1
|
Lu Q, Hu X, Hou Q, Yu L, Cao K, Ding D, Lu Y, Dai C. Rheb1 deficiency elicits mitochondrial dysfunction and accelerates podocyte senescence through promoting Atp5f1c acetylation. Cell Signal 2024; 124:111451. [PMID: 39389178 DOI: 10.1016/j.cellsig.2024.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Podocyte senescence can cause persistent podocyte injury and albuminuria in diabetic kidney disease (DKD), but the mechanism remains obscure. In this study, podocyte senescence was confirmed by immunohistochemical staining in podocytes from patients and mice with DKD. Rheb1 knockout in podocytes aggravated podocyte senescence and injury in diabetic mice, but mitigated podocyte injury in mice with podocyte-specific mTORC1 activation induced by Tsc1 deletion. In cultured podocytes, Rheb1 knockdown remarkably accelerated podocyte senescence, independent of mTORC1. Mechanistically, PDH phosphorylation in podocyte was correlated with podocyte senescence in DKD patients. Rheb1 deficiency decreased ATP, mitochondrial membrane potential and partial components of respiratory chain complex, and enhanced ROS production and PDH phosphorylation, which indicates mitochondrial dysfunction, both in vitro and in vivo. Furthermore, Rheb1 interacted with Atp5f1c, and regulated its acetylation under a high-glucose condition. Together, Rheb1 deficiency elicits mitochondrial dysfunction and accelerates podocyte senescence through promoting Atp5f1c acetylation, in an mTORC1-independent manner, which provides experimental basis for the treatment of DKD.
Collapse
Affiliation(s)
- Qingmiao Lu
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China
| | - Xiao Hu
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China; Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
| | - Qing Hou
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Long Yu
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Kai Cao
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Dafa Ding
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China
| | - Yibing Lu
- Department of Endocrinology, 2(nd) Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan, Nanjing, Jiangsu, China.
| | - Chunsun Dai
- Center for Kidney Disease, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China; Department of Clinical Genetics, 2(nd) Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Kang I, Koo M, Jun JH, Lee J. Effect of nicotinamide mononucleotide on osteogenesis in MC3T3-E1 cells against inflammation-induced by lipopolysaccharide. Clin Exp Reprod Med 2024; 51:236-246. [PMID: 38599888 PMCID: PMC11372314 DOI: 10.5653/cerm.2023.06744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE Nicotinamide mononucleotide (NMN) is extensively utilized as an anti-aging agent and possesses anti-inflammatory properties. Lipopolysaccharide (LPS) activates Toll-like receptor 4, a process modulated by intracellular signaling pathways such as the Wnt/β-catenin pathway. This study investigated the impact of NMN on osteogenesis in the presence of LPS. METHODS To elucidate the role of NMN in osteogenesis in the context of Gram-negative bacterial infection after LPS treatment, we cultured a mouse pre-osteoblast cell line (MC3T3-E1) and subsequently incubated it with NMN and/or LPS. We then evaluated osteogenic activity by measuring alkaline phosphatase activity, assessing gene expression and protein levels, and performing Alizarin Red S staining and immunocytochemistry. RESULTS MC3T3-E1 cells underwent successful differentiation into osteoblasts following treatment with osteogenic induction medium. LPS diminished features related to osteogenic differentiation, which were subsequently partially reversed by treatment with NMN. The restorative effects of NMN on LPS-exposed MC3T3-E1 cells were further substantiated by elucidating the role of Wnt/β-catenin signaling, as confirmed through immunocytochemistry. CONCLUSION This study showed that infection with Gram-negative bacteria disrupted the osteogenic differentiation of MC3T3-E1 cells. This adverse effect was partially reversed by administering a high-dose of NMN. Drawing on these results, we propose that NMN could serve as a viable therapeutic strategy to preserve bone homeostasis in elderly and immunocompromised patients.
Collapse
Affiliation(s)
- Inyoung Kang
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Myoungjoo Koo
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Hemagirri M, Chen Y, Gopinath SCB, Adnan M, Patel M, Sasidharan S. RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells. Biogerontology 2024; 25:705-737. [PMID: 38619670 DOI: 10.1007/s10522-024-10104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
4
|
Sanz RL, García Menéndez S, Inserra F, Ferder L, Manucha W. Sodium-glucose cotransporter-2 inhibitors protect tissues via cellular and mitochondrial pathways: Experimental and clinical evidence. World J Exp Med 2024; 14:91519. [PMID: 38948421 PMCID: PMC11212744 DOI: 10.5493/wjem.v14.i2.91519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Mitochondrial dysfunction is a key driver of cardiovascular disease (CVD) in metabolic syndrome and diabetes. This dysfunction promotes the production of reactive oxygen species (ROS), which cause oxidative stress and inflammation. Angiotensin II, the main mediator of the renin-angiotensin-aldosterone system, also contributes to CVD by promoting ROS production. Reduced activity of sirtuins (SIRTs), a family of proteins that regulate cellular metabolism, also worsens oxidative stress. Reduction of energy production by mitochondria is a common feature of all metabolic disorders. High SIRT levels and 5' adenosine monophosphate-activated protein kinase signaling stimulate hypoxia-inducible factor 1 beta, which promotes ketosis. Ketosis, in turn, increases autophagy and mitophagy, processes that clear cells of debris and protect against damage. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of drugs used to treat type 2 diabetes, have a beneficial effect on these mechanisms. Randomized clinical trials have shown that SGLT2i improves cardiac function and reduces the rate of cardiovascular and renal events. SGLT2i also increase mitochondrial efficiency, reduce oxidative stress and inflammation, and strengthen tissues. These findings suggest that SGLT2i hold great potential for the treatment of CVD. Furthermore, they are proposed as anti-aging drugs; however, rigorous research is needed to validate these preliminary findings.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Sebastián García Menéndez
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Department of Pharmacology, Instituto de Medicina y Biología Experimental de Cuyo, Centro Científico Tecnológico, Mendoza 5500, Argentina
| | - Felipe Inserra
- Department of Nephrology, Universidad de Maimónides, Ciudad Autónoma de Buenos Aires C1405, Argentina
| | - Leon Ferder
- Department of Cardiology, Universidad de Maimónides, Ciudad Autónoma de Buenos Aires C1405, Argentina
| | - Walter Manucha
- Department of Pathology, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
- Department of Pharmacology, Instituto de Medicina y Biología Experimental de Cuyo, Centro Científico Tecnológico, Mendoza 5500, Argentina
| |
Collapse
|
5
|
An X, Xu W, Zhao X, Chen H, Yang J, Wu Y, Wang D, Cheng W, Li H, Zeng L, Ma J, Wang Q, Wang X, Hou Y, Ai J. Bazi Bushen capsule attenuates cardiac systolic injury via SIRT3/SOD2 pathway in high-fat diet-fed ovariectomized mice. Heliyon 2024; 10:e32159. [PMID: 38912487 PMCID: PMC11190601 DOI: 10.1016/j.heliyon.2024.e32159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
Background Bazi Bushen capsule (BZBS) is a Chinese herbal compound that is clinically used to treat fatigue and forgetfulness. However, it is still unclear whether and how BZBS affects heart function decline in menopausal women. This study aimed to examine the effect of BZBS on cardiac function in a high-fat diet-fed ovariectomy (HFD-fed OVX) mouse model and elucidate the underlying mechanism of this effect. Methods The experimental animals were divided into five groups: sham group, HFD-fed OVX group, and BZBS (0.7, 1.4, 2.8 g/kg) intervention groups. Senescence β-galactosidase staining and echocardiography were used to evaluate cardiac function. SwissTargetPrediction, KEGG and GO enrichment analyses were used to screen the underlying mechanism of BZBS. The morphological and functional changes in cardiac mitochondria and the underlying molecular mechanism were assessed by transmission electron microscopy, western blotting and biochemical assays. STRING database was used to analysis protein-protein interaction (PPI) network. Molecular docking studies were employed to predict the interactions of specific BZBS compounds with their protein targets. Results BZBS treatment ameliorated cardiac senescence and cardiac systole injury in HFD-fed OVX mice. GO and KEGG analyses revealed that the 530 targets of the 14 main components of BZBS were enriched mainly in the oxidative stress-associated pathway, which was confirmed by the finding that BZBS treatment prevented abnormal morphological changes and oxidative stress damage to cardiac mitochondria in HFD-fed OVX mice. Furthermore, the STRING database showed that the targets of BZBS were broadly related to the Sirtuins family. And BZBS upregulated the SIRT3 and elevated the activity of SOD2 in the hearts of HFD-fed OVX mice, which was also verified in vitro. Additionally, we revealed that imperatorin and osthole from the BZBS upregulated the expression of SIRT3 by directly docking with the transcription factors HDAC1, HDAC2, and BRD4, which regulate the expression of SIRT3. Conclusion This research shows that the antioxidative effect and cardioprotective role of BZBS on HFD-fed OVX mice involves an increase in the activity of the SIRT3/SOD2 pathway, and the imperatorin and osthole of BZBS may play central roles in this process.
Collapse
Affiliation(s)
- Xiaobin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Wentao Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Xinyue Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Haihui Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Jinan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yan Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Dongyang Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Wei Cheng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Hongrong Li
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei Province, 050035, China
| | - Lu Zeng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Jing Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Qin Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Xuqiao Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yunlong Hou
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, Hebei Province, 050035, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), National Key Laboratory of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| |
Collapse
|
6
|
Yu L, Li Y, Song S, Zhang Y, Wang Y, Wang H, Yang Z, Wang Y. The dual role of sirtuins in cancer: biological functions and implications. Front Oncol 2024; 14:1384928. [PMID: 38947884 PMCID: PMC11211395 DOI: 10.3389/fonc.2024.1384928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Sirtuins are pivotal in orchestrating numerous cellular pathways, critically influencing cell metabolism, DNA repair, aging processes, and oxidative stress. In recent years, the involvement of sirtuins in tumor biology has garnered substantial attention, with a growing body of evidence underscoring their regulatory roles in various aberrant cellular processes within tumor environments. This article delves into the sirtuin family and its biological functions, shedding light on their dual roles-either as promoters or inhibitors-in various cancers including oral, breast, hepatocellular, lung, and gastric cancers. It further explores potential anti-tumor agents targeting sirtuins, unraveling the complex interplay between sirtuins, miRNAs, and chemotherapeutic drugs. The dual roles of sirtuins in cancer biology reflect the complexity of targeting these enzymes but also highlight the immense therapeutic potential. These advancements hold significant promise for enhancing clinical outcomes, marking a pivotal step forward in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Lu Yu
- Department of Respiratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yalin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Center of Critical Care Medicine, Sichuan Academy of Medical Sciences, Chengdu, China
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| | - Zhengteng Yang
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Traditional Medicine, Nanning, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| |
Collapse
|
7
|
Homer HA. Understanding oocyte ageing. Minerva Obstet Gynecol 2024; 76:284-292. [PMID: 38536027 DOI: 10.23736/s2724-606x.24.05343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Females are born with a finite and non-renewable reservoir of oocytes, which therefore decline both in number and quality with advancing age. A striking characteristic of oocyte quality is that "ageing" effects manifest whilst women are in their thirties and are therefore still chronologically and physically young. Furthermore, this decline is unrelenting and not modifiable to any great extent by lifestyle or diet. Since oocyte quality is rate-limiting for pregnancy success, as the proportion of good-quality oocytes progressively deteriorate, the chance of successful pregnancy during each 6-12-month period also decreases, becoming exponential after 37 years. Unlike oocyte quality, age-related attrition in the size of the ovarian reservoir is less impactful for natural fertility since only one mature oocyte is typically ovulated per menstrual cycle. In contrast, oocyte numbers are pivotal for in-vitro fertilization success, since larger numbers enable better-quality oocytes to be found and is important for buffering the inefficiencies of the IVF process. The ageing trajectory is accelerated in ~10% of women, so-called premature ovarian ageing, with ~1% of women at the extreme end of this spectrum with loss of ovarian function occurring before 40 years of age, termed premature ovarian insufficiency. The aim of this review was to analyze how ageing impacts the size and quality of the oocyte pool along with emerging interventions for combating low oocyte numbers and improving quality.
Collapse
Affiliation(s)
- Hayden A Homer
- Queensland Fertility Group, Christopher Chen Oocyte Biology Research Laboratory, UQ Center for Clinical Research, The University of Queensland, Brisbane, Australia -
| |
Collapse
|
8
|
Kusmierczyk J, Wiecek M, Wojciak G, Mardyła M, Kreiner G, Szygula Z, Szymura J. The Effect of Physical Activity and Repeated Whole-Body Cryotherapy on the Expression of Modulators of the Inflammatory Response in Mononuclear Blood Cells among Young Men. J Clin Med 2024; 13:2724. [PMID: 38731252 PMCID: PMC11084784 DOI: 10.3390/jcm13092724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Series of whole-body cryotherapy (WBC) among healthy and physically active individuals can potentially reduce inflammatory response, although exact mechanisms remain unclear. Methods: The impact of whole-body cryotherapy on inflammation modulators among 28 young males, categorized as non-training (NTR, N = 10), non-training with WBC (NTR-WBC, N = 10), and training with WBC (TR-WBC, N = 8), is investigated in this study. Over a period of eight weeks, NTR-WBC and TR-WBC subjects underwent 24 WBC treatments (-130 °C for 3 min, three times a week), examining changes in mRNA expressions of IL-1A, IL-6, IL-10, IFN-G, SIRT1, SIRT3, SOD2, GSS, and ICAM-1. Results: The received data indicate an acute inflammatory response to initial WBC (increased IL-1A, IL-6, and SIRT), with a greater effect in NTR-WBC. Subsequent sessions showed enhanced expressions of antioxidative genes in both WBC groups, particularly non-trained, suggesting improved oxidative stress adaptation. A notable decrease in ICAM-1 mRNA post-24 WBC treatments in NTR-WBC signifies a potential systemic anti-inflammatory effect. Conclusions: The findings of the study suggest that the combination of regular physical activity with WBC administered three times per week can potentially modulate inflammatory and antioxidant responses. This modulation is evidenced by changes in the expression of genes related to these processes.
Collapse
Affiliation(s)
- Justyna Kusmierczyk
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (M.M.)
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (M.M.)
| | - Gabriela Wojciak
- Department of Biomechanics and Physical Medicine, Institute of Health Sciences, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Kraków, Poland;
| | - Mateusz Mardyła
- Department of Physiology and Biochemistry, University of Physical Education in Kraków, 31-571 Kraków, Poland; (M.W.); (M.M.)
| | - Grzegorz Kreiner
- Department Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland;
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| |
Collapse
|
9
|
Kato T, Azegami J, Kano M, El Enshasy HA, Park EY. Induction of Oxidative Stress in Sirtuin Gene-Disrupted Ashbya gossypii Mutants Overproducing Riboflavin. Mol Biotechnol 2024; 66:1144-1153. [PMID: 38184809 DOI: 10.1007/s12033-023-01012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
10
|
Yu L, Wan Q, Liu Q, Fan Y, Zhou Q, Skowronski AA, Wang S, Shao Z, Liao CY, Ding L, Kennedy BK, Zha S, Que J, LeDuc CA, Sun L, Wang L, Qiang L. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab 2024; 36:793-807.e5. [PMID: 38378001 PMCID: PMC11070064 DOI: 10.1016/j.cmet.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Aging is underpinned by pronounced metabolic decline; however, the drivers remain obscure. Here, we report that IgG accumulates during aging, particularly in white adipose tissue (WAT), to impair adipose tissue function and metabolic health. Caloric restriction (CR) decreases IgG accumulation in WAT, whereas replenishing IgG counteracts CR's metabolic benefits. IgG activates macrophages via Ras signaling and consequently induces fibrosis in WAT through the TGF-β/SMAD pathway. Consistently, B cell null mice are protected from aging-associated WAT fibrosis, inflammation, and insulin resistance, unless exposed to IgG. Conditional ablation of the IgG recycling receptor, neonatal Fc receptor (FcRn), in macrophages prevents IgG accumulation in aging, resulting in prolonged healthspan and lifespan. Further, targeting FcRn by antisense oligonucleotide restores WAT integrity and metabolic health in aged mice. These findings pinpoint IgG as a hidden culprit in aging and enlighten a novel strategy to rejuvenate metabolic health.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qianfen Wan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiongming Liu
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yong Fan
- Naomi Berrie Diabetes Center, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Alicja A Skowronski
- Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Summer Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Lei Ding
- Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Healthy Longevity Translational Research Programme, Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Health Longevity, National University Health System, Singapore, Singapore
| | - Shan Zha
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Charles A LeDuc
- Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Liheng Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Medicine, Division of Endocrinology, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Li Qiang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Naomi Berrie Diabetes Center, Department of Medicine, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Pulipaka S, Singuru G, Sahoo S, Shaikh A, Thennati R, Kotamraju S. Therapeutic efficacies of mitochondria-targeted esculetin and metformin in the improvement of age-associated atherosclerosis via regulating AMPK activation. GeroScience 2024; 46:2391-2408. [PMID: 37968424 PMCID: PMC10828355 DOI: 10.1007/s11357-023-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Atherosclerosis, in general, is an age-associated cardiovascular disease wherein a progressive decline in mitochondrial function due to aging majorly contributes to the disease development. Mitochondria-derived ROS due to dysregulated endothelial cell function accentuates the progression of atherosclerotic plaque formation. To circumvent this, mitochondrially targeted antioxidants are emerging as potential candidates to combat metabolic abnormalities. Recently, we synthesized an alkyl TPP+ tagged esculetin (Mito-Esc), and in the current study, we investigated the therapeutic efficacies of Mito-Esc and metformin, a well-known anti-diabetic drug, in the amelioration of age-associated plaque formation in the aortas of 12 months aged Apoe-/- and 20 months aged C57BL/6 mice, in comparison to young C57BL/6 control mice. Administration of Mito-Esc or metformin significantly reduced age-induced atherosclerotic lesion area, macrophage polarization, vascular inflammation, and senescence. Further, chronic passaging of human aortic endothelial cells (HAEC) with either Mito-Esc or metformin significantly delayed cellular senescence via the activation of the AMPK-SIRT1/SIRT6 axis. Conversely, depletion of either AMPK/SIRT1/SIRT6 caused premature senescence. Consistent with this, Mito-Esc or metformin treatment attenuated NFkB-mediated inflammatory signaling and enhanced ARE-mediated anti-oxidant responses in comparison to late passage control HAECs. Importantly, culturing of HAECs for several passages with either Mito-Esc or metformin significantly improved mitochondrial function. Overall, Mito-Esc and metformin treatments delay age-associated atherosclerosis by regulating vascular senescence via the activation of AMPK-SIRT1/SIRT6 axis.
Collapse
Affiliation(s)
- Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd, Vadodara-390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India.
| |
Collapse
|
12
|
Ning L, Xie N. SIRT3 Expression Predicts Overall Survival and Neoadjuvant Chemosensitivity in Triple-Negative Breast Cancer. Cancer Manag Res 2024; 16:137-150. [PMID: 38476973 PMCID: PMC10929660 DOI: 10.2147/cmar.s445248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Background The Sirtuin (SIRT) family consists of seven evolutionary conserved NAD-dependent deacetylases that play important roles in various cancers, including breast cancer (BC). SIRTs expression has been reported to have prognostic value in BC, but these studies used limited sample size and yielded inconsistent conclusions. This study evaluated the association of SIRT3 and other SIRT family members with survival and neoadjuvant chemotherapy outcomes. Methods BC patients' data was obtained from the TCGA-BRCA, METABRIC and GEO databases, comprising 4336 samples. SIRTs expression and overall survival (OS) were analyzed using Kaplan-Meier analysis and Cox proportional hazards regression. SIRT3 expression levels were compared between pathologic complete response (pCR) and non-pCR groups after neoadjuvant chemotherapy in triple-negative breast cancer (TNBC). Protein-protein interaction networks were constructed using the STRING database. Gene set enrichment analysis (GSEA) was performed to explore potential functions of SIRT3. Results Through systematic analysis of SIRTs expression and OS of BC using three independent cohorts: TCGA-BRCA, METABRIC and GSE16446, we found that high SIRT3 expression was significantly associated with worse OS in TNBC in the TCGA-BRCA cohort, which was validated in the METABRIC and GSE16446 cohorts. SIRT3 expression was correlated with BC subtypes and American Joint Committee on Cancer (AJCC) T stage, but not with age-at-diagnosis, race, or tumor stage. Moreover, TNBC patients with higher SIRT3 expression had lower pCR rates after neoadjuvant chemotherapy (p = 6.40e-03) and SIRT3 expression was significantly lower in the pCR group than in the non-pCR group in TNBC (p = 4.2e-03). GSEA indicated that SIRT3 was involved in drug-related pathways such as oxidative phosphorylation, metabolism of xenobiotics by cytochrome P450, and drug metabolism. Conclusion Our study suggests that SIRT3 is a potential biomarker for both OS and neoadjuvant chemosensitivity in TNBC. It may also assist in selecting suitable candidates and treatment options for TNBC patients.
Collapse
Affiliation(s)
- Lvwen Ning
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, People’s Republic of China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
13
|
Shokeen K, Kumar S. Newcastle disease virus regulates its replication by instigating oxidative stress-driven Sirtuin 7 production. J Gen Virol 2024; 105. [PMID: 38376490 DOI: 10.1099/jgv.0.001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
15
|
He H, Chen X, Ding Y, Chen X, He X. Composite dietary antioxidant index associated with delayed biological aging: a population-based study. Aging (Albany NY) 2024; 16:15-27. [PMID: 38170244 PMCID: PMC10817368 DOI: 10.18632/aging.205232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The objective of this study was to explore the potential correlation between the composite dietary antioxidant index (CDAI) and biological aging, addressing the insufficient epidemiological evidence in this area. METHODS Participants meeting eligibility criteria were selected from the National Health and Nutrition Examination Surveys (NHANES) conducted between 2001 and 2018. CDAI was determined based on dietary antioxidants obtained from 24-hour dietary recalls. Biological age was determined using PhenoAge algorithms incorporating various clinical features. Weighted multiple models were employed to investigate and assess the association between CDAI and biological age. RESULTS Analysis of the CDAI quartile revealed disparities in terms of age, gender, ethnicity, educational level, marital status, poverty, dietary calories intakes, smoking, drinking status, BMI, physical activity, and PhenoAge. After adjusting for potential confounding factors, a significant inverse relationship was found between CDAI and Phenotypic Age, with each standard deviation increase in CDAI score correlating with a 0.18-year decrease in Phenotypic Age. These negative correlations between CDAI and PhenoAge advancement were observed regardless of age, gender, physical activity status, smoking status, and body mass index. CONCLUSIONS Our findings demonstrate a positive relationship between higher CDAI scores and delayed biological aging. These results have significant implications for public health initiatives aimed at promoting healthy aging through dietary interventions.
Collapse
Affiliation(s)
- Huiqin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Xin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Yiming Ding
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Xiaoli Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China
| |
Collapse
|
16
|
May MA, Tomanek L. Uncovering the roles of sirtuin activity and food availability during the onset of the heat shock response in the California mussel (Mytilus californianus): Implications for antioxidative stress responses. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110902. [PMID: 37690509 DOI: 10.1016/j.cbpb.2023.110902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Sirtuins are a class of NAD+-dependent deacylases, with known regulatory roles in energy metabolism and cellular stress responses in vertebrates. Previous work using marine mussels have suggested a similar role in invertebrates, providing a potential mechanism linking food availability and thermal sensitivity in Mytilids. Sirtuin inhibitors affect mussels' recovery from environmental stressors, including acute heat shock and well-fed mussels exposed to sirtuin inhibitors and/or acute heat shock respond differently than poorly fed mussels, at the protein and whole-organism levels. While this implies a relationship between sirtuins, food availability, and temperature, the direct effects of sirtuin inhibitors (nicotinamide and suramin) on sirtuin activity or their putative effectors have not been explicitly tested. In this study, adult Mytilus californianus were acclimated to a low or high food availability and exposed to one of the following treatments: control, acute heat shock, sirtuin inhibitors, or acute heat shock and sirtuin inhibitors. Mussels increased sirtuin activity during early recovery (5 h) from sirtuin inhibition and acute heat shock, but only if acclimated to a high food availability. Redox balance was also impacted in mussels acclimated to high food availability and exposed to sirtuin inhibitors, signifying interactions between ration, acute heat shock, and sirtuin inhibitors. Additionally, we found a correlation between sirtuin and superoxide dismutase activities, suggesting a potential regulatory role of oxidative stress by sirtuins. Following prolonged recovery (17 h), we found increased sirtuin activity in mussels acclimated to low food availability, indicating that endogenous sirtuin activity may be related to food availability in mussels.
Collapse
Affiliation(s)
- Melissa A May
- Florida Gulf Coast University, Fort Myers, FL 33965, USA; California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Lars Tomanek
- California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
17
|
Sanz RL, Menéndez SG, Inserra F, Ferder L, Manucha W. Cellular and Mitochondrial Pathways Contribute to SGLT2 Inhibitors-mediated Tissue Protection: Experimental and Clinical Data. Curr Pharm Des 2024; 30:969-974. [PMID: 38551044 DOI: 10.2174/0113816128289350240320063045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 06/21/2024]
Abstract
In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia- inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
| | - Sebastián García Menéndez
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
- Laboratorio de Farmacologia Experimental Básica y Traslacional, Departamento de Patologie et Pharmacologie, Área de Farmacologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Felipe Inserra
- Departmento de Pathologie et Pharmacologie, Universidad Maimónides, Buenos Aires C1405, Argentina
| | - León Ferder
- Departmento de Pathologie et Pharmacologie, Universidad Maimónides, Buenos Aires C1405, Argentina
| | - Walter Manucha
- Departamento de Patologie et Pharmacologie, Instituto de Medicina y Biologia Experimental de Cuyo, Consejo Nacional de Investigación Cientifica y Tecnológica (IMBECU- CONICET), Mendoza 5500, Argentina
- Laboratorio de Farmacologia Experimental Básica y Traslacional, Departamento de Patologie et Pharmacologie, Área de Farmacologia, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| |
Collapse
|
18
|
Ivanovski N, Wang H, Tran H, Ivanovska J, Pan J, Miraglia E, Leung S, Posiewko M, Li D, Mohammadi A, Higazy R, Nagy A, Kim P, Santyr G, Belik J, Palaniyar N, Gauda EB. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats. Pediatr Res 2023; 94:1684-1695. [PMID: 37349511 DOI: 10.1038/s41390-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1β, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.
Collapse
Affiliation(s)
- Nikola Ivanovski
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Huanhuan Wang
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harvard Tran
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingyi Pan
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily Miraglia
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sharon Leung
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melanie Posiewko
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel Li
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anita Nagy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Anatomical Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Kim
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Giles Santyr
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jaques Belik
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Estelle B Gauda
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
19
|
Sahu A, Verma R. Bisphenol S dysregulates thyroid hormone homeostasis; Testicular survival, redox and metabolic status: Ameliorative actions of melatonin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104300. [PMID: 37866414 DOI: 10.1016/j.etap.2023.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Bisphenol S (BPS) is an incipient threat for reproductive health augmenting societal burden of infertility worldwide. In the present study, we investigated the mechanism of BPS induced testicular dysfunctions and protective actions of melatonin in mice. BPS (150 mg/kg BW) treatment reduced serum T3/T4, testosterone and elevated insulin levels along with adverse effect on thyroid and testicular histoarchitecture. Further, BPS treatment compromised sperm quality, reduced mRNA expression of steroidogenic (StAR/CYP11A1) markers, elevated oxidative load and disrupts metabolic status. However, melatonin (5 mg/kg BW) administration to BPS treated mice showed improved hormonal/histological parameters, enhanced thyroid hormone (TR-α/Dio-2)/melatonin (MT-1) receptor expressions. Further, melatonin treatment modulated the expression of testicular survival/redox (SIRT1/PGC-1α/FOXO-1, Nrf2/HO-1, p-JAK2/p-STAT3), proliferative (PCNA) and metabolic (IR/pAKT/GLUT-1) markers. Furthermore, melatonin treatment enhanced testicular antioxidant status and reduced caspase-3 expression. In conclusion, our results showed that BPS induces endocrine/oxidative and metabolic anomalies while melatonin improved male reproductive health.
Collapse
Affiliation(s)
- Aishwarya Sahu
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rakesh Verma
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
20
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 276] [Impact Index Per Article: 276.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
21
|
Mohan MS, Aswani SS, Aparna NS, Boban PT, Sudhakaran PR, Saja K. Effect of acute cold exposure on cardiac mitochondrial function: role of sirtuins. Mol Cell Biochem 2023; 478:2257-2270. [PMID: 36781815 DOI: 10.1007/s11010-022-04656-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023]
Abstract
Cardiac function depends mainly on mitochondrial metabolism. Cold conditions increase the risk of cardiovascular diseases by increasing blood pressure. Adaptive thermogenesis leads to increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of acute cold exposure on cardiac mitochondrial function and its regulation by sirtuins. Significant increase in mitochondrial DNA copy number as measured by the ratio between mitochondrial-coded COX-II and nuclear-coded cyclophilin A gene expression by qRT-PCR and increase in the expression of PGC-1α, a mitochondriogenic factor and its downstream target NRF-1 were observed on cold exposure. This was associated with an increase in the activity of SIRT-1, which is known to activate PGC-1α. Mitochondrial SIRT-3 was also upregulated. Increase in sirtuin activity was reflected in total protein acetylome, which decreased in cold-exposed cardiac tissue. An increase in mitochondrial MnSOD further indicated enhanced mitochondrial function. Further evidence for this was obtained from ex vivo studies of cardiac tissue treated with norepinephrine, which caused a significant increase in mitochondrial MnSOD and SIRT-3. SIRT-3 appears to mediate the regulation of MnSOD, as treatment with AGK-7, a SIRT-3 inhibitor reversed the norepinephrine-induced upregulation of MnSOD. It, therefore, appears that SIRT-3 activation in response to SIRT-1-PGC-1α activation contributes to the regulation of cardiac mitochondrial activity during acute cold exposure.
Collapse
Affiliation(s)
- Mithra S Mohan
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - S S Aswani
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - N S Aparna
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P T Boban
- Department of Biochemistry, Government College, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - P R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | - K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
22
|
Debsharma S, Pramanik S, Bindu S, Mazumder S, Das T, Saha D, De R, Nag S, Banerjee C, Siddiqui AA, Ghosh Z, Bandyopadhyay U. Honokiol, an inducer of sirtuin-3, protects against non-steroidal anti-inflammatory drug-induced gastric mucosal mitochondrial pathology, apoptosis and inflammatory tissue injury. Br J Pharmacol 2023; 180:2317-2340. [PMID: 36914615 DOI: 10.1111/bph.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial oxidative stress, inflammation and apoptosis primarily underlie gastric mucosal injury caused by the widely used non-steroidal anti-inflammatory drugs (NSAIDs). Alternative gastroprotective strategies are therefore needed. Sirtuin-3 pivotally maintains mitochondrial structural integrity and metabolism while preventing oxidative stress; however, its relevance to gastric injury was never explored. Here, we have investigated whether and how sirtuin-3 stimulation by the phytochemical, honokiol, could rescue NSAID-induced gastric injury. EXPERIMENTAL APPROACH Gastric injury in rats induced by indomethacin was used to assess the effects of honokiol. Next-generation sequencing-based transcriptomics followed by functional validation identified the gastroprotective function of sirtuin-3. Flow cytometry, immunoblotting, qRT-PCR and immunohistochemistry were used measure effects on oxidative stress, mitochondrial dynamics, electron transport chain function, and markers of inflammation and apoptosis. Sirtuin-3 deacetylase activity was also estimated and gastric luminal pH was measured. KEY RESULTS Indomethacin down-regulated sirtuin-3 to induce oxidative stress, mitochondrial hyperacetylation, 8-oxoguanine DNA glycosylase 1 depletion, mitochondrial DNA damage, respiratory chain defect and mitochondrial fragmentation leading to severe mucosal injury. Indomethacin dose-dependently inhibited sirtuin-3 deacetylase activity. Honokiol prevented mitochondrial oxidative damage and inflammatory tissue injury by attenuating indomethacin-induced depletion of both sirtuin-3 and its transcriptional regulators PGC1α and ERRα. Honokiol also accelerated gastric wound healing but did not alter gastric acid secretion, unlike lansoprazole. CONCLUSIONS AND IMPLICATIONS Sirtuin-3 stimulation by honokiol prevented and reversed NSAID-induced gastric injury through maintaining mitochondrial integrity. Honokiol did not affect gastric acid secretion. Sirtuin-3 stimulation by honokiol may be utilized as a mitochondria-based, acid-independent novel gastroprotective strategy against NSAIDs.
Collapse
Affiliation(s)
- Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, West Bengal, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Kolkata, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
23
|
Szabo L, Grimm A, García-León JA, Verfaillie CM, Eckert A. Genetically Engineered Triple MAPT-Mutant Human-Induced Pluripotent Stem Cells (N279K, P301L, and E10+16 Mutations) Exhibit Impairments in Mitochondrial Bioenergetics and Dynamics. Cells 2023; 12:1385. [PMID: 37408218 DOI: 10.3390/cells12101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Pathological abnormalities in the tau protein give rise to a variety of neurodegenerative diseases, conjointly termed tauopathies. Several tau mutations have been identified in the tau-encoding gene MAPT, affecting either the physical properties of tau or resulting in altered tau splicing. At early disease stages, mitochondrial dysfunction was highlighted with mutant tau compromising almost every aspect of mitochondrial function. Additionally, mitochondria have emerged as fundamental regulators of stem cell function. Here, we show that compared to the isogenic wild-type triple MAPT-mutant human-induced pluripotent stem cells, bearing the pathogenic N279K, P301L, and E10+16 mutations, exhibit deficits in mitochondrial bioenergetics and present altered parameters linked to the metabolic regulation of mitochondria. Moreover, we demonstrate that the triple tau mutations disturb the cellular redox homeostasis and modify the mitochondrial network morphology and distribution. This study provides the first characterization of disease-associated tau-mediated mitochondrial impairments in an advanced human cellular tau pathology model at early disease stages, ranging from mitochondrial bioenergetics to dynamics. Consequently, comprehending better the influence of dysfunctional mitochondria on the development and differentiation of stem cells and their contribution to disease progression may thus assist in the potential prevention and treatment of tau-related neurodegeneration.
Collapse
Affiliation(s)
- Leonora Szabo
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| | - Amandine Grimm
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Juan Antonio García-León
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Anne Eckert
- Research Cluster Molecular and Cognitive Neurosciences, University of Basel, 4002 Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, University Psychiatric Clinics Basel, 4002 Basel, Switzerland
| |
Collapse
|
24
|
Sgueglia G, Longobardi S, Valerio D, Campitiello MR, Colacurci N, Di Pietro C, Battaglia R, D'Hooghe T, Altucci L, Dell'Aversana C. The impact of epigenetic landscape on ovarian cells in infertile older women undergoing IVF procedures. Clin Epigenetics 2023; 15:76. [PMID: 37143127 PMCID: PMC10161563 DOI: 10.1186/s13148-023-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.
Collapse
Affiliation(s)
- Giulia Sgueglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy
| | | | - Domenico Valerio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Nicola Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- BIOGEM, Ariano Irpino, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| |
Collapse
|
25
|
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, Li J, Jiao X, Guo E, Yu Y, Sun L, Tian H. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater 2023; 164:604-625. [PMID: 37080445 DOI: 10.1016/j.actbio.2023.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: : Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peian Cai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xingpei Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiarou Li
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yixiu Yu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Lu Sun
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
26
|
Lee YH, Kuk MU, So MK, Song ES, Lee H, Ahn SK, Kwon HW, Park JT, Park SC. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040934. [PMID: 37107309 PMCID: PMC10136354 DOI: 10.3390/antiox12040934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are one of the organelles undergoing rapid alteration during the senescence process. Senescent cells show an increase in mitochondrial size, which is attributed to the accumulation of defective mitochondria, which causes mitochondrial oxidative stress. Defective mitochondria are also targets of mitochondrial oxidative stress, and the vicious cycle between defective mitochondria and mitochondrial oxidative stress contributes to the onset and development of aging and age-related diseases. Based on the findings, strategies to reduce mitochondrial oxidative stress have been suggested for the effective treatment of aging and age-related diseases. In this article, we discuss mitochondrial alterations and the consequent increase in mitochondrial oxidative stress. Then, the causal role of mitochondrial oxidative stress on aging is investigated by examining how aging and age-related diseases are exacerbated by induced stress. Furthermore, we assess the importance of targeting mitochondrial oxidative stress for the regulation of aging and suggest different therapeutic strategies to reduce mitochondrial oxidative stress. Therefore, this review will not only shed light on a new perspective on the role of mitochondrial oxidative stress in aging but also provide effective therapeutic strategies for the treatment of aging and age-related diseases through the regulation of mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Moon Kyoung So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
27
|
Sanz RL, Inserra F, García Menéndez S, Mazzei L, Ferder L, Manucha W. Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins. Curr Hypertens Rep 2023; 25:91-106. [PMID: 37052810 DOI: 10.1007/s11906-023-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To address the mechanistic pathways focusing on mitochondria dysfunction, oxidative stress, sirtuins imbalance, and other contributors in patient with metabolic syndrome and cardiovascular disease. Sodium glucose co-transporter type 2 (SGLT-2) inhibitors deeply influence these mechanisms. Recent randomized clinical trials have shown impressive results in improving cardiac function and reducing cardiovascular and renal events. These unexpected results generate the need to deepen our understanding of the molecular mechanisms able to generate these effects to help explain such significant clinical outcomes. RECENT FINDINGS Cardiovascular disease is highly prevalent among individuals with metabolic syndrome and diabetes. Furthermore, mitochondrial dysfunction is a principal player in its development and persistence, including the consequent cardiac remodeling and events. Another central protagonist is the renin-angiotensin system; the high angiotensin II (Ang II) activity fuel oxidative stress and local inflammatory responses. Additionally, sirtuins decline plays a pivotal role in the process; they enhance oxidative stress by regulating adaptive responses to the cellular environment and interacting with Ang II in many circumstances, including cardiac and vascular remodeling, inflammation, and fibrosis. Fasting and lower mitochondrial energy generation are conditions that substantially reduce most of the mentioned cardiometabolic syndrome disarrangements. In addition, it increases sirtuins levels, and adenosine monophosphate-activated protein kinase (AMPK) signaling stimulates hypoxia-inducible factor-1β (HIF-1 beta) and favors ketosis. All these effects favor autophagy and mitophagy, clean the cardiac cells with damaged organelles, and reduce oxidative stress and inflammatory response, giving cardiac tissue protection. In this sense, SGLT-2 inhibitors enhance the level of at least four sirtuins, some located in the mitochondria. Moreover, late evidence shows that SLGT-2 inhibitors mimic this protective process, improving mitochondria function, oxidative stress, and inflammation. Considering the previously described protection at the cardiovascular level is necessary to go deeper in the knowledge of the effects of SGLT-2 inhibitors on the mitochondria function. Various of the protective effects these drugs clearly had shown in the trials, and we briefly describe it could depend on sirtuins enhance activity, oxidative stress reduction, inflammatory process attenuation, less interstitial fibrosis, and a consequent better cardiac function. This information could encourage investigating new therapeutic strategies for metabolic syndrome, diabetes, heart and renal failure, and other diseases.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Felipe Inserra
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - León Ferder
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
28
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Liu H, An ZY, Li ZY, Yang LH, Zhang XL, Lv YT, Yin XJ, Quan LH, Kang JD. The ginsenoside Rh2 protects porcine oocytes against aging and oxidative stress by regulating SIRT1 expression and mitochondrial activity. Theriogenology 2023; 200:125-135. [PMID: 36805249 DOI: 10.1016/j.theriogenology.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Post-ovulatory aging, a major problem faced by oocytes cultured in vitro, causes oxidative damage and mitochondrial dysfunction in oocytes. The ginsenoside Rh2 is one of the main monomeric components of ginseng, but its effects on porcine oocytes are unknown. In the present study, in vitro aging (IVA) and accelerated induction of aging using H2O2 resulted in DNA damage and an increased incidence of abnormal spindle formation in porcine oocytes. Rh2 supplementation increased the antioxidant capacity, reduced the occurrence of early apoptosis, and improved the development of in vitro fertilized blastocysts. It also rescued the abnormal aggregation of mitochondria and the decrease of the mitochondrial membrane potential under mitochondrial dysfunction. Meanwhile, Rh2 enhanced mRNA expression of the anti-aging and mitochondrial biogenesis-related genes silent information regulator of transcription 1 (SIRT1) and peroxisome proliferator-activated receptor coactivator 1-α (PGC-1α), and the antioxidant gene superoxide dismutase 1 (SOD1). The protection of porcine oocytes against aging and oxidative stress by Rh2 was confirmed using the SIRT1-specific inhibitor EX-527. Our results reveal that Rh2 upregulates SIRT1/PGC-1α to enhance mitochondrial function in porcine oocytes and improve their quality. Our study indicates that Rh2 can be used to prevent mitochondrial dysfunction in oocytes.
Collapse
Affiliation(s)
- Hongye Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhou-Yan Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Liu-Hui Yang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Yan-Tong Lv
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
30
|
Wei Y, Xiao G, Xu H, Sun X, Shi Y, Wang F, Kang J, Peng J, Zhou F. Radiation resistance of cancer cells caused by mitochondrial dysfunction depends on SIRT3-mediated mitophagy. FEBS J 2023. [PMID: 36871142 DOI: 10.1111/febs.16769] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/14/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Radiation resistance is the leading cause of radiotherapy failure in patients with cancer. Enhanced DNA damage repair is the main reason for cancer cells to develop resistance to radiation. Autophagy has been widely reported to be linked to increased genome stability and radiation resistance. Mitochondria are highly involved in the cell response to radiotherapy. However, the autophagy subtype mitophagy has not been studied in terms of genome stability. We have previously demonstrated that mitochondrial dysfunction is the cause of radiation resistance in tumour cells. In the present study, we found that SIRT3 was highly expressed in colorectal cancer cells with mitochondrial dysfunction, leading to PINK1/Parkin-mediated mitophagy. Excessive activation of mitophagy enhanced DNA damage repair, therefore promoting the resistance of tumour cells to radiation. Mechanistically, mitophagy resulted in decreased RING1b expression, which led to a reduction in the ubiquitination of histone H2A at K119, thereby enhancing the repair of DNA damage caused by radiation. Additionally, high expression of SIRT3 was related to a poor tumour regression grade in rectal cancer patients treated with neoadjuvant radiotherapy. These findings suggest that restoring mitochondrial function could be an effective method for increasing the radiosensitivity of patients with colorectal cancer.
Collapse
Affiliation(s)
- Yan Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Guohui Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xuehua Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yingying Shi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fen Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jinlin Kang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
32
|
Liu L, Wang B, Yang W, Jiang Q, Loor JJ, Ouyang L, Tang H, Chang R, Peng T, Xu C. Sirtuin 3 relieves inflammatory responses elicited by lipopolysaccharide via the PGC1α-NFκB pathway in bovine mammary epithelial cells. J Dairy Sci 2023; 106:1315-1329. [PMID: 36494223 DOI: 10.3168/jds.2022-22114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/04/2022] [Indexed: 12/12/2022]
Abstract
Excessive inflammation in bovine mammary endothelial cells (BMEC) due to mastitis leads to disease progression and eventual culling of cattle. Sirtuin 3 (SIRT3), a mitochondrial deacetylase, downregulates pro-inflammatory cytokines in BMEC exposed to high concentrations of nonesterified fatty acids by blunting nuclear factor-κB (NFκB) signaling. In nonruminants, SIRT3 is under the control of PGC1α, a transcriptional cofactor. Specific aims were to study (1) the effect of SIRT3 on inflammatory responses of lipopolysaccharide (LPS)-challenged bovine mammary epithelial cells (bovine mammary alveolar cells-T, MAC-T) models, and (2) the role of PGC1α in the attenuation of NFκB signaling via SIRT3. To address these objectives, first, MAC-T cells were incubated in triplicate with 0, 50, 100, 150, or 200 μg/mL LPS (derived from Escherichia coli O55:B5) for 12 h with or without a 2-h incubation of the NFκB inhibitor ammonium pyrrolidine dithiocarbamate (APDC, 10 μM). Second, SIRT3 was overexpressed using adenoviral expression (Ad-SIRT3) at different multiplicity of infection (MOI) for 6 h followed by a 12 h incubation with 150 μg/mL LPS. Third, cells were treated with the PGC1α agonist ZLN005 (10 μg/mL) for 24 h and then challenged with 150 μg/mL LPS for 12 h. Fourth, cells were initially treated with the PGC1α inhibitor SR-18292 (100 μM) for 6 h followed by a 6-h culture with or without 50 MOI Ad-SIRT3 and a challenge with 150 μg/mL LPS for 12 h. Data were analyzed using one-way ANOVA with subsequent Bonferroni correction. Linear and quadratic contrasts were used to determine dose-responses to LPS. There were linear and quadratic effects of LPS dosage on cell viability. Incubation with 150 and 200 μg/mL LPS for 12 h decreased cell viability to 78.6 and 34.9%, respectively. Compared with controls, expression of IL1B, IL6, and TNFA was upregulated by 5.2-, 5.9-, and 2.7-fold with 150 μg/mL LPS; concentrations of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in cell medium also increased. Compared with the LPS group, LPS+APDC increased cell viability and reversed the upregulation of IL1B, IL6, and TNFA expression. However, mRNA and protein abundance of SIRT3 decreased linearly with increasing LPS dose. Ad-SIRT3 infection (50 MOI) reduced IL1B, IL6, and TNFA expression and also their concentrations in cell medium, and decreased pNFκB P65/NFκB P65 ratio and nuclear abundance of NFκB P65. The PGC1α agonist increased SIRT3 expression, whereas it decreased cytokine expression, pNFκB P65/NFκB P65 ratio, and prevented NFκB P65 nuclear translocation. Contrary to the agonist, the PGC1α inhibitor had opposite effects, and elevated the concentrations of IL-1β, IL-6, and TNF-α in cell medium. Overall, data suggested that SIRT3 activity could attenuate LPS-induced inflammatory responses in mammary cells via alterations in the PGC1α-NFκB pathway. As such, there may be potential benefits for targeting SIRT3 in vivo to help prevent or alleviate negative effects of mastitis.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, China
| | - Baogen Wang
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Lu Ouyang
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, China
| | - Huilun Tang
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, China
| | - Renxu Chang
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Tao Peng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
33
|
Abu-Hijleh HM, Al-Zoubi RM, Zarour A, Al- Ansari A, Bawadi H. The Therapeutic Role of Curcumin in Inflammation and Post-Surgical Outcomes. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2166525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haya M. Abu-Hijleh
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| | - Raed M. Al-Zoubi
- Department of biomedical Sciences, college of health Science, QU-Health, Qatar University, Doha, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Zarour
- Acute care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Abdulla Al- Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, college of health Science, QU-health, Qatar University, Doha, Qatar
| |
Collapse
|
34
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
35
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
36
|
Negre-Salvayre A, Salvayre R. Post-Translational Modifications Evoked by Reactive Carbonyl Species in Ultraviolet-A-Exposed Skin: Implication in Fibroblast Senescence and Skin Photoaging. Antioxidants (Basel) 2022; 11:2281. [PMID: 36421467 PMCID: PMC9687576 DOI: 10.3390/antiox11112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Photoaging is an accelerated form of aging resulting from skin exposure to ultraviolet (UV) radiation. UV-A radiation deeply penetrates the dermis and triggers the generation of reactive oxygen species (ROS) which promotes damage to DNA, lipids and proteins. Lipid peroxidation results from the oxidative attack of polyunsaturated fatty acids which generate a huge amount of lipid peroxidation products, among them reactive carbonyl species (RCS) such as α, β-unsaturated hydroxyalkenals (e.g., 4-hydroxynonenal), acrolein or malondialdehyde. These highly reactive agents form adducts on free NH2 groups and thiol residues on amino acids in proteins and can also modify DNA and phospholipids. The accumulation of RCS-adducts leads to carbonyl stress characterized by progressive cellular and tissular dysfunction, inflammation and toxicity. RCS-adducts are formed in the dermis of skin exposed to UV-A radiation. Several RCS targets have been identified in the dermis, such as collagen and elastin in the extracellular matrix, whose modification could contribute to actinic elastosis lesions. RCS-adducts may play a role in fibroblast senescence via the modification of histones, and the sirtuin SIRT1, leading to an accumulation of acetylated proteins. The cytoskeleton protein vimentin is modified by RCS, which could impair fibroblast motility. A better identification of protein modification and carbonyl stress in the dermis may help to develop new treatment approaches for preventing photoaging.
Collapse
Affiliation(s)
- Anne Negre-Salvayre
- Faculty of Medicine, Department of Biochemistry, INSERM U1297 and University of Toulouse, 31432 Toulouse, France
| | | |
Collapse
|
37
|
Pal S, Haldar C, Verma R. Impact of photoperiod on uterine redox/inflammatory and metabolic status of golden hamster, Mesocricetus auratus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:812-822. [PMID: 35789077 DOI: 10.1002/jez.2638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Photoperiod modulates reproductive physiology at multiple levels in seasonally breeding animals. Golden hamsters are long-day breeders that diminish their fertility during the short days. Photoperiod is known to regulate hormonal milieu and uterus is a hormone-sensitive dynamic tissue. However, there is lack of molecular insight regarding the impact of photoperiod on uterine physiology with respect to redox and metabolic status in Mesocricetus auratus. We evaluated the impact of photoperiod on circulatory hormonal parameters (triiodothyronine [T3], thyroxin [T4], estradiol [E2], progesterone [P4], melatonin, and insulin), their receptor expressions and key markers associated with redox (SIRT-1/FOXO-1), inflammatory (NFĸB/COX-2) and metabolic (IR/GLUT4) status in uterus. Adult female golden hamsters were exposed to different photoperiodic regimes, that is, short photoperiod (SP; 8L:16D) and long photoperiod (LP; 16L:8D) for 12 weeks. SP drastically decreased peripheral hormone profiles (T3, T4, E2, and P4) and compromised uterine histoarchitecture when compared with LP-exposed hamsters. Further, SP markedly decreased thyroid hormone receptor-α (TRα), insulin receptor, and glucose uptake transporter-4 (GLUT-4) expressions in uterus. We noted enhanced uterine oxidative (increased MDA and decreased SOD/CAT levels), SIRT-1/FOXO-1 expression and inflammatory (NFĸB/COX-2) load in SP condition. Further, elevated levels of circulatory insulin, melatonin, and its receptor (MT-1) expression in uterus was noted under SP condition. Thus, we may suggest that photoperiod might regulate uterine seasonality through modulation of local hormonal and redox/metabolic homeostasis thereby may restrict offspring bearing capacity under short days.
Collapse
Affiliation(s)
- Sriparna Pal
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chandana Haldar
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rakesh Verma
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
38
|
Negre-Salvayre A, Swiader A, Salvayre R, Guerby P. Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Arch Biochem Biophys 2022; 730:109416. [PMID: 36179910 DOI: 10.1016/j.abb.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Accelerated placental senescence is associated with preeclampsia (PE) and other pregnancy complications. It is characterized by an accelerated decline in placental function due to the accumulation of senescence patterns such as telomere shortening, mitochondrial dysfunction, oxidative damages, increased expression of phosphorylated (serine-139) histone γ-H2AX, a sensitive marker of double-stranded DNA breaks, accumulation of cross-linked ubiquitinated proteins and sirtuin inhibition. Among the lipid oxidation products generated by the peroxidation of polyunsaturated fatty acids, aldehydes such as acrolein, 4-hydroxy-2-nonenal, 4-oxo-2-nonenal, are present in the blood and placenta from PE-affected women and could contribute to PE pathogenesis and accelerated placental aging. In this review we summarize the current knowledge on premature placental senescence and the role of oxidative stress and lipid oxidation-derived aldehydes in this process, as well as their links with PE pathogenesis. The interest of developing (or not) new therapeutic strategies targeting lipid peroxidation is discussed, the objective being a better understanding of accelerated placental aging in PE pathophysiology, and the prevention of PE bad outcomes.
Collapse
Affiliation(s)
| | | | | | - Paul Guerby
- lnfinity, CNRS, Inserm UMR 1291, University Toulouse III and Gynecology/Obstetrics Department, Paule-de-Viguier Hospital, Toulouse, France
| |
Collapse
|
39
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
40
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
41
|
Yu SL, Lee SI, Park HW, Lee SK, Kim TH, Kang J, Park SR. SIRT1 suppresses in vitro decidualization of human endometrial stromal cells through the downregulation of forkhead box O1 expression. Reprod Biol 2022; 22:100672. [PMID: 35839571 DOI: 10.1016/j.repbio.2022.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022]
Abstract
SIRT1 regulates survival, DNA repair, and metabolism in human cells and has pleiotropic effects on age-related diseases through either deacetylating target proteins or inhibiting gene transcription. Forkhead box O1 (FOXO1) is one of the most important transcription factors during decidualization. Prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) are well-known FOXO1-dependent genes in decidualizing cells. To determine whether SIRT1 plays a role in decidualization, we investigated morphological changes in cells following artificially stimulated decidualization and expression levels of PRL, IGFBP1, and FOXO1 in the immortalized non-neoplastic human endometrial stromal cell line T HESCs. SIRT1 expression decreased in the decidualization condition and SIRT1 inhibited morphological changes caused by decidualization of T HESCs. SIRT1 suppressed PRL, IGFBP1, and FOXO1 expression; inhibited FOXO1, PRL, and IGFBP1 promoter activity; and decreased histone protein acetylation of the FOXO1 promoter. We found that FOXO1 expression increased in the secretory phase compared with the proliferative phase, whereas SIRT1 expression decreased in the secretory phase in the human endometrium. We also revealed that SIRT1 may inhibit embryo implantation according to the blastocyst-like spheroid implantation assay. Collectively, these results indicate that SIRT1 suppresses decidualization of human endometrial stromal cells by inhibiting FOXO1 expression.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Se-In Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Sung Ki Lee
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Tae-Hyun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| |
Collapse
|
42
|
Zhang Q, Zhou X, Zhang J, Li Q, Qian Z. Selenium and vitamin B6 co-supplementation improve dyslipidemia and fatty liver syndrome by SIRT1/SREBP-1c pathway in hyperlipidemic Sprague-Dawley rats induced by high-fat diet. Nutr Res 2022; 106:101-118. [DOI: 10.1016/j.nutres.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
|
43
|
Pande S, Raisuddin S. The Underexplored Dimensions of Nutritional Hormesis. Curr Nutr Rep 2022; 11:386-394. [PMID: 35723856 DOI: 10.1007/s13668-022-00423-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Hormesis is biphasic response wherein low and high doses of chemical and nutrient confer beneficial and toxic effects respectively, typically in a U-shaped manner. Hormesis is intricately related to bioenergetic state of a cell, and therefore, nutrition impacts it. Excessive nutrition can halt the endogenous antioxidant synthesis leading to cytotoxic effects. While low and optimum doses of the same bring about hormetic stimulation that can exalt the antioxidant response and reduce susceptibility towards degenerative diseases. The sirtuin family of proteins is triggered by mild stress of calorie restriction and exerts hormesis. Similarly, several phytochemicals and micronutrients are known to bring about health benefits at optimum dose and deleterious effects at high doses. Despite this attribute, nutritional hormesis is not very well researched upon because the magnitude of hormetic effect observed is generally quite modest. There is no precise regulation of optimal intake of certain foods to witness hormesis and no characterization of any biomarker that reports stress responses at various doses above or below optimal intakes. There is a major gap in research between nutrition and hormesis being affected by sirtuin family of proteins, phytochemicals, and micronutrients. RECENT FINDINGS Mild stress of calorie restriction elevates sirtuin protein and effect of sirtuin protein on hormesis has been recently reported. More foods that enhance sirtuin protein, phytochemicals, and micronutrients need to be explored in relation to hormesis and associated health benefits.
Collapse
Affiliation(s)
- Shubhra Pande
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India.
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
44
|
Scisciola L, Fontanella RA, Surina, Garofalo G, Rizzo MR, Paolisso G, Barbieri M. Potential Role of Lisinopril in Reducing Atherosclerotic Risk: Evidence of an Antioxidant Effect in Human Cardiomyocytes Cell Line. Front Pharmacol 2022; 13:868365. [PMID: 35656292 PMCID: PMC9152216 DOI: 10.3389/fphar.2022.868365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cellular mechanisms involved in myocardial ischemia/reperfusion injury (I/R) pathogenesis are complex but attributable to reactive oxygen species (ROS) production. ROS produced by coronary endothelial cells, blood cells (e.g., leukocytes and platelets), and cardiac myocytes have the potential to damage vascular cells directly and cardiac myocytes, initiating mechanisms that induce apoptosis, inflammation, necrosis, and fibrosis of myocardial cells. In addition to reducing blood pressure, lisinopril, a new non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor, increases the antioxidant defense in animals and humans. Recently, it has been shown that lisinopril can attenuate renal oxidative injury in the l-NAME-induced hypertensive rat and cause an impressive improvement in the antioxidant defense system of Wistar rats treated with doxorubicin. The potential effect of lisinopril on oxidative damage and fibrosis in human cardiomyocytes has not been previously investigated. Thus, the present study aims to investigate the effect of different doses of lisinopril on oxidative stress and fibrotic mediators in AC16 human cardiomyocytes, along with a 7-day presence in the culture medium. The results revealed that AC16 human cardiomyocytes exposed to lisinopril treatment significantly showed an upregulation of proteins involved in protecting against oxidative stress, such as catalase, SOD2, and thioredoxin, and a reduction of osteopontin and Galectin-3, critical proteins involved in cardiac fibrosis. Moreover, lisinopril treatment induced an increment in Sirtuin 1 and Sirtuin 6 protein expression. These findings demonstrated that, in AC16 human cardiomyocytes, lisinopril could protect against oxidative stress and fibrosis via the activation of Sirtuin 1 and Sirtuin 6 pathways.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Garofalo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
45
|
Szychowski KA, Skóra B, Wójtowicz AK. Involvement of sirtuins (Sirt1 and Sirt3) and aryl hydrocarbon receptor (AhR) in the effects of triclosan (TCS) on production of neurosteroids in primary mouse cortical neurons cultures. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105131. [PMID: 35715069 DOI: 10.1016/j.pestbp.2022.105131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have shown the presence of triclosan (TCS) in the brain due to its widespread use as an antibacterial ingredient. One of the confirmed mechanisms of its action is the interaction with the aryl hydrocarbon receptor (AhR). In nerve cells, sirtuins (Sirt1 and Sirt3) act as cellular sensors detecting energy availability and modulate metabolic processes. Moreover, it has been found that Sirt1 inhibits the activation of estrogen receptors, regulates the androgen receptor, and may interact with the AhR receptor. It is also known that Sirt3 stimulates the production of estradiol (E2) via the estradiol receptor β (Erβ). Therefore, the aim of the present study was to evaluate the effect of TCS alone or in combination with synthetic flavonoids on the production of neurosteroids such as progesterone (P4), testosterone (T), and E2 in primary neural cortical neurons in vitro. The contribution of Sirt1 and Sirt3 as well as AhR to these TCS-induced effects was investigated as well. The results of the experiments showed that both short and long exposure of neurons to TCS increased the expression of the Sirt1 and Sirt3 proteins in response to AhR stimulation. After an initial increase in the production of all tested neurosteroids, TCS acting for a longer time lowered their levels in the cells. This suggests that TCS activating AhR as well as Sirt1 and Sirt3 in short time intervals stimulates the levels of P4, T, and E2 in neurons, and then the amount of neurosteroids decreases despite the activation of AhR and the increase in the expression of the Sirt1 and Sirt3 proteins. The use of both the AhR agonist and antagonist prevented changes in the expression of Sirt1, Sirt3, and AhR and the production of P4, T, and E2, which confirmed that this receptor is a key in the mechanism of the TCS action.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Anna K Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
46
|
Hemagirri M, Sasidharan S. In vitro antiaging activity of polyphenol rich Polyalthia longifolia (Annonaceae) leaf extract in Saccharomyces cerevisiae BY611 yeast cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115110. [PMID: 35181488 DOI: 10.1016/j.jep.2022.115110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is commonly used in traditional medicine as a tonic for rejuvenation and exhibiting good antioxidant activities. AIM OF THE STUDY To evaluate P. longifolia methanolic leaf extract (PLME) antiaging activity at 1 mg/mL in Saccharomyces cerevisiae BY611 yeast. MATERIALS AND METHODS The antiaging effect of PLME was studied via replicative lifespan assay, antioxidative stress assays, reactive oxygen species (ROS) determination, reduced glutathione (GSH) determination, superoxide dismutase (SOD) and Sirtuin 1 (SIRT1) genes regulation studies and SOD and SIRT1 proteins activities. RESULTS The PLME treatment increased the growth and prolonged the lifespan of the yeast significantly (p < 0.05) compared to the untreated yeast group. Besides, the PLME also protected the yeast from oxidative stress induced by 4-mM-H2O2 via decreasing (p < 0.05) the ROS from 143.207 to 127.223. The antioxidative action of PLME was proved by spot assay. Phloxine B staining was further confirmed the PLME antioxidative action of PLME, where more whitish-pink live yeast cells were observed. In addition, the PLME also enhanced GSH content significantly (p < 0.05) in yeast treated with PLME from 16.81 to 25.31 μmol. Furthermore, PLME increased the SOD and SIRT1 genes expression significantly (p < 0.05) with ΔCt values of 1.11 and 1.15, respectively. The significantly (p < 0.05) elevated SOD and SIRT1 protein activities were recorded as 51.54 U/mg Prot and 1716 ng/mL, respectively. CONCLUSIONS PLME exhibited good antiaging activities in S. cerevisiae, by modulating oxidative stress, enhancing GSH content, and increasing SOD and SIRT1 genes expression.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau, Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau, Pinang, Malaysia.
| |
Collapse
|
47
|
Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P, Zhang X. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Front Pharmacol 2022; 13:871560. [PMID: 35571098 PMCID: PMC9092499 DOI: 10.3389/fphar.2022.871560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of cellular energy metabolism is considered an emerging feature of cancer. Mitochondrial metabolism plays a crucial role in cancer cell proliferation, survival, and metastasis. As a major mitochondrial NAD+-dependent deacetylase, sirtuin3 (SIRT3) deacetylates and regulates the enzymes involved in regulating mitochondrial energy metabolism, including fatty acid oxidation, the Krebs cycle, and the respiratory chain to maintain metabolic homeostasis. In this article, we review the multiple roles of SIRT3 in various cancers, and systematically summarize the recent advances in the discovery of its activators and inhibitors. The roles of SIRT3 vary in different cancers and have cell- and tumor-type specificity. SIRT3 plays a unique function by mediating interactions between mitochondria and intracellular signaling. The critical functions of SIRT3 have renewed interest in the development of small molecule modulators that regulate its activity. Delineation of the underlying mechanism of SIRT3 as a critical regulator of cell metabolism and further characterization of the mitochondrial substrates of SIRT3 will deepen our understanding of the role of SIRT3 in tumorigenesis and progression and may provide novel therapeutic strategies for cancer targeting SIRT3.
Collapse
Affiliation(s)
- Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Li
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
48
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
49
|
Abstract
Sirtuins (SIRT) are unique posttranslational modification enzymes that utilize NAD + as co-substrate to remove acyl groups from lysine residues. SIRT act on variety of substrates and impact major metabolic process. All seven members of SIRT family are unique and targets wide range of cellular proteins in nucleus, cytoplasm, and mitochondria for post-translational modification by acetylation (SIRT1, 2, 3, and 5) or ADP-ribosylation (SIRT4 and 6). Each member of SIRT family is distinct. SIRT2 was first to be discovered that incited research on mammalian SIRT. Enzymatic activities of SIRT 4 are yet to be elucidated while only SIRT7 is localized in nucleoli that govern the transcription of RNA polymerase I. SIRT 5 and 6 exhibit weakest deacetylase activity. Out of all SIRT analogs, SIRT1 is identified as nutrient sensor. Increased expression of only SIRT3 is linked with longevity in humans. Since SIRT is regulated by the bioenergetic state of the cell, nutrition impacts it but very few studies about diet-mediated effect on SIRT are reported. The present review elaborates distribution, specific biological role and prominent effect of all SIRT on vital human tissue along with highlighting need to trace molecular mechanisms and identifying foods that may augment it beneficially.
Collapse
Affiliation(s)
- Shubhra Pande
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
50
|
Brito S, Baek JM, Cha B, Heo H, Lee SH, Lei L, Jung SY, Lee SM, Lee SH, Kwak BM, Chae S, Lee MG, Bin BH. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. J Dermatol Sci 2022; 106:159-169. [DOI: 10.1016/j.jdermsci.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
|