1
|
Guo K, Pyšek P, Chytrý M, Divíšek J, Sychrová M, Lososová Z, van Kleunen M, Pierce S, Guo WY. Stage dependence of Elton's biotic resistance hypothesis of biological invasions. NATURE PLANTS 2024; 10:1484-1492. [PMID: 39227727 DOI: 10.1038/s41477-024-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Elton's biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction-naturalization-invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton's biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Sychrová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeňka Lososová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, People's Republic of China
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milan, Italy
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration & Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, People's Republic of China.
- Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Zhoushan, People's Republic of China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Golo R, Santamaría J, Vergés A, Cebrian E. The role of species thermal plasticity for alien species invasibility in a changing climate: A case study of Lophocladia trichoclados. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106642. [PMID: 39024996 DOI: 10.1016/j.marenvres.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The Mediterranean Sea provides fertile ground for understanding the complex interplay between invasive species and native habitats, particularly within the context of climate change. This thermal tolerance study reveals the remarkable ability of Lophocladia trichoclados, a red algae species that has proven highly invasive, to adapt to varying temperatures, particularly thriving in colder Mediterranean waters, where it can withstand temperatures as low as 14 °C, a trait not observed in its native habitat. This rapid acclimation, occurring in less than a century, might entail a trade-off with high temperature resistance. Additionally, all sampled populations in the Mediterranean share the same haplotype, suggesting a common origin and the possibility that we might be facing an exceptionally acclimatable and invasive strain. This high degree of acclimatability could determine the future spread capacity in a changing scenario, highlighting the importance of considering both acclimation and adaptation in understanding the expansion of invasive species' ranges.
Collapse
Affiliation(s)
- R Golo
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - J Santamaría
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - A Vergés
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - E Cebrian
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
3
|
Nagy DU, Thoma AE, Al-Gharaibeh M, Callaway RM, Flory SL, Frazee LJ, Hartmann M, Hensen I, Jandová K, Khasa DP, Lekberg Y, Pal RW, Samartza I, Shah MA, Sheng M, Slate M, Stein C, Tsunoda T, Rosche C. Among-population variation in drought responses is consistent across life stages but not between native and non-native ranges. THE NEW PHYTOLOGIST 2024; 243:922-935. [PMID: 38859570 DOI: 10.1111/nph.19895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.
Collapse
Affiliation(s)
- Dávid U Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Arpad E Thoma
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
| | - Mohammad Al-Gharaibeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Lauren J Frazee
- Department of Ecology, Evolution, & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | | | - Isabell Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Kateřina Jandová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, CZ-12801, Czech Republic
| | - Damase P Khasa
- Centre for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Quebec, QC, G1V0A6, Canada
| | - Ylva Lekberg
- MPG Ranch Missoula, Florence, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Robert W Pal
- Department of Biological Sciences, Montana Technological University, Butte, MT, 59701, USA
| | - Ioulietta Samartza
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, 57001, Greece
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Min Sheng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mandy Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Claudia Stein
- Department of Biology and Environmental Science, Auburn University at Montgomery, Montgomery, AL, 36124, USA
| | - Tomonori Tsunoda
- Bioscience and Biotechnology, Fukui Prefectural University, Fukui, 910-1195, Japan
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
4
|
Guo K, Pyšek P, van Kleunen M, Kinlock NL, Lučanová M, Leitch IJ, Pierce S, Dawson W, Essl F, Kreft H, Lenzner B, Pergl J, Weigelt P, Guo WY. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nat Commun 2024; 15:1330. [PMID: 38351066 PMCID: PMC10864296 DOI: 10.1038/s41467-024-45667-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
| | - Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-12844, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P. R. China
| | - Nicole L Kinlock
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Department of Evolutionary Plant Biology, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133, Milan, Italy
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, UK
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
| |
Collapse
|
5
|
Chen T, Huang J, Zhou L, Kang M, Wang X. Supplemental description of Gyrodactylus pseudorasborae (Gyrodactylidae) parasitic on topmouth gudgeon Pseudorasbora parva (Cyprinidae) in South China. Parasitol Int 2024; 98:102817. [PMID: 37852573 DOI: 10.1016/j.parint.2023.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Based on morphology and ITS sequence data, we identify and supplementally describe Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 on the fins of topmouth gudgeon (Pseudoraspora parva) from freshwaters of southern China. The highest similarity (99.57% and 99.47%) to G. pseudorasborae suggested they were the same species. Prevalence and mean intensity were 45% and 2.3, respectively. The gyrodactylid species morphologically resembled G. pseudorasborae recorded from the same host species P. parva in Czech Republic, Ukraine, and Central China. But there were slight morphological differences in the shape and size of the marginal hook. Comparisons of marginal hook sickles of various Gyrodactylus species suggested that G. pseudorasborae and G. parvae were members of the G. wageneri-group. A molecular phylogeny of G. pseudorasborae with related species is presented and discussed within the context of the mechanism of local evolution of these sister species.
Collapse
Affiliation(s)
- Tao Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, PR China; College of Basic Medicine, Guilin Medical University, Guilin 541199, PR China.
| | - Jinlong Huang
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, PR China.
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, PR China
| | - Man Kang
- College of Basic Medicine, Guilin Medical University, Guilin 541199, PR China
| | - Xi Wang
- Museum of the Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
6
|
Ismail M, Siemann E, Ding J. Behavior of higher trophic levels associated with an invasive plant varies among populations. ENVIRONMENTAL ENTOMOLOGY 2023; 52:870-878. [PMID: 37530696 DOI: 10.1093/ee/nvad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Invasive plants from their native and introduced ranges differ in their interactions with herbivores but it is not known whether they also vary in their interactions with herbivore natural enemies. Here, we used olfactometer bioassays and cage experiments to investigate how foraging behaviors of 2 parasitoid and 1 hyperparasitoid species depended on plant population origin. Triadica sebifera (Euphorbiaceae) is native to China but invasive in the United States. In China, it is fed on by a specialist noctuid Gadirtha fusca (Lepidoptera: Nolidae), which hosts a parasitoid Apanteles sp. (Hymenoptera: Microgastinae) and hyperparasitoid (Hymenoptera: Eurytomidae) plus a generalist aphid Toxoptera odinae (Homoptera: Aphidiidae) parasitized by Lysiphlebus confusus (Hymenoptera: Aphidiinae). Both parasitoids preferred plants infested by their host over herbivore-free plants in olfactometer bioassays. Apanteles sp. and Eurytomid wasps preferred G. fusca infested plants from China populations over those from US populations in olfactometer bioassays but L. confusus wasps did not discriminate between T. odinae infested plants from China vs. US populations. Similarly, G. fusca caterpillars on China population plants were more likely to be parasitized than ones on US population plants when they were in the same cage but odds of parasitism for T. odinae did not differ for those on China vs. US population plants. These results suggest that populations from the native and introduced ranges may differ in traits that impact higher trophic levels. This may have implications for successful control of invasive plants as biocontrol agents are introduced or herbivores begin to feed on them in their introduced ranges.
Collapse
Affiliation(s)
- Mohannad Ismail
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX 77005, USA
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
7
|
Tuerlings T, Hettiarachchi A, Joossens M, Geslin B, Vereecken NJ, Michez D, Smagghe G, Vandamme P. Microbiota and pathogens in an invasive bee: Megachile sculpturalis from native and invaded regions. INSECT MOLECULAR BIOLOGY 2023; 32:544-557. [PMID: 37191302 DOI: 10.1111/imb.12849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
The present study aimed to characterise the bacterial, fungal and parasite gut community of the invasive bee Megachile sculpturalis sampled from native (Japan) and invaded (USA and France) regions via 16S rRNA and ITS2 amplicon sequencing and PCR detection of bee microparasites. The bacterial and fungal gut microbiota communities in bees from invaded regions were highly similar and differed strongly from those obtained in Japan. Core amplicon sequence variants (ASVs) within each population represented environmental micro-organisms commonly present in bee-associated niches that likely provide beneficial functions to their host. Although the overall bacterial and fungal communities of the invasive M. sculpturalis in France and the co-foraging native bees Anthidium florentinum and Halictus scabiosae, were significantly different, five out of eight core ASVs were shared suggesting common environmental sources and potential transmission. None of the 46 M. sculpturalis bees analysed harboured known bee pathogens, while microparasite infections were common in A. florentinum, and rare in H. scabiosae. A common shift in the gut microbiota of M. sculpturalis in invaded regions as a response to changed environmental conditions, or a founder effect coupled to population re-establishment in the invaded regions may explain the observed microbial community profiles and the absence of parasites. While the role of pathogen pressure in shaping biological invasions is still debated, the absence of natural enemies may contribute to the invasion success of M. sculpturalis.
Collapse
Affiliation(s)
- Tina Tuerlings
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Benoît Geslin
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Université de Rennes (UNIR), UMR 6553 ECOBIO, CNRS, Rennes, France
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Ondračková M, Seifertová M, Tkachenko MY, Vetešník L, Liu H, Demchenko V, Kvach Y. The parasites of a successful invader: monogeneans of the Asian topmouth gudgeon Pseudorasbora parva, with description of a new species of Gyrodactylus. Parasite 2023; 30:22. [PMID: 37326471 DOI: 10.1051/parasite/2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Monogenean parasites are often co-introduced with their fish hosts into novel areas. This study confirmed co-introduction of two dactylogyrids, Dactylogyrus squameus Gusev, 1955 and Bivaginogyrus obscurus (Gusev, 1955), and a newly described gyrodactylid species, Gyrodactylus pseudorasborae n. sp. into Europe along with their fish host, the invasive topmouth gudgeon Pseudorasbora parva (Temminck & Schlegel) from East Asia. All three species were observed in the lower Dnieper and middle Danube basin regions and had slightly larger haptoral hard parts than the same parasites in their native range. While dactylogyrids occurred sporadically, we recorded regular infection by G. pseudorasborae n. sp. at relatively high prevalence and abundance. This latter species was observed in both the native and non-native range of topmouth gudgeon, and resembles Gyrodactylus parvae You et al., 2008 recently described from P. parva in China. Both species were distinguished based on genetic analysis of their ITS rDNA sequence (6.6% difference), and morphometric differences in the marginal hooks and male copulatory organ. Phylogenetic analysis of dactylogyrid monogeneans showed that B. obscurus clustered with Dactylogyrus species parasitising Gobionidae and Xenocyprididae, including D. squameus, supporting recent suggestions of a paraphyletic origin of the Dactylogyrus genus. In addition to co-introduced parasites, topmouth gudgeon was infected with a local generalist, G. prostae Ergens, 1964, increasing the number of monogeneans acquired in Europe to three species. Nevertheless, monogenean infections were generally lower in non-native host populations, potentially giving an advantage to invading topmouth gudgeon.
Collapse
Affiliation(s)
- Markéta Ondračková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Maria Yu Tkachenko
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| | - Lukáš Vetešník
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic
| | - Huanzhang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Viktor Demchenko
- Institute of Marine Biology, National Academy of Sciences of Ukraine, 37 Pushkinska St., 65048 Odesa, Ukraine
| | - Yuriy Kvach
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 60365 Brno, Czech Republic - Institute of Marine Biology, National Academy of Sciences of Ukraine, 37 Pushkinska St., 65048 Odesa, Ukraine
| |
Collapse
|
9
|
Maestresalas B, Piquet JC, López-Darias M. Spatial ecology to strengthen invasive snake management on islands. Sci Rep 2023; 13:6731. [PMID: 37185934 PMCID: PMC10130030 DOI: 10.1038/s41598-023-32483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Knowledge on the spatial ecology of invasive predators positively contributes to optimizing their management, especially when involving cryptic and secretive species, such as snakes. However, this information is lacking for most invasive snakes, particularly on islands, where they are known to cause severe ecological and socio-economic impacts. This research is focused on assessing the spatial ecology of the California kingsnake (Lampropeltis californiae) on Gran Canaria to strengthen management actions. We monitored 15 radio-tagged individuals once per day on 9-11 days per month from July 2020 to June 2021 to calculate the species' home range and describe annual activity patterns in the invaded range. To account for the species' diel activity during the emergence period, we additionally monitored snakes from January to May 2021 during three consecutive days per month in four different time intervals each day. We detected movement (consecutive detections at least 6 m apart) in 31.68% of the 1146 detections during the whole monitoring period. Movements most frequently detected were shorter than 100 m (82.24%), and among them the range 0-20 m was the most recurrent (27.03%). The mean distance of movement was 62.57 ± 62.62 m in 1-2 days. Average home range was 4.27 ± 5.35 ha-calculated with the Autocorrelated Kernel Density Estimator (AKDE) at 95%-and did not significantly vary with SVL nor sex. We detected an extremely low value of motion variance (0.76 ± 2.62 σ2m) compared to other studies, with a general inactivity period from November to February, January being the less active month of the year. Diel activity was higher during central and evening hours than during early morning and night. Our results should be useful to improve control programs for this invasive snake (e.g., trap placement and visual survey guidance) on Gran Canaria. Our research highlights the importance of gathering spatial information on invasive snakes to enhance control actions, which can contribute to the management of secretive invasive snakes worldwide.
Collapse
Affiliation(s)
- Borja Maestresalas
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Julien C Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
10
|
Reviewing Introduction Histories, Pathways, Invasiveness, and Impact of Non-Indigenous Species in Danish Marine Waters. DIVERSITY 2023. [DOI: 10.3390/d15030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Non-indigenous species (NIS) are of concern for biodiversity conservation and ecosystem functioning. We present an updated list of NIS, including cryptogenic species, from Danish marine waters containing 123 species. Benthic invertebrates (36%) and phytoplankton (28%) dominate the list, but fish (15%) and macroalgae (13%) are also important. The Limfjord in Northern Jutland emerges as a hotspot for the introduction of NIS. Data from multiple sources were included, i.e., the National Monitoring Program (NOVANA), the National Fish Atlas project, the citizen science project Arter.dk, research articles, and annual national reports of the ICES working group ITMO. Forty-six NIS species were subject to expert judging using a modified Harmonia protocol; 19 were found to fulfil the four selected criteria identifying a species as being ‘invasive’. Additionally, 38 species, not yet recorded in Danish waters, were evaluated using the same method, and 31 were found to fulfil the ‘invasive’ criteria. For nine selected species, introduction history, distribution maps, and time-series diagrams are presented. Our data document that the national monitoring efforts should be expanded to record macrozooplankton, coastal fish, and mobile epibenthic species. Furthermore, the national data repository, Arter.dk, should be expanded to enable more detailed documentation of new NIS records.
Collapse
|
11
|
Zhang F, Sun J, Wang C, Li C, Chen F, Xu H, Chen X. Bacillus benefits the competitive growth of Ambrosia artemisiifolia by increasing available nutrient levels. FRONTIERS IN PLANT SCIENCE 2023; 13:1069016. [PMID: 36714763 PMCID: PMC9879014 DOI: 10.3389/fpls.2022.1069016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Bacillus can help plants to acquire nutrients either directly or indirectly. However, the role of Bacillus community on the competitive growth of invasive Ambrosia artemisiifolia is poorly understood. Native Setaria viridis is often found in areas that have been invaded by A. artemisiifolia. We sought to determine whether the quantitative and/or qualitative differences in the Bacillus community present on the invasive A. artemisiifolia and native S.viridis provide a competitive advantage to the invasive over native species. A field experiment was established to imitate the invasion of A. artemisiifolia. The 16S rRNA gene was commercially sequenced to identify the bacilli isolated from the rhizosphere soil of field-grown A. artemisiifolia and S. viridis. The Bacillus communities in their rhizosphere were compared, and their effects on the competitive growth of A. artemisiifolia and S. viridis were tested in the pot experiments. Bacillus in the rhizosphere soil of A. artemisiifolia significantly enhanced its intra-specific competitive ability. The relative abundance of B. megaterium in the rhizosphere soil of A. artemisiifolia was significantly higher than that of S. viridis. Inoculation with B. megaterium that was isolated from the rhizosphere soil of both A. artemisiifolia and S. viridis significantly enhanced the relative competitiveness of A. artemisiifolia and inhibited that of S. viridis. The higher abundance of B. megaterium in the rhizosphere of A. artemisiifolia creates higher levels of available nutrients than that in the native S. viridis, which enhance the competitive growth of A. artemisiifolia. The result helps to discover the mechanism of Bacillus community in the invasion of A. artemisiifolia.
Collapse
Affiliation(s)
- Fengjuan Zhang
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Jianru Sun
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Chang Wang
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Chunying Li
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Fengxin Chen
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Haiyun Xu
- College of Life Science, Hebei University, Baoding, Hebei, China
| | - Xue Chen
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Oikawa S. Supra-optimal leaf area index of a temperate liana Pueraria lobata for competition with Solidago altissima at the expense of canopy photosynthesis. TREE PHYSIOLOGY 2022; 42:2446-2453. [PMID: 35796542 DOI: 10.1093/treephys/tpac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf area index (LAI) measured for the actual plant canopy is higher than the LAI that maximizes canopy photosynthesis (referred to as optimal LAI) because each individual can increase its light interception by unilaterally producing more leaf area. The LAI of an invasive woody vine Pueraria lobata (kudzu) is one of the highest among plant species, sometimes attaining nearly 10 m2 m-2. The high LAI casts heavy shade over neighboring plants, making their survival difficult. Interesting to note is that the high LAI also increases self-shading, thereby decreasing its own photosynthesis processes. In the present study, the influences of the high LAI on light interception and canopy photosynthesis, as well as on the inter-specific competition was investigated on a roadside P. lobata vegetation in Japan. With the aid of a canopy photosynthesis model and a sensitivity analysis, it was revealed that the actual LAI was 2.2-3.0 times higher than the optimal LAI for maximizing canopy photosynthesis. In the following year, a field experiment was conducted where a nearly optimal LAI was maintained throughout the growth period by regularly clipping the leaves of P. lobata. Ultimately, the field results revealed that even with a nearly optimal LAI, P. lobata was outcompeted by a competing alien weed, Solidago altissima (tall goldenrod). These results indicate that the supra-optimal leaf area, rather than maximum canopy carbon gain, makes P. lobata the dominating species in light-competing environments.
Collapse
Affiliation(s)
- Shimpei Oikawa
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-0056, Japan
| |
Collapse
|
13
|
Brandenburger CR, Maslen B, Sherwin WB, Moles AT. Weedy and seedy: the rapid evolution of life-history characteristics in an introduced daisy. AOB PLANTS 2022; 14:plac038. [PMID: 36092025 PMCID: PMC9449359 DOI: 10.1093/aobpla/plac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Despite the importance of life-history characteristics in determining a species' success, we still lack basic information about some fundamental life-history elements found across the life cycle of introduced plants. Our study assesses rapid evolutionary divergence in life-history characteristics of the beach daisy Arctotheca populifolia by comparing introduced Australian and source South African plants and measuring eight key variables including seed mass, germination, reproductive output and survival. This is the first study that compares the life history of an introduced plant species with its single original source population, providing a precise and powerful method for detecting evolutionary divergence. We found that introduced A. populifolia has evolved a suite of weedy life-history characteristics in less than 90 years: the introduced plants use a live-fast die-young strategy of germination and survival and produce significantly more inflorescences and more seeds that germinate faster. This knowledge adds to the remarkable data that we already have on the rapid evolutionary divergence occurring in the morphology, physiology and defence of this introduced plant and highlights the speed and scope of evolutionary divergence possible in plants. To fully understand and manage the future of our plant species, we must consider their potential for ongoing change in key aspects of life history.
Collapse
Affiliation(s)
| | - Ben Maslen
- Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - William B Sherwin
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Woods EC, Sultan SE. Post-introduction evolution of a rapid life-history strategy in a newly invasive plant. Ecology 2022; 103:e3803. [PMID: 35796712 DOI: 10.1002/ecy.3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
A central question in invasion biology is whether adaptive trait evolution following species introduction promotes invasiveness. A growing number of common-garden experiments document phenotypic differences between native- and introduced-range plants, suggesting that adaptive evolution in the new range may indeed contribute to the success of invasive plants. Yet these studies are often subject to methodological pitfalls, resulting in weak evidence for post-introduction adaptive trait evolution and leaving uncertain its role in the invasion process. In a common-garden glasshouse study, we compared the growth, life-history, and reproductive traits of 35 native- and introduced-range Polygonum cespitosum populations. We used complementary approaches including climate-matching, standardizing parental conditions, selection analysis, and testing for trait-environment relationships to determine whether traits that increase invasiveness adaptively evolved in the species' new range. We found that the majority of introduced-range populations exhibited a novel trait syndrome consisting of a fast-paced life history and concomitant sparse, reduced growth form. Selection analysis confirmed that this trait syndrome led to markedly higher fitness (propagule production) over a limited growing season characteristic of regions within the introduced range. Additionally, several growth and reproductive traits showed temperature-based clines consistent with adaptive evolution in the new range. Combined, these results indicate that, subsequent to its introduction to North America over 100 generations ago, P. cespitosum has evolved key traits that maximize propagule production. These changes may in part explain the species' recent transition to invasiveness, illustrating how post-introduction evolution may contribute to the invasion process.
Collapse
Affiliation(s)
- Ellen C Woods
- Biology Dept., Wesleyan University, Middletown, Connecticut, USA
| | - Sonia E Sultan
- Biology Dept., Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
15
|
Lu Y, DeAngelis DL, Xia J, Jiang J. Modeling the impact of invasive species litter on conditions affecting its spread and potential regime shift. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Knudsen SW, Hesselsøe M, Thaulow J, Agersnap S, Hansen BK, Jacobsen MW, Bekkevold D, Jensen SKS, Møller PR, Andersen JH. Monitoring of environmental DNA from nonindigenous species of algae, dinoflagellates and animals in the North East Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153093. [PMID: 35038516 DOI: 10.1016/j.scitotenv.2022.153093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Monitoring the distribution of marine nonindigenous species is a challenging task. To support this monitoring, we developed and validated the specificity of 12 primer-probe assays for detection of environmental DNA (eDNA) from marine species, all nonindigenous to Europe. The species include sturgeons, a Pacific red algae, oyster thief, a freshwater hydroid from the Black Sea, Chinese mitten crab, Pacific oyster, warty comb jelly, sand gaper, round goby, pink salmon, rainbow trout and North American mud crab. We tested all assays in the laboratory, on DNA extracted from both the target and non-target species to ensure that they only amplified DNA from the intended species. Subsequently, all assays were used to analyse water samples collected at 16 different harbours across two different seasons during 2017. We also included six previously published assays targeting eDNA from goldfish, European carp, two species of dinoflagellates of the genera Karenia and Prorocentrum, two species of the heterokont flagellate genus Pseudochattonella. Conventional monitoring was carried out alongside eDNA sampling but with only one sampling event over the one year. Because eDNA was relatively fast and easy to collect compared to conventional sampling, we sampled eDNA twice during 2017, which showed seasonal changes in the distribution of nonindigenous species. Comparing eDNA levels with salinity gradients did not show any correlation. A significant correlation was observed between number of species detected with conventional monitoring methods and number of species found using eDNA at each location. This supports the use of eDNA for surveillance of the distribution of marine nonindigenous species, where the speed and relative easy sampling in the field combined with fast molecular analysis may provide advantages compared to conventional monitoring methods. Prior validation of assays increases taxonomic precision, and laboratorial setup facilitates analysis of multiple samples simultaneously. The specific eDNA assays presented here can be implemented directly in monitoring programmes across Europe and potentially worldwide to infer a more precise picture of the dynamics in the distribution of marine nonindigenous species.
Collapse
Affiliation(s)
- Steen Wilhelm Knudsen
- NIVA Denmark Water Research, Njalsgade 76, DK-2300 Copenhagen, Denmark; Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | | - Jens Thaulow
- NIVA Denmark Water Research, Njalsgade 76, DK-2300 Copenhagen, Denmark
| | - Sune Agersnap
- Department of Bioscience, Aarhus University, Ny Munkegade 116, Building 1540, DK-8000 Aarhus, Denmark
| | - Brian Klitgaard Hansen
- Danish Technical University of Denmark, Section for Marine Living Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Magnus Wulff Jacobsen
- Danish Technical University of Denmark, Section for Marine Living Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Dorte Bekkevold
- Danish Technical University of Denmark, Section for Marine Living Resources, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; Norwegian College of Fishery Science, UiT Norwegian Arctic University, Tromsø, Norway
| | - Jesper H Andersen
- NIVA Denmark Water Research, Njalsgade 76, DK-2300 Copenhagen, Denmark
| |
Collapse
|
17
|
Del Rio-Hortega L, Martín-Forés I, Castro I, De Miguel JM, Acosta-Gallo B. Network-based analysis reveals differences in plant assembly between the native and the invaded ranges. NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.72066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Associated with the introduction of alien species in a new area, interactions with other native species within the recipient community occur, reshaping the original community and resulting in a unique assemblage. Yet, the differences in community assemblage between native and invaded ranges remain unclear. Mediterranean grasslands provide an excellent scenario to study community assembly following transcontinental naturalisation of plant species. Here, we compared the community resemblance of plant communities in Mediterranean grasslands from both the native (Spain) and invaded (Chile) ranges. We used a novel approach, based on network analysis applied to co-occurrence analysis in plant communities, allowing us to study the co-existence of native and alien species in central Chile. This useful methodology is presented as a step forward in invasion ecology studies and conservation strategies. We found that community structure differed between the native and the invaded range, with alien species displaying a higher number of connections and, therefore, acting as keystones to sustain the structure within the invaded community. Alien species acting like keystones within the Chilean grassland communities might exacerbate the threat posed by biological invasions for the native biodiversity assets. Controlling the spread of the alien species identified here as keystones should help managing potential invasion in surrounding areas. Network analyses is a free, easy-to-implement and straightforward visual tool that can be widely used to reveal shifts in native communities and elucidate the role of multiple invaders into communities.
Collapse
|
18
|
Individuals from non-native populations are stronger and bigger than individuals from native populations of a widespread seaweed. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Chen YC, Chen DF, Yang MF, Liu JF. The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2022; 13:211. [PMID: 35206784 PMCID: PMC8879478 DOI: 10.3390/insects13020211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
The interactions between ambient temperatures and host plants are central to the population dynamics of invasive animal species. Despite significant research into the effects of temperatures, the performance of invasive species is also influenced by host plants. The effects of different temperatures (20, 25, and 30 °C) and host plants (maize, sorghum, and coix seed) were tested on the mortality, development, reproduction, and population parameters of the fall armyworm (FAW), Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), using an age-stage, two-sex life table. The results support the hypothesis that temperature and the species of the host plant significantly influences the performance of FAW. Feeding on maize at 30 °C resulted in a lower mortality rate, a shorter developmental time and longevity, a higher fecundity, intrinsic rate of natural increase (r), finite rate of increase (λ), and net reproductive rate (R0). However, at 20 °C, the host plant could eliminate temperature-mediated synergism in FAW performance, which did not reach statistical significance at 20 °C. Similar results induced by a relatively low temperature (20 °C) on different host plants were also found in the age-stage specific survival curves (sxj), fecundity (mx), maternity (lxmx), and reproductive value (vxj) curves of FAW. Consequently, we also need to pay more attention to FAW outbreaks on different host plants mediated by relatively low temperatures.
Collapse
Affiliation(s)
- Yi-Chai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang 550025, China;
| | - De-Fei Chen
- Crop Protection Center of Jinsha County, Bijie 551700, China;
| | - Mao-Fa Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang 550025, China;
- College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Jian-Feng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
20
|
Lemoine NP, Budny ML. Impacts of Herbivory on Photosynthesis of Four Common Wisconsin Plant Species. AMERICAN MIDLAND NATURALIST 2022. [DOI: 10.1674/0003-0031-187.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Nathan P. Lemoine
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| | - Michelle L. Budny
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
21
|
Invasion genomics uncover contrasting scenarios of genetic diversity in a widespread marine invader. Proc Natl Acad Sci U S A 2021; 118:2116211118. [PMID: 34911766 PMCID: PMC8713979 DOI: 10.1073/pnas.2116211118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.
Collapse
|
22
|
Davidson TM, Smith CM, Torchin ME. Introduced mangroves escape damage from marine and terrestrial enemies. Ecology 2021; 103:e3604. [PMID: 34897657 DOI: 10.1002/ecy.3604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022]
Abstract
The enemy release hypothesis (ERH) posits that introduced species often leave their enemies behind when introduced to a new range. This release from enemies may allow introduced species to achieve higher growth and reproduction and may explain why some invaders flourish in new locations. Red mangroves (Rhizophora mangle) were introduced to Hawai'i from Florida over a century ago. Because Hawai'i has no native mangroves, the arrival of R. mangle fundamentally changed the structure and function of estuarine shorelines. While numerous enemies affect red mangroves in their native range (tropical America), in Hawai'i, mangroves apparently experience little herbivory, which may explain why introduced mangroves are so productive, fecund, and continue to spread. In this study, we compared the effects of enemies in native and introduced populations of brackish red mangroves (R. mangle) in 8-10 sites in the native range (Florida, Belize, and Panamá) and introduced range of mangroves (Hawai'i). At each site, we measured the: i) occurrence of enemies using timed visual surveys, ii) occurrence of damage to different mangrove structures (leaves, apical buds, dead twigs, roots, propagules, and seedlings), and iii) rate of propagule herbivory using tethering experiments. Consistent with the ERH, we found orders of magnitude less damage and fewer enemies in introduced than native mangrove sites. While introduced mangroves harbored few enemies and minimal damage, native mangroves were affected by numerous enemies, including leaf-eating crabs, specialist bud moths, wood-boring insects and isopods, and propagule predators. These patterns were consistent across all plant structures (roots to leaves), among marine and terrestrial enemies, and across functional groups (browsers, borers, pathogens, etc.), which demonstrates enemy escape occurs consistently among different functional groups and via trophic (e.g., herbivores) and non-trophic (e.g., root borers) interactions. Our study is among the first biogeographical enemy release studies to take a comprehensive approach to quantifying the occurrence of damage from a broad suite of marine and terrestrial taxa across an array of wetland plant structures. Understanding how natural enemies alter this key foundation species will become increasingly relevant globally as mangroves continue to invade new regions through intentional plantings or range expansion driven by climate change.
Collapse
Affiliation(s)
- Timothy M Davidson
- Department of Biological Sciences, California State University, Sacramento, California, USA.,School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i (USA).,Smithsonian Tropical Research Institute, Ancon, Republic of Panamá
| | - Celia M Smith
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i (USA)
| | - Mark E Torchin
- Smithsonian Tropical Research Institute, Ancon, Republic of Panamá
| |
Collapse
|
23
|
Shen S, Guo W, Li X. Above- and belowground herbivory alters the outcome of intra- and interspecific competition between invasive and native Alternanthera species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02694-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Pichler A, Walters TL, Frischer ME, Nejstgaard JC, Ptáčníková R. Application of species-specific primers to estimate the in situ diet of Bythotrephes [Cladocera, Onychopoda] in its native European range via molecular gut content analysis. JOURNAL OF PLANKTON RESEARCH 2021; 43:945-956. [PMID: 34858079 PMCID: PMC8632759 DOI: 10.1093/plankt/fbab070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The study of invasive species often focuses on regions of recent introduction rather than native habitats. Understanding an invasive species in its natural environment, however, can provide important insights regarding the long-term outcome of invasions. In this study we investigated the diet of the invasive spiny water flea, Bythotrephes longimanus, in two Austrian perialpine lakes, where it is native. The gut contents of wild-caught Bythotrephes individuals were estimated by quantitative polymerase chain reaction, targeting species-specific fragments of the barcoding region of the cytochrome c oxidase I gene of potential prey. The observed prey spectrum of Bythotrephes in the study lakes consisted primarily of Eudiaptomus gracilis and Diaphanosoma brachyurum. The Daphnia longispina complex, Leptodora kindtii and Mesocyclops leuckarti also contributed to the diet. Results indicate that Bythotrephes is a generalist feeder with a preference for epilimnetic prey.
Collapse
Affiliation(s)
- Arthur Pichler
- WasserCluster Lunz – Biological Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
- University of Vienna, Department of Functional and Evolutionary Ecology, Althanstraße 14, 1090 Vienna, Austria
| | - Tina L Walters
- University of Georgia, Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, GA 31411, USA
| | - Marc E Frischer
- University of Georgia, Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, GA 31411, USA
| | - Jens C Nejstgaard
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, D-16775 Stechlin, Germany
| | - Radka Ptáčníková
- WasserCluster Lunz – Biological Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
| |
Collapse
|
25
|
Addressing context dependence in ecology. Trends Ecol Evol 2021; 37:158-170. [PMID: 34756764 DOI: 10.1016/j.tree.2021.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
Context dependence is widely invoked to explain disparate results in ecology. It arises when the magnitude or sign of a relationship varies due to the conditions under which it is observed. Such variation, especially when unexplained, can lead to spurious or seemingly contradictory conclusions, which can limit understanding and our ability to transfer findings across studies, space, and time. Using examples from biological invasions, we identify two types of context dependence resulting from four sources: mechanistic context dependence arises from interaction effects; and apparent context dependence can arise from the presence of confounding factors, problems of statistical inference, and methodological differences among studies. Addressing context dependence is a critical challenge in ecology, essential for increased understanding and prediction.
Collapse
|
26
|
Biel RG, Hacker SD. Warming alters the interaction of two invasive beachgrasses with implications for range shifts and coastal dune functions. Oecologia 2021; 197:757-770. [PMID: 34622333 DOI: 10.1007/s00442-021-05050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Forecasting the effects of climate change on the distribution of invasive species can be difficult, because invaders often thrive under novel physical conditions and biotic interactions that differ from those in their native range. In this study, we experimentally examined how rising temperatures and sand burial could alter the abundance and biotic interactions of two invasive beachgrasses, Ammophila arenaria and A. breviligulata, along the U.S. Pacific Northwest coast. We asked whether the current geographic ranges of the two congeners, and thus their effects on dune morphology and coastal ecosystem services, might shift as a consequence of climate driven changes in warming and sand supply. Our results show that A. breviligulata had lower biomass and tiller production when exposed to warming and high rates of sand burial, while A. arenaria showed neutral or positive responses to those treatments. Nevertheless, under all experimental combinations, A. breviligulata had strong negative effects on A. arenaria, while A. arenaria had weaker effects on A. breviligulata. Our models predict that although A. breviligulata mostly excludes A. arenaria, elevated temperatures and high rates of sand burial also increase the likelihood of species coexistence. We suggest that under climate change, the differences in physiological tolerance and the mediation of species interactions could expand the northern distributional limit of A. arenaria but restrict the southern limit of A. breviligulata. Moreover, because beachgrass abundance has direct effects on biophysical functions of dunes, reductions in vigor from warming could alter coastal protection, biodiversity, and carbon sequestration.
Collapse
Affiliation(s)
- Reuben G Biel
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331-2914, USA
| | - Sally D Hacker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331-2914, USA.
| |
Collapse
|
27
|
Coni EOC, Booth DJ, Ferreira CM, Nagelkerken I. Behavioural generalism could facilitate coexistence of tropical and temperate fishes under climate change. J Anim Ecol 2021; 91:86-100. [PMID: 34606086 DOI: 10.1111/1365-2656.13599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 12/01/2022]
Abstract
Coral-reef fishes are shifting their distributions poleward in response to human-mediated ocean warming; yet, the consequences for recipient temperate fish communities remain poorly understood. Behavioural modification is often the first response of species to environmental change, but we know little about how this might shape the ongoing colonisation by tropical fishes of temperate-latitude ecosystems under climate change. In a global hotspot of ocean warming (southeast Australia), we quantified 14 behavioural traits of invading tropical and local co-occurring temperate fishes at 10 sites across a 730 km latitudinal gradient as a proxy of species behavioural niche space in different climate ranges (subtropical, warm-temperate and cold-temperate). We found that tropical fishes (four species) modified their behavioural niches as well as increased their overall behavioural niche breadth in their novel temperate ranges where temperate species predominate, but maintained a moderate to high niche segregation with native temperate species across latitudinal range position. Temperate species (three co-occurring species) also modified their niches, but in contrast to tropical species, experienced an increased niche breadth towards subtropical ranges. Alterations to feeding and shoaling behaviours contributed most to niche modifications in tropical and temperate species, while behaviours related to alertness and escape from potential threats contributed least. We here show that at warmer and colder range edges where community structures are being reshuffled due to climate change, behavioural generalism and niche modification are potential mechanisms adopted by tropical range extenders and native temperate fishes to adjust to novel species interactions under climate change.
Collapse
Affiliation(s)
- Ericka O C Coni
- Southern Seas Ecology Laboratories, School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - David J Booth
- Fish Ecology Lab, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Camilo M Ferreira
- Southern Seas Ecology Laboratories, School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Mazzamuto MV, Su HJ, Guidarelli G, Preatoni D, Russo LF, Loy A, Martinoli A. Mandible morphology as a tool to investigate origin, adaptation and stress in invasive alien species: first insights into Callosciurus erythraeus (Rodentia: Sciuridae) in Europe. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1943548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- M. V. Mazzamuto
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, USA
| | - H.-J. Su
- Department of Forestry, Guizhou University, Guiyang City, Guizhou Province, PR China
| | - G. Guidarelli
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| | - D. Preatoni
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - L. F. Russo
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| | - A. Loy
- Department of Biosciences and Territory, University of Molise, Campobasso, Italy
| | - A. Martinoli
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
29
|
Díaz SS, Carisio L, Manino A, Biella P, Porporato M. Nesting, Sex Ratio and Natural Enemies of the Giant Resin Bee in Relation to Native Species in Europe. INSECTS 2021; 12:545. [PMID: 34208066 PMCID: PMC8230627 DOI: 10.3390/insects12060545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Megachile sculpturalis (Smith, 1853) is the first exotic bee species in Europe. Its remarkably fast expansion across this continent is leading to a growing concern on the extent of negative impacts to the native fauna. To evaluate the interactions of exotic bees with local wild bees, we set up trap nests for above-ground nesting bees on a semi-urban area of north-western Italy. We aimed to investigate the interaction in artificial traps between the exotic and native wild bees and to assess offspring traits accounting for exotic bee fitness: progeny sex ratio and incidence of natural enemies. We found that the tunnels occupied by exotic bees were already cohabited by O. cornuta, and thus the cells of later nesting alien bees may block the native bee emergence for the next year. The progeny sex ratio of M. sculpturalis was strongly unbalanced toward males, indicating a temporary adverse population trend in the local invaded area. In addition, we documented the presence of three native natural enemies affecting the brood of the exotic bee. Our results bring out new insights on how the M. sculpturalis indirectly competes with native species and on its performance in new locations.
Collapse
Affiliation(s)
- Sara Straffon Díaz
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Luca Carisio
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Aulo Manino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Marco Porporato
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| |
Collapse
|
30
|
Boltovskoy D, Bordet F, Leites V, Cataldo D. Multiannual trends (2004–2019) in the abundance of larvae of the invasive mussel
Limnoperna fortunei
and crustacean zooplankton in a large South American reservoir. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Demetrio Boltovskoy
- Instituto de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires ‐ CONICET Buenos Aires Argentina
| | - Facundo Bordet
- Área Gestión Ambiental, Comisión Técnica Mixta de Salto Grande Concordia Argentina
| | - Valentín Leites
- Área Gestión Ambiental, Comisión Técnica Mixta de Salto Grande Concordia Argentina
| | - Daniel Cataldo
- Instituto de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires ‐ CONICET Buenos Aires Argentina
| |
Collapse
|
31
|
Patterns of infection in a native and an invasive crayfish across the UK. J Invertebr Pathol 2021; 184:107595. [PMID: 33878331 DOI: 10.1016/j.jip.2021.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.
Collapse
|
32
|
Chow PKY, Clayton NS, Steele MA. Cognitive Performance of Wild Eastern Gray Squirrels (Sciurus carolinensis) in Rural and Urban, Native, and Non-native Environments. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enhanced cognitive ability has been shown to impart fitness advantages to some species by facilitating establishment in new environments. However, the cause of such enhancement remains enigmatic. Enhanced cognitive ability may be an adaptation occurring during the establishment process in response to new environments or, alternatively, such ‘enhancement’ may merely reflect a species’ characteristic. Based on previous findings that have shown ‘enhanced’ cognitive ability (i.e., higher success rate in solving novel food-extraction problems or, ‘innovation’) in Eastern gray squirrels (Sciurus carolinensis), a successful mammalian invader and urban dweller, we used an intraspecific comparative paradigm to examine the cause of their ‘enhanced’ cognitive ability. We conducted a field study to compare cognitive performance of free-ranging squirrels residing in rural and urban habitats in native (United States) and non-native environments (United Kingdom). By using established tasks, we examined squirrels’ performance in easy and difficult, novel food-extraction problems (innovation), a motor memory recall test of the difficult problem, and a spatial learning task. We found that the four groups of squirrels showed comparable performance in most measures. However, we also found that the native urban squirrels showed: (1) higher success rate on the first visit for the difficult problem than the non-native urban squirrels; (2) some evidence for higher recall latency for the difficult problem after an extended period than the non-native rural squirrels; and (3) learning when encountering the same difficult problem. These results suggest that the previously reported ‘enhanced’ performance is likely to be a general characteristic and thus, a pre-adaptive phenotypic trait that brings fitness advantages to this species in a new environment. Despite this, some cognitive abilities in gray squirrels such as solving novel problems has undergone mild variation during the adaptive process in new environments.
Collapse
|
33
|
Claunch N, Moore I, Waye H, Schoenle L, Oakey SJ, Reed RN, Romagosa C. Understanding metrics of stress in the context of invasion history: the case of the brown treesnake ( Boiga irregularis). CONSERVATION PHYSIOLOGY 2021; 9:coab008. [PMID: 35145697 PMCID: PMC8631081 DOI: 10.1093/conphys/coab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/01/2021] [Accepted: 01/16/2021] [Indexed: 06/14/2023]
Abstract
Invasive species can exert rapid depletion of resources after introduction and, in turn, affect their own population density. Additionally, management actions can have direct and indirect effects on demography. Physiological variables can predict demographic change but are often restricted to snapshots-in-time and delayed confirmation of changes in population density reduces their utility. To evaluate the relationships between physiology and demography, we assessed metrics of individual and demographic stress (baseline and 1-h corticosterone (CORT), body condition and bacterial killing ability) in the invasive snake Boiga irregularis on Guam collected in intervals of 10-15 years. We also assessed potential discrepancies between different methods of measuring hormones [radioimmunoassay (RIA) versus enzyme immunoassay (EIA)]. The magnitude of difference between RIA and EIA was negligible and did not change gross interpretation of our results. We found that body condition was higher in recent samples (2003 and 2018) versus older (1992-93) samples. We found corresponding differences in baseline CORT, with higher baseline CORT in older, poorer body condition samples. Hormonal response to acute stress was higher in 2018 relative to 2003. We also found a weak relationship between circulating CORT and bacterial killing ability among 2018 samples, but the biological significance of the relationship is not clear. In an effort to develop hypotheses for future investigation of the links between physiology and demography in this and other systems, we discuss how the changes in CORT and body condition may reflect changes in population dynamics, resource availability or management pressure. Ultimately, we advocate for the synchronization of physiology and management studies to advance the field of applied conservation physiology.
Collapse
Affiliation(s)
- Natalie Claunch
- School of Natural Resources and Environment, University of
Florida, 103 Black Hall, Gainesville, FL 32611, USA
| | - Ignacio Moore
- Department of Biological Sciences, Virginia Tech,
Blacksburg, VA 24061, USA
| | - Heather Waye
- Division of Science and Mathematics, University of Minnesota
Morris, Morris, MN 56267, USA
| | - Laura Schoenle
- Office of Undergraduate Biology, Cornell University,
Ithaca, NY 14853, USA
| | - Samantha J Oakey
- University of Georgia College of Veterinary Medicine,
Athens, GA 30602, USA
| | - Robert N Reed
- US Geological Survey, Fort Collins Science Center, Fort
Collins, CO 80526, USA
| | - Christina Romagosa
- Department of Wildlife Ecology and Conservation,
University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Turner KG, Ostevik KL, Grassa CJ, Rieseberg LH. Genomic Analyses of Phenotypic Differences Between Native and Invasive Populations of Diffuse Knapweed (Centaurea diffusa). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species represent excellent opportunities to study the evolutionary potential of traits important to success in novel environments. Although some ecologically important traits have been identified in invasive species, little is typically known about the genetic mechanisms that underlie invasion success in non-model species. Here, we use a genome-wide association (GWAS) approach to identify the genetic basis of trait variation in the non-model, invasive, diffuse knapweed [Centaurea diffusa Lam. (Asteraceae)]. To assist with this analysis, we have assembled the first draft genome reference and fully annotated plastome assembly for this species, and one of the first from this large, weedy, genus, which is of major ecological and economic importance. We collected phenotype data from 372 individuals from four native and four invasive populations of C. diffusa grown in a common environment. Using these individuals, we produced reduced-representation genotype-by-sequencing (GBS) libraries and identified 7,058 SNPs. We identify two SNPs associated with leaf width in these populations, a trait which significantly varies between native and invasive populations. In this rosette forming species, increased leaf width is a major component of increased biomass, a common trait in invasive plants correlated with increased fitness. Finally, we use annotations from Arabidopsis thaliana to identify 98 candidate genes that are near the associated SNPs and highlight several good candidates for leaf width variation.
Collapse
|
35
|
Ramula S, Kalske A. Introduced plants of Lupinus polyphyllus are larger but flower less frequently than conspecifics from the native range: Results of the first year. Ecol Evol 2020; 10:13742-13751. [PMID: 33391677 PMCID: PMC7771124 DOI: 10.1002/ece3.6964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/11/2022] Open
Abstract
Introduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb Lupinus polyphyllus based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots). We also explored whether climate of origin (temperature) influenced plant traits and quantified the degree to which trait variability was explained collectively by country and temperature as compared to other population-level differences. Three out of four plant traits differed between the native and introduced populations; only seed mass was similar between countries, with most of its variation attributed to other sources of intraspecific variation not accounted for by country and temperature. Under common garden conditions, plants originating from introduced populations were larger than those originating from native populations. However, plants from the introduced range flowered less frequently and had fewer flowering shoots than their native-range counterparts. Temperature of a population's origin influenced plant size in the common garden, with plant size increasing with increasing mean annual temperature in both native and introduced populations. Our results of the first year reveal genetic basis for phenotypic differences in some fitness-related traits between the native and introduced populations of L. polyphyllus. However, not all of these trait differences necessarily contribute to the invasion success of the species and thus may not be adaptive, which raises a question how persistent the trait differences observed in the first year are later in individuals' life for perennial herbs.
Collapse
Affiliation(s)
- Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Aino Kalske
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
36
|
Dieskau J, Bruelheide H, Gutknecht J, Erfmeier A. Biogeographic differences in plant-soil biota relationships contribute to the exotic range expansion of Verbascum thapsus. Ecol Evol 2020; 10:13057-13070. [PMID: 33304516 PMCID: PMC7713913 DOI: 10.1002/ece3.6894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/10/2022] Open
Abstract
Exotic plant species can evolve adaptations to environmental conditions in the exotic range. Furthermore, soil biota can foster exotic spread in the absence of negative soil pathogen-plant interactions or because of increased positive soil biota-plant feedbacks in the exotic range. Little is known, however, about the evolutionary dimension of plant-soil biota interactions when comparing native and introduced ranges.To assess the role of soil microbes for rapid evolution in plant invasion, we subjected Verbascum thapsus, a species native to Europe, to a reciprocal transplant experiment with soil and seed material originating from Germany (native) and New Zealand (exotic). Soil samples were treated with biocides to distinguish between effects of soil fungi and bacteria. Seedlings from each of five native and exotic populations were transplanted into soil biota communities originating from all populations and subjected to treatments of soil biota reduction: application of (a) fungicide, (b) biocide, (c) a combination of the two, and (d) control.For most of the investigated traits, native populations showed higher performance than exotic populations; there was no effect of soil biota origin. However, plants developed longer leaves and larger rosettes when treated with their respective home soil communities, indicating that native and exotic plant populations differed in their interaction with soil biota origin. The absence of fungi and bacteria resulted in a higher specific root length, suggesting that V. thapsus may compensate the absence of mutualistic microbes by increasing its root-soil surface contact. Synthesis. Introduced plants can evolve adaptations to soil biota in their new distribution range. This demonstrates the importance of biogeographic differences in plant-soil biota relationships and suggests that future studies addressing evolutionary divergence should account for differential effects of soil biota from the home and exotic range on native and exotic populations of successful plant invaders.
Collapse
Affiliation(s)
- Julia Dieskau
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–LeipzigLeipzigGermany
| | - Jessica Gutknecht
- Department of Soil, Water, and ClimateUniversity of MinnesotaTwin CitiesMNUSA
| | - Alexandra Erfmeier
- German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–LeipzigLeipzigGermany
- Institute for Ecosystem ResearchKiel UniversityKielGermany
| |
Collapse
|
37
|
Si C, Alpert P, Zhang JF, Lin J, Wang YY, Hong MM, Roiloa SR, Yu FH. Capacity for clonal integration in introduced versus native clones of the invasive plant Hydrocotyle vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141056. [PMID: 32717606 DOI: 10.1016/j.scitotenv.2020.141056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 05/26/2023]
Abstract
Clonal plants can make up a disproportionately high number of the introduced, invasive plant species in a region. Physiological integration of connected ramets within clones is a key ecological advantage of clonal growth. To ask whether clonal integration underlies the invasiveness of clonal plants, we tested the hypothesis that introduced clones of an invasive species will show higher capacity for integration than native clones of the same species. We conduct a greenhouse experiment on the widespread, perennial herb Hydrocotyle vulgaris. Clonal fragments consisting of pairs of connected ramets from seven sites in northwestern Spain where the species is native and seven sites in southeastern China where the species is introduced and invasive were grown for 79 days with the younger, apical ramet shaded to 30% of ambient light and the connection between ramets either severed or left intact. Severance decreased the final dry mass and ramet number of the apical ramet and its offspring in nearly all clones and increased the mass or ramet number of the basal portion of the fragment in about half of the clones, but these effects did not differ consistently between native and introduced clones. Severance did affect allocation more in introduced than in native clones, decreasing root/total mass more in apical portions and increasing it more in basal portions. Maintaining the connection between ramets caused introduced, but not native, clonal fragments to produce more leaf and less root mass and thus to lower allocation to roots. Regardless of severance, introduced clones accumulated about twice as much mass as native clones. Results suggest that introduced clones of a species can show greater effects of integration on allocation than native clones. In species such as H. vulgaris, this might increase competitiveness for light.
Collapse
Affiliation(s)
- Chao Si
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Peter Alpert
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | - Jian-Feng Zhang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Jing Lin
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Yi-Yue Wang
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Meng-Meng Hong
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Sergio R Roiloa
- BioCost Group, Biology Department, Universidade da Coruña, A Coruña 15071, Spain
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Morphological differentiation across the invasive range in Senecio madagascariensis populations. Sci Rep 2020; 10:20045. [PMID: 33208830 PMCID: PMC7674477 DOI: 10.1038/s41598-020-76922-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/17/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive species are characterized by their ability to colonize new habitats and establish populations away from their native range. In this sense, these plants are expected to have plastic responses to adapt to the environmental pressures during the invasion process. Hence, the role of natural selection is essential because it might favor the occurrence of advantageous traits. However, gene flow can counteract natural selection because immigrants introduce genes adapted to different conditions, with these introductions tending to homogenize allelic frequencies. In this work, we explore the effect of natural selection in invasive populations of S. madagascariensis in Argentina. We quantified leaf area, head number, and length of internodes and inflorescence from material spanning 54 years (1962–2016) and then compared between the edge versus established ranges. Our results show differences in all the measured plant traits among the sampled areas. However, only leaf area was statistically significant, which evidences different responses under the same environmental pressures in the areas located in the edge and established ranges. On the other hand, unlike homogeneous areas, the areas characterized by phenotypically diverse individuals were related to higher dispersal ability. In this sense, long-distance dispersal between neighboring areas may have had an important role in the recorded values. Furthermore, the implications of natural selection and founder effect in the invasion of S. madagascariensis are discussed.
Collapse
|
39
|
Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA, Hulme PE, Pergl J, Richardson DM, Wilson JRU, Blackburn TM. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52787] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macroecology is the study of patterns, and the processes that determine those patterns, in the distribution and abundance of organisms at large scales, whether they be spatial (from hundreds of kilometres to global), temporal (from decades to centuries), and organismal (numbers of species or higher taxa). In the context of invasion ecology, macroecological studies include, for example, analyses of the richness, diversity, distribution, and abundance of alien species in regional floras and faunas, spatio-temporal dynamics of alien species across regions, and cross-taxonomic analyses of species traits among comparable native and alien species pools. However, macroecological studies aiming to explain and predict plant and animal naturalisations and invasions, and the resulting impacts, have, to date, rarely considered the joint effects of species traits, environment, and socioeconomic characteristics. To address this, we present the MAcroecological Framework for Invasive Aliens (MAFIA). The MAFIA explains the invasion phenomenon using three interacting classes of factors – alien species traits, location characteristics, and factors related to introduction events – and explicitly maps these interactions onto the invasion sequence from transport to naturalisation to invasion. The framework therefore helps both to identify how anthropogenic effects interact with species traits and environmental characteristics to determine observed patterns in alien distribution, abundance, and richness; and to clarify why neglecting anthropogenic effects can generate spurious conclusions. Event-related factors include propagule pressure, colonisation pressure, and residence time that are important for mediating the outcome of invasion processes. However, because of context dependence, they can bias analyses, for example those that seek to elucidate the role of alien species traits. In the same vein, failure to recognise and explicitly incorporate interactions among the main factors impedes our understanding of which macroecological invasion patterns are shaped by the environment, and of the importance of interactions between the species and their environment. The MAFIA is based largely on insights from studies of plants and birds, but we believe it can be applied to all taxa, and hope that it will stimulate comparative research on other groups and environments. By making the biases in macroecological analyses of biological invasions explicit, the MAFIA offers an opportunity to guide assessments of the context dependence of invasions at broad geographical scales.
Collapse
|
40
|
Blumenfeld AJ, Vargo EL. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02322-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Montes E, Feriche M, Ruiz-Sueiro L, Alaminos E, Pleguezuelos JM. Reproduction ecology of the recently invasive snake Hemorrhois hippocrepis on the island of Ibiza. Curr Zool 2020; 66:363-371. [PMID: 32617085 PMCID: PMC7319453 DOI: 10.1093/cz/zoz059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/23/2019] [Indexed: 11/18/2022] Open
Abstract
Knowing the causes of biological invasion success can be relevant to combat future invasive processes. The recent invasion of the horseshoe whip snake Hemorrhois hippocrepis on the island of Ibiza provides the opportunity to compare natural history traits between invasive and source populations, and to unravel what makes this snake a successful invader that is threatening the only endemic vertebrate of the island, Podarcis pityusensis. This study compares the basic reproductive traits of mainland native and invasive populations of the snake. Our results revealed that invasive populations were characterized by female maturity at a smaller size, extended reproductive period, and much lower reproduction frequency compared to the native population. In contrast, some major reproductive traits-the abdominal fat body cycle, clutch size, hatchling body size, and hatchling body condition, did not differ between the two populations. Some of these results must reflect the environmental differences in the recently invaded island with respect to the source area, and overall plasticity of reproductive traits. Plasticity is evolutionarily interesting, and may aid the successful growth of this species in their invasiveness of Mediterranean islands like Ibiza. The most significant finding is that this expression of phenotypic plasticity occurred rapidly in this invasive population, within a period of 14 years maximum. Our results on the reproduction ecology of the invasive population were not conclusive regarding the factors determining the invasiveness of the snake and pointed to alternative causes.
Collapse
Affiliation(s)
- Elba Montes
- Department of Zoology, Faculty of Biological Sciences, University of Valencia, c/Dr. Moliner, 50, Burjassot, Valencia E-46100, Spain
| | - Mónica Feriche
- Department of Zoology, Faculty of Sciences, Granada University, Granada E-18071, Spain
| | - Leticia Ruiz-Sueiro
- Laboratory of Ecology and Evolution, Butantan Institute, University of São Paulo, Av. Vital Brazil, 1.500, Butantã, E-05503900, São Paulo, Brasil
| | | | - Juan M Pleguezuelos
- Department of Zoology, Faculty of Sciences, Granada University, Granada E-18071, Spain
| |
Collapse
|
42
|
Plant Community Assembly in Invaded Recipient Californian Grasslands and Putative Donor Grasslands in Spain. DIVERSITY 2020. [DOI: 10.3390/d12050193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The introduction of exotic species to new regions offers opportunities to test fundamental questions in ecology, such as the context-dependency of community structure and assembly. Annual grasslands provide a model system of a major unidirectional introduction of plant species from Europe to North America. We compared the community structure of grasslands in two Mediterranean regions by surveying plots in Spain and in California with similar environmental and management conditions. All species found in Spanish grasslands were native to Spain, and over half of them (74 of 139 species) are known to have colonized California. In contrast, in California, over half of the species (52 of 95 species) were exotic species, all of them native to Spain. Nineteen species were found in multiple plots in both regions (i.e., shared species). The abundance of shared species in California was either similar to (13 species) or greater than (6 species) in Spain. In California, plants considered pests were more likely than non-pest species to have higher abundance. Co-occurring shared species tended to maintain their relative abundance in native and introduced communities, which indicates that pools of exotic species might assemble similarly at home and away. These findings provide interesting insights into community assembly in novel ecosystems. They also highlight an example of startling global and local floristic homogenization.
Collapse
|
43
|
Gillard MB, Drenovsky RE, Thiébaut G, Tarayre M, Futrell CJ, Grewell BJ. Seed source regions drive fitness differences in invasive macrophytes. AMERICAN JOURNAL OF BOTANY 2020; 107:749-760. [PMID: 32406537 PMCID: PMC7384113 DOI: 10.1002/ajb2.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Worldwide, ecosystems are threatened by global changes, including biological invasions. Invasive species arriving in novel environments experience new climatic conditions that can affect their successful establishment. Determining the response of functional traits and fitness components of invasive populations from contrasting environments can provide a useful framework to assess species responses to climate change and the variability of these responses among source populations. Much research on macrophytes has focused on establishment from clonal fragments; however, colonization from sexual propagules has rarely been studied. Our objective was to compare trait responses of plants generated from sexual propagules sourced from three climatic regions but grown under common environmental conditions, using L. peploides subsp. montevidensis as a model taxon. METHODS We grew seedlings to reproductive stage in experimental mesocosms under a mediterranean California (MCA) climate from seeds collected in oceanic France (OFR), mediterranean France (MFR), and MCA. RESULTS Seed source region was a major factor influencing differences among invasive plants recruiting from sexual propagules of L. peploides subsp. montevidensis. Trait responses of young individual recruits from MCA and OFR, sourced from geographically distant and climatically distinct source regions, were the most different. The MCA individuals accumulated more biomass, flowered earlier, and had higher leaf N concentrations than the OFR plants. Those from MFR had intermediate profiles. CONCLUSIONS By showing that the closer a seedling is from its parental climate, the better it performs, this study provides new insights to the understanding of colonization of invasive plant species and informs its management under novel and changing environmental conditions.
Collapse
Affiliation(s)
- Morgane B. Gillard
- USDA‐Agricultural Research ServiceInvasive Species and Pollinator Health Research UnitDepartment of Plant Sciences MS‐4University of California, Davis1 Shields AvenueDavisCA95616USA
| | | | | | | | - Caryn J. Futrell
- USDA‐Agricultural Research ServiceInvasive Species and Pollinator Health Research UnitDepartment of Plant Sciences MS‐4University of California, Davis1 Shields AvenueDavisCA95616USA
| | - Brenda J. Grewell
- USDA‐Agricultural Research ServiceInvasive Species and Pollinator Health Research UnitDepartment of Plant Sciences MS‐4University of California, Davis1 Shields AvenueDavisCA95616USA
| |
Collapse
|
44
|
de Boer JG, Harvey JA. Range-Expansion in Processionary Moths and Biological Control. INSECTS 2020; 11:E267. [PMID: 32353938 PMCID: PMC7290706 DOI: 10.3390/insects11050267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak (Thaumetopoea processionea) and pine (T. pityocampa) processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken 'nests' that they use to congregate when not feeding. During outbreaks, processionary caterpillars are capable of stripping foliage from their food plants (oak and pine trees), generating considerable economic damage. Moreover, the third to last instar caterpillars of both species produce copious hairs as a means of defence against natural enemies, including both vertebrate and invertebrate predators, and parasitoids. These hairs contain the toxin thaumetopoein that causes strong allergic reactions when it comes into contact with human skin or other membranes. In response to a warming climate, PPM is expanding its range northwards, while OPM outbreaks are increasing in frequency and intensity, particularly in northern Germany, the Netherlands, and southern U.K., where it was either absent or rare previously. Here, we discuss how warming and escape from co-evolved natural enemies has benefitted both species, and suggest possible strategies for biological control.
Collapse
Affiliation(s)
- Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
45
|
Smith AL, Hodkinson TR, Villellas J, Catford JA, Csergő AM, Blomberg SP, Crone EE, Ehrlén J, Garcia MB, Laine AL, Roach DA, Salguero-Gómez R, Wardle GM, Childs DZ, Elderd BD, Finn A, Munné-Bosch S, Baudraz MEA, Bódis J, Brearley FQ, Bucharova A, Caruso CM, Duncan RP, Dwyer JM, Gooden B, Groenteman R, Hamre LN, Helm A, Kelly R, Laanisto L, Lonati M, Moore JL, Morales M, Olsen SL, Pärtel M, Petry WK, Ramula S, Rasmussen PU, Enri SR, Roeder A, Roscher C, Saastamoinen M, Tack AJM, Töpper JP, Vose GE, Wandrag EM, Wingler A, Buckley YM. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc Natl Acad Sci U S A 2020; 117:4218-4227. [PMID: 32034102 PMCID: PMC7049112 DOI: 10.1073/pnas.1915848117] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.
Collapse
Affiliation(s)
- Annabel L Smith
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland;
- School of Agriculture and Food Science, University of Queensland, Gatton, 4343, Australia
| | - Trevor R Hodkinson
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Jesus Villellas
- Departamento Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (MNCN-CSIC), E-28006 Madrid, Spain
| | - Jane A Catford
- Department of Geography, King's College London, WC2B 4BG London, United Kingdom
| | - Anna Mária Csergő
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department of Botany, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary
- Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary
| | - Simone P Blomberg
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria B Garcia
- Pyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Deborah A Roach
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | | | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Alain Finn
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat, University of Barcelona, 08028 Barcelona, Spain
| | - Maude E A Baudraz
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Judit Bódis
- Georgikon Faculty, University of Pannonia, H-8360 Keszthely, Hungary
| | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, M1 5GD Manchester, United Kingdom
| | - Anna Bucharova
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, 72074 Tübingen, Germany
- Ecosystem and Biodiversity Research Group, Institute of Landscape Ecology, University of Münster, 48149 Münster, Germany
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - John M Dwyer
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- CSIRO Land & Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| | - Ben Gooden
- CSIRO Health & Biosecurity, CSIRO, Black Mountain, ACT 2601, Australia
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Liv Norunn Hamre
- Department of Environmental Sciences, Western Norway University of Applied Sciences, N-6856 Sogndal, Norway
| | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Ruth Kelly
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Lauri Laanisto
- Biodiversity and Nature Tourism, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Michele Lonati
- Department of Agricultural, Forest and Food Science, University of Torino, 10015 Grugliasco, Italy
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Melanie Morales
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- Research Group of Plant Biology under Mediterranean Conditions, Faculty of Biology, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Siri Lie Olsen
- Norwegian Institute for Nature Research, N-0349 Oslo, Norway
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - William K Petry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Satu Ramula
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Pil U Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- The National Research Centre for the Working Environment, 2100 København Ø, Denmark
| | - Simone Ravetto Enri
- Department of Agricultural, Forest and Food Science, University of Torino, 10015 Grugliasco, Italy
| | - Anna Roeder
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), 04318 Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), 04318 Leipzig, Germany
| | - Marjo Saastamoinen
- Helsinki Institute of Life Science, University of Helsinki, 00100 Helsinki, Finland
- Organismal and Evolutionary Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Gregory E Vose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Elizabeth M Wandrag
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork T23 N73K, Ireland
| | - Yvonne M Buckley
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
46
|
van der Sande MT, Bruelheide H, Dawson W, Dengler J, Essl F, Field R, Haider S, van Kleunen M, Kreft H, Pagel J, Pergl J, Purschke O, Pyšek P, Weigelt P, Winter M, Attorre F, Aubin I, Bergmeier E, Chytrý M, Dainese M, De Sanctis M, Fagundez J, Golub V, Guerin GR, Gutiérrez AG, Jandt U, Jansen F, Jiménez‐Alfaro B, Kattge J, Kearsley E, Klotz S, Kramer K, Moretti M, Niinemets Ü, Peet RK, Penuelas J, Petřík P, Reich PB, Sandel B, Schmidt M, Sibikova M, Violle C, Whitfeld TJS, Wohlgemuth T, Knight TM. Similar factors underlie tree abundance in forests in native and alien ranges. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2020; 29:281-294. [PMID: 32063745 PMCID: PMC7006795 DOI: 10.1111/geb.13027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
AIM Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION Global. TIME PERIOD Recent. MAJOR TAXA STUDIED Trees. METHODS We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.
Collapse
Affiliation(s)
- Masha T. van der Sande
- Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Biological SciencesFlorida Institute of TechnologyMelbourneFlorida
- Institute for Biodiversity & Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Forest Ecology and Forest Management GroupWageningen University & ResearchWageningenThe Netherlands
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Wayne Dawson
- Department of BiosciencesDurham UniversityDurhamUnited Kingdom
| | - Jürgen Dengler
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of BayreuthBayreuthGermany
- Vegetation EcologyInstitute of Environment and Natural Resources (IUNR), Zurich University of Applied Sciences (ZHAW)Switzerland
| | - Franz Essl
- Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUnited Kingdom
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Mark van Kleunen
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Holger Kreft
- Biodiversity, Macroecology & BiogeographyUniversity of GoettingenGöttingenGermany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of GoettingenGöttingenGermany
| | - Joern Pagel
- Landscape & Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Jan Pergl
- Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Oliver Purschke
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Petr Pyšek
- Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
- Faculty of Science, Department of EcologyCharles UniversityPragueCzech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & BiogeographyUniversity of GoettingenGöttingenGermany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Fabio Attorre
- Department of Environmental BiologyUniversity Sapienza of RomeRomeItaly
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest ServiceNatural Resources CanadaSault Ste MarieOntarioCanada
| | - Erwin Bergmeier
- Vegetation & Phytodiversity AnalysisUniversity of GöttingenGöttingenGermany
| | - Milan Chytrý
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Matteo Dainese
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
- Institute for Alpine EnvironmentEURAC ResearchBolzanoItaly
| | | | - Jaime Fagundez
- Faculty of Science, Department of BiologyUniversity of A CoruñaCoruñaSpain
| | - Valentin Golub
- Institute of Ecology of the Volga River BasinRussian Academy of SciencesTolyattiRussia
| | - Greg R. Guerin
- Terrestrial Ecosystem Research Network, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alvaro G. Gutiérrez
- Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile
| | - Ute Jandt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| | - Florian Jansen
- Faculty of Agricultural and Environmental ScienceUniversity of RostockRostockGermany
| | | | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Max Planck Institute for BiogeochemistryJenaGermany
| | - Elizabeth Kearsley
- Computational and Applied Vegetation Ecology (CAVElab)Ghent UniversityGhentBelgium
| | - Stefan Klotz
- Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Koen Kramer
- Forest Ecology and Forest Management GroupWageningen University & ResearchWageningenThe Netherlands
- Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research (Alterra)Wageningen University and ResearchWageningenThe Netherlands
| | - Marco Moretti
- Swiss Federal Research Institute WSL, Biodiversity and Conservation BiologyBirmensdorfSwitzerland
| | - Ülo Niinemets
- Chair of Crop Science and Plant BiologyEstonian University of Life SciencesTartuEstonia
- Estonian Academy of SciencesTallinnEstonia
| | - Robert K. Peet
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF‐CSIC‐UABBarcelonaSpain
- CREAFBarcelonaSpain
| | - Petr Petřík
- Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Peter B. Reich
- Department of Forest ResourcesUniversity of MinnesotaSt. PaulMinnesota
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrith South DCNew South WalesAustralia
| | - Brody Sandel
- Department of BiologySanta Clara UniversitySanta ClaraCalifornia
| | - Marco Schmidt
- Data and Modelling CentreSenckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
- Scientific ServicePalmengarten der Stadt FrankfurtFrankfurt am MainGermany
| | - Maria Sibikova
- Institute of Botany, Plant Science and Biodiversity CenterSlovak Academy of SciencesBratislavaSlovakia
| | - Cyrille Violle
- Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)CNRS, Université Paul Valéry Montpellier, EPHE, Univ MontpellierMontpellierFrance
| | | | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Tiffany M. Knight
- Department of Community EcologyHelmholtz Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
| |
Collapse
|
47
|
Li W, Zheng Y, Zhang L, Lei Y, Li Y, Liao Z, Li Z, Feng Y. Postintroduction evolution contributes to the successful invasion of Chromolaena odorata. Ecol Evol 2020; 10:1252-1263. [PMID: 32076511 PMCID: PMC7029091 DOI: 10.1002/ece3.5979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/03/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Yulong Zheng
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- University of Chinese Academy of SciencesBeijingChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Likun Zhang
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yanbao Lei
- University of Chinese Academy of SciencesBeijingChina
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
| | - Yangping Li
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Zhiyong Liao
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Zhongpei Li
- Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global ChangesShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
48
|
Bayón Á, Vilà M. Horizon scanning to identify invasion risk of ornamental plants marketed in Spain. NEOBIOTA 2019. [DOI: 10.3897/neobiota.52.38113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Horticulture is one of the main pathways of deliberate introduction of non-native plants, some of which might become invasive. Of the 914 commercial ornamental outdoor plant species sold in Spain, 700 (77%) are non-native (archaeophytes excluded) marketed species. We classified these into six different lists based on their invasion status in Spain and elsewhere, their climatic suitability in Spain and their potential environmental and socioeconomic impacts. We found sufficient information for 270 species. We provide a Priority List of eight regulated invasive species that were still available on the market. We also established an Attention List with 68 non-regulated invasive and potentially invasive species that might cause various impacts. To prioritise the species within the Attention List, we further assessed the risk of invasion of these species by using an adaptation of the Australian WRA protocol and the level of societal interest estimated from values of the Google Trends tool. We also propose a Green List of seven species with probably no potential to become invasive, a Watch List with 27 potentially invasive species with few potential impacts and an Uncertainty List with 161 species of known status but with insufficient information to include them in any of the previous lists. We did not find sufficient information for 430 (61%) of the marketed non-native plant species, which were compiled into a Data Deficient List. Our findings of prohibited species for sale highlight the need for stronger enforcement of the regulations on invasive plant species in Spain. In addition, our results highlight the need for additional information on potential impacts and climate suitability of horticultural plants being sold in Spain, as insufficient information could be found to assess the invasion risk for most species.
Collapse
|
49
|
Martinez KA, Fridley JD, Oguchi R, Aiba M, Hikosaka K. Functional shifts in leaves of woody invaders of deciduous forests between their home and away ranges. TREE PHYSIOLOGY 2019; 39:1551-1560. [PMID: 31209471 DOI: 10.1093/treephys/tpz065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/25/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Temperate forests are widely invaded by shade-tolerant shrubs and trees, including those of Eastern North America (ENA). However, it remains unknown whether these invaders are 'preadapted' for success in their new ranges due to unique aspects of their evolutionary history or whether selection due to enemy release or other postintroduction processes have driven rapid evolution in the invaded range. We sampled leaf traits of populations of woody understory invaders across light gradients in their native range in Japan and in their invaded ENA range to examine potential phenotypic shifts related to carbon gain and nitrogen use between ranges. We also measured leaf traits in three co-occurring ENA native shrub species. In their invaded range, invaders invested significantly less in leaf chlorophyll content (both per unit leaf mass and area) compared with native range populations of the same species, yet maintained similar rates of photosynthesis in low light. In addition, compared with ENA natives, ENA invaders displayed greater trait variation in response to increasing light availability (forest edges, gaps), giving them a potential advantage over ENA natives in a variety of light conditions. We conclude that, for this group of species, newly evolved phenotypes in the invaded range are more important than preadaptation for their success as shade-tolerant forest invaders.
Collapse
Affiliation(s)
| | - Jason D Fridley
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Riichi Oguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Aiba
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
50
|
Sakai O. Population Density of a Clonal Gecko Species in Its Northernmost Range, the Ryukyus in Japan. CURRENT HERPETOLOGY 2019. [DOI: 10.5358/hsj.38.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Osamu Sakai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, JAPAN
| |
Collapse
|