1
|
Zhou Z, Chai Y, Li Y, Zhang Y, Wang T. Lipid metabolism subtypes reflects the prognosis and immune profiles of bladder cancer patients by NMF clustering and building related signature. Discov Oncol 2024; 15:796. [PMID: 39692922 DOI: 10.1007/s12672-024-01631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Lipid metabolism is crucial in tumor formation and progression. However, the role of lipid metabolism genes (LMGs) in bladder cancer (BLCA) are unknown. The purpose of this study was to construct a LMGs-related subtypes that predicted the treatment and prognosis of BLCA patients. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used for this study. The gene set enrichment analysis (GSEA) was utilized to distinguish functional differences between high-risk (HR) and low-risk (LR) groups. Single-sample GSEA (ssGSEA) was employed to determine potential associations between prognostic outcomes and immune status. RESULTS First, BLCA patients were divided into two subtypes by non-negative matrix factorization (NMF) clustering, and there were substantial variations in survival status, immune cell infiltration and immune classification between the two subtypes. Next, a prognostic signature involving 8 LMGs was identified (AKR1B1, SCD, CYP27B1, UGCG, SGPL1, FASN, TNFAIP8L3, PLA2G2A). HR patients exhibited worse outcome than LR patients. Multivariate Cox regression analysis confirmed that LMGs-related signature was an independent prognostic indicator of BLCA patients' survival. Compared with clinicopathological variables, LMGs-related signature showed higher prognostic predictive ability, with an area under curve of 0.720 at 5 years of follow-up. Through immunotherapy analysis, drug sensitivity analysis, TIDE score and immune cell infiltration characteristics, LMGs-related signature was confirmed to accurately predict the prognosis and treatment response of BLCA patients. CONCLUSION Our newly established prognostic signature, which involved eight LMGs, can give prognostic distinction for BLCA and may eventually lead to novel targets for treatment.
Collapse
Affiliation(s)
- Zhongbao Zhou
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yumeng Chai
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yulong Li
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhang X, You W, Wang Y, Dejenie R, Wang C, Huang Y, Li J. Prospects of anti-GD2 immunotherapy for retinoblastoma. Front Immunol 2024; 15:1499700. [PMID: 39620227 PMCID: PMC11604707 DOI: 10.3389/fimmu.2024.1499700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
Retinoblastoma is the most common type of eye tumor in infants and children. Current treatments for retinoblastoma include intravenous chemotherapy, intra-arterial chemotherapy, intravitreal chemotherapy, cryotherapy, radiotherapy, and surgery. However, these treatments come accompanied by adverse effects such as the toxic side effects of chemotherapeutic drugs, post-operative complications including blindness after surgery, or other complications caused by radiotherapy. Immunotherapy is more promising for its low toxicity on normal cells and effectively improves the quality of life of patients. Disialoganglioside (GD2), a sphingolipid expressed on the surface of retinoblastoma, is a potential therapeutic target for retinoblastoma. We summarized immunotherapeutic approaches for both preclinical studies and clinical trials of GD2. An anti-GD2 monoclonal antibody (Dinutuximab), which has been approved for the treatment of high-risk neuroblastomas, has shown promising efficacy in improving patients' prognosis. Additionally, chimeric antigen receptors (CAR)-T therapy, GD2 vaccines and nanoparticles are also potential therapeutics. Finally, we discuss the prospects and current limitations of these immunotherapeutic approaches for treating retinoblastoma, as well as how to address these problems.
Collapse
Affiliation(s)
- Xinlong Zhang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Wulin You
- Department of Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
- Medical Center, University of Chicago, Chicago, IL, United States
| | - Yuntao Wang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Rebeka Dejenie
- Medical Center, University of Chicago, Chicago, IL, United States
- School of Medicine, University of California, Davis, Davis, CA, United States
| | - Chenhao Wang
- Department of Orthopedics, Wuxi Hospital Affiliated of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Huang
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jingjing Li
- Affiliated Hospital of Shandong Second Medical University,School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Medical Center, University of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Kami Reddy KR, Piyarathna DWB, Park JH, Putluri V, Amara CS, Kamal AHM, Xu J, Kraushaar D, Huang S, Jung SY, Eberlin LS, Johnson JR, Kittles RA, Ballester LY, Parsawar K, Siddiqui MM, Gao J, Langer Gramer A, Bollag RJ, Terris MK, Lotan Y, Creighton CJ, Lerner SP, Sreekumar A, Kaipparettu BA, Putluri N. Mitochondrial reprogramming by activating OXPHOS via glutamine metabolism in African American patients with bladder cancer. JCI Insight 2024; 9:e172336. [PMID: 39253977 PMCID: PMC11385078 DOI: 10.1172/jci.insight.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation-driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.
Collapse
Affiliation(s)
| | | | | | - Vasanta Putluri
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | | | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | - Jun Xu
- Department of Molecular and Cellular Biology
- Advanced Technology Cores
| | | | - Shixia Huang
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
- Huffington Department of Education, Innovation and Technology
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, and
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jabril R Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Rick A Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, Arizona, USA
| | - M Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Roni J Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Martha K Terris
- Department of Urology, Medical College of Georgia, Augusta, Georgia, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center
- Department of Medicine and
| | - Seth P Lerner
- Dan L Duncan Comprehensive Cancer Center
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| |
Collapse
|
4
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
5
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
6
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Storck MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley MJ, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. Sci Rep 2024; 14:13523. [PMID: 38866755 PMCID: PMC11169677 DOI: 10.1038/s41598-024-60052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024] Open
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell and epithelial-mesenchymal transition marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
Affiliation(s)
- Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siddhartha Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Wangbin Wu
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Micah Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Leah M Cook
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
- Incyte Corporation, Wilmington, DE, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, 985805 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Departments of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Bhat AM, Mohapatra BC, Luan H, Mushtaq I, Chakraborty S, Kumar S, Wu W, Nolan B, Dutta S, Stock MD, Schott M, Meza JL, Lele SM, Lin MF, Cook LM, Corey E, Morrissey C, Coulter DW, Rowley J, Natarajan A, Datta K, Band V, Band H. GD2 and its biosynthetic enzyme GD3 synthase promote tumorigenesis in prostate cancer by regulating cancer stem cell behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.18.533299. [PMID: 36993422 PMCID: PMC10055271 DOI: 10.1101/2023.03.18.533299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
While better management of loco-regional prostate cancer (PC) has greatly improved survival, advanced PC remains a major cause of cancer deaths. Identification of novel targetable pathways that contribute to tumor progression in PC could open new therapeutic options. The di-ganglioside GD2 is a target of FDA-approved antibody therapies in neuroblastoma, but the role of GD2 in PC is unexplored. Here, we show that GD2 is expressed in a small subpopulation of PC cells in a subset of patients and a higher proportion of metastatic tumors. Variable levels of cell surface GD2 expression were seen on many PC cell lines, and the expression was highly upregulated by experimental induction of lineage progression or enzalutamide resistance in CRPC cell models. GD2high cell fraction was enriched upon growth of PC cells as tumorspheres and GD2high fraction was enriched in tumorsphere-forming ability. CRISPR-Cas9 knockout (KO) of the rate-limiting GD2 biosynthetic enzyme GD3 Synthase (GD3S) in GD2high CRPC cell models markedly impaired the in vitro oncogenic traits and growth as bone-implanted xenograft tumors and reduced the cancer stem cell (CSC) and epithelial-mesenchymal transition (EMT) marker expression. Our results support the potential role of GD3S and its product GD2 in promoting PC tumorigenesis by maintaining cancer stem cells and suggest the potential for GD2 targeting in advanced PC.
Collapse
|
8
|
Andreyev AY, Yang H, Doulias P, Dolatabadi N, Zhang X, Luevanos M, Blanco M, Baal C, Putra I, Nakamura T, Ischiropoulos H, Tannenbaum SR, Lipton SA. Metabolic Bypass Rescues Aberrant S-nitrosylation-Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306469. [PMID: 38235614 PMCID: PMC10966553 DOI: 10.1002/advs.202306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Indexed: 01/19/2024]
Abstract
In Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS). Isotope-labeled metabolic flux experiments revealed a major block in activity in the tricarboxylic acid (TCA) cycle at the α-ketoglutarate dehydrogenase (αKGDH)/succinyl coenzyme-A synthetase step, metabolizing α-ketoglutarate to succinate. Associated with this block, aberrant protein S-nitrosylation of αKGDH subunits inhibited their enzyme function. This aberrant S-nitrosylation is documented not only in AD-hiN but also in postmortem human AD brains versus controls, as assessed by two separate unbiased mass spectrometry platforms using both SNOTRAP identification of S-nitrosothiols and chemoselective-enrichment of S-nitrosoproteins. Treatment with dimethyl succinate, a cell-permeable derivative of a TCA substrate downstream to the block, resulted in partial rescue of mitochondrial bioenergetic function as well as reversal of synapse loss in AD-hiN. These findings have therapeutic implications that rescue of mitochondrial energy metabolism can ameliorate synaptic loss in hiPSC-based models of AD.
Collapse
Affiliation(s)
- Alexander Y. Andreyev
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Hongmei Yang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Northeast Asia Institute of Chinese MedicineChangchun University of Chinese MedicineChangchun130021China
- Present address:
The Public Experiment CenterChangchun University of Chinese MedicineChangchun130117China
| | - Paschalis‐Thomas Doulias
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and PharmacologyRaymond and Ruth Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
- Department of Chemistry and Institute of BiosciencesUniversity Research Center of IoanninaUniversity of IoanninaIoannina45110Greece
| | - Nima Dolatabadi
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Melissa Luevanos
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Mayra Blanco
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Christine Baal
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Ivan Putra
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and PharmacologyRaymond and Ruth Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | - Steven R. Tannenbaum
- Northeast Asia Institute of Chinese MedicineChangchun University of Chinese MedicineChangchun130021China
| | - Stuart A. Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California at San DiegoLa JollaCA92093USA
| |
Collapse
|
9
|
Li P, Liu Z. Glycan-specific molecularly imprinted polymers towards cancer diagnostics: merits, applications, and future perspectives. Chem Soc Rev 2024; 53:1870-1891. [PMID: 38223993 DOI: 10.1039/d3cs00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Aberrant glycans are a hallmark of cancer states. Notably, emerging evidence has demonstrated that the diagnosis of cancers with tumour-specific glycan patterns holds great potential to address unmet medical needs, especially in improving diagnostic sensitivity and selectivity. However, despite vast glycans having been identified as potent markers, glycan-based diagnostic methods remain largely limited in clinical practice. There are several reasons that prevent them from reaching the market, and the lack of anti-glycan antibodies is one of the most challenging hurdles. With the increasing need for accelerating the translational process, numerous efforts have been made to find antibody alternatives, such as lectins, boronic acids and aptamers. However, issues concerning affinity, selectivity, stability and versatility are yet to be fully addressed. Molecularly imprinted polymers (MIPs), synthetic antibody mimics with tailored cavities for target molecules, hold the potential to revolutionize this dismal progress. MIPs can bind a wide range of glycan markers, even those without specific antibodies. This capacity effectively broadens the clinical applicability of glycan-based diagnostics. Additionally, glycoform-resolved diagnosis can also be achieved through customization of MIPs, allowing for more precise diagnostic applications. In this review, we intent to introduce the current status of glycans as potential biomarkers and critically evaluate the challenges that hinder the development of in vitro diagnostic assays, with a particular focus on glycan-specific recognition entities. Moreover, we highlight the key role of MIPs in this area and provide examples of their successful use. Finally, we conclude the review with the remaining challenges, future outlook, and emerging opportunities.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
10
|
Sarkar A, Banerjee S, Biswas K. Multi-dimensional role of gangliosides in modulating cancer hallmarks and their prospects in targeted cancer therapy. Front Pharmacol 2023; 14:1282572. [PMID: 38089042 PMCID: PMC10711107 DOI: 10.3389/fphar.2023.1282572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/10/2024] Open
Abstract
Gangliosides are glycosphingolipids with prevalence in nervous tissue and their involvement in certain neuronal diseases have been widely known. Interestingly, many recent studies highlighted their importance in the development and progression of various cancers through orchestration of multiple attributes of tumorigenesis, i.e., promoting migration, invasion, escaping the host immune system, and influencing other cancer hallmarks. Therefore, the multidimensional role of gangliosides in different cancers has established them as potential cancer targets. However, the tremendous structural complexity and functional heterogeneity are the major challenges in ganglioside research. Moreover, despite numerous immunotherapeutic attempts to target different gangliosides, it has failed to yield consistent results in clinical trials owing to their poor immunogenicity, a broad range of cross-reactivity, severe side effects, lack of uniform expression as well as heterogeneity. The recent identification of selective O-acetylated ganglioside expression in cancer tissues, but not in normal tissues, has strengthened their potential as a better and specific target for treating cancer patients. It was further supported by reduced cross-reactivity and side effects in clinical trials, although poor immunogenicity remains a major concern. Therefore, in addition to characterization and identification of the biological importance of O-acetylated gangliosides, their specific and efficient targeting in cancer through engineered antibodies is an emerging area of glycobiology research. This review highlights the modulatory effect of select gangliosides on different hallmarks of cancer and presents the overall development of ganglioside targeted immunotherapies along with recent progress. Here, we have also discussed its potential for future modifications aimed towards improvement in ganglioside-based cancer therapies.
Collapse
Affiliation(s)
| | | | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
11
|
Arunachalam AR, Samuel SS, Mani A, Maynard JP, Stayer KM, Dybbro E, Narayanan S, Biswas A, Pathan S, Soni K, Kamal AHM, Ambati CSR, Putluri N, Desai MS, Thevananther S. P2Y2 purinergic receptor gene deletion protects mice from bacterial endotoxin and sepsis-associated liver injury and mortality. Am J Physiol Gastrointest Liver Physiol 2023; 325:G471-G491. [PMID: 37697947 PMCID: PMC10812707 DOI: 10.1152/ajpgi.00090.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Athis R Arunachalam
- Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sanju S Samuel
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Arunmani Mani
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Janielle P Maynard
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kelsey M Stayer
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Eric Dybbro
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Subapradha Narayanan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Aalekhya Biswas
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Saliha Pathan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Krishnakant Soni
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Moreshwar S Desai
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sundararajah Thevananther
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
12
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
13
|
Machy P, Mortier E, Birklé S. Biology of GD2 ganglioside: implications for cancer immunotherapy. Front Pharmacol 2023; 14:1249929. [PMID: 37670947 PMCID: PMC10475612 DOI: 10.3389/fphar.2023.1249929] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Part of the broader glycosphingolipid family, gangliosides are composed of a ceramide bound to a sialic acid-containing glycan chain, and locate at the plasma membrane. Gangliosides are produced through sequential steps of glycosylation and sialylation. This diversity of composition is reflected in differences in expression patterns and functions of the various gangliosides. Ganglioside GD2 designates different subspecies following a basic structure containing three carbohydrate residues and two sialic acids. GD2 expression, usually restrained to limited tissues, is frequently altered in various neuroectoderm-derived cancers. While GD2 is of evident interest, its glycolipid nature has rendered research challenging. Physiological GD2 expression has been linked to developmental processes. Passing this stage, varying levels of GD2, physiologically expressed mainly in the central nervous system, affect composition and formation of membrane microdomains involved in surface receptor signaling. Overexpressed in cancer, GD2 has been shown to enhance cell survival and invasion. Furthermore, binding of antibodies leads to immune-independent cell death mechanisms. In addition, GD2 contributes to T-cell dysfunction, and functions as an immune checkpoint. Given the cancer-associated functions, GD2 has been a source of interest for immunotherapy. As a potential biomarker, methods are being developed to quantify GD2 from patients' samples. In addition, various therapeutic strategies are tested. Based on initial success with antibodies, derivates such as bispecific antibodies and immunocytokines have been developed, engaging patient immune system. Cytotoxic effectors or payloads may be redirected based on anti-GD2 antibodies. Finally, vaccines can be used to mount an immune response in patients. We review here the pertinent biological information on GD2 which may be of use for optimizing current immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - Stéphane Birklé
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, Nantes, France
| |
Collapse
|
14
|
Doulias PT, Yang H, Andreyev AY, Dolatabadi N, Scott H, K Raspur C, Patel PR, Nakamura T, Tannenbaum SR, Ischiropoulos H, Lipton SA. S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons. Cell Chem Biol 2023; 30:965-975.e6. [PMID: 37478858 PMCID: PMC10530441 DOI: 10.1016/j.chembiol.2023.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/16/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure.
Collapse
Affiliation(s)
- Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Departments of Pediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry and University Research Center of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Hongmei Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Changchun University of Chinese Medicine, Changchun 130021, China
| | - Alexander Y Andreyev
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry Scott
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charlene K Raspur
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Parth R Patel
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Departments of Pediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
16
|
Cao S, Hu X, Ren S, Wang Y, Shao Y, Wu K, Yang Z, Yang W, He G, Li X. The biological role and immunotherapy of gangliosides and GD3 synthase in cancers. Front Cell Dev Biol 2023; 11:1076862. [PMID: 36824365 PMCID: PMC9941352 DOI: 10.3389/fcell.2023.1076862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Gangliosides are a large subfamily of glycosphingolipids that broadly exist in the nervous system and interact with signaling molecules in the lipid rafts. GD3 and GD2 are two types of disialogangliosides (GDs) that include two sialic acid residues. The expression of GD3 and GD2 in various cancers is mostly upregulated and is involved in tumor proliferation, invasion, metastasis, and immune responses. GD3 synthase (GD3S, ST8SiaI), a subclass of sialyltransferases, regulates the biosynthesis of GD3 and GD2. GD3S is also upregulated in most tumors and plays an important role in the development and progression of tumors. Many clinical trials targeting GD2 are ongoing and various immunotherapy studies targeting gangliosides and GD3S are gradually attracting much interest and attention. This review summarizes the function, molecular mechanisms, and ongoing clinical applications of GD3, GD2, and GD3S in abundant types of tumors, which aims to provide novel targets for future cancer therapy.
Collapse
Affiliation(s)
- Shangqi Cao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Hu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shangqing Ren
- 2Robotic Minimally Invasive Surgery Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| | - Yaohui Wang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanxiang Shao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kan Wu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhen Yang
- 3Department of Urology, Chengdu Second People’s Hospital, Chengdu, China
| | - Weixiao Yang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Gu He
- 4State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,*Correspondence: Gu He, ; Xiang Li,
| | - Xiang Li
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China,*Correspondence: Gu He, ; Xiang Li,
| |
Collapse
|
17
|
Yu T, Shi Y, Pan X, Feng Q, Wang P, Song S, Yang L, Yang J. BR2 cell penetrating peptide effectively delivers anti-p21Ras scFv to tumor cells with ganglioside expression for therapy of ras-driven tumor. PLoS One 2022; 17:e0269084. [PMID: 35648774 PMCID: PMC9159597 DOI: 10.1371/journal.pone.0269084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
Cell membrane penetrating peptide BR2 can bind with ganglioside and introduce foreign drugs into tumor cells. In this study, we employed BR2 to carry the broad-spectrum anti-p21Ras scFv prepared in our laboratory into ganglioside expressing tumor cells for therapy of ras-driven tumors.
Methods
BR2-p21Ras scFv gene was cloned to prokaryotic expression vector and expressed in E. coli BL21, then the fusion protein was purified with HisPur Ni-NTA. The immunoreactivity of the fusion protein with p21Ras was detected by ELISA and western blotting. The membrane-penetrating and immune co-localization with p21Ras of the fusion protein were determined by immunofluorescence. The antitumor activity was investigated using MTT, wound healing, colone formation, and apoptosis assays in vitro.
Results
BR2-p21Ras scFv fusion protein was successfully expressed and purified. We found that the fusion protein could specifically penetrate into human tumor cell lines which express ganglioside including human neuroblastoma cell line SK-N-SH, human colon cancer cell line HCT116 and human glioma cell line U251. After entering tumor cells the fusion protein bonded specifically with p21Ras. In vitro experiments revealed that it could significantly inhibit the proliferation, migration, and colone formation of HCT116, SK-N-SH, and U251 cells and promote the apoptosis of these tumor cells.
Conclusions
BR2-p21Ras scFv can penetrate ganglioside expressing tumor cells and inhibit the growth of ras-driven tumor by binding with p21Ras, and producing an inhibitory effect. It is suggested that BR2-p21Ras scFv is a potential ras-driven tumor therapeutic antibody.
Collapse
Affiliation(s)
- Ting Yu
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
- The Graduate School, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Yingxian Shi
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xinyan Pan
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
| | - Qiang Feng
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
| | - Peng Wang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Shuling Song
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
| | - Lilin Yang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
| | - Julun Yang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, Kunming, Yunnan, People’s Republic of China
- The Graduate School, Kunming Medical University, Kunming, Yunnan, People’s Republic of China
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Yesmin F, Bhuiyan RH, Ohmi Y, Yamamoto S, Kaneko K, Ohkawa Y, Zhang P, Hamamura K, Cheung NKV, Kotani N, Honke K, Okajima T, Kambe M, Tajima O, Furukawa K, Furukawa K. Ganglioside GD2 Enhances the Malignant Phenotypes of Melanoma Cells by Cooperating with Integrins. Int J Mol Sci 2021; 23:ijms23010423. [PMID: 35008849 PMCID: PMC8745508 DOI: 10.3390/ijms23010423] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/12/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Gangliosides have been considered to modulate cell signals in the microdomain of the cell membrane, lipid/rafts, or glycolipid-enriched microdomain/rafts (GEM/rafts). In particular, cancer-associated gangliosides were reported to enhance the malignant properties of cancer cells. In fact, GD2-positive (GD2+) cells showed increased proliferation, invasion, and adhesion, compared with GD2-negative (GD2-) cells. However, the precise mechanisms by which gangliosides regulate cell signaling in GEM/rafts are not well understood. In order to analyze the roles of ganglioside GD2 in the malignant properties of melanoma cells, we searched for GD2-associating molecules on the cell membrane using the enzyme-mediated activation of radical sources combined with mass spectrometry, and integrin β1 was identified as a representative GD2-associating molecule. Then, we showed the physical association of GD2 and integrin β1 by immunoprecipitation/immunoblotting. Close localization was also shown by immuno-cytostaining and the proximity ligation assay. During cell adhesion, GD2+ cells showed multiple phospho-tyrosine bands, i.e., the epithelial growth factor receptor and focal adhesion kinase. The knockdown of integrin β1 revealed that the increased malignant phenotypes in GD2+ cells were clearly cancelled. Furthermore, the phosphor-tyrosine bands detected during the adhesion of GD2+ cells almost completely disappeared after the knockdown of integrin β1. Finally, immunoblotting to examine the intracellular distribution of integrins during cell adhesion revealed that large amounts of integrin β1 were localized in GEM/raft fractions in GD2+ cells before and just after cell adhesion, with the majority being localized in the non-raft fractions in GD2- cells. All these results suggest that GD2 and integrin β1 cooperate in GEM/rafts, leading to enhanced malignant phenotypes of melanomas.
Collapse
Affiliation(s)
- Farhana Yesmin
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Yuhsuke Ohmi
- Department of Medical Technology, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan;
| | - Satoko Yamamoto
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Kei Kaneko
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Pu Zhang
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
| | - Kazunori Hamamura
- Department of Pharmacology, Aichi Gakuin University School of Dentistry, Nagoya 464-8650, Japan;
| | | | - Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Saitama 350-0495, Japan;
| | - Koichi Honke
- Department of Biochemistry, Kochi University School of Medicine, Nangoku 783-8505, Japan;
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
| | - Mariko Kambe
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Orie Tajima
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai 487-8501, Japan; (F.Y.); (R.H.B.); (S.Y.); (K.K.); (Y.O.); (P.Z.); (M.K.); (O.T.); (K.F.)
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan;
- Correspondence: ; Tel.: +81-568-51-9512
| |
Collapse
|
19
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
20
|
Shao C, Anand V, Andreeff M, Battula VL. Ganglioside GD2: a novel therapeutic target in triple-negative breast cancer. Ann N Y Acad Sci 2021; 1508:35-53. [PMID: 34596246 DOI: 10.1111/nyas.14700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by lack of hormone receptor expression and is known for high rates of recurrence, distant metastases, and poor clinical outcomes. TNBC cells lack targetable receptors; hence, there is an urgent need for targetable markers for the disease. Breast cancer stem-like cells (BCSCs) are a fraction of cells in primary tumors that are associated with tumorigenesis, metastasis, and resistance to chemotherapy. Targeting BCSCs is thus an effective strategy for preventing cancer metastatic spread and sensitizing tumors to chemotherapy. The CD44hi CD24lo phenotype is a well-established phenotype for identification of BCSCs, but CD44 and CD24 are not targetable markers owing to their expression in normal tissues. The ganglioside GD2 has been shown to be upregulated in primary TNBC tumors compared with normal breast tissue and has been shown to identify BCSCs. In this review, we discuss GD2 as a BCSC- and tumor-specific marker in TNBC; epithelial-to-mesenchymal transition and the signaling pathways that are upstream and downstream of GD2 and the role of these pathways in tumorigenesis and metastasis in TNBC; direct and indirect approaches for targeting GD2; and ongoing clinical trials and treatments directed against GD2 as well as future directions for these strategies.
Collapse
Affiliation(s)
- Claire Shao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Exploiting Gangliosides for the Therapy of Ewing's Sarcoma and H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel) 2021; 13:cancers13030520. [PMID: 33572900 PMCID: PMC7866294 DOI: 10.3390/cancers13030520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Osteosarcoma, Ewing’s sarcoma, and H3K27M-mutant diffuse midline glioma are rare but aggressive malignancies occurring mainly in children. Due to their rareness and often fatal course, drug development is challenging. Here, we repurposed the existing drugs dinutuximab and eliglustat and investigated their potential to directly target or indirectly modulate the tumor cell-specific ganglioside GD2. Our data suggest that targeting and/or modulating tumor cell-specific GD2 may offer a new therapeutic strategy for the above mentioned tumor entities. Abstract The ganglioside GD2 is an important target in childhood cancer. Nevertheless, the only therapy targeting GD2 that is approved to date is the monoclonal antibody dinutuximab, which is used in the therapy of neuroblastoma. The relevance of GD2 as a target in other tumor entities remains to be elucidated. Here, we analyzed the expression of GD2 in different pediatric tumor entities by flow cytometry and tested two approaches for targeting GD2. H3K27M-mutant diffuse midline glioma (H3K27M-mutant DMG) samples showed the highest expression of GD2 with all cells strongly positive for the antigen. Ewing’s sarcoma (ES) samples also showed high expression, but displayed intra- and intertumor heterogeneity. Osteosarcoma had low to intermediate expression with a high percentage of GD2-negative cells. Dinutuximab beta in combination with irinotecan and temozolomide was used to treat a five-year-old girl with refractory ES. Disease control lasted over 12 months until a single partially GD2-negative intracranial metastasis was detected. In order to target GD2 in H3K27M-mutant DMG, we blocked ganglioside synthesis via eliglustat, since dinutuximab cannot cross the blood–brain barrier. Eliglustat is an inhibitor of glucosylceramide synthase, and it is used for treating children with Gaucher’s disease. Eliglustat completely inhibited the proliferation of primary H3K27M-mutant DMG cells in vitro. In summary, our data provide evidence that dinutuximab might be effective in tumors with high GD2 expression. Moreover, disrupting the ganglioside metabolism in H3K27M-mutant DMG could open up a new therapeutic option for this highly fatal cancer.
Collapse
|
22
|
Deciphering the Importance of Glycosphingolipids on Cellular and Molecular Mechanisms Associated with Epithelial-to-Mesenchymal Transition in Cancer. Biomolecules 2021; 11:biom11010062. [PMID: 33418847 PMCID: PMC7824851 DOI: 10.3390/biom11010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.
Collapse
|
23
|
Gupta SS, Sharp R, Hofferek C, Kuai L, Dorn GW, Wang J, Chen M. NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8 + T Cells. Cell Rep 2020; 29:1862-1877.e7. [PMID: 31722203 PMCID: PMC6886713 DOI: 10.1016/j.celrep.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a critical role in the maintenance of immunological memory. However, the molecular mechanisms involved in autophagy-regulated effector memory formation in CD8+ T cells remain unclear. Here we show that deficiency in NIX-dependent mitophagy leads to metabolic defects in effector memory T cells. Deletion of NIX caused HIF1α accumulation and altered cellular metabolism from long-chain fatty acid to short/branched-chain fatty acid oxidation, thereby compromising ATP synthesis during effector memory formation. Preventing HIF1α accumulation restored long-chain fatty acid metabolism and effector memory formation in antigen-specific CD8+ T cells. Our study suggests that NIX-mediated mitophagy is critical for effector memory formation in T cells. Gupta et al. demonstrate that mitophagy mediated by NIX, a mitochondrial outer membrane protein, plays a critical role in CD8+ T cell effector memory formation by regulating mitochondrial superoxide-dependent HIF1α protein accumulation and fatty acid metabolism. These findings elucidate the molecular mechanisms regulating T cell effector memory formation against viruses.
Collapse
Affiliation(s)
- Shubhranshu S Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colby Hofferek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Kuai
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front Oncol 2020; 10:1000. [PMID: 32733795 PMCID: PMC7358363 DOI: 10.3389/fonc.2020.01000] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Gangliosides are carbohydrate-containing sphingolipids that are widely expressed in normal tissues, making most subtypes unsuitable as targets for cancer therapy. However, the disialoganglioside GD2 subtype has limited expression in normal tissues but is overexpressed across a wide range of tumors. Disialoganglioside GD2 can be considered a tumor-associated antigen and well-suited as a target for cancer therapy. Disialoganglioside GD2 is implicated in tumor development and malignant phenotypes through enhanced cell proliferation, motility, migration, adhesion, and invasion, depending on the tumor type. This provides a rationale for targeting disialoganglioside GD2 in cancer therapy with the development of anti-GD2 monoclonal antibodies and other therapeutic approaches. Anti-GD2 monoclonal antibodies target GD2-expressing tumor cells, leading to phagocytosis and destruction by means of antibody-dependent cell-mediated cytotoxicity, lysis by complement-dependent cytotoxicity, and apoptosis and necrosis through direct induction of cell death. Anti-GD2 monoclonal antibodies may also prevent homing and adhesion of circulating malignant cells to the extracellular matrix. Disialoganglioside GD2 is highly expressed by almost all neuroblastomas, by most melanomas and retinoblastomas, and by many Ewing sarcomas and, to a more variable degree, by small cell lung cancer, gliomas, osteosarcomas, and soft tissue sarcomas. Successful treatment of disialoganglioside GD2-expressing tumors with anti-GD2 monoclonal antibodies is hindered by pharmacologic factors such as insufficient antibody affinity to mediate antibody-dependent cell-mediated cytotoxicity, inadequate penetration of antibody into the tumor microenvironment, and toxicity related to disialoganglioside GD2 expression by normal tissues such as peripheral sensory nerve fibers. Nonetheless, anti-GD2 monoclonal antibody dinutuximab (ch14.18) has been approved by the U.S. Food and Drug Administration and dinutuximab beta (ch14.18/CHO) has been approved by the European Medicines Agency for the treatment of high-risk neuroblastoma in pediatric patients. Clinical trials of anti-GD2 therapy are currently ongoing in patients with other types of disialoganglioside GD2-expressing tumors as well as neuroblastoma. In addition to anti-GD2 monoclonal antibodies, anti-GD2 therapeutic approaches include chimeric antigen receptor T-cell therapy, disialoganglioside GD2 vaccines, immunocytokines, immunotoxins, antibody-drug conjugates, radiolabeled antibodies, targeted nanoparticles, and T-cell engaging bispecific antibodies. Clinical trials should clarify further the potential of anti-GD2 therapy for disialoganglioside GD2-expressing malignant tumors.
Collapse
Affiliation(s)
- Bassel Nazha
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Cengiz Inal
- Salem Veterans Affairs Medical Center, Salem, VA, United States
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
25
|
Sorokin M, Kholodenko I, Kalinovsky D, Shamanskaya T, Doronin I, Konovalov D, Mironov A, Kuzmin D, Nikitin D, Deyev S, Buzdin A, Kholodenko R. RNA Sequencing-Based Identification of Ganglioside GD2-Positive Cancer Phenotype. Biomedicines 2020; 8:E142. [PMID: 32486168 PMCID: PMC7344710 DOI: 10.3390/biomedicines8060142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier predicting the GD2-positive tumor phenotypes. To this end, we compared RNA sequencing data from human tumor biopsy material from experimental samples and public databases as well as from GD2-positive and GD2-negative cancer cell lines, for expression levels of genes encoding enzymes involved in ganglioside biosynthesis. We identified a 2-gene expression signature combining ganglioside synthase genes ST8SIA1 and B4GALNT1 that serves as a more efficient predictor of GD2-positive phenotype (Matthews Correlation Coefficient (MCC) 0.32, 0.88, and 0.98 in three independent comparisons) compared to the individual ganglioside biosynthesis genes (MCC 0.02-0.32, 0.1-0.75, and 0.04-1 for the same independent comparisons). No individual gene showed a higher MCC score than the expression signature MCC score in two or more comparisons. Our diagnostic approach can hopefully be applied for pan-cancer prediction of GD2 phenotypes using gene expression data.
Collapse
Affiliation(s)
- Maxim Sorokin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
- Omicsway Corp., 340 S Lemon Ave, 6040, Walnut, CA 91789, USA
| | - Irina Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia;
| | - Daniel Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
| | - Tatyana Shamanskaya
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., 117997 Moscow, Russia; (T.S.); (D.K.)
| | - Igor Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Real Target LLC, 108841 Moscow, Russia
| | - Dmitry Konovalov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., 117997 Moscow, Russia; (T.S.); (D.K.)
| | - Aleksei Mironov
- Skolkovo Institute of Science and Technology, 3, Nobelya St., 121205 Moscow, Russia;
| | - Denis Kuzmin
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia;
| | - Daniil Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
| | - Sergey Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., 119992 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), 141700 Moscow, Russia;
- Oncobox ltd., 121205 Moscow, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho- Maklaya St., 117997 Moscow, Russia; (M.S.); (D.K.); (I.D.); (D.N.); (S.D.); (A.B.)
- Real Target LLC, 108841 Moscow, Russia
| |
Collapse
|
26
|
Yi J, Ren L, Li D, Wu J, Li W, Du G, Wang J. Trefoil factor 1 (TFF1) is a potential prognostic biomarker with functional significance in breast cancers. Biomed Pharmacother 2020; 124:109827. [PMID: 31986408 DOI: 10.1016/j.biopha.2020.109827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women and the second leading cause of their cancer death. Establishing an accurate BC prognosis is very difficult because of its heterogeneity. Elevated TFF1 levels in serum were associated with development of BC, TFF1 expression was upregulated in BC compared to the healthy breast tissue. The aim of this study was to investigate the function of TFF1 in BCs, and to assess whether serum TFF1 could be used in formulating a prognosis for BC patients. In silico analyses were carried out to determine the expression of TFF1 mRNA in different types of BC and the association between TFF1 expression and survival of BC patients. Expression of TFF1 protein was checked in 52 paraffin-embedded tissues of BCs by immunochemistry, and serum concentration of TFF1 in 70 BC patients and 32 healthy controls was measured by ELISA. Functional activities of TFF1 in BC cells were determined by CCK-8 assay, colony formation, BrdU-DNA synthesis, and assays for migration and invasion. Results showed that expression of TFF1 mRNA was correlated with expression of biomarkers of luminal cancers including ESR1, GATA3, FOXA1, MYB and XBP1. In addition, patients with ER+BC had higher expression of TFF1 than those with ER- (p < 0.05). There was also lower expression of TFF1 in triple-negative breast cancer (TNBC) than in non-TNBC (p < 0.05), which corresponds with the level of serum TFF1 in TNBC patients, compared with non-TNBC patients (p < 0.001). Furthermore, expression of TFF1 was associated with tumor size (p = 0.002), nodal status (p < 0.001), histological grade (p < 0.001), ER status (p = 0.012), PR status (p < 0.001) and HER2 (p < 0.001), while serum TFF1 was only statistically different among BC with ER+, PR + and HER2+ (p = 0.04139, 0.0018, 0.0004). Elevated TFF1 expression correlated with increased overall survival of BC patients (p = 0.00068). Finally, TFF1 was found to inhibit the cell growth, colony formation, migration and invasion of BC cells in vitro. All these results suggest that expression of TFF1 was related to ER status of BC and that expression of TFF1 was lower in TNBC than in non-TNBC. TFF1 was found to inhibit proliferation, migration and invasion of BC cells in vitro. Expression of TFF1 was associated with clinical characters of patients with BC. Serum TFF1 could be used to predict prognosis of patients with BC, especially non-TNBC.
Collapse
Affiliation(s)
- Jie Yi
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Dandan Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jie Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Metabolomic biomarkers are associated with mortality in patients with cirrhosis caused by primary biliary cholangitis or primary sclerosing cholangitis. Future Sci OA 2019; 6:FSO441. [PMID: 32025330 PMCID: PMC6997913 DOI: 10.2144/fsoa-2019-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To assess the ability of signature metabolites alone, or in combination with the model for end-stage liver disease-Na (MELD-Na) score to predict mortality in patients with cirrhosis caused by primary biliary cholangitis or primary sclerosing cholangitis. Materials & methods: Plasma metabolites were detected using ultrahigh-performance liquid chromatography/tandem mass spectrometry in 39 patients with cirrhosis caused by primary biliary cholangitis or primary sclerosing cholangitis. Mortality was predicted using Cox proportional hazards regression and time-dependent receiver operating characteristic curve analyses. Results: The top five metabolites with significantly greater accuracy than the MELD-Na score (area under the receiver operating characteristic curve [AUROC] = 0.7591) to predict 1-year mortality were myo-inositol (AUROC = 0.9537), N-acetylputrescine (AUROC = 0.9018), trans-aconitate (AUROC = 0.8880), erythronate (AUROC = 0.8345) and N6-carbamoylthreonyladenosine (AUROC = 0.8055). Several combined MELD-Na-metabolite models increased the accuracy of predicted 1-year mortality substantially (AUROC increased from 0.7591 up to 0.9392). Conclusion: Plasma metabolites have the potential to enhance the accuracy of mortality predictions, minimize underestimates of mortality in patients with cirrhosis and low MELD-Na scores, and promote equitable allocation of donor livers. To receive a liver transplant, patients with cirrhosis need to be listed on the US liver transplant waiting list based on a score called the model for end-stage liver disease-Na (MELD-Na) score that is expected to accurately rank the patients based on urgency for a liver transplant. However, MELD-Na score is not sufficiently accurate to identify many patients with cirrhosis with the highest urgency, and this results in longer waiting times on the liver transplant list, and therefore higher death rates. We identified several metabolomic biomarkers that can increase the accuracy of the MELD-Na score, and optimize the allocation of donor livers for transplantation of patients with cirrhosis.
Collapse
|
28
|
Li W, Zheng X, Ren L, Fu W, Liu J, Xv J, Liu S, Wang J, Du G. Epigenetic hypomethylation and upregulation of GD3s in triple negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:723. [PMID: 32042739 DOI: 10.21037/atm.2019.12.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Breast cancer remains a major health problem in the world. Triple-negative breast cancer (TNBC) is an aggressive subtype with very poor prognosis. Up to now, the mechanism behind TNBC's activity is still unclear and no candidate drug target has been identified. Thus, it is of critical importance to elucidate the pathways in TNBC and identify the relevant biomarkers. Recent studies showed that ganglioside D3 synthase (GD3s) played a very important role in development of cancers. However, the physiological functions and associated pathways of GD3s in TNBC are still unclear. Methods In silico analysis of the expression of GD3s in TNBC was conducted using The Cancer Genome Atlas (TCGA) and Oncomine databases. The proliferation of breast cancer cells was measured by MTT assay, colony formation by the soft agar method, and migration and invasion using Boyden chamber inserts. The methylation level of the gene encoding GD3s, ST8SIA1, in specimens was assessed by qMS-PCR and in silico using the UCSC gene browser. Protein expression was examined via immunohistochemistry (IHC), qRT-PCR and Western immunoblotting. Results In silico analysis showed a higher GD3s expression in ER- than ER+ breast cancers and GD3s was also highly expressed in TNBC compared to other types of breast cancers. The elevated GD3s expression in TNBC cells and tissues was associated with hypomethylation of the ST8SIA1 gene. Overexpression of GD3s in human breast cancer cells increased their proliferation, migration, invasion and colony formation ability. GD3s expression in breast cancers was closely associated with relapse-free survival (RFS) and overall survival (OS). Conclusions In summary, these results suggest that GD3s may be a potential biomarker and drug target in treatment of TNBC.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jun Xv
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030002, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan 030002, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
29
|
Seitz CM, Schroeder S, Knopf P, Krahl AC, Hau J, Schleicher S, Martella M, Quintanilla-Martinez L, Kneilling M, Pichler B, Lang P, Atar D, Schilbach K, Handgretinger R, Schlegel P. GD2-targeted chimeric antigen receptor T cells prevent metastasis formation by elimination of breast cancer stem-like cells. Oncoimmunology 2019; 9:1683345. [PMID: 32002293 PMCID: PMC6959445 DOI: 10.1080/2162402x.2019.1683345] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Expression of the disialoganglioside GD2 has been identified as a marker antigen associated with a breast cancer stem-like cell (BCSC) phenotype. Here, we report on the evaluation of GD2 as a BCSC-specific target antigen for immunotherapy. GD2 expression was confirmed at variable degree in a set of breast cancer cell lines, predominantly in triple-negative breast cancer (TNBC). To target GD2, we have generated novel anti-GD2 chimeric antigen receptors (GD2-CAR), based on single-chain variable fragments (scFv) derived from the monoclonal antibody (mAb) ch14.18, also known as dinutuximab beta. Expressed on T cells, GD2-CARs mediated specific GD2-dependent T-cell activation and target cell lysis. In contrast to previously described GD2-CARs, no signs of exhaustion by tonic signaling were found. Importantly, application of GD2-CAR expressing T cells (GD2-CAR-T) in an orthotopic xenograft model of TNBC (MDA-MB-231) halted local tumor progression and completely prevented lung metastasis formation. In line with the BCSC model, GD2 expression was only found in a subpopulation (4-6%) of MDA-MB-231 cells before injection. Significant expansion of GD2-CAR-T in tumor-bearing mice as well as T-cell infiltrates in the primary tumor and the lungs were found, indicating site-specific activation of GD2-CAR-T. Our data strongly support previous findings of GD2 as a BCSC-associated antigen. GD2-targeted immunotherapies have been extensively studied in human. In conclusion, GD2-CAR-T should be considered a promising novel approach for GD2-positive breast cancer, especially to eliminate disseminated tumor cells and prevent metastasis formation.
Collapse
Affiliation(s)
- Christian M Seitz
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Sarah Schroeder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ann-Christin Krahl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Jana Hau
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Sabine Schleicher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Manuela Martella
- Department of Pathology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Atar
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Patrick Schlegel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
30
|
Zhang C, Xiong X, Li Y, Huang K, Liu L, Peng X, Weng W. Cytokine-induced killer cells/natural killer cells combined with anti-GD2 monoclonal antibody increase cell death rate in neuroblastoma SK-N-SH cells. Oncol Lett 2019; 18:6525-6535. [PMID: 31807172 PMCID: PMC6876305 DOI: 10.3892/ol.2019.11020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common extracranial, solid, pediatric malignancies. Despite improvements in conventional therapies, including surgery, chemotherapy and radiation therapy, the prognosis of stage IV NB remains poor, indicating that novel treatment strategies are required. Immunotherapies, such as anti-GD2 monoclonal antibodies, used alone or in combination with cytokines, and peripheral blood mononuclear cells or cord blood mononuclear cells (CBMNCs), have been indicated to cause NB cell death and to prolong patient survival in high-risk NB; however, they remain limited by severe cytotoxicity and side effects. In the present study, it was determined that anti-GD2 monoclonal antibody alone or CBMNC-isolated cytokine-induced killer (CIK)/natural killer (NK) cells alone significantly induced cell death of NB SK-N-SH cells, and the combination of anti-GD2 antibody and CIK/NK cells could significantly increase the cell death rate compared with either treatment alone. In addition, based on a method referred to our previous study, it was identified that a two-cytokine culture system, using interleukin IL-2 and IL-7, effectively stimulated the proliferation of CIK/NK cells. These results serve to suggest a novel treatment strategy for relapsed/refractory NB with high efficiency and few side effects.
Collapse
Affiliation(s)
- Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaomin Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenjun Weng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
31
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
32
|
Wojtczyk-Miaskowska A, Schlichtholz B. Tobacco carcinogens and the methionine metabolism in human bladder cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 782:108281. [PMID: 31843138 DOI: 10.1016/j.mrrev.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is a strong risk factor for bladder cancer. It has been shown that the duration of smoking is associated with a poor prognosis and a higher risk of recurrence. This is due to tobacco carcinogens forming adducts with DNA and proteins that participate in the DNA repair mechanisms. Additionally, polymorphisms of genes responsible for methyl group transfer in the methionine cycle and dosages of vitamins (from diet and supplements) can cause an increased risk of bladder cancer. Upregulated DNA methyltransferase 1 expression and activity results in a high level of methylated products of metabolism, as well as hypermethylation of tumor suppressor genes. The development of a market that provides new inhibitors of DNA methyltransferase or alternatives for current smokers is essential not only for patients but also for people who are under the danger of secondhand smoking and can experience its long-term exposure consequences.
Collapse
Affiliation(s)
- A Wojtczyk-Miaskowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | - B Schlichtholz
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
33
|
Suter MA, Aagaard KM, Coarfa C, Robertson M, Zhou G, Jackson BP, Thompson D, Putluri V, Putluri N, Hagan J, Wang L, Jiang W, Lingappan K, Moorthy B. Association between elevated placental polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts from Superfund sites in Harris County, and increased risk of preterm birth (PTB). Biochem Biophys Res Commun 2019; 516:344-349. [PMID: 31208719 PMCID: PMC6637943 DOI: 10.1016/j.bbrc.2019.06.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/13/2023]
Abstract
The preterm birth (PTB) rate in Harris County, Texas, exceeds the U.S. rate (11.4% vs.9.6%), and there are 15 active Superfund sites in Harris County. Polycyclic aromatic hydrocarbons (PAHs) are contaminants of concern (COC) at Superfund sites across the nation. In this investigation, we tested the hypothesis that higher levels of exposure to PAHs and PAH-DNA adducts in placenta of women living near Superfund sites contribute to the increased rate of PTBs. Levels of benzo[a]pyene (BP), benzo[b]fluorene (BbF) and dibenz[a,h]anthracene (DBA), were higher in placentae from preterm deliveries compared with term deliveries in women living near Superfund sites, whereas this was not the case for women living in non-Superfund site areas. Among the PAHs, DBA levels were significantly higher than BP or BbF, and DBA levels were inversely correlated with gestational age at delivery and birth weight. Bulky PAH-DNA adducts are more prevalent in placental tissue from individuals residing near Superfund sites. Expression of Ah receptor (AHR) and NF-E2-related factor 2 (NRF2) was decreased in preterm deliveries in subjects residing near Superfund sites. Unbiased metabolomics revealed alterations in pathways involved in pentose phosphate, inositol phosphate and starch and sucrose metabolism in preterm subjects in Superfund site areas. In summary, this is the first report showing an association between PAH levels, DNA adducts, and modulation of endogenous metabolic pathways with PTBs in subjects residing near Superfund sites, and further studies could lead to novel strategies in the understanding of the mechanisms by which PAHs contribute to PTBs in women.
Collapse
Affiliation(s)
- Melissa A Suter
- Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kjersti M Aagaard
- Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cristian Coarfa
- Duncan Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Robertson
- Department of Molecular & Cell Biology at Baylor College of Medicine, Houston, TX, USA
| | - Guodong Zhou
- Institute of Biotechnology, Texas A&M University Health Sciences, Houston, TX, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Dominique Thompson
- Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Vasanta Putluri
- Department of Molecular & Cell Biology at Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular & Cell Biology at Baylor College of Medicine, Houston, TX, USA
| | - Joseph Hagan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
34
|
Kang H, Kim H, Lee S, Youn H, Youn B. Role of Metabolic Reprogramming in Epithelial⁻Mesenchymal Transition (EMT). Int J Mol Sci 2019; 20:ijms20082042. [PMID: 31027222 PMCID: PMC6514888 DOI: 10.3390/ijms20082042] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.
Collapse
Affiliation(s)
- Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
35
|
Wei H. Interleukin 6 signaling maintains the stem-like properties of bladder cancer stem cells. Transl Cancer Res 2019; 8:557-566. [PMID: 35116788 PMCID: PMC8799198 DOI: 10.21037/tcr.2019.03.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
Background The relapse and metastasis of bladder cancer are due to its strong resistance to chemotherapeutic drugs after surgery as a result of the expansion and self-renewal of cancer stem cells (CSCs). However, the molecular mechanisms underlying the biology of bladder CSCs are unknown. This study aimed to investigate the role of interleukin 6 (IL6)/IL6 receptor (IL6R) in the stem-like characteristics of bladder CSCs. Methods Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect IL6 expression in the supernatant and cells of bladder CSCs, respectively. Following that, self-renewal, stem cell-associated gene expression, invasion, metastasis, and tumorigenicity were assessed by sphere-forming assay, qRT-PCR, invasion and transwell assays, and tumor-forming experiment in NOD/SCID mice, respectively. Finally, Western blot and qRT-PCR were employed to examine the IL6 signaling pathway in regulating the stem-like properties of bladder CSCs. Results The spheres, originating from the bladder cancer cell lines RT4 and J82, possessed a higher expression of stem-associated genes. The expression levels of IL6 were elevated in the supernatant and cells of the bladder CSCs. IL6R was also up-regulated in the bladder CSCs. Recombinant IL6 promoted the stem-like properties of the bladder CSCs, including self-renewal, expression of stem-associated genes, invasion, migration, and tumorigenicity. Mechanistically, IL6 exerted its biological effects by binding to IL6R, which enhanced the phosphorylation of STAT3 and triggered its activation. Furthermore, these effects were alleviated by the FDA-approved drug tocilizumab. Conclusions Our findings demonstrate that IL6/IL6R/STAT3 maintains the stem-like properties of bladder CSCs. Furthermore, IL6R may serve as a potential therapeutic target for CSCs in bladder cancer.
Collapse
Affiliation(s)
- Hua Wei
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Vantaku V, Dong J, Ambati CR, Perera D, Donepudi SR, Amara CS, Putluri V, Ravi SS, Robertson MJ, Piyarathna DWB, Villanueva M, von Rundstedt FC, Karanam B, Ballester LY, Terris MK, Bollag RJ, Lerner SP, Apolo AB, Villanueva H, Lee M, Sikora AG, Lotan Y, Sreekumar A, Coarfa C, Putluri N. Multi-omics Integration Analysis Robustly Predicts High-Grade Patient Survival and Identifies CPT1B Effect on Fatty Acid Metabolism in Bladder Cancer. Clin Cancer Res 2019; 25:3689-3701. [PMID: 30846479 DOI: 10.1158/1078-0432.ccr-18-1515] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/09/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The perturbation of metabolic pathways in high-grade bladder cancer has not been investigated. We aimed to identify a metabolic signature in high-grade bladder cancer by integrating unbiased metabolomics, lipidomics, and transcriptomics to predict patient survival and to discover novel therapeutic targets. EXPERIMENTAL DESIGN We performed high-resolution liquid chromatography mass spectrometry (LC-MS) and bioinformatic analysis to determine the global metabolome and lipidome in high-grade bladder cancer. We further investigated the effects of impaired metabolic pathways using in vitro and in vivo models. RESULTS We identified 519 differential metabolites and 19 lipids that were differentially expressed between low-grade and high-grade bladder cancer using the NIST MS metabolomics compendium and lipidblast MS/MS libraries, respectively. Pathway analysis revealed a unique set of biochemical pathways that are highly deregulated in high-grade bladder cancer. Integromics analysis identified a molecular gene signature associated with poor patient survival in bladder cancer. Low expression of CPT1B in high-grade tumors was associated with low FAO and low acyl carnitine levels in high-grade bladder cancer, which were confirmed using tissue microarrays. Ectopic expression of the CPT1B in high-grade bladder cancer cells led to reduced EMT in in vitro, and reduced cell proliferation, EMT, and metastasis in vivo. CONCLUSIONS Our study demonstrates a novel approach for the integration of metabolomics, lipidomics, and transcriptomics data, and identifies a common gene signature associated with poor survival in patients with bladder cancer. Our data also suggest that impairment of FAO due to downregulation of CPT1B plays an important role in the progression toward high-grade bladder cancer and provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Venkatrao Vantaku
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Jianrong Dong
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Chandrashekar R Ambati
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Dimuthu Perera
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Sri Ramya Donepudi
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Chandra Sekhar Amara
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Shiva Shankar Ravi
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Matthew J Robertson
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | | | - Mariana Villanueva
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | | | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Leomar Y Ballester
- Pathology & Laboratory Medicine, Neurosurgery, University of Texas Health Science Center, Houston, Texas
| | | | | | - Seth P Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hugo Villanueva
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - MinJae Lee
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, Texas
| | - Andrew G Sikora
- Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern, Dallas, Texas
| | - Arun Sreekumar
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas.,Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
37
|
Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, Nguyen TK, Park PK, Egranov SD, Ambati CR, Putluri N, Hawke DH, Han L, Hung MC, Danesh FR, Yang L, Lin C. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest 2019; 129:1129-1151. [PMID: 30741721 PMCID: PMC6391108 DOI: 10.1172/jci121987] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes significantly to interstitial matrix deposition in diabetic kidney disease (DKD). However, detection of EMT in kidney tissue is impracticable, and anti-EMT therapies have long been hindered. We reported that phosphatase and tensin homolog (PTEN) promoted transforming growth factor beta 1 (TGF-β), sonic hedgehog (SHH), connective tissue growth factor (CTGF), interleukin 6 (IL-6), and hyperglycemia-induced EMT when PTEN was modified by a MEX3C-catalyzed K27-linked polyubiquitination at lysine 80 (referred to as PTENK27-polyUb). Genetic inhibition of PTENK27-polyUb alleviated Col4a3 knockout-, folic acid-, and streptozotocin-induced (STZ-induced) kidney injury. Serum and urine PTENK27-polyUb concentrations were negatively correlated with glomerular filtration rate (GFR) for diabetic patients. Mechanistically, PTENK27-polyUb facilitated dephosphorylation and protein stabilization of TWIST, SNAI1, and YAP in renal epithelial cells, leading to enhanced EMT. We identified that a small molecule, triptolide, inhibited MEX3C-catalyzed PTENK27-polyUb and EMT of renal epithelial cells. Treatment with triptolide reduced TWIST, SNAI1, and YAP concurrently and improved kidney health in Col4a3 knockout-, folic acid-injured disease models and STZ-induced, BTBR ob/ob diabetic nephropathy models. Hence, we demonstrated the important role of PTENK27-polyUb in DKD and a promising therapeutic strategy that inhibited the progression of DKD.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, and
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, and
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, and
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, and
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, and
| | | | | | | | | | - Nagireddy Putluri
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, and
- Program in Cancer Biology, The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Farhad R. Danesh
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, and
- Program in Cancer Biology, The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, and
- Program in Cancer Biology, The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
38
|
Chen W, Jiang T, Mao H, Gao R, Gao X, He Y, Zhang H, Chen Q. Nodal Promotes the Migration and Invasion of Bladder Cancer Cells via Regulation of Snail. J Cancer 2019; 10:1511-1519. [PMID: 31031861 PMCID: PMC6485227 DOI: 10.7150/jca.29205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023] Open
Abstract
Urinary bladder cancer is one of commonly diagnosed malignancies worldwide, especially in males. Understanding the mechanisms of advanced metastasis in bladder cell is important for therapy and drug development. Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. We found that the expression of Nodal was upregulated in bladder cancer cells and tissues as compared to their corresponding controls. Knockdown of Nodal can suppress the migration, invasion, and epithelial-to-mesenchymal transition (EMT) of bladder cancer cells. Nodal can positively regulate the expression of Snail, one powerful EMT transcription factors, in bladder cancer cells. Overexpression of Snail can attenuate the si-Nodal suppressed cell migration and invasion. Nodal can increase the transcription and protein stability of Snail in bladder cancer cells. YY1, which can be activated by Nodal, is responsible for Nodal induced transcription of Snail. ATM, which can stabilize Snail by phosphorylation on Serine-100, was involved in Nodal upregulated protein stability of Snail. Collectively, our data showed that Nodal can trigger the malignancy of bladder cancer cells via increasing the transcription and protein stability of Snail. It indicated that Nodal might be a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Tao Jiang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Houping Mao
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Rui Gao
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xingjian Gao
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yanfeng He
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hua Zhang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qin Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
39
|
Ambati CR, Vantaku V, Donepudi SR, Amara CS, Ravi SS, Mandalapu A, Perla M, Putluri V, Sreekumar A, Putluri N. Measurement of methylated metabolites using Liquid Chromatography-Mass Spectrometry and its biological application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:49-57. [PMID: 31762797 PMCID: PMC6874373 DOI: 10.1039/c8ay02168f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methylation aberrations play an important role in many metabolic disorders including cancer. Methylated metabolites are direct indicators of metabolic aberrations, and currently, there is no Liquid chromatography - Mass spectrometry (LC-MS) based method available to cover all classes of methylated metabolites at low detection limits. In this study, we have developed a method for the detection of methylated metabolites, and it's biological application. In this approach, we used a HILIC based HPLC with MS to measure methylated organic acids, amino acids, and nucleotides. These metabolites were separated from each other by their hydrophobic interactions and analyzed by targeted metabolomics of single reaction monitoring by positive and negative mode of electrospray ionization. These metabolites were quantified, and the interday reproducibility was <10% relative standard deviation. Furthermore, by applying this method, we identified high levels of methylated metabolites in bladder cancer cell lines compared to benign cells. In vitro treatment of cancer cells with methylation inhibitor, 5- aza-2'-deoxycytidine showed a decrease in these methylated metabolites. This data indicates that HPLC analysis using this HILIC based method could be a powerful tool for measuring methylated metabolites in biological specimens. This method is rapid, sensitive, selective, and precise to measure methylated metabolites.
Collapse
Affiliation(s)
- Chandrashekar R Ambati
- Advanced Technology Core, Dan L. Duncan Cancer Center, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Venkatrao Vantaku
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sri Ramya Donepudi
- Advanced Technology Core, Dan L. Duncan Cancer Center, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Chandra Sekhar Amara
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Shiva Shankar Ravi
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Akhil Mandalapu
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Maharajni Perla
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology Core, Dan L. Duncan Cancer Center, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Arun Sreekumar
- Advanced Technology Core, Dan L. Duncan Cancer Center, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Advanced Technology Core, Dan L. Duncan Cancer Center, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Shi X, Chen S, Zhang Y, Xie W, Hu Z, Li H, Li J, Zhou Z, Tan W. Norcantharidin inhibits the DDR of bladder cancer stem-like cells through cdc6 degradation. Onco Targets Ther 2019; 12:4403-4413. [PMID: 31239709 PMCID: PMC6560209 DOI: 10.2147/ott.s209907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction: Cancer stem cells (CSCs) are the main source of tumor resistance and recurrence. At present, the main treatment for patients with advanced or metastatic bladder cancer (BCa) is cisplatin-based combination chemotherapy. However, CSCs are not sensitive to DNA-damaging drugs due to their enhanced DNA damage response (DDR) activity. Materials and methods: Bladder cancer stem cell-like cells (BCSLCs) were obtained by treating UMUC3 cells with cisplatin. The characteristics of the BCSLCs were identified by qPCR, flow cytometry, scratch wound-healing assays, transwell assays, tumorigenic ability experiments, Edu assays and Western blot assays in vivo. After BCSLCs were treated with norcantharidin (NCTD), the expression of Cdc6 and activation of the ATR-Chk1 pathway were detected by Western blotting. A subcutaneous tumor model in nude mice was successfully established to assess the anti-tumor efficacy of NCTD and cisplatin either alone or in combination in vivo. The tumor tissues were detected by immunohistochemistry. Results: The derived BCSLCs showed higher expression of stemness markers, increased invasiveness, improved resistance to multiple chemotherapeutics, and higher tumorigenic capacity in vivo. The protein expression level of chromatin-binding Cdc6 was increased in BCSLCs; however, NCTD decreased the level of chromatin-binding Cdc6 and inhibited the activation of the ATR-Chk1 pathway, which ultimately led to reduction in DDR activity in BCSLCs. NCTD enhanced the killing effect of cisplatin on BCSLCs in vitro and vivo. NCTD combined with cisplatin enhanced cisplatin-induced DNA damage in BCSLCs. Conclusion: Long-term cisplatin treatment can enrich BCSLCs. However, NCTD enhanced the killing effect of cisplatin on BCSLCs in vitro and vivo. The mechanism is inhibiting the DDR activity by reducing the expression of chromatin-binding Cdc6.
Collapse
Affiliation(s)
- Xianghua Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Sansan Chen
- Department of Urology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongjun Zhang
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Weiwei Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhiming Hu
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Hongwei Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhongxin Zhou
- Department of Vascular Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Zhongxin ZhouDepartment of Vascular Surgery, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Avenue West, Guangzhou, Guangdong510630, People’s Republic of ChinaTel +861 852 037 6040Email
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Wanlong TanDepartment of Urology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, Guangdong510515, People’s Republic of ChinaTel +861 360 298 3938Email
| |
Collapse
|
41
|
Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018; 360:449-453. [PMID: 29599194 DOI: 10.1126/science.aan4665] [Citation(s) in RCA: 460] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
Abstract
Activated immune cells undergo a metabolic switch to aerobic glycolysis akin to the Warburg effect, thereby presenting a potential therapeutic target in autoimmune disease. Dimethyl fumarate (DMF), a derivative of the Krebs cycle intermediate fumarate, is an immunomodulatory drug used to treat multiple sclerosis and psoriasis. Although its therapeutic mechanism remains uncertain, DMF covalently modifies cysteine residues in a process termed succination. We found that DMF succinates and inactivates the catalytic cysteine of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in mice and humans, both in vitro and in vivo. It thereby down-regulates aerobic glycolysis in activated myeloid and lymphoid cells, which mediates its anti-inflammatory effects. Our results provide mechanistic insight into immune modulation by DMF and represent a proof of concept that aerobic glycolysis is a therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul M Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adele M Snowman
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nagireddy Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H Snyder
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
42
|
Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. [Experience in the management of children with diabetes mellitus]. Cells 1966. [PMID: 29534029 PMCID: PMC5870353 DOI: 10.3390/cells7030021] [Citation(s) in RCA: 159] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS). Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77005, USA.
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|