1
|
Meng X, Xie S, Liu J, Lv B, Huang X, Liu Q, Wang X, Malashicheva A, Liu J. Low dose cadmium inhibits syndecan-4 expression in glycocalyx of glomerular endothelial cells. J Appl Toxicol 2024; 44:908-918. [PMID: 38396353 DOI: 10.1002/jat.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-β signaling pathway to further investigate the role of TGF-β. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-β/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.
Collapse
Affiliation(s)
- Xianli Meng
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shuhui Xie
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xia Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
2
|
Wang H, Gan X, Tang Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol Trace Elem Res 2024:10.1007/s12011-024-04189-2. [PMID: 38683269 DOI: 10.1007/s12011-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.
Collapse
Affiliation(s)
- Hairong Wang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Xuehui Gan
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China.
| |
Collapse
|
3
|
Liu L, Bai J, Hu L, Jiang D. Hypoxia-mediated activation of hypoxia-inducible factor-1α in triple-negative breast cancer: A review. Medicine (Baltimore) 2023; 102:e35493. [PMID: 37904441 PMCID: PMC10615493 DOI: 10.1097/md.0000000000035493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that is highly aggressive and hypoxic compared with other subtypes. The role of hypoxia-inducible factor 1α (HIF-1α) as a key hypoxic transcription factor in oncogenic processes has been extensively studied. Recently, it has been shown that HIF-1α regulates the complex biological processes of TNBC, such as glycolysis, angiogenesis, invasion and metastasis, BC stem cells enrichment, and immune escape, to promote TNBC survival and development through the activation of downstream target genes. This article discusses the expression of the HIF-1α transcription factor in TNBC and the Hypoxia-mediated activation of hypoxia-inducible factor-1α in triple-negative BC. It offers a fresh approach to clinical research and treatment for TNBC.
Collapse
Affiliation(s)
- Lihui Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jie Bai
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lanxin Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
4
|
Caruso G, Nanni A, Curcio A, Lombardi G, Somma T, Minutoli L, Caffo M. Impact of Heavy Metals on Glioma Tumorigenesis. Int J Mol Sci 2023; 24:15432. [PMID: 37895109 PMCID: PMC10607278 DOI: 10.3390/ijms242015432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, an increase in the incidence of brain tumors has been observed in the most industrialized countries. This event triggered considerable interest in the study of heavy metals and their presence in the environment (air, water, soil, and food). It is probable that their accumulation in the body could lead to a high risk of the onset of numerous pathologies, including brain tumors, in humans. Heavy metals are capable of generating reactive oxygen, which plays a key role in various pathological mechanisms. Alteration of the homeostasis of heavy metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and the alteration of proteins. A large number of studies have shown that iron, cadmium, lead, nickel, chromium, and mercury levels were significantly elevated in patients affected by gliomas. In this study, we try to highlight a possible correlation between the most frequently encountered heavy metals, their presence in the environment, their sources, and glioma tumorigenesis. We also report on the review of the relevant literature.
Collapse
Affiliation(s)
- Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Aristide Nanni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Antonello Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, Università degli Studi di Messina, 98125 Messina, Italy;
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| |
Collapse
|
5
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
6
|
Zhang T, Yan W, Liu C, Duan W, Duan Y, Li Y, Yu Q, Sun Y, Tian J, Zhou J, Xia Z, Wang G, Xu S. Cadmium exposure promotes ferroptosis by upregulating Heat Shock Protein 70 in vascular endothelial damage of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115241. [PMID: 37441943 DOI: 10.1016/j.ecoenv.2023.115241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Cadmium (Cd) exposure is a risk factor for endothelial dysfunction and cardiovascular disease. Ferroptosis is a type of cell death that relies on lipid peroxidation. Whether ferroptosis acts in Cd-induced vascular endothelial damage and the underlying mechanisms remain unclear. Herein, we found that Cd resulted in ferroptosis of vascular endothelial cells (ECs) in vivo and in vitro. In the visualized zebrafish embryos, Cd accumulated in vascular ECs, ROS and lipid peroxidation levels were increased, and the oxidoreductase system was disturbed after exposure. Moreover, Cd decreased Gpx4 in ECs and caused smaller mitochondria with increased membrane density. Accompanied by ferroptosis, the number of ECs and the area of the caudal venous plexus in zebrafish embryos were reduced, and the survival rate of HUVECs decreased. These effects were partially reversed by ferrostatin-1 and aggravated by erastin. Mechanistically, an excessive increase in Heat Shock Protein 70 (Hsp70) was identified by transcriptomics after Cd exposure. Inhibition of Hsp70 by VER-155008 or siRNA ameliorated Cd-induced ferroptosis, thereby alleviating endothelial injury. Furthermore, Hsp70 regulated Cd-induced ferroptosis by targeting multiple targets, including Gpx4, Fth1, Nrf2 and Acsl4. Our findings provide a new approach to investigating the endothelial damage of Cd and indicate that regulation of Hsp70 is an important target for alleviating this process.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China; Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, People's Republic of China
| | - Cong Liu
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Weixia Duan
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Qin Yu
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yapei Sun
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Jiacheng Tian
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Jie Zhou
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Zhiqin Xia
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China.
| | - Shangcheng Xu
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China; Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China.
| |
Collapse
|
7
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Li Y, Shen X. Cadmium Exposure Affects Serum Metabolites and Proteins in the Male Guizhou Black Goat. Animals (Basel) 2023; 13:2705. [PMID: 37684969 PMCID: PMC10487163 DOI: 10.3390/ani13172705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Food safety and environmental pollution are the hotspots of general concern globally. Notably, long-term accumulation of trace toxic heavy metals, such as cadmium (Cd), in animals may endanger human health via the food chain. The mechanism of Cd toxicity in the goat, a popular farmed animal, has not been extensively investigated to date. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg-1·BW) for 30 days (five male goats per group). In this study, we used an integrated approach combining proteomics and metabolomics to profile proteins and metabolites in the serum of Cd-exposed goats. It was found that Cd exposure impacted the levels of 30 serum metabolites and 108 proteins. The combined proteomic and metabolomic analysis revealed that Cd exposure affected arginine and proline metabolism, beta-alanine metabolism, and glutathione metabolism. Further, antioxidant capacity in the serum of goats exposed to Cd was reduced. We identified CKM and spermidine as potential protein and metabolic markers, respectively, of early Cd toxicity in the goat. This study details approaches for the early diagnosis and prevention of Cd-poisoned goats.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
9
|
Hautanen V, Toimela T, Paparella M, Heinonen T. A Human Cell-based Assay to Assess the Induction of Vasculature Formation for Non-genotoxic Carcinogenicity Testing Purposes: A Pilot Study. Altern Lab Anim 2023:2611929231171165. [PMID: 37125451 DOI: 10.1177/02611929231171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The induction of vasculature formation is proposed to be a significant mechanism behind the non-genotoxic carcinogenicity of a chemical. The vasculature formation model used in this study is based on the coculture of human primary HUVECs and hASCs. This model was used to develop an assay to assess the induction of vasculature formation. Three assay protocols, based on different conditions, were developed and compared in order to identify the optimal conditions required. Some serum supplements and growth factors were observed to be essential for initiating vasculature formation. Of the studied putative positive reference chemicals, aspartame, sodium nitrite, bisphenol A and nicotine treatment led to a clear induction of vasculature formation, but arsenic and cadmium treatment only led to a slight increase. This human cell-based assay has the potential to be used as one test within a next generation testing battery, to assess the non-genotoxic carcinogenicity of a chemical through the mechanism of vasculature formation induction.
Collapse
Affiliation(s)
- Veera Hautanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Toimela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tuula Heinonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Ditta SA, Yaqub A, Tanvir F, Rashid M, Ullah R, Zubair M, Ali S, Anjum KM. Gold nanoparticles capped with L-glycine, L-cystine, and L-tyrosine: toxicity profiling and antioxidant potential. JOURNAL OF MATERIALS SCIENCE 2023; 58:2814-2837. [PMID: 36743265 PMCID: PMC9888356 DOI: 10.1007/s10853-023-08209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Biomolecules-based surface modifications of nanomaterials may yield effective and biocompatible nanoconjugates. This study was designed to evaluate gold nanoconjugates (AuNCs) for their altered antioxidant potential. Gold nanoparticles (AuNPs) and their conjugates gave SPR peaks in the ranges of 512-525 nm, with red or blueshift for different conjugates. Cys-AuNCs demonstrated enhanced (p < 0.05) and Gly-AuNCs (p > 0.05) displayed reduced DPPH activity. Gly-AuNCs and Tyr-AuNCs displayed enhanced ferric-reducing power and hydrogen peroxide scavenging activity, respectively. Cadmium-intoxicated mice were exposed to gold nanomaterials, and the level of various endogenous parameters, i.e., CAT, GST, SOD, GSH, and MTs, was evaluated. GSH and MTs in liver tissues of the cadmium-exposed group (G2) were elevated (p < 0.05), while other groups showed nonsignificance deviations than the control group. It is concluded that these nanoconjugates might provide effective nanomaterials for biomedical applications. However, more detailed studies for their safety profiling are needed before their practical applications.
Collapse
Affiliation(s)
- Sarwar Allah Ditta
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, 56300 Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, 54000 Pakistan
| | - Muhammad Zubair
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| | - Shaista Ali
- Department of Chemistry, Government College University, Lahore, 54000 Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, The University of Veterinary and Animal Sciences, Lahore, 54000 Pakistan
| |
Collapse
|
11
|
Peng W, Yao C, Pan Q, Zhang Z, Ye J, Shen B, Zhou G, Fang Y. Novel considerations on EGFR-based therapy as a contributor to cancer cell death in NSCLC. Front Oncol 2023; 13:1120278. [PMID: 36910653 PMCID: PMC9995697 DOI: 10.3389/fonc.2023.1120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) represented by gefitinib and erlotinib are widely used in treating non-small cell lung cancer (NSCLC). However, acquired resistance to EGFR-TKI treatment remains a clinical challenge. In recent years, emerging research investigated in EGFR-TKI-based combination therapy regimens, and remarkable achievements have been reported. This article focuses on EGFR-TKI-based regimens, reviews the standard and novel application of EGFR targets, and summarizes the mechanisms of EGFR-TKI combinations including chemotherapy, anti-vascular endothelial growth factor monoclonal antibodies, and immunotherapy in the treatment of NSCLC. Additionally, we summarize clinical trials of EGFR-TKI-based combination therapy expanding indications to EGFR mutation-negative lung malignancies. Moreover, novel strategies are under research to explore new drugs with good biocompatibility. Nanoparticles encapsulating non-coding RNA and chemotherapy of new dosage forms drawn great attention and showed promising prospects in effective delivery and stable release. Overall, as the development of resistance to EGFR-TKIs treatment is inevitable in most of the cases, further research is needed to clarify the underlying mechanism of the resistance, and to evaluate and establish EGFR-TKI combination therapies to diversify the treatment landscape for NSCLC.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyun Yao
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Pan
- Department of Medical Oncology, Liyang People's Hospital, Liyang, China
| | - Zhi Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjun Ye
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guoren Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Fang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Tavakoli Pirzaman A, Ebrahimi P, Niknezhad S, Vahidi T, Hosseinzadeh D, Akrami S, Ashrafi AM, Moeen Velayatimehr M, Hosseinzadeh R, Kazemi S. Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas. Hum Exp Toxicol 2023; 42:9603271231210262. [PMID: 37870872 DOI: 10.1177/09603271231210262] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Incidence and mortality rates of gastrointestinal (GI) and oral cancers are among the highest in the world, compared to other cancers. GI cancers include esophageal, gastric, colon, rectal, liver, and pancreatic cancers, with colorectal cancer being the most common. Oral cancer, which is included in the head and neck cancers category, is one of the most important causes of death in India. Cadmium (Cd) is a toxic element affecting humans and the environment, which has both natural and anthropogenic sources. Generally, water, soil, air, and food supplies are reported as some sources of Cd. It accumulates in organs, particularly in the kidneys and liver. Exposure to cadmium is associated with different types of health risks such as kidney dysfunction, cardiovascular disease, reproductive dysfunction, diabetes, cerebral infarction, and neurotoxic effects (Parkinson's disease (PD) and Alzheimer's disease (AD)). Exposure to Cd is also associated with various cancers, including lung, kidney, liver, stomach, hematopoietic system, gynecologic and breast cancer. In the present study, we have provided and summarized the association of Cd exposure with oral and GI cancers.
Collapse
Affiliation(s)
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Shokat Niknezhad
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Turan Vahidi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash M Ashrafi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
13
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
14
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
15
|
Kokai D, Stanic B, Tesic B, Samardzija Nenadov D, Pogrmic-Majkic K, Fa Nedeljkovic S, Andric N. Dibutyl phthalate promotes angiogenesis in EA.hy926 cells through estrogen receptor-dependent activation of ERK1/2, PI3K-Akt, and NO signaling pathways. Chem Biol Interact 2022; 366:110174. [PMID: 36089060 DOI: 10.1016/j.cbi.2022.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Dibutyl phthalate (DBP) is an endocrine disruptor that has been widely used in various products of human use. DBP exposure has been associated with reproductive and cardiovascular diseases and metabolic disorders. Although dysfunction of the vascular endothelium is responsible for many cardiovascular and metabolic diseases, little is known about the effects of DBP on human endothelium. In this study, we investigated the effect of three concentrations of DBP (10-6, 10-5, and 10-4 M) on angiogenesis in human endothelial cell (EC) line EA.hy926 after acute exposure. Tube formation assay was used to investigate in vitro angiogenesis, whereas qRT-PCR was employed to measure mRNA expression. The effect of DBP on extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), and endothelial nitric oxide (NO) synthase (eNOS) activation was examined using Western blotting, whereas the Griess method was used to assess NO production. Results show that the 24-h-long exposure to 10-4 M DBP increased endothelial tube formation, which was prevented by addition of U0126 (ERK1/2 inhibitor), wortmannin (PI3K-Akt inhibitor), and l-NAME (NOS inhibitor). Short exposure to 10-4 M DBP (from 15 to 120 min) phosphorylated ERK1/2, Akt, and eNOS in different time points and increased NO production after 24 and 48 h of exposure. Application of nuclear estrogen receptor (ER) and G protein-coupled ER (GPER) inhibitors ICI 182,780 and G-15, respectively, abolished the DBP-mediated ERK1/2, Akt, and eNOS phosphorylation and increase in NO production. In this study, we report for the first time that DBP exerts a pro-angiogenic effect on human vascular ECs and describe the molecular mechanism involving ER- and GPER-dependent activation of ERK1/2, PI3K-Akt, and NO signaling pathways.
Collapse
Affiliation(s)
- Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| | - Biljana Tesic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | | | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| |
Collapse
|
16
|
Li X, Du L, Liu Q, Lu Z. MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review). Exp Ther Med 2022; 24:446. [PMID: 35720622 PMCID: PMC9199081 DOI: 10.3892/etm.2022.11373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cachexia denotes a complex metabolic syndrome featuring severe loss of weight, fatigue and anorexia. In total, 50-80% of patients suffering from advanced cancer are diagnosed with cancer cachexia, which contributes to 40% of cancer-associated mortalities. MicroRNAs (miRNAs) are non-coding RNAs capable of regulating gene expression. Dysregulated miRNA expression has been observed in muscle tissue, adipose tissue and blood samples from patients with cancer cachexia compared with that of samples from patients with cancer without cachexia or healthy controls. In addition, miRNAs promote and maintain the malignant state of systemic inflammation, while inflammation contributes to cancer cachexia. The present review discusses the role of miRNAs in the progression of cancer cachexia, and assess their diagnostic value and potential therapeutic value.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Lidong Du
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Qiang Liu
- Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
17
|
Li X, Li X, Sun R, Gao M, Wang H. Cadmium exposure enhances VE‑cadherin expression in endothelial cells via suppression of ROCK signaling. Exp Ther Med 2022; 23:355. [DOI: 10.3892/etm.2022.11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/22/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xiaorui Li
- Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xiao Li
- Department of Pathophysiology, School of Traditional Chinese Medicine, Shandong University of Traditional Medicine, Jinan, Shandong 250014, P.R. China
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Mei Gao
- Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hui Wang
- Key Laboratory of Molecular and Nano Probes, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
18
|
Ditta SA, Yaqub A, Tanvir F, Ullah R, Rashid M, Bilal M. Histopathological evaluation of amino acid capped silver nanoconjugates in albino mice. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.21.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various molecules may modify the surface chemistry of commonly used nanomaterials (NMs), resulting in the synthesis of novel and safer NMs. The current study was delineated to evaluate the in vivo toxicity profiling of the silver nanoconjugates (AgNCs) conjugated with different amino acids. The L-glycine capped-AgNCs exhibited toxicity and caused tissue damage, while L-cystine- and L-tyrosine-capped AgNCs showed protective effects against cadmium-induced toxicity. L-cystine-capped AgNCs performed well as compared to other amino-acid AgNCs. The level of serum creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and blood urea increased (p < 0.05) in G2, G3 and G5 in comparison to G1 (control group), while an increase in bilirubin for G2 was statistically non-significant (p > 0.05). The ALT and AST elevated (p < 0.05) in G4; however, other serological parameters in G4 and G6 did not show any noticeable change in their values. Histological analysis showed disturbed and deformed cellular structures in liver and kidney tissues of G2, G3 and G5. However, G4 and G6 samples demonstrated minute changes in comparison to G1. It is concluded that L-cystine- and L-tyrosine-capped AgNCs exhibited protective effects and should be tested further for developing safer nanoconjugates for biomedical uses.
Collapse
Affiliation(s)
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Fouzia Tanvir
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Rehan Ullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Bilal
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
19
|
Xie Q, Shang TY, Feng S, Zhan RC, Liang J, Fan MG, Zhang L, Liu J. Hypoxia Inhibits Proliferation of Human Dermal Lymphatic Endothelial Cells via Downregulation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 Expression. Curr Med Sci 2021; 41:1192-1197. [PMID: 34846700 DOI: 10.1007/s11596-021-2448-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Lymphatic endothelial cell (LEC) proliferation is essential for lymphangiogenesis. Hypoxia induces lymphangiogenesis, but it directly inhibits LEC proliferation and the underlying mechanisms have not been fully understood. The aim of this study was to investigate the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in hypoxia-repressed LEC proliferation. METHODS Human dermal lymphatic endothelial cells (HDLECs) were cultured under normoxic or hypoxic conditions, and cell proliferation was determined using MTT or CCK-8 assays. CEACAM1 expression was silenced by siRNA transfection. Activation of mitogen-activated protein kinases (MAPKs) was examined by Western blotting and blocked by specific inhibitors. RESULTS Under hypoxia, HDLECs proliferation was suppressed and CEACAM1 expression was downregulated. Silence of CEACAM1 in normoxia inhibited HDLECs proliferation and did not further decrease proliferation in HDLECs in response to hypoxia, suggesting that CEACAM1 may mediate hypoxia-induced inhibition of HDLECs proliferation. In addition, silence of CEACAM1 increased phosphorylation of MAPK molecules: extracellular signal-regulated kinase (ERK), p38 MAPK and Jun N-terminal kinase (JNK) in HDLECs. However, only inhibition of the JNK pathway rescued the reduction of HDLEC proliferation induced by CEACAM1 silence. CONCLUSION Our results suggested that hypoxia downregulates CEACAM1 expression by activation of the JNK pathway, leading to inhibition of HDLEC proliferation. These findings may help to understand the mechanisms of LEC-specific response to hypoxia and develop novel therapies for pathological lymphangiogenesis.
Collapse
Affiliation(s)
- Qi Xie
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, 250014, China
| | - Tong-Yao Shang
- Department of Blood Transfusion, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Shuo Feng
- Institutue of Microvascular Medicine, Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Ru-Cai Zhan
- Department of Neurosurgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Jing Liang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, 250014, China
| | - Meng-Ge Fan
- Institutue of Microvascular Medicine, Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Ju Liu
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, 250014, China. .,Institutue of Microvascular Medicine, Medical Research Center, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
20
|
Gaman L, Radoi MP, Delia CE, Luzardo OP, Zumbado M, Rodríguez-Hernández Á, Stoian I, Gilca M, Boada LD, Henríquez-Hernández LA. Concentration of heavy metals and rare earth elements in patients with brain tumours: Analysis in tumour tissue, non-tumour tissue, and blood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:741-754. [PMID: 31674203 DOI: 10.1080/09603123.2019.1685079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Inorganic elements have been associated with brain tumours for long. The blood concentration of 47 elements was assessed by ICP-MS in 26 brain tumour patients and 21 healthy subjects from Bucharest (Romania). All 47 elements were detected in the brain tumour tissue, and 22 were detected in > 80% of samples; this implies that these elements can cross the blood-brain barrier. Median blood levels of cadmium, lead, and nickel were higher than the reference values (1.14, 53.3, and 2.53 ng/mL). Gadolinium and tantalum showed significantly higher concentrations among cases. We observed considerable differences and different profiles of the presence of inorganic elements between the tumour and non-tumour brain tissue and between tissue from the primary tumour and tissue from brain metastasis. Our data suggest that similar to heavy metals, other elements - commonly used in high tech devices and rare earth elements - can also influence brain tumour.
Collapse
Affiliation(s)
- Laura Gaman
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Neurosurgical Department, National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Corina Elena Delia
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biochemistry Laboratory, National Institute for the Mother and Child Health Alessandrescu Rusescu, Bucharest, Romania
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Marilena Gilca
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
21
|
da Silva J, Gonçalves RV, de Melo FCSA, Sarandy MM, da Matta SLP. Cadmium Exposure and Testis Susceptibility: a Systematic Review in Murine Models. Biol Trace Elem Res 2021; 199:2663-2676. [PMID: 32951117 DOI: 10.1007/s12011-020-02389-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
It is known that cadmium induces damage to the testis. However, the significant cadmium impact on the testicular architecture and the mechanisms involved in this process are not clear. Besides, the relationship between dose, route, and time of exposure and injuries remains poorly understood. Thus, we aimed to assess whether cadmium exposure in any dose, route, and time of exposure causes significant alteration in the testicular tissue of murine models, as well as the main mechanisms involved. We performed a structured search on the Medline/PubMed and Scopus databases to retrieve studies published until September 2018. The results were organized into an Adverse Outcome Pathway (AOP) framework. Also, a bias analysis of included studies was performed. We included 37 studies, and most of them identified significant histopathologies in both tubule and intertubule regarding routes, in a dose- and time-dependent manner. The damages were observed after the first hours of exposure, mainly vascular damages suggesting that vasculature failure is the primary mechanism. The AOP showed that potential molecular initiating events may mimic and interfere with essential elements disrupting proteins (structural and antioxidants), change in the oxidative phosphorylation enzyme activities, and gene expression alteration, which lead to reproductive failure (adverse outcome). Analysis of methodological quality showed that the current evidence is at high risk of bias. Despite the high risk of bias, cadmium triggers significant lesions in the testis of murine models, regarding routes, in a dose- and time-dependent manner, mainly due to vascular changes. Therefore, cadmium is a risk factor for male reproductive health.
Collapse
Affiliation(s)
- Janaina da Silva
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Sérgio Luis Pinto da Matta
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- Department of Animal Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Zhang T, Xu Z, Wen L, Lei D, Li S, Wang J, Huang J, Wang N, Durkan C, Liao X, Wang G. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125198. [PMID: 33550130 DOI: 10.1016/j.jhazmat.2021.125198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Increasing evidence has demonstrated that cadmium accumulation in the blood increases the risk of neurological diseases. However, how cadmium breaks through the blood-brain barrier (BBB) and is transferred from the blood circulation into the central nervous system is still unclear. In this study, we examined the toxic effect of cadmium chloride (CdCl2) on the development and function of BBB in zebrafish. CdCl2 exposure induced cerebral hemorrhage, increased BBB permeability and promoted abnormal vascular formation by promoting VEGF production in zebrafish brain. Furthermore, in vivo and in vitro experiments showed that CdCl2 altered cell-cell junctional morphology by disrupting the proper localization of VE-cadherin and ZO-1. The potential mechanism involved in the inhibition of protein tyrosine phosphatase (PTPase) mediated by cadmium-induced ROS was confirmed with diphenylene iodonium (DPI), a ROS production inhibitor. Together, these data indicate that BBB is a critical target of cadmium toxicity and provide in vivo etiological evidence of cadmium-induced neurovascular disease in a zebrafish BBB model.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Daoxi Lei
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Shuyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Jinxia Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB30FF, UK.
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB30FF, UK.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
23
|
Prajapati A, Chauhan G, Shah H, Gupta S. Oncogenic transformation of human benign prostate hyperplasia with chronic cadmium exposure. J Trace Elem Med Biol 2020; 62:126633. [PMID: 32818862 DOI: 10.1016/j.jtemb.2020.126633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Experimentally, it has been proved that cadmium served as an effective carcinogen and able to induce tumors in rodents in a dose-specific manner. However, systemic evaluation of cadmium exposure for the transformation of prostatic hyperplasia into prostate cancer (PCa) is still unclear. In the present study, an attempt has been made to establish cadmium-induced human prostate carcinogenesis using an in vitro model of BPH cells. Wide range of cadmium concentrations, i.e., 1 nM, 10 nM, 100 nM and 1μM, were chronically exposed to the human BPH cells for transformation into PCa and monitored using cell and molecular biology approaches. After eight weeks of exposure, the cells showed subtle morphological changes and shifts of cell cycle in the G2M phase. Significant increase in expression of prostatic genes AR, PSA, ER-β, and 5αR with increased nuclear localization of AR and pluripotency markers Cmyc, Klf4 indicated the carcinogenic effect of Cd. Further, the BPH cells exposed to Cd showed a substantial increase in the secretion of MMP-2 and MMP-9, influencing migratory potential of the cells along with decreased expression of the p63 protein which further strengthen the progression towards carcinogenesis and aggressive tumor studies. Data from the present study state that Cd exhibited marked invasiveness in BPH cells. These observations established a connecting link of BPH towards PCa pathogenesis. Further, the study will also help in investigating the intricate pathways involved in cancer progression.
Collapse
Affiliation(s)
- Akhilesh Prajapati
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Biotechnology, School of Science, GSFC University, Vadodara, 391750, India.
| | - Gaurav Chauhan
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Harsh Shah
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
24
|
Kulkarni P, Dasgupta P, Bhat NS, Hashimoto Y, Saini S, Shahryari V, Yamamura S, Shiina M, Tanaka Y, Dahiya R, Majid S. Role of the PI3K/Akt pathway in cadmium induced malignant transformation of normal prostate epithelial cells. Toxicol Appl Pharmacol 2020; 409:115308. [PMID: 33129824 DOI: 10.1016/j.taap.2020.115308] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
This study investigated the role of the PI3K/Akt pathway in cadmium (Cd) induced malignant transformation of normal prostate epithelial (PWR1E and RWPE1) cells. Both PWR1E and RWPE1 cells were exposed to 10 μM Cd for one year and designated as Cd-PWR1E and Cd-RWPE1. Cd-RWPE1 cells robustly formed tumors in athymic nude mice. Functionally, Cd-exposure induced tumorigenic attributes indicated by increased wound healing, migration and invasion capabilities in both cell lines. RT2-array analysis revealed many oncogenes including P110α, Akt, mTOR, NFKB1 and RAF were induced whereas tumor suppressor (TS) genes were attenuated in Cd-RWPE1. This was validated by individual quantitative-real-time-PCR at transcriptional and by immunoblot at translational levels. These results were consistent in Cd-PWR1E vs parental PWR1E cells. Gene Set Enrichment Analysis revealed that five prostate cancer (PCa) related pathways were enriched in Cd-exposed cells compared to their normal controls. These pathways include the KEGG- Pathways in cancer, Prostate Cancer Pathway, ERBB, Apoptosis and MAPK pathways. We selected up- and down-regulated genes randomly from the PI3K/Akt pathway array and profiled these in the TCGA/GDC prostate-adenocarcinoma (PRAD) patient cohort. An upregulation of oncogenes and downregulation of TS genes was observed in PCa compared to their normal controls. Taken together, our study reveals that the PI3K/Akt signaling is one of the main molecular pathways involved in Cd-driven transformation of normal prostate epithelial cells to malignant form. Understanding the molecular mechanisms involved in the Cd-driven malignant transformation of normal prostate cells will provide a significant insight to develop better therapeutic strategies for Cd-induced prostate cancer.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Pritha Dasgupta
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Nadeem S Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, USA
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA.
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA.
| |
Collapse
|
25
|
Amadou A, Coudon T, Praud D, Salizzoni P, Leffondre K, Lévêque E, Boutron-Ruault MC, Danjou AMN, Morelli X, Le Cornet C, Perrier L, Couvidat F, Bessagnet B, Caudeville J, Faure E, Mancini FR, Gulliver J, Severi G, Fervers B. Chronic Low-Dose Exposure to Xenoestrogen Ambient Air Pollutants and Breast Cancer Risk: XENAIR Protocol for a Case-Control Study Nested Within the French E3N Cohort. JMIR Res Protoc 2020; 9:e15167. [PMID: 32930673 PMCID: PMC7525465 DOI: 10.2196/15167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is the most frequent cancer in women in industrialized countries. Lifestyle and environmental factors, particularly endocrine-disrupting pollutants, have been suggested to play a role in breast cancer risk. Current epidemiological studies, although not fully consistent, suggest a positive association of breast cancer risk with exposure to several International Agency for Research on Cancer Group 1 air-pollutant carcinogens, such as particulate matter, polychlorinated biphenyls (PCB), dioxins, Benzo[a]pyrene (BaP), and cadmium. However, epidemiological studies remain scarce and inconsistent. It has been proposed that the menopausal status could modify the relationship between pollutants and breast cancer and that the association varies with hormone receptor status. Objective The XENAIR project will investigate the association of breast cancer risk (overall and by hormone receptor status) with chronic exposure to selected air pollutants, including particulate matter, nitrogen dioxide (NO2), ozone (O3), BaP, dioxins, PCB-153, and cadmium. Methods Our research is based on a case-control study nested within the French national E3N cohort of 5222 invasive breast cancer cases identified during follow-up from 1990 to 2011, and 5222 matched controls. A questionnaire was sent to all participants to collect their lifetime residential addresses and information on indoor pollution. We will assess these exposures using complementary models of land-use regression, atmospheric dispersion, and regional chemistry-transport (CHIMERE) models, via a Geographic Information System. Associations with breast cancer risk will be modeled using conditional logistic regression models. We will also study the impact of exposure on DNA methylation and interactions with genetic polymorphisms. Appropriate statistical methods, including Bayesian modeling, principal component analysis, and cluster analysis, will be used to assess the impact of multipollutant exposure. The fraction of breast cancer cases attributable to air pollution will be estimated. Results The XENAIR project will contribute to current knowledge on the health effects of air pollution and identify and understand environmental modifiable risk factors related to breast cancer risk. Conclusions The results will provide relevant evidence to governments and policy-makers to improve effective public health prevention strategies on air pollution. The XENAIR dataset can be used in future efforts to study the effects of exposure to air pollution associated with other chronic conditions. International Registered Report Identifier (IRRID) DERR1-10.2196/15167
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Inserm UA 08 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Thomas Coudon
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Ecole Centrale de Lyon, INSA, Université Claude Bernard Lyon 1, Ecully, France
| | - Delphine Praud
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Inserm UA 08 Radiations: Défense, Santé, Environnement, Lyon, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA, Université Claude Bernard Lyon 1, Ecully, France
| | - Karen Leffondre
- ISPED, Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France
| | - Emilie Lévêque
- ISPED, Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France
| | - Marie-Christine Boutron-Ruault
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Faculté de Médecine, Université Paris-Saclay, Villejuif, France
| | - Aurélie M N Danjou
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Xavier Morelli
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Charlotte Le Cornet
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lionel Perrier
- Univ Lyon, Centre Léon Bérard, GATE L-SE UMR 5824, Lyon, France
| | - Florian Couvidat
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Bertrand Bessagnet
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Julien Caudeville
- National Institute for industrial Environment and Risks (INERIS), Verneuil-en-Halatte, France
| | - Elodie Faure
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Faculté de Médecine, Université Paris-Saclay, Villejuif, France
| | - John Gulliver
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Faculté de Médecine, Université Paris-Saclay, Villejuif, France
| | - Béatrice Fervers
- Department of Prevention Cancer Environment, Centre Léon Bérard, Lyon, France.,Inserm UA 08 Radiations: Défense, Santé, Environnement, Lyon, France
| |
Collapse
|
26
|
Angiogenesis in Wound Healing following Pharmacological and Toxicological Exposures. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00212-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Dasgupta P, Kulkarni P, Bhat NS, Majid S, Shiina M, Shahryari V, Yamamura S, Tanaka Y, Gupta RK, Dahiya R, Hashimoto Y. Activation of the Erk/MAPK signaling pathway is a driver for cadmium induced prostate cancer. Toxicol Appl Pharmacol 2020; 401:115102. [PMID: 32512071 PMCID: PMC7425797 DOI: 10.1016/j.taap.2020.115102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Cadmium (Cd) is reported to be associated with carcinogenesis. The molecular mechanisms associated with Cd-induced prostate cancer (PCa) remain elusive. MATERIALS AND METHODS RWPE1, PWR1E and DU 145 cells were used. RT2 Profiler Array, real-time-quantitative-PCR, immunofluorescence, cell cycle, apoptosis, proliferation and colony formation assays along with Gene Set Enrichment Analysis (GSEA) were performed. RESULT Chronic Cd exposure of non-malignant RWPE1 and PWR1E cells promoted cell survival, proliferation and colony formation with inhibition of apoptosis. Even a two-week Cd exposure of PCa cell line (DU 145) significantly increased the proliferation and decreased apoptosis. RT2 profiler array of 84 genes involved in the Erk/MAPK pathway revealed induction of gene expression in Cd-RWPE1 cells compared to RWPE1. This was confirmed by individual TaqMan gene expression analysis in both Cd-RWPE1 and Cd-PWR1E cell lines. GSEA showed an enrichment of the Erk/MAPK pathway along with other pathways such as KEGG-ERBB, KEGG-Cell Cycle, KEGG-VEGF, KEGG-Pathways in cancer and KEGG-prostate cancer pathway. We randomly selected upregulated genes from Erk/MAPK pathway and performed profile analysis in a PCa data set from the TCGA/GDC data base. We observed upregulation of these genes in PCa compared to normal samples. An increase in phosphorylation of the Erk1/2 and Mek1/2 was observed in Cd-RWPE1 and Cd-PWR1E cells compared to parental cells, confirming that Cd-exposure induces activation of the Erk/MAPK pathway. CONCLUSION This study demonstrates that Erk/MAPK signaling is a major pathway involved in Cd-induced malignant transformation of normal prostate cells. Understanding these dominant oncogenic pathways may help develop optimal therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Pritha Dasgupta
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Nadeem S Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, 4150 Clement Street, Miami, FL 94121, USA
| | - Shahana Majid
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Ravi Kumar Gupta
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and University of California San Francisco, School of Medicine, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
28
|
Egger AE, Grabmann G, Gollmann-Tepeköylü C, Pechriggl EJ, Artner C, Türkcan A, Hartinger CG, Fritsch H, Keppler BK, Brenner E, Grimm M, Messner B, Bernhard D. Chemical imaging and assessment of cadmium distribution in the human body. Metallomics 2020; 11:2010-2019. [PMID: 31593199 DOI: 10.1039/c9mt00178f] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The scientific interest in cadmium (Cd) as a human health damaging agent has significantly increased over the past decades. However, particularly the histological distribution of Cd in human tissues is still scarcely defined. Using inductively coupled plasma-mass spectrometry (ICP-MS), we determined the concentration of Cd in 40 different human tissues of four body donors and provided spatial information by elemental imaging on the microscopic distribution of Cd in 8 selected tissues by laser ablation (LA)-ICP-MS. ICP-MS results show that Cd concentrations differ by a factor of 20 000 between different tissues. Apart from the well know deposits in kidney, bone, and liver, our study provides evidence that muscle and adipose tissue are underestimated Cd pools. For the first time, we present spatially resolved Cd distributions in a broad panel of human soft tissues. The defined histological structures are mirrored by sharp cut differences in Cd concentrations between neighboring tissue types, particularly in the rectum, testis, and kidneys. The spatial resolution of the Cd distribution at microscopic level visualized intratissue hot spots of Cd accumulation and is suggested as a powerful tool to elucidate metal based toxicity at histological level.
Collapse
Affiliation(s)
- Alexander E Egger
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Amadou A, Praud D, Coudon T, Danjou AMN, Faure E, Leffondré K, Le Romancer M, Severi G, Salizzoni P, Mancini FR, Fervers B. Chronic long-term exposure to cadmium air pollution and breast cancer risk in the French E3N cohort. Int J Cancer 2020; 146:341-351. [PMID: 30851122 DOI: 10.1002/ijc.32257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Cadmium, due to its estrogen-like activity, has been suspected to increase the risk of breast cancer; however, epidemiological studies have reported inconsistent findings. We conducted a case-control study (4,059 cases and 4,059 matched controls) nested within the E3N French cohort study to estimate the risk of breast cancer associated with long-term exposure to airborne cadmium pollution, and its effect according to molecular subtype of breast cancer (estrogen receptor negative/positive [ER-/ER+] and progesterone receptor negative/positive [PR-/PR+]). Atmospheric exposure to cadmium was assessed using a Geographic Information System-based metric, which included subject's residence-to-cadmium source distance, wind direction, exposure duration and stack height. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using conditional logistic regression. Overall, there was no significant association between cumulative dose of airborne cadmium exposure and the risk of overall, premenopausal and postmenopausal breast cancer. However, by ER and PR status, inverse associations were observed for ER- (ORQ5 vs. Q1 = 0.63; 95% CI: 0.41-0.95, ptrend = 0.043) and for ER-/PR- breast tumors (ORQ4 vs. Q1 = 0.62; 95% CI: 0.40-0.95, ORQ5 vs. Q1 = 0.68; 95% CI: 0.42-1.07, ptrend = 0.088). Our study provides no evidence of an association between exposure to cadmium and risk of breast cancer overall but suggests that cadmium might be related to a decreased risk of ER- and ER-/PR- breast tumors. These observations and other possible effects linked to hormone receptor status warrant further investigations.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environnement, 69008 Lyon, France
| | - Delphine Praud
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, Lyon, France
| | - Thomas Coudon
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Aurélie M N Danjou
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Elodie Faure
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Karen Leffondré
- Université de Bordeaux, ISPED, Centre Inserm U1219 Bordeaux Population Health, Bordeaux, France
| | - Muriel Le Romancer
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, Lyon, France
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Pietro Salizzoni
- Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France
| | - Francesca Romana Mancini
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine, Université Paris-Saclay, UPS UVSQ, Gustave Roussy, Villejuif, France
| | - Béatrice Fervers
- Department of Cancer and Environment, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environnement, 69008 Lyon, France
| |
Collapse
|
30
|
Sun Z, Xie Q, Pan J, Niu N. Cadmium regulates von Willebrand factor and occludin expression in glomerular endothelial cells of mice in a TNF-α-dependent manner. Ren Fail 2019; 41:354-362. [PMID: 31057027 PMCID: PMC6507816 DOI: 10.1080/0886022x.2019.1604383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Cadmium (Cd) is an environmental pollutant that leads to nephrotoxicity. However, the mechanisms of Cd-induced glomerular injury have not been fully clarified. Von Willebrand factor (vWF) and occludin are important endothelial cell markers in renal vasculature. In this study, the effects of Cd on the vWF and occludin expression in mouse glomeruli was investigated. Objectives: The goal of this study was to analyze the expression of von Willebrand factor and occludin in glomerular endothelial cells of tumor necrosis factor-α−/− (TNF-α−/−) mice after treatment with Cd. Material and methods: C57BL6/J wild-type (WT) mice and TNF-α−/− mice (n = 6) were treated with Cd, and the kidney tissues were collected. The expression of von Willebrand factor and occludin was detected by using quantitative real-time PCR, immunofluorescence, and immunohistochemistry. In vitro, Human umbilical vascular endothelial cells (HUVECs) were used to examine the regulatory role of TNF-α on expression of von Willebrand factor and occludin. Results: We found that Cd significantly increases mRNA and protein expressions of von Willebrand factor and occludin in TNF-α−/− mice, but not in WT mice. In vitro, Cd significantly increased mRNA and protein expression of von Willebrand factor and occludin in HUVECs with TNF-α small interfering RNA (siRNA) transfection. Conclusions: These results suggest that TNF-α acts to balance homeostasis of glomerular endothelium after Cd treatments.
Collapse
Affiliation(s)
- Zongguo Sun
- a College of Life Sciences , Shandong Normal University , Jinan , China.,b Medical Research Center, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| | - Qi Xie
- b Medical Research Center, Shandong Provincial Qianfoshan Hospital , Shandong University , Jinan , China
| | - Jie Pan
- a College of Life Sciences , Shandong Normal University , Jinan , China
| | - Na Niu
- c Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
31
|
Zhang F, Ren L, Zhou S, Duan P, Xue J, Chen H, Feng Y, Yue X, Yuan P, Liu Q, Yang P, Lei Y. Role of B-Cell Lymphoma 2 Ovarian Killer (BOK) in Acute Toxicity of Human Lung Epithelial Cells Caused by Cadmium Chloride. Med Sci Monit 2019; 25:5356-5368. [PMID: 31323016 PMCID: PMC6660808 DOI: 10.12659/msm.913706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a Bcl-2 family member with sequence homology to pro-apoptotic BAX and BAK, but its physiological and pathological roles remain largely unclear. Exposure of cells to cadmium may cause DNA damage, decrease DNA repair capacity, and increase genomic instability. Material/Methods The present study investigated the effects of BOK on the toxicity of cadmium chloride (CdCl2) to human bronchial epithelial (16HBE) cells. We constructed BOK over-expressing (16HBE-BOK) cells and BOK knockdown (16HBE-shBOK) cells using the BOK-ORF plasmid and BOK-siRNA. qRT-PCR for BOK mRNA expression. We used Trypan blue exclusion assay for cell growth, MTT colorimetric assays for cells inhibition rate, and Comet assays for detecting damaged DNA. Results CdCl2, at various concentrations and exposure times, increased BOK mRNA. 16HBE-BOK cells (BOK over-expressing) proliferated more than 16HBE cells after 72 h; 16HBE-shBOK (BOK knockdown) cells proliferated less. In addition, BOK deficiency enhanced cell death induced by CdCl2. Similarly, CdCl2- and H2O2-induced DNA damage was greater in BOK-deficient cells. Conclusions These findings support a role for BOK in CdCl2-induced DNA damage and cell death.
Collapse
Affiliation(s)
- Fang Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Liang Ren
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shanshan Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Peng Duan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Haiqin Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yufeng Feng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiaoxuan Yue
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Piaofan Yuan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ping Yang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yixiong Lei
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
32
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
33
|
Fittipaldi S, Bimonte VM, Soricelli A, Aversa A, Lenzi A, Greco EA, Migliaccio S. Cadmium exposure alters steroid receptors and proinflammatory cytokine levels in endothelial cells in vitro: a potential mechanism of endocrine disruptor atherogenic effect. J Endocrinol Invest 2019; 42:727-739. [PMID: 30478740 DOI: 10.1007/s40618-018-0982-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cadmium (Cd) is a widespread environmental pollutant that causes alterations in human health acting as endocrine disruptor. Recent data suggest that cardiovascular system might be a contamination target tissue, since Cd is found in atheromatic plaques. Thus, the purpose of this study was to evaluate the consequence of Cd exposure of endothelial cells in vitro to evaluate detrimental effect in vascular system by a potential sex-steroid hormone receptor-dependent mechanism(s). METHODS To this aim, Human Umbilical Vein Endothelial Cells (HUVECs) were cultured and exposed to several concentrations of cadmium chloride (CdCl2) for different interval times. RESULTS CdCl2 exposure of HUVECs induced a significant increase of ERβ and Cyp19a1 at both mRNA and protein levels, while a drastic dose-dependent decrease of AR expression level was observed after 24 h of exposure. On the contrary, an increase of PhARser308 as well as a reduction of PhGSK-3βser9 and PhAKTser473 was detected after 1 h treatment. This effect was consistently reduced by GSK inhibition. Furthermore, CdCl2 abolished DHT-induced cell proliferation in HUVECs suggesting an antagonist-like effect of Cd on AR-mediated signaling. Remarkable, after 6 h CdCl2-treatment, a relevant increase in TNF-α, IL-6 and IL-8 mRNA was observed and this effect was blocked by the presence of an ERβ-selective antagonist. Moreover, Cd-induced TxR1 overexpression, likely, correlated with the activation of p38 MAPK/NF-κB pathway. CONCLUSION In conclusion, our study demonstrates for the first time that Cd alters sex-steroid hormone receptors level and activity likely affecting intracellular signaling linked to a proinflammatory state in endothelial cells. This alteration might possibly lead to endothelial cell injury and vascular dysfunction and could be a mechanism of gender-specific atherogenic damages induced by endocrine disruptors and, thus, induce atherogenic events with increased risk of cardiovascular diseases in individuals exposed to this endocrine disruptor.
Collapse
Affiliation(s)
| | - V M Bimonte
- Department of Movement, Human and Health Sciences, Section of Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 6, 00195, Rome, Italy
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - A Soricelli
- IRCCS SDN, Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - A Aversa
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - A Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, "Sapienza" University of Rome, Rome, Italy
| | - E A Greco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, "Sapienza" University of Rome, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, "Foro Italico" University of Rome, Largo Lauro De Bosis 6, 00195, Rome, Italy.
| |
Collapse
|
34
|
Ranieri M, Di Mise A, Difonzo G, Centrone M, Venneri M, Pellegrino T, Russo A, Mastrodonato M, Caponio F, Valenti G, Tamma G. Green olive leaf extract (OLE) provides cytoprotection in renal cells exposed to low doses of cadmium. PLoS One 2019; 14:e0214159. [PMID: 30897184 PMCID: PMC6428325 DOI: 10.1371/journal.pone.0214159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is a heavy and highly toxic metal that contaminates air, food and water. Cadmium accumulates in several organs altering normal functions. The kidney is the major organ at risk of damage from chronic exposure to cadmium as a contaminant in food and water. This study aims to investigate the beneficial effects of OLE in renal collecting duct MCD4 cells exposed to a low dose cadmium (1 μM). In MCD4 cells cadmium caused an increase in ROS production, as well as generation of lipid droplets and reduced cell viability. Moreover, cadmium exposure led to a remarkable increase in the frequency of micronuclei and DNA double-strand breaks, assessed using the alkaline comet assay. In addition, cadmium dramatically altered cell cytoskeleton architecture and caused S-glutathionylation of actin. Notably, all cadmium-induced cellular deregulations were prevented by co-treatment with OLE, possibly due to its antioxidant action and to the presence of bioactive phytocompounds. Indeed, OLE treatment attenuated Cd-induced actin S-glutathionylation, thereby stabilizing actin filaments. Taken together, these observations provide a novel insight into the biological action of OLE in renal cells and support the notion that OLE may serve as a potential adjuvant against cadmium-induced nephrotoxicity.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Pellegrino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria Russo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.), Bari, Italy
- Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.), Bari, Italy
- * E-mail:
| |
Collapse
|
35
|
Chen X, Li L, Liu F, Hoh J, Kapron CM, Liu J. Cadmium Induces Glomerular Endothelial Cell–Specific Expression of Complement Factor H via the −1635 AP-1 Binding Site. THE JOURNAL OF IMMUNOLOGY 2019; 202:1210-1218. [DOI: 10.4049/jimmunol.1800081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
|
36
|
Mostafa DG, Ahmed SF, Hussein OA. Protective effect of tetrahydrobiopterin on hepatic and renal damage after acute cadmium exposure in male rats. Ultrastruct Pathol 2018; 42:516-531. [PMID: 30595070 DOI: 10.1080/01913123.2018.1559566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/29/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) has been recognized as one of the most important environmental and industrial pollutants. This study investigated the impact of acute exposure to Cd on oxidative stress and the inflammatory marker interleukin-6 (IL-6) in the plasma of rats and the histological picture of liver and kidney, as well as to examine the potential protective effect of tetrahydrobiopterin (BH4). METHODS Rats were divided into control group, Cd group that received a single intraperitoneal (i.p.) dose of 4 mg/kg b.w. of CdCl2 and BH4+ Cd group that received a single dose of BH4 (20 mg/kg, i.p.) and subsequently exposed to a single dose of Cd 24 h after the BH4 treatment. RESULTS Cd increased the plasma levels of hepatic enzymes (ALT and AST), urea, creatinine, malondialdehyde (MDA), and IL-6 and decreased the superoxide dismutase (SOD) activity. Also, it induced histopathological alterations in the liver with severe degeneration, especially in centrilobular zones. Renal tubular epithelium showed vacuolated cytoplasm and dense nuclei. VEGF expression was mild. Ultrastuctural changes were seen in some renal tubules. The nuclei appeared distorted with electron dense chromatin. Mitochondria with destructed cristae were observed. BH4 pretreatment had protective effects, since it significantly reduced the levels of IL-6 and ameliorated the alteration in oxidative status biomarkers induced by Cd. Improvement of histopathological alterations was observed in Cd-groups. The nuclei were vesicular euchromatic, intact mitochondria and normal appearance of the filtration membrane. Moderate expression of VEGF was noted. CONCLUSION This study has provided clear evidence for the protective efficacy of BH4 against experimental Cd toxicity.
Collapse
Affiliation(s)
- Dalia G Mostafa
- a Department of Medical Physiology, Faculty of Medicine , Assiut University , Assiut , Egypt
- b Department of Medical Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Salwa Fares Ahmed
- c Department of Histology, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Ola A Hussein
- c Department of Histology, Faculty of Medicine , Assiut University , Assiut , Egypt
| |
Collapse
|
37
|
Niu N, Yu C, Li L, Liu Q, Zhang W, Liang K, Zhu Y, Li J, Zhou X, Tang J, Liu J. Dihydroartemisinin enhances VEGFR1 expression through up-regulation of ETS-1 transcription factor. J Cancer 2018; 9:3366-3372. [PMID: 30271498 PMCID: PMC6160690 DOI: 10.7150/jca.25082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is required for tumor growth. Dihydroartemisinin (DHA), a the effective anti-malarial derivative of artemisinin, demonstrated potent anti-angiogenic activities that closely related to the regulation of vascular endothelial growth factor (VEGF) signaling cascade. VEGF receptor 1 (VEGFR1), a receptor in endothelial cells (ECs), coordinately regulate angiogenic activity triggered by ligand-receptor binding. Here we aimed to explore the effects of DHA on VEGFR1 expression in ECs. We found that DHA significantly increases VEGFR1 expression in human umbilical vein endothelial cells (HUVECs). In addition, DHA significantly upregulates the level of V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 1 (ETS-1), a transcriptional factor which binds to the human VEGFR1 promoter. ChIP assay showed that DHA increases ETS-1 binding to the -52 ETS motif on the VEGFR1 promoter. Knockdown of ETS-1 by RNA interference abolished DHA-induced increase of VEGFR1 expression. Taken together, we demonstrated that DHA elevates VEGFR1 expression via up-regulation of ETS-1 transcription in HUVECs.
Collapse
Affiliation(s)
- Na Niu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan,Shandong, China 250021
| | - Changmei Yu
- College of Pharmacy, Weifang Medical University, 7166 Baotong West Street, Weifang, Shandong China 261053.,Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong China 250014
| | - Liqun Li
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong China 250014
| | - Qiang Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong China 250014
| | - Wenqian Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Kaili Liang
- College of Chemistry, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong China 250014
| | - Youming Zhu
- College of Chemistry, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong China 250014
| | - Jing Li
- College of Chemistry, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong China 250014
| | - Xia Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinbao Tang
- College of Pharmacy, Weifang Medical University, 7166 Baotong West Street, Weifang, Shandong China 261053
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong China 250014
| |
Collapse
|
38
|
Wang X, Dong F, Wang F, Yan S, Chen X, Tozawa H, Ushijima T, Kapron CM, Wada Y, Liu J. Low dose cadmium upregulates the expression of von Willebrand factor in endothelial cells. Toxicol Lett 2018; 290:46-54. [PMID: 29571895 DOI: 10.1016/j.toxlet.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) is a persistent and widespread environmental pollutant of continuing worldwide concern. Previous studies have suggested that Cd exposure increases the risk of cardiovascular diseases, such as atherosclerosis and hypertension. However, the underlying mechanisms are poorly understood. In this study, we observed that low dose Cd treatment induced von Willebrand factor (vWF) expression in vascular endothelial cells in mouse lung and kidney tissues. In vitro analysis showed that 1 μM Cd specifically upregulated vWF mRNA and protein expression in human umbilical vein endothelial cells (HUVECs), indicating that Cd targets vascular endothelial cells even at relatively low concentrations. Further study demonstrated that nuclear factor kappa B (NF-κB) and GATA3, two established transcription regulators of the vWF gene, were not altered in the presence of Cd. However, ETS-related gene (ERG) was significantly induced by 1 μM Cd. When ERG was knocked down by siRNA, Cd induced upregulation of vWF was totally blocked. Chromatin immunoprecipitation (ChIP) assay showed that Cd increases the binding of ERG on the -56 ETS motif on the human vWF promoter. These results indicated that ERG mediated the increased expression of vWF by Cd. Since vWF is a key regulator for vascular homeostasis, our findings may provide a novel mechanism for understanding low dose Cd induced development of vascular diseases.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Fufang Wang
- Department of Geriatrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, China; Key laboratory of Cardiovascular Proteomics of Shandong Province, 107 Wenhua Xi Road, Jinan, Shandong, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014 China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Hideto Tozawa
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ushijima
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, K9L 0G2, Canada
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|