three-dimensional kidney tissue (organoids) from human pluripotent stem cell lines provides a valuable tool to examine kidney function in an in vitro model and could be used for regenerative medicine approaches. Kidney organoids have the potential to model kidney diseases and congenital defects, be used for drug development, and to further our understanding of acute kidney injury, fibrosis, and chronic kidney disease. In this review, we examine the current stage of pluripotent stem cell-derived kidney organoid technology, challenges, shortcomings, and regenerative potential of kidney organoids in the future.
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA.
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Center for Critical Care Nephrology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Howden SE, Wilson SB, Groenewegen E, Starks L, Forbes TA, Tan KS, Vanslambrouck JM, Holloway EM, Chen YH, Jain S, Spence JR, Little MH. Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. Cell Stem Cell 2021; 28:671-684.e6. [PMID: 33378647 PMCID: PMC8026527 DOI: 10.1016/j.stem.2020.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/05/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
During development, distinct progenitors contribute to the nephrons versus the ureteric epithelium of the kidney. Indeed, previous human pluripotent stem-cell-derived models of kidney tissue either contain nephrons or pattern specifically to the ureteric epithelium. By re-analyzing the transcriptional distinction between distal nephron and ureteric epithelium in human fetal kidney, we show here that, while existing nephron-containing kidney organoids contain distal nephron epithelium and no ureteric epithelium, this distal nephron segment alone displays significant in vitro plasticity and can adopt a ureteric epithelial tip identity when isolated and cultured in defined conditions. "Induced" ureteric epithelium cultures can be cryopreserved, serially passaged without loss of identity, and transitioned toward a collecting duct fate. Cultures harboring loss-of-function mutations in PKHD1 also recapitulate the cystic phenotype associated with autosomal recessive polycystic kidney disease.
Collapse
Affiliation(s)
- Sara E Howden
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia.
| | - Sean B Wilson
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ella Groenewegen
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia
| | - Lakshi Starks
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia
| | - Thomas A Forbes
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia; Department of Nephrology, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, 3052 VIC, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia
| | | | | | | | | | - Jason R Spence
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
39
|
Lawlor KT, Vanslambrouck JM, Higgins JW, Chambon A, Bishard K, Arndt D, Er PX, Wilson SB, Howden SE, Tan KS, Li F, Hale LJ, Shepherd B, Pentoney S, Presnell SC, Chen AE, Little MH. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. NATURE MATERIALS 2021; 20:260-271. [PMID: 33230326 PMCID: PMC7855371 DOI: 10.1038/s41563-020-00853-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/02/2020] [Indexed: 05/23/2023]
Abstract
Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue.
Collapse
Affiliation(s)
- Kynan T Lawlor
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Pei Xuan Er
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Fanyi Li
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lorna J Hale
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | - Melissa H Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Romero-Guevara R, Ioannides A, Xinaris C. Kidney Organoids as Disease Models: Strengths, Weaknesses and Perspectives. Front Physiol 2020; 11:563981. [PMID: 33250772 PMCID: PMC7672034 DOI: 10.3389/fphys.2020.563981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease is a major global health problem, as it affects 10% of the global population and kills millions of patients every year. It is therefore of the utmost importance to develop models that can help us to understand the pathogenesis of CKD and improve our therapeutic strategies. The discovery of human induced pluripotent stem cells (hiPSCs) and, more recently, the development of methods for the generation of 3D organoids, have opened the way for modeling human kidney development and disease in vitro, and testing new drugs directly on human tissue. In this review we will discuss the most recent advances in the field of kidney organoids for modeling disease, as well as the prospective applications of these models for drug screening. We will also emphasize the impact of CRISPR/cas9 genome engineering on the field, point out the current limitations of the existing organoid technologies, and discuss a set of technical developments that may help to overcome limitations and facilitate the incorporation of these exciting tools into basic biomedical research.
Collapse
Affiliation(s)
| | | | - Christodoulos Xinaris
- University of Nicosia Medical School, Nicosia, Cyprus.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
41
|
Sander V, Przepiorski A, Crunk AE, Hukriede NA, Holm TM, Davidson AJ. Protocol for Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells. STAR Protoc 2020; 1:100150. [PMID: 33377044 PMCID: PMC7757290 DOI: 10.1016/j.xpro.2020.100150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Kidney organoids represent a physiologically advanced model for studying the mechanisms of kidney development and disease. Here, we describe a simple two-step protocol for the differentiation of human pluripotent stem cells into kidney organoids. Our approach involves suspension culture that allows for rapid and cost-effective bulk production of organoids, which is well suited for large-scale assays such as drug screening. The organoids correspond to fetal human kidney tissue and may be of limited use for modeling adult kidney function. For complete details on the use and execution of this protocol, please refer to Przepiorski et al. (2018).
Collapse
Affiliation(s)
- Veronika Sander
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Teresa M Holm
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
42
|
Yousef Yengej FA, Jansen J, Rookmaaker MB, Verhaar MC, Clevers H. Kidney Organoids and Tubuloids. Cells 2020; 9:E1326. [PMID: 32466429 PMCID: PMC7349753 DOI: 10.3390/cells9061326] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the past five years, pluripotent stem cell (PSC)-derived kidney organoids and adult stem or progenitor cell (ASC)-based kidney tubuloids have emerged as advanced in vitro models of kidney development, physiology, and disease. PSC-derived organoids mimic nephrogenesis. After differentiation towards the kidney precursor tissues ureteric bud and metanephric mesenchyme, their reciprocal interaction causes self-organization and patterning in vitro to generate nephron structures that resemble the fetal kidney. ASC tubuloids on the other hand recapitulate renewal and repair in the adult kidney tubule and give rise to long-term expandable and genetically stable cultures that consist of adult proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium. Both organoid types hold great potential for: (1) studies of kidney physiology, (2) disease modeling, (3) high-throughput screening for drug efficacy and toxicity, and (4) regenerative medicine. Currently, organoids and tubuloids are successfully used to model hereditary, infectious, toxic, metabolic, and malignant kidney diseases and to screen for effective therapies. Furthermore, a tumor tubuloid biobank was established, which allows studies of pathogenic mutations and novel drug targets in a large group of patients. In this review, we discuss the nature of kidney organoids and tubuloids and their current and future applications in science and medicine.
Collapse
Affiliation(s)
- Fjodor A. Yousef Yengej
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands;
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Hans Clevers
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
43
|
Howden SE, Little MH. Generating Kidney Organoids from Human Pluripotent Stem Cells Using Defined Conditions. Methods Mol Biol 2020; 2155:183-192. [PMID: 32474877 DOI: 10.1007/978-1-0716-0655-1_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ultimate goal of regenerative medicine is to have access to an unlimited supply of specific cell types on demand, which can be used as effective therapies for a wide range of intractable disorders. With the availability of human pluripotent stem cells (hPSCs) and greatly improved protocols for their directed differentiation into specific cell types, including kidney, this prospect could soon become a reality. We have previously described the generation of kidney organoids from hPSCs. This chapter describes our latest differentiation protocol for generating kidney tissue, which uses a cost-effective and completely defined, xeno-free medium. As with our previous protocol, these complex, multicellular three-dimensional structures are composed of all anticipated kidney cell types including nephrons segmented into the glomerulus, proximal and distal tubule as well as an extensive endothelial network, and renal interstitium. As such, kidney organoids provide useful tools for understanding human development, disease modeling, drug screening/toxicology studies and tissue engineering applications, and may facilitate the development of transplantable hPSC-derived kidney tissue for regenerative medicine purposes in the future.
Collapse
Affiliation(s)
- Sara E Howden
- Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; and
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
45
|
Abstract
There are now many reports of human kidney organoids generated via the directed differentiation of human pluripotent stem cells (PSCs) based on an existing understanding of mammalian kidney organogenesis. Such kidney organoids potentially represent tractable tools for the study of normal human development and disease with improvements in scale, structure, and functional maturation potentially providing future options for renal regeneration. The utility of such organotypic models, however, will ultimately be determined by their developmental accuracy. While initially inferred from mouse models, recent transcriptional analyses of human fetal kidney have provided greater insight into nephrogenesis. In this review, we discuss how well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Victoria 3052, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|