1
|
Davidson KJ, Lamour J, McPherran A, Rogers A, Serbin SP. Seasonal trends in leaf-level photosynthetic capacity and water use efficiency in a North American Eastern deciduous forest and their impact on canopy-scale gas exchange. THE NEW PHYTOLOGIST 2023; 240:138-156. [PMID: 37475146 DOI: 10.1111/nph.19137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Vegetative transpiration (E) and photosynthetic carbon assimilation (A) are known to be seasonally dynamic, with changes in their ratio determining the marginal water use efficiency (WUE). Despite an understanding that stomata play a mechanistic role in regulating WUE, it is still unclear how stomatal and nonstomatal processes influence change in WUE over the course of the growing season. As a result, limited understanding of the primary physiological drivers of seasonal dynamics of canopy WUE remains one of the largest uncertainties in earth system model projections of carbon and water exchange in temperate deciduous forest ecosystems. We investigated seasonal patterns in leaf-level physiological, hydraulic, and anatomical properties, including the seasonal progress of the stomatal slope parameter (g1 ; inversely proportional to WUE) and the maximum carboxylation rate (Vcmax ). Vcmax and g1 were seasonally variable; however, their patterns were not temporally synchronized. g1 generally showed an increasing trend until late in the season, while Vcmax peaked during the midsummer months. Seasonal progression of Vcmax was primarily driven by changes in leaf structural, and anatomical characteristics, while seasonal changes in g1 were most strongly related to changes in Vcmax and leaf hydraulics. Using a seasonally variable Vcmax and g1 to parameterize a canopy-scale gas exchange model increased seasonally aggregated A and E by 3% and 16%, respectively.
Collapse
Affiliation(s)
- Kenneth J Davidson
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Julien Lamour
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Anna McPherran
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alistair Rogers
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Shawn P Serbin
- Department of Environmental and Climate Sciences, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
2
|
Waring EF, Perkowski EA, Smith NG. Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5166-5180. [PMID: 37235800 DOI: 10.1093/jxb/erad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Abstract
The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen-photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased.
Collapse
Affiliation(s)
- Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Cox AJF, Hartley IP, Meir P, Sitch S, Dusenge ME, Restrepo Z, González-Caro S, Villegas JC, Uddling J, Mercado LM. Acclimation of photosynthetic capacity and foliar respiration in Andean tree species to temperature change. THE NEW PHYTOLOGIST 2023; 238:2329-2344. [PMID: 36987979 DOI: 10.1111/nph.18900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Climate warming is causing compositional changes in Andean tropical montane forests (TMFs). These shifts are hypothesised to result from differential responses to warming of cold- and warm-affiliated species, with the former experiencing mortality and the latter migrating upslope. The thermal acclimation potential of Andean TMFs remains unknown. Along a 2000 m Andean altitudinal gradient, we planted individuals of cold- and warm-affiliated species (under common soil and irrigation), exposing them to the hot and cold extremes of their thermal niches, respectively. We measured the response of net photosynthesis (Anet ), photosynthetic capacity and leaf dark respiration (Rdark ) to warming/cooling, 5 months after planting. In all species, Anet and photosynthetic capacity at 25°C were highest when growing at growth temperatures (Tg ) closest to their thermal means, declining with warming and cooling in cold-affiliated and warm-affiliated species, respectively. When expressed at Tg , photosynthetic capacity and Rdark remained unchanged in cold-affiliated species, but the latter decreased in warm-affiliated counterparts. Rdark at 25°C increased with temperature in all species, but remained unchanged when expressed at Tg . Both species groups acclimated to temperature, but only warm-affiliated species decreased Rdark to photosynthetic capacity ratio at Tg as temperature increased. This could confer them a competitive advantage under future warming.
Collapse
Affiliation(s)
- Andrew J F Cox
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Iain P Hartley
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Stephen Sitch
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
| | - Mirindi Eric Dusenge
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Zorayda Restrepo
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Sebastian González-Caro
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Juan Camilo Villegas
- Grupo de Investigación en Ecología Aplicada, Universidad de Antioquia, Medellín, Colombia
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Lina M Mercado
- Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RKJ, UK
- UK Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| |
Collapse
|
4
|
Lobo-do-Vale R, Rafael T, Haberstroh S, Werner C, Caldeira MC. Shrub Invasion Overrides the Effect of Imposed Drought on the Photosynthetic Capacity and Physiological Responses of Mediterranean Cork Oak Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:1636. [PMID: 37111859 PMCID: PMC10142059 DOI: 10.3390/plants12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Mediterranean ecosystems face threats from both climate change and shrub invasion. As shrub cover increases, competition for water intensifies, exacerbating the negative effects of drought on ecosystem functioning. However, research into the combined effects of drought and shrub invasion on tree carbon assimilation has been limited. We used a Mediterranean cork oak (Quercus suber) woodland to investigate the effects of drought and shrub invasion by gum rockrose (Cistus ladanifer) on cork oak carbon assimilation and photosynthetic capacity. We established a factorial experiment of imposed drought (ambient and rain exclusion) and shrub invasion (invaded and non-invaded) and measured leaf water potential, stomatal conductance and photosynthesis as well as photosynthetic capacity in cork oak and gum rockrose over one year. We observed distinct detrimental effects of gum rockrose shrub invasion on the physiological responses of cork oak trees throughout the study period. Despite the imposed drought, the impact of shrub invasion was more pronounced, resulting in significant photosynthetic capacity reduction of 57% during summer. Stomatal and non-stomatal limitations were observed under moderate drought in both species. Our findings provide significant knowledge on the impact of gum rockrose invasion on the functioning of cork oak and can be used to improve the representation of photosynthesis in terrestrial biosphere models.
Collapse
Affiliation(s)
- Raquel Lobo-do-Vale
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Teresa Rafael
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Simon Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, 79110 Freiburg, Germany
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, 79110 Freiburg, Germany
| | - Maria Conceição Caldeira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|
5
|
Kong RS, Way DA, Henry HAL, Smith NG. Stomatal conductance, not biochemistry, drives low temperature acclimation of photosynthesis in Populus balsamifera, regardless of nitrogen availability. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:766-779. [PMID: 35398958 DOI: 10.1111/plb.13428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Low-temperature thermal acclimation may require adjustments to N and water use to sustain photosynthesis because of slow enzyme functioning and high water viscosity. However, understanding of photosynthetic acclimation to temperatures below 11 °C is limited. We acclimated Populus balsamifera to 6 °C and 10 °C (6A and 10A, respectively) and provided the trees with either high or low N fertilizer. We measured net CO2 assimilation (Anet ), stomatal conductance (gs ), maximum rates of Rubisco carboxylation (Vcmax ), electron transport (Jmax ) and dark respiration (Rd ) at leaf temperatures of 2, 6, 10, 14 and 18 °C, along with leaf N concentrations. The 10A trees had higher Anet than the 6A trees at warmer leaf temperatures, which was correlated with higher gs in the 10A trees. The instantaneous temperature responses of Vcmax , Jmax and Rd were similar for trees from both acclimation temperatures. While soil N availability increased leaf N concentrations, this had no effect on acclimation of photosynthesis or respiration. Our results indicate that acclimation below 11 °C occurred primarily through changes in stomatal conductance, not photosynthetic biochemistry, and was unaffected by short-term N supply. Thermal acclimation of stomatal conductance should therefore be a priority for future carbon cycle model development.
Collapse
Affiliation(s)
- R S Kong
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - D A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Duke University, Nicholas School of the Environment, Durham, NC, USA
- Brookhaven National Laboratory, Environmental and Climate Sciences Department, Upton, NY, USA
| | - H A L Henry
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - N G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
6
|
Crous KY, Uddling J, De Kauwe MG. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. THE NEW PHYTOLOGIST 2022; 234:353-374. [PMID: 35007351 PMCID: PMC9994441 DOI: 10.1111/nph.17951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/03/2021] [Indexed: 05/29/2023]
Abstract
Evergreen species are widespread across the globe, representing two major plant functional forms in terrestrial models. We reviewed and analysed the responses of photosynthesis and respiration to warming in 101 evergreen species from boreal to tropical biomes. Summertime temperatures affected both latitudinal gas exchange rates and the degree of responsiveness to experimental warming. The decrease in net photosynthesis at 25°C (Anet25 ) was larger with warming in tropical climates than cooler ones. Respiration at 25°C (R25 ) was reduced by 14% in response to warming across species and biomes. Gymnosperms were more sensitive to greater amounts of warming than broadleaved evergreens, with Anet25 and R25 reduced c. 30-40% with > 10°C warming. While standardised rates of carboxylation (Vcmax25 ) and electron transport (Jmax25 ) adjusted to warming, the magnitude of this adjustment was not related to warming amount (range 0.6-16°C). The temperature optimum of photosynthesis (ToptA ) increased on average 0.34°C per °C warming. The combination of more constrained acclimation of photosynthesis and increasing respiration rates with warming could possibly result in a reduced carbon sink in future warmer climates. The predictable patterns of thermal acclimation across biomes provide a strong basis to improve modelling predictions of the future terrestrial carbon sink with warming.
Collapse
Affiliation(s)
- Kristine Y. Crous
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Johan Uddling
- Department of Biological and Environmental SciencesUniversity of GothenburgPO Box 461GothenburgSE‐405 30Sweden
| | | |
Collapse
|
7
|
Ren L, Huang Y, Pan Y, Xiang X, Huo J, Meng D, Wang Y, Yu C. Differential Investment Strategies in Leaf Economic Traits Across Climate Regions Worldwide. FRONTIERS IN PLANT SCIENCE 2022; 13:798035. [PMID: 35356106 PMCID: PMC8959930 DOI: 10.3389/fpls.2022.798035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The leaf economics spectrum (LES) is the leading theory of plant ecological strategies based on functional traits, which explains the trade-off between dry matter investment in leaf structure and the potential rate of resource return, revealing general patterns of leaf economic traits investment for different plant growth types, functional types, or biomes. Prior work has revealed the moderating role of different environmental factors on the LES, but whether the leaf trait bivariate relationships are shifted across climate regions or across continental scales requires further verification. Here we use the Köppen-Geiger climate classification, a very widely used and robust criterion, as a basis for classifying climate regions to explore climatic differences in leaf trait relationships. We compiled five leaf economic traits from a global dataset, including leaf dry matter content (LDMC), specific leaf area (SLA), photosynthesis per unit of leaf dry mass (Amass), leaf nitrogen concentration (Nmass), and leaf phosphorus concentration (Pmass). Moreover, we primarily used the standardized major axis (SMA) analysis to establish leaf trait bivariate relationships and to explore differences in trait relationships across climate regions as well as intercontinental differences within the same climate type. Leaf trait relationships were significantly correlated across almost all subgroups (P < 0.001). However, there was no common slope among different climate zones or climate types and the slopes of the groups fluctuated sharply up and down from the global estimates. The range of variation in the SMA slope of each leaf relationship was as follows: LDMC-SLA relationships (from -0.84 to -0.41); Amass-SLA relationships (from 0.83 to 1.97); Amass-Nmass relationships (from 1.33 to 2.25); Nmass-Pmass relationships (from 0.57 to 1.02). In addition, there was significant slope heterogeneity among continents within the Steppe climate (BS) or the Temperate humid climate (Cf). The shifts of leaf trait relationships in different climate regions provide evidence for environmentally driven differential plant investment in leaf economic traits. Understanding these differences helps to better calibrate various plant-climate models and reminds us that smaller-scale studies may need to be carefully compared with global studies.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yongmei Huang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yingping Pan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xiang Xiang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jiaxuan Huo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Dehui Meng
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Cheng Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Krieg CP, Chambers SM. The ecology and physiology of fern gametophytes: A methodological synthesis. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11464. [PMID: 35495196 PMCID: PMC9039797 DOI: 10.1002/aps3.11464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 05/14/2023]
Abstract
All green plants alternate between the gametophyte and sporophyte life stages, but only seed-free vascular plants (ferns and lycophytes) have independent, free-living gametophytes. Fern and lycophyte gametophytes are significantly reduced in size and morphological complexity relative to their sporophytic counterparts and have often been overlooked in ecological and physiological studies. Understanding the ecological and physiological factors that directly impact this life stage is of critical importance because the ultimate existence of a sporophyte is dependent upon successful fertilization in the gametophyte generation. Furthermore, previous research has shown that the dual nature of the life cycle and the high dispersibility of spores can result in different geographic patterns between gametophytes and their respective sporophytes. This variation in distribution patterns likely exacerbates the separation of selective pressures acting on gametophyte and sporophyte generations, and can uniquely impact a species' ecology and physiology. Here, we provide a review of historical and contemporary methodologies used to examine ecological and physiological aspects of fern gametophytes, as well as those that allow for comparisons between the two generations. We conclude by suggesting methodological approaches to answer currently outstanding questions. We hope that the information covered herein will serve as a guide to current researchers and stimulate future discoveries in fern gametophyte ecology and physiology.
Collapse
Affiliation(s)
| | - Sally M. Chambers
- Department of BotanyMarie Selby Botanical GardensSarasotaFlorida34236USA
| |
Collapse
|
9
|
Sturchio MA, Chieppa J, Chapman SK, Canas G, Aspinwall MJ. Temperature acclimation of leaf respiration differs between marsh and mangrove vegetation in a coastal wetland ecotone. GLOBAL CHANGE BIOLOGY 2022; 28:612-629. [PMID: 34653300 DOI: 10.1111/gcb.15938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Temperature acclimation of leaf respiration (R) is an important determinant of ecosystem responses to temperature and the magnitude of temperature-CO2 feedbacks as climate warms. Yet, the extent to which temperature acclimation of R exhibits a common pattern across different growth conditions, ecosystems, and plant functional types remains unclear. Here, we measured the short-term temperature response of R at six time points over a 10-month period in two coastal wetland species (Avicennia germinans [C3 mangrove] and Spartina alterniflora [C4 marsh grass]) growing under ambient and experimentally warmed temperatures at two sites in a marsh-mangrove ecotone. Leaf nitrogen (N) was determined on a subsample of leaves to explore potential coupling of R and N. We hypothesized that both species would reduce R at 25°C (R25 ) and the short-term temperature sensitivity of R (Q10 ) as air temperature (Tair ) increased across seasons, but the decline would be stronger in Avicennia than in Spartina. For each species, we hypothesized that seasonal temperature acclimation of R would be equivalent in plants grown under ambient and warmed temperatures, demonstrating convergent acclimation. Surprisingly, Avicennia generally increased R25 with increasing growth temperature, although the Q10 declined as seasonal temperatures increased and did so consistently across sites and treatments. Weak temperature acclimation resulted in reduced homeostasis of R in Avicennia. Spartina reduced R25 and the Q10 as seasonal temperatures increased. In Spartina, seasonal temperature acclimation was largely consistent across sites and treatments resulting in greater respiratory homeostasis. We conclude that co-occurring coastal wetland species may show contrasting patterns of respiratory temperature acclimation. Nonetheless, leaf N scaled positively with R25 in both species, highlighting the importance of leaf N in predicting respiratory capacity across a range of growth temperatures. The patterns of respiratory temperature acclimation shown here may improve the predictions of temperature controls of CO2 fluxes in coastal wetlands.
Collapse
Affiliation(s)
- Matthew A Sturchio
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Jeff Chieppa
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Samantha K Chapman
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, Pennsylvania, USA
| | - Gabriela Canas
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
| | - Michael J Aspinwall
- Department of Biology, University of North Florida, Jacksonville, Florida, USA
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
10
|
Yan Z, Guo Z, Serbin SP, Song G, Zhao Y, Chen Y, Wu S, Wang J, Wang X, Li J, Wang B, Wu Y, Su Y, Wang H, Rogers A, Liu L, Wu J. Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types. THE NEW PHYTOLOGIST 2021; 232:134-147. [PMID: 34165791 DOI: 10.1111/nph.17579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Leaf trait relationships are widely used to predict ecosystem function in terrestrial biosphere models (TBMs), in which leaf maximum carboxylation capacity (Vc,max ), an important trait for modelling photosynthesis, can be inferred from other easier-to-measure traits. However, whether trait-Vc,max relationships are robust across different forest types remains unclear. Here we used measurements of leaf traits, including one morphological trait (leaf mass per area), three biochemical traits (leaf water content, area-based leaf nitrogen content, and leaf chlorophyll content), one physiological trait (Vc,max ), as well as leaf reflectance spectra, and explored their relationships within and across three contrasting forest types in China. We found weak and forest type-specific relationships between Vc,max and the four morphological and biochemical traits (R2 ≤ 0.15), indicated by significantly changing slopes and intercepts across forest types. By contrast, reflectance spectroscopy effectively collapsed the differences in the trait-Vc,max relationships across three forest biomes into a single robust model for Vc,max (R2 = 0.77), and also accurately estimated the four traits (R2 = 0.75-0.94). These findings challenge the traditional use of the empirical trait-Vc,max relationships in TBMs for estimating terrestrial plant photosynthesis, but also highlight spectroscopy as an efficient alternative for characterising Vc,max and multitrait variability, with critical insights into ecosystem modelling and functional trait ecology.
Collapse
Affiliation(s)
- Zhengbing Yan
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhengfei Guo
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Guangqin Song
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yingyi Zhao
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yang Chen
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shengbiao Wu
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jing Wang
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Jing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
- Joint Centre for Global Change Studies, Tsinghua University, Beijing, 100084, China
| | - Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing, 100049, China
| | - Jin Wu
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
11
|
Burnett AC, Anderson J, Davidson KJ, Ely KS, Lamour J, Li Q, Morrison BD, Yang D, Rogers A, Serbin SP. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6175-6189. [PMID: 34131723 DOI: 10.1093/jxb/erab295] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.
Collapse
Affiliation(s)
- Angela C Burnett
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jeremiah Anderson
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kenneth J Davidson
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kim S Ely
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Julien Lamour
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qianyu Li
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Bailey D Morrison
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Dedi Yang
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Alistair Rogers
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Shawn P Serbin
- Terrestrial Ecosystem Science and Technology Group, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
12
|
Song G, Wang Q, Jin J. Including leaf trait information helps empirical estimation of jmax from vcmax in cool-temperate deciduous forests. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:839-848. [PMID: 34229164 DOI: 10.1016/j.plaphy.2021.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Understanding the uncertainty in the parameterization of the two photosynthetic capacity parameters, leaf maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax), is crucial for modeling and predicting carbon fluxes in terrestrial ecosystems. In gas exchange models, to date, Jmax is typically estimated from Vcmax based on a linear regression. However, recent studies have revealed that this relationship varies, dependent upon species, leaf groups, and time, so it is doubtful that the regression applies universally. Furthermore, far less is known regarding how other leaf traits affect the regression. In this study we analyzed the two key photosynthetic parameters and popularly measurable leaf traits, leaf chlorophyll concentration and leaf mass per area (LMA), of cool-temperate forest stands in Japan, aiming to construct a simple regression applicable to temperate deciduous forests, at least. The analysis was based on a long-term field dataset covering years of data for both sunlit and shaded leaves at different altitudes. Results showed that the best-fitted slope of the regression differed markedly from those previously reported, which were typically acquired from sunlit leaves. LMA had a significant effect on the regression, producing the lowest root mean square errors and the highest ratio of performance to deviation values (RPD = 2.017). Although more data are needed to validate in other ecosystems, our approach at least provides a promising way to substantially improve photosynthesis model predictions, by introducing leaf traits into the popular empirical regression of Jmax against Vcmax, and ultimately to better understand the functioning of the photosynthetic machinery.
Collapse
Affiliation(s)
- Guangman Song
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Quan Wang
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Jia Jin
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| |
Collapse
|
13
|
Burnett AC, Serbin SP, Lamour J, Anderson J, Davidson KJ, Yang D, Rogers A. Seasonal trends in photosynthesis and leaf traits in scarlet oak. TREE PHYSIOLOGY 2021; 41:1413-1424. [PMID: 33611562 DOI: 10.1093/treephys/tpab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Understanding seasonal variation in photosynthesis is important for understanding and modeling plant productivity. Here, we used shotgun sampling to examine physiological, structural and spectral leaf traits of upper canopy, sun-exposed leaves in Quercus coccinea Münchh (scarlet oak) across the growing season in order to understand seasonal trends, explore the mechanisms underpinning physiological change and investigate the impact of extrapolating measurements from a single date to the whole season. We tested the hypothesis that photosynthetic rates and capacities would peak at the summer solstice, i.e., at the time of peak photoperiod. Contrary to expectations, our results reveal a late-season peak in both photosynthetic capacity and rate before the expected sharp decrease at the start of senescence. This late-season maximum occurred after the higher summer temperatures and vapor pressure deficit and was correlated with the recovery of leaf water content and increased stomatal conductance. We modeled photosynthesis at the top of the canopy and found that the simulated results closely tracked the maximum carboxylation capacity of Rubisco. For both photosynthetic capacity and modeled top-of-canopy photosynthesis, the maximum value was therefore not observed at the summer solstice. Rather, in each case, the measurements at and around the solstice were close to the overall seasonal mean, with values later in the season leading to deviations from the mean by up to 41 and 52%, respectively. Overall, we found that the expected Gaussian pattern of photosynthesis was not observed. We conclude that an understanding of species- and environment-specific changes in photosynthesis across the season is essential for correct estimation of seasonal photosynthetic capacity.
Collapse
Affiliation(s)
- Angela C Burnett
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Julien Lamour
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jeremiah Anderson
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kenneth J Davidson
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dedi Yang
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
14
|
Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat Commun 2021; 12:4866. [PMID: 34381045 PMCID: PMC8358060 DOI: 10.1038/s41467-021-25163-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential.
Collapse
|
15
|
|
16
|
Jiang C, Ryu Y, Wang H, Keenan TF. An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity. GLOBAL CHANGE BIOLOGY 2020; 26:6493-6510. [PMID: 32654330 DOI: 10.1111/gcb.15276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The maximum rate of carboxylation (Vcmax ) is an essential leaf trait determining the photosynthetic capacity of plants. Existing approaches for estimating Vcmax at large scale mainly rely on empirical relationships with proxies such as leaf nitrogen/chlorophyll content or hyperspectral reflectance, or on complicated inverse models from gross primary production or solar-induced fluorescence. A novel mechanistic approach based on the assumption that plants optimize resource investment coordinating with environment and growth has been shown to accurately predict C3 plant Vcmax based on mean growing season environmental conditions. However, the ability of optimality theory to explain seasonal variation in Vcmax has not been fully investigated. Here, we adapt an optimality-based model to simulate daily Vcmax,25C (Vcmax at a standardized temperature of 25°C) by incorporating the effects of antecedent environment, which affects current plant functioning, and dynamic light absorption, which coordinates with plant functioning. We then use seasonal Vcmax,25C field measurements from 10 sites across diverse ecosystems to evaluate model performance. Overall, the model explains about 83% of the seasonal variation in C3 plant Vcmax,25C across the 10 sites, with a medium root mean square error of 12.3 μmol m-2 s-1 , which suggests that seasonal changes in Vcmax,25C are consistent with optimal plant function. We show that failing to account for acclimation to antecedent environment or coordination with dynamic light absorption dramatically decreases estimation accuracy. Our results show that optimality-based approach can accurately reproduce seasonal variation in canopy photosynthetic potential, and suggest that incorporating such theory into next-generation trait-based terrestrial biosphere models would improve predictions of global photosynthesis.
Collapse
Affiliation(s)
- Chongya Jiang
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, Korea
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, Korea
| | - Han Wang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
17
|
Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, McInerney FA, Sparrow B, Leitch E, Lowe AJ. Components of leaf-trait variation along environmental gradients. THE NEW PHYTOLOGIST 2020; 228:82-94. [PMID: 32198931 DOI: 10.1111/nph.16558] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/12/2020] [Indexed: 05/16/2023]
Abstract
Leaf area (LA), mass per area (LMA), nitrogen per unit area (Narea ) and the leaf-internal to ambient CO2 ratio (χ) are fundamental traits for plant functional ecology and vegetation modelling. Here we aimed to assess how their variation, within and between species, tracks environmental gradients. Measurements were made on 705 species from 116 sites within a broad north-south transect from tropical to temperate Australia. Trait responses to environment were quantified using multiple regression; within- and between-species responses were compared using analysis of covariance and trait-gradient analysis. Leaf area, the leaf economics spectrum (indexed by LMA and Narea ) and χ (from stable carbon isotope ratios) varied almost independently among species. Across sites, however, χ and LA increased with mean growing-season temperature (mGDD0 ) and decreased with vapour pressure deficit (mVPD0 ) and soil pH. LMA and Narea showed the reverse pattern. Climate responses agreed with expectations based on optimality principles. Within-species variability contributed < 10% to geographical variation in LA but > 90% for χ, with LMA and Narea intermediate. These findings support the hypothesis that acclimation within individuals, adaptation within species and selection among species combine to create predictable relationships between traits and environment. However, the contribution of acclimation/adaptation vs species selection differs among traits.
Collapse
Affiliation(s)
- Ning Dong
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Terrestrial Ecosystem Research Network, University of Sydney, Sydney, NSW, 2006, Australia
| | - Iain Colin Prentice
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Bradley J Evans
- Terrestrial Ecosystem Research Network, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Sciences, School of Physical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Henrique F Togashi
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Terrestrial Ecosystem Research Network, University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefan Caddy-Retalic
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Department for Environment and Water, Botanic Gardens and State Herbarium of South Australia, Hackney Road, Adelaide, SA, 5000, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Francesca A McInerney
- Department of Earth Sciences, School of Physical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ben Sparrow
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Terrestrial Ecosystem Research Network, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Emrys Leitch
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Terrestrial Ecosystem Research Network, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrew J Lowe
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Terrestrial Ecosystem Research Network, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
18
|
Ziegler C, Dusenge ME, Nyirambangutse B, Zibera E, Wallin G, Uddling J. Contrasting Dependencies of Photosynthetic Capacity on Leaf Nitrogen in Early- and Late-Successional Tropical Montane Tree Species. FRONTIERS IN PLANT SCIENCE 2020; 11:500479. [PMID: 33042168 PMCID: PMC7527595 DOI: 10.3389/fpls.2020.500479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/31/2020] [Indexed: 05/29/2023]
Abstract
Differences in photosynthetic capacity among tree species and tree functional types are currently assumed to be largely driven by variation in leaf nutrient content, particularly nitrogen (N). However, recent studies indicate that leaf N content is often a poor predictor of variation in photosynthetic capacity in tropical trees. In this study, we explored the relative importance of area-based total leaf N content (Ntot) and within-leaf N allocation to photosynthetic capacity versus light-harvesting in controlling the variation in photosynthetic capacity (i.e. V cmax, J max) among mature trees of 12 species belonging to either early (ES) or late successional (LS) groups growing in a tropical montane rainforest in Rwanda, Central Africa. Photosynthetic capacity at a common leaf temperature of 25˚C (i.e. maximum rates of Rubisco carboxylation, V cmax25 and of electron transport, J max25) was higher in ES than in LS species (+ 58% and 68% for V cmax25 and J max25, respectively). While Ntot did not significantly differ between successional groups, the photosynthetic dependency on Ntot was markedly different. In ES species, V cmax25 was strongly and positively related to Ntot but this was not the case in LS species. However, there was no significant trade-off between relative leaf N investments in compounds maximizing photosynthetic capacity versus compounds maximizing light harvesting. Both leaf dark respiration at 25˚C (+ 33%) and, more surprisingly, apparent photosynthetic quantum yield (+ 35%) was higher in ES than in LS species. Moreover, Rd25 was positively related to Ntot for both ES and LS species. Our results imply that efforts to quantify carbon fluxes of tropical montane rainforests would be improved if they considered contrasting within-leaf N allocation and photosynthetic Ntot dependencies between species with different successional strategies.
Collapse
Affiliation(s)
- Camille Ziegler
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane, Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | - Mirindi Eric Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Rwanda, Huye, Rwanda
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Brigitte Nyirambangutse
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Rwanda, Huye, Rwanda
| | - Etienne Zibera
- Department of Biology, University of Rwanda, Huye, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Smith NG, Keenan TF. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO 2 as inferred from least-cost optimality theory. GLOBAL CHANGE BIOLOGY 2020; 26:5202-5216. [PMID: 32525621 DOI: 10.1111/gcb.15212] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/01/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least-cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C3 plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2 ). The model-data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (Jmax /Vcmax ) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2 . Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2 , limiting potential leaf-level photosynthesis under future CO2 concentrations. Altogether, our results show that acclimation to temperature and CO2 is primarily related to resource conservation at the leaf level. Under future, warmer, high CO2 conditions, plants are therefore likely to use less nutrients for leaf-level photosynthesis, which may impact whole-plant to ecosystem functioning.
Collapse
Affiliation(s)
- Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trevor F Keenan
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
20
|
Fu Z, Stoy PC, Poulter B, Gerken T, Zhang Z, Wakbulcho G, Niu S. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. GLOBAL CHANGE BIOLOGY 2019; 25:3381-3394. [PMID: 31197940 DOI: 10.1111/gcb.14731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2 ) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long-term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water-limited ecosystems versus temperature- and radiation-limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water-limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature- and radiation-limited ecosystems. The Lund-Potsdam-Jena (LPJ) model and the Multi-scale Synthesis and Terrestrial Model Inter-comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.
Collapse
Affiliation(s)
- Zheng Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul C Stoy
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Tobias Gerken
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
| | - Zhen Zhang
- Department of Geographical Sciences, University of Maryland, College Park, Maryland
| | - Guta Wakbulcho
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Wu J, Rogers A, Albert LP, Ely K, Prohaska N, Wolfe BT, Oliveira RC, Saleska SR, Serbin SP. Leaf reflectance spectroscopy captures variation in carboxylation capacity across species, canopy environment and leaf age in lowland moist tropical forests. THE NEW PHYTOLOGIST 2019; 224:663-674. [PMID: 31245836 DOI: 10.1111/nph.16029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Understanding the pronounced seasonal and spatial variation in leaf carboxylation capacity (Vc,max ) is critical for determining terrestrial carbon cycling in tropical forests. However, an efficient and scalable approach for predicting Vc,max is still lacking. Here the ability of leaf spectroscopy for rapid estimation of Vc,max was tested. Vc,max was estimated using traditional gas exchange methods, and measured reflectance spectra and leaf age in leaves sampled from tropical forests in Panama and Brazil. These data were used to build a model to predict Vc,max from leaf spectra. The results demonstrated that leaf spectroscopy accurately predicts Vc,max of mature leaves in Panamanian tropical forests (R2 = 0.90). However, this single-age model required recalibration when applied to broader leaf demographic classes (i.e. immature leaves). Combined use of spectroscopy models for Vc,max and leaf age enabled construction of the Vc,max -age relationship solely from leaf spectra, which agreed with field observations. This suggests that the spectroscopy technique can capture the seasonal variability in Vc,max , assuming sufficient sampling across diverse species, leaf ages and canopy environments. This finding will aid development of remote sensing approaches that can be used to characterize Vc,max in moist tropical forests and enable an efficient means to parameterize and evaluate terrestrial biosphere models.
Collapse
Affiliation(s)
- Jin Wu
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Alistair Rogers
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Loren P Albert
- Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Kim Ely
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| | - Neill Prohaska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brett T Wolfe
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | | | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Shawn P Serbin
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, NY, 11973, USA
| |
Collapse
|
22
|
Burnett AC, Davidson KJ, Serbin SP, Rogers A. The "one-point method" for estimating maximum carboxylation capacity of photosynthesis: A cautionary tale. PLANT, CELL & ENVIRONMENT 2019; 42:2472-2481. [PMID: 31049970 DOI: 10.1111/pce.13574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
The maximum carboxylation capacity of Rubisco, Vc,max , is an important photosynthetic parameter that is key to accurate estimation of carbon assimilation. The gold-standard technique for determining Vc,max is to derive Vc,max from the initial slope of an A-Ci curve (the response of photosynthesis, A, to intercellular CO2 concentration, Ci ). Accurate estimates of Vc,max derived from an alternative and rapid "one-point" measurement of photosynthesis could greatly accelerate data collection and model parameterization. We evaluated the practical application of the one-point method in six species measured under standard conditions (saturating irradiance and 400 μmol CO2 mol-1 ) and under conditions that would increase the likelihood for successful estimation of Vc,max : (a) ensuring Rubisco-limited A by measuring at 300 μmol CO2 mol-1 and (b) allowing time for acclimation to saturating irradiance prior to measurement. The one-point method significantly underestimated Vc,max in four of the six species, providing estimates 21%-32% below fitted values. We identified ribulose-1,5-bisphosphate-limited A, light acclimation, and the use of an assumed respiration rate as factors that limited the effective use of the one-point method to accurately estimate Vc,max . We conclude that the one-point method requires a species-specific understanding of its application, is often unsuccessful, and must be used with caution.
Collapse
Affiliation(s)
- Angela C Burnett
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
| | - Kenneth J Davidson
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York
| |
Collapse
|
23
|
Rogers A, Serbin SP, Ely KS, Wullschleger SD. Terrestrial biosphere models may overestimate Arctic CO 2 assimilation if they do not account for decreased quantum yield and convexity at low temperature. THE NEW PHYTOLOGIST 2019; 223:167-179. [PMID: 30767227 DOI: 10.1111/nph.15750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
How terrestrial biosphere models (TBMs) represent leaf photosynthesis and its sensitivity to temperature are two critical components of understanding and predicting the response of the Arctic carbon cycle to global change. We measured the effect of temperature on the response of photosynthesis to irradiance in six Arctic plant species and determined the quantum yield of CO2 fixation ( ϕCO2 ) and the convexity factor (θ). We also determined leaf absorptance (α) from measured reflectance to calculate ϕCO2 on an absorbed light basis ( ϕCO2.a ) and enabled comparison with nine TBMs. The mean ϕCO2.a was 0.045 mol CO2 mol-1 absorbed quanta at 25°C and closely agreed with the mean TBM parameterisation (0.044), but as temperature decreased measured ϕCO2.a diverged from TBMs. At 5°C measured ϕCO2.a was markedly reduced (0.025) and 60% lower than TBM estimates. The θ also showed a significant reduction between 25°C and 5°C. At 5°C θ was 38% lower than the common model parameterisation of 0.7. These data show that TBMs are not accounting for observed reductions in ϕCO2.a and θ that can occur at low temperature. Ignoring these reductions in ϕCO2.a and θ could lead to a marked (45%) overestimation of CO2 assimilation at subsaturating irradiance and low temperature.
Collapse
Affiliation(s)
- Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Kim S Ely
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| |
Collapse
|
24
|
Miner GL, Bauerle WL. Seasonal responses of photosynthetic parameters in maize and sunflower and their relationship with leaf functional traits. PLANT, CELL & ENVIRONMENT 2019; 42:1561-1574. [PMID: 30604429 DOI: 10.1111/pce.13511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/20/2018] [Indexed: 05/08/2023]
Abstract
Estimates of seasonal variation in photosynthetic capacity (Pc ) are critical for modeling the time course of carbon fluxes. Given the time-intensive nature of calculating Pc parameters via gas exchange, it is appealing to calculate parameter variation via changes in chlorophyll (Chl) and nitrogen (N) content by assuming that Pc scales with these variables. Although seasonal changes in Pc and the relationships between N and Pc have been evaluated in forest canopies, there is limited data on seasonal parameter values in crops, nor is it clear if seasonal changes in Pc can be estimated from leaf traits under the high N fertility of managed systems. We characterized the seasonal variability of the maximum rates of carboxylation (Vcmax ) and electron transport (Jmax ) under well-fertilized conditions for maize (Zea mays L.) and sunflower (Helianthus annuus L.) and coupled these data with measurements of Chl, N, and leaf mass per unit area (LMA). The seasonal Chl-N relationship was significant in maize, but not in sunflower. Area-based N-Vcmax relationships were not significant for either crop. Mass-based N-Vcmax relationships were weak in sunflower, but highly significant in maize. Our results suggest that Pc can be seasonally adjusted in maize with reliable estimates of changes in LMA.
Collapse
Affiliation(s)
- Grace L Miner
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - William L Bauerle
- Department of Horticulture and Landscape Architecture, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
25
|
Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, Carter KR, Cavaleri MA, Cernusak LA, Chambers JQ, Crous KY, De Kauwe MG, Dillaway DN, Dreyer E, Ellsworth DS, Ghannoum O, Han Q, Hikosaka K, Jensen AM, Kelly JWG, Kruger EL, Mercado LM, Onoda Y, Reich PB, Rogers A, Slot M, Smith NG, Tarvainen L, Tissue DT, Togashi HF, Tribuzy ES, Uddling J, Vårhammar A, Wallin G, Warren JM, Way DA. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. THE NEW PHYTOLOGIST 2019; 222:768-784. [PMID: 30597597 DOI: 10.1111/nph.15668] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/07/2018] [Indexed: 05/24/2023]
Abstract
The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.
Collapse
Affiliation(s)
- Dushan P Kumarathunge
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Plant Physiology Division, Coconut Research Institute of Sri Lanka, Lunuwila, 61150, Sri Lanka
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - John E Drake
- Forest and Natural Resources Management, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michael J Aspinwall
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Michael Battaglia
- CSIRO Agriculture and Food, Private Bag 12, Hobart, Tasmania, 7001, Australia
| | - Francisco J Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kelsey R Carter
- School of Forest Resources & Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
| | - Molly A Cavaleri
- School of Forest Resources & Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, 49931, USA
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, QLD, 4878, Australia
| | - Jeffrey Q Chambers
- Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dylan N Dillaway
- Thomashow Learning Laboratories, Unity College, 90 Quaker Hill Road, Unity, ME, 04988, USA
| | - Erwin Dreyer
- Université de Lorraine, Inra, Silva, F54000, Nancy, France
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba Sendai, 980-8578, Japan
| | - Anna M Jensen
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Jeff W G Kelly
- Center for Sustainable Forestry at Pack Forest, University of Washington, 9010 453rd Street E, Eatonville, WA, 98328, USA
| | - Eric L Kruger
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lina M Mercado
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4PS, UK
- Centre for Ecology and Hydrology, Crowmarsh-Gifford, Wallingford, OX10 8BB, UK
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panama
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Henrique F Togashi
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Edgard S Tribuzy
- Instituto de Biodiversidade e Florestas, Universidade Federal do Oeste do Pará (UFOPA), CEP 68035-110, Santarém, PA, Brazil
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Jeffrey M Warren
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 5B6
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708, USA
| |
Collapse
|
26
|
Stinziano JR, Bauerle WL, Way DA. Modelled net carbon gain responses to climate change in boreal trees: Impacts of photosynthetic parameter selection and acclimation. GLOBAL CHANGE BIOLOGY 2019; 25:1445-1465. [PMID: 30451349 DOI: 10.1111/gcb.14530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Boreal forests are crucial in regulating global vegetation-atmosphere feedbacks, but the impact of climate change on boreal tree carbon fluxes is still unclear. Given the sensitivity of global vegetation models to photosynthetic and respiration parameters, we determined how predictions of net carbon gain (C-gain) respond to variation in these parameters using a stand-level model (MAESTRA). We also modelled how thermal acclimation of photosynthetic and respiratory temperature sensitivity alters predicted net C-gain responses to climate change. We modelled net C-gain of seven common boreal tree species under eight climate scenarios across a latitudinal gradient to capture a range of seasonal temperature conditions. Physiological parameter values were taken from the literature together with different approaches for thermally acclimating photosynthesis and respiration. At high latitudes, net C-gain was stimulated up to 400% by elevated temperatures and CO2 in the autumn but suppressed at the lowest latitudes during midsummer under climate scenarios that included warming. Modelled net C-gain was more sensitive to photosynthetic capacity parameters (Vcmax , Jmax , Arrhenius temperature response parameters, and the ratio of Jmax to Vcmax ) than stomatal conductance or respiration parameters. The effect of photosynthetic thermal acclimation depended on the temperatures where it was applied: acclimation reduced net C-gain by 10%-15% within the temperature range where the equations were derived but decreased net C-gain by 175% at temperatures outside this range. Thermal acclimation of respiration had small, but positive, impacts on net C-gain. We show that model simulations are highly sensitive to variation in photosynthetic parameters and highlight the need to better understand the mechanisms and drivers underlying this variability (e.g., whether variability is environmentally and/or biologically driven) for further model improvement.
Collapse
Affiliation(s)
- Joseph R Stinziano
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado
| | - William L Bauerle
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado
| | - Danielle A Way
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
27
|
Bloomfield KJ, Prentice IC, Cernusak LA, Eamus D, Medlyn BE, Rumman R, Wright IJ, Boer MM, Cale P, Cleverly J, Egerton JJG, Ellsworth DS, Evans BJ, Hayes LS, Hutchinson MF, Liddell MJ, Macfarlane C, Meyer WS, Togashi HF, Wardlaw T, Zhu L, Atkin OK. The validity of optimal leaf traits modelled on environmental conditions. THE NEW PHYTOLOGIST 2019; 221:1409-1423. [PMID: 30242841 DOI: 10.1111/nph.15495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
The ratio of leaf intercellular to ambient CO2 (χ) is modulated by stomatal conductance (gs ). These quantities link carbon (C) assimilation with transpiration, and along with photosynthetic capacities (Vcmax and Jmax ) are required to model terrestrial C uptake. We use optimization criteria based on the growth environment to generate predicted values of photosynthetic and water-use efficiency traits and test these against a unique dataset. Leaf gas-exchange parameters and carbon isotope discrimination were analysed in relation to local climate across a continental network of study sites. Sun-exposed leaves of 50 species at seven sites were measured in contrasting seasons. Values of χ predicted from growth temperature and vapour pressure deficit were closely correlated to ratios derived from C isotope (δ13 C) measurements. Correlations were stronger in the growing season. Predicted values of photosynthetic traits, including carboxylation capacity (Vcmax ), derived from δ13 C, growth temperature and solar radiation, showed meaningful agreement with inferred values derived from gas-exchange measurements. Between-site differences in water-use efficiency were, however, only weakly linked to the plant's growth environment and did not show seasonal variation. These results support the general hypothesis that many key parameters required by Earth system models are adaptive and predictable from plants' growth environments.
Collapse
Affiliation(s)
- Keith J Bloomfield
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - I Colin Prentice
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Lucas A Cernusak
- Department of Marine and Tropical Biology, James Cook University, Cairns, Qld, 4878, Australia
| | - Derek Eamus
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Rizwana Rumman
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Matthias M Boer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Peter Cale
- Australian Landscape Trust, Renmark, SA, 5341, Australia
| | - James Cleverly
- School of Life Sciences, University of Technology Sydney, NSW, 2007, Australia
- Terrestrial Ecosystem Research Network (TERN), University of Technology Sydney, Goddard Building, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John J G Egerton
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Bradley J Evans
- Faculty of Agriculture and Environment, Department of Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Lucy S Hayes
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Michael F Hutchinson
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, 2601, Australia
| | - Michael J Liddell
- Centre for Tropical, Environmental, and Sustainability Sciences, James Cook University, Cairns, Qld, 4878, Australia
| | - Craig Macfarlane
- CSIRO Land and Water, Private Bag 5, Wembley, WA, 6913, Australia
| | - Wayne S Meyer
- Earth and Environmental Sciences, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Henrique F Togashi
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Tim Wardlaw
- ARC Centre for Forest Value, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Lingling Zhu
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
28
|
Smith NG, Keenan TF, Colin Prentice I, Wang H, Wright IJ, Niinemets Ü, Crous KY, Domingues TF, Guerrieri R, Yoko Ishida F, Kattge J, Kruger EL, Maire V, Rogers A, Serbin SP, Tarvainen L, Togashi HF, Townsend PA, Wang M, Weerasinghe LK, Zhou SX. Global photosynthetic capacity is optimized to the environment. Ecol Lett 2019; 22:506-517. [PMID: 30609108 PMCID: PMC6849754 DOI: 10.1111/ele.13210] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/07/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (Vcmax), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co‐optimization of carboxylation and water costs for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field‐measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first‐order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.
Collapse
Affiliation(s)
- Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
| | - I Colin Prentice
- AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, London, UK.,College of Forestry, Northwest A&F University, Yangling, China.,Department of Biological Sciences, Macquarie University, NSW, 2109, Australia.,Department of Earth System Science, Tsinghua University, Beijing
| | - Han Wang
- Department of Earth System Science, Tsinghua University, Beijing
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Tomas F Domingues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - University of São Paulo, São Paulo, Brazil
| | - Rossella Guerrieri
- Center for Ecological Research and Forestry Applications, Universidad Autonoma de Barcelona, Cerdanyola, Barcelona, Spain.,School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - F Yoko Ishida
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Jena, Germany.,German Center for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
| | - Eric L Kruger
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Vincent Maire
- Département des sciences de l'environnement, Université du Québec à Trois, Rivières, Trois Rivières, Canada
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrique F Togashi
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Meng Wang
- College of Forestry, Northwest A&F University, Yangling, China.,State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
| | - Lasantha K Weerasinghe
- Research School of Biology, The Australian National University, Canberra, Australia.,Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Shuang-Xi Zhou
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia.,The New Zealand Institute for Plant and Food Research Ltd, Hawke's, Bay, New Zealand
| |
Collapse
|
29
|
Gvozdevaite A, Oliveras I, Domingues TF, Peprah T, Boakye M, Afriyie L, da Silva Peixoto K, de Farias J, Almeida de Oliveira E, Almeida Farias CC, Dos Santos Prestes NCC, Neyret M, Moore S, Schwantes Marimon B, Marimon Junior BH, Adu-Bredu S, Malhi Y. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest-savanna boundaries in Ghana and Brazil. TREE PHYSIOLOGY 2018; 38:1912-1925. [PMID: 30388271 DOI: 10.1093/treephys/tpy117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Forest-savanna boundaries extend across large parts of the tropics but the variability of photosynthetic capacity in relation to soil and foliar nutrients across these transition zones is poorly understood. For this reason, we compared photosynthetic capacity (maximum rate of carboxylation of Rubisco at 25 C° (Vcmax25), leaf mass, nitrogen (N), phosphorus (P) and potassium (K) per unit leaf area (LMA, Narea, Parea and Karea, respectively), in relation to respective soil nutrients from 89 species at seven sites along forest-savanna ecotones in Ghana and Brazil. Contrary to our expectations, edaphic conditions were not reflected in foliar nutrient concentrations but LMA was slightly higher in lower fertility soils. Overall, each vegetation type within the ecotones demonstrated idiosyncratic and generally weak relationships between Vcmax25 and Narea, Parea and Karea. Species varied significantly in their Vcmax25 ↔ Narea relationship due to reduced investment of total Narea in photosynthetic machinery with increasing LMA. We suggest that studied species in the forest-savanna ecotones do not maximize Vcmax25 per given total Narea due to adaptation to intermittent water availability. Our findings have implications for global modeling of Vcmax25 and forest-savanna ecotone productivity.
Collapse
Affiliation(s)
- Agne Gvozdevaite
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Imma Oliveras
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Tomas Ferreira Domingues
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Theresa Peprah
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Mickey Boakye
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Lydia Afriyie
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Karine da Silva Peixoto
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Josenilton de Farias
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Edmar Almeida de Oliveira
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | | | | | - Margot Neyret
- Centre IRD France Nord - iEES Paris, 32, av. Henri Varagnat BONDY cedex, France
| | - Sam Moore
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Beatriz Schwantes Marimon
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Ben Hur Marimon Junior
- Departamento de Ciências Biológicas Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
| | - Stephen Adu-Bredu
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, KNUST, Ghana
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Huang K, Xia J, Wang Y, Ahlström A, Chen J, Cook RB, Cui E, Fang Y, Fisher JB, Huntzinger DN, Li Z, Michalak AM, Qiao Y, Schaefer K, Schwalm C, Wang J, Wei Y, Xu X, Yan L, Bian C, Luo Y. Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evol 2018; 2:1897-1905. [PMID: 30420745 DOI: 10.1038/s41559-018-0714-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2018] [Indexed: 11/09/2022]
Abstract
The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPPmax and NDVImax). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVImax variation is evenly explained by expanding croplands (21%), rising CO2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPPmax to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.
Collapse
Affiliation(s)
- Kun Huang
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, Shanghai, China
| | - Jianyang Xia
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China. .,Institute of Eco-Chongming, Shanghai, China.
| | - Yingping Wang
- CSIRO Oceans and Atmosphere, Melbourne, Victoria, Australia.,Terrestrial Biogeochemistry Group, South China Botanic Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Anders Ahlström
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.,Department of Earth System Sstudy confirms the long-term increase incience, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, CA, USA
| | - Jiquan Chen
- Center for Global Change and Earth Observations and Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA
| | - Robert B Cook
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Erqian Cui
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuanyuan Fang
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Zhao Li
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Yang Qiao
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Kevin Schaefer
- National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | | | - Jing Wang
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yaxing Wei
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaoni Xu
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Liming Yan
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Forest Ecosystem Research and Observation Station in Putuo Island, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Chenyu Bian
- Tiantong National Station of Forest Ecosystem Research, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
31
|
Crous KY, Drake JE, Aspinwall MJ, Sharwood RE, Tjoelker MG, Ghannoum O. Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. GLOBAL CHANGE BIOLOGY 2018; 24:4626-4644. [PMID: 29804312 DOI: 10.1111/gcb.14330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/11/2018] [Indexed: 05/22/2023]
Abstract
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt ) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.
Collapse
Affiliation(s)
- Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Robert E Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
32
|
Effects of Arbuscular Mycorrhizal Fungi on the Vegetative Vigor of Ailanthus altissima (Mill.) Swingle Seedlings under Sustained Pot Limitation. FORESTS 2018. [DOI: 10.3390/f9070409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Bahar NHA, Gauthier PPG, O Sullivan OS, Brereton T, Evans JR, Atkin OK. Phosphorus deficiency alters scaling relationships between leaf gas exchange and associated traits in a wide range of contrasting Eucalyptus species. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:813-826. [PMID: 32291064 DOI: 10.1071/fp17134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 02/02/2018] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) limitation is known to have substantial impacts on leaf metabolism. However, uncertainty remains around whether P deficiency alters scaling functions linking leaf metabolism to associated traits. We investigated the effect of P deficiency on leaf gas exchange and related leaf traits in 17 contrasting Eucalyptus species that exhibit inherent differences in leaf traits. Saplings were grown under controlled-environment conditions in a glasshouse, where they were subjected to minus and plus P treatments for 15 weeks. P deficiency decreased P concentrations and increased leaf mass per area (LMA) of newly-developed leaves. Rates of photosynthesis (A) and respiration (R) were also reduced in P-deficient plants compared with P-fertilised plants. By contrast, P deficiency had little effect on the temperature sensitivity of R. Irrespective of P treatment, on a log-log basis A and R scaled positively with increasing leaf nitrogen concentration [N] and negatively with increasing LMA. Although P deficiency had limited impact on A-R-LMA relationships, rates of CO2 exchange per unit N were consistently lower in P-deficient plants. Our results highlight the importance of P supply for leaf carbon metabolism and show how P deficiencies (i.e. when excluding confounding genotypic and environmental effects) can have a direct effect on commonly used leaf trait scaling relationships.
Collapse
Affiliation(s)
- Nur H A Bahar
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Paul P G Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Odhran S O Sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Brereton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Smith NG, Dukes JS. Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology 2018; 99:1610-1620. [PMID: 29705984 DOI: 10.1002/ecy.2370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 04/11/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Nicholas G. Smith
- Department of Biological Sciences; Texas Tech University; Lubbock Texas 79409 USA
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana 47907 USA
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
- Purdue Climate Change Research Center; Purdue University; West Lafayette Indiana 47907 USA
| | - Jeffrey S. Dukes
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana 47907 USA
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907 USA
- Purdue Climate Change Research Center; Purdue University; West Lafayette Indiana 47907 USA
| |
Collapse
|
35
|
Bahar NHA, Hayes L, Scafaro AP, Atkin OK, Evans JR. Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet-forest tree leaves. THE NEW PHYTOLOGIST 2018; 218:492-505. [PMID: 29436710 DOI: 10.1111/nph.15031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/23/2017] [Indexed: 05/26/2023]
Abstract
Globally, trees originating from high-rainfall tropical regions typically exhibit lower rates of light-saturated net CO2 assimilation (A) compared with those from high-rainfall temperate environments, when measured at a common temperature. One factor that has been suggested to contribute towards lower rates of A is lower mesophyll conductance. Using a combination of leaf gas exchange and carbon isotope discrimination measurements, we estimated mesophyll conductance (gm ) of several Australian tropical and temperate wet-forest trees, grown in a common environment. Maximum Rubisco carboxylation capacity, Vcmax , was obtained from CO2 response curves. gm and the drawdown of CO2 across the mesophyll were both relatively constant. Vcmax estimated on the basis of intercellular CO2 partial pressure, Ci , was equivalent to that estimated using chloroplastic CO2 partial pressure, Cc , using 'apparent' and 'true' Rubisco Michaelis-Menten constants, respectively Having ruled out gm as a possible factor in distorting variations in A between these tropical and temperate trees, attention now needs to be focused on obtaining more detailed information about Rubisco in these species.
Collapse
Affiliation(s)
- Nur H A Bahar
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
36
|
Xie H, Yu M, Cheng X. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:146-154. [PMID: 29366973 DOI: 10.1016/j.plaphy.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 05/25/2023]
Abstract
UNLABELLED Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. KEY MESSAGE Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress.
Collapse
Affiliation(s)
- Hongtao Xie
- National Research Station of Eastern China Coastal Forest Ecosystem, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Mukui Yu
- National Research Station of Eastern China Coastal Forest Ecosystem, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Xiangrong Cheng
- National Research Station of Eastern China Coastal Forest Ecosystem, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
37
|
Rogers A, Serbin SP, Ely KS, Sloan VL, Wullschleger SD. Terrestrial biosphere models underestimate photosynthetic capacity and CO 2 assimilation in the Arctic. THE NEW PHYTOLOGIST 2017; 216:1090-1103. [PMID: 28877330 DOI: 10.1111/nph.14740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/08/2017] [Indexed: 05/13/2023]
Abstract
Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (Vc,max.25 and Jmax.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of Vc,max and Jmax were 17% lower than commonly used values. When scaled to 25°C, Vc,max.25 and Jmax.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change.
Collapse
Affiliation(s)
- Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Kim S Ely
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Victoria L Sloan
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| |
Collapse
|
38
|
Smith NG, Dukes JS. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. GLOBAL CHANGE BIOLOGY 2017; 23:4840-4853. [PMID: 28560841 DOI: 10.1111/gcb.13735] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (Vcmax ), the maximum rate of electron transport (Jmax ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax ), and foliar dark respiration (Rd ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C3 and C4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C3 species tending to preferentially accelerate CO2 -limited photosynthetic processes and respiration and C4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. Rd acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. Rd acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting.
Collapse
Affiliation(s)
- Nicholas G Smith
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Climate Change Research Center, Purdue University, West Lafayette, IN, USA
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Climate Change Research Center, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
39
|
Norby RJ, Gu L, Haworth IC, Jensen AM, Turner BL, Walker AP, Warren JM, Weston DJ, Xu C, Winter K. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. THE NEW PHYTOLOGIST 2017; 215:1425-1437. [PMID: 27870067 DOI: 10.1111/nph.14319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
Our objective was to analyze and summarize data describing photosynthetic parameters and foliar nutrient concentrations from tropical forests in Panama to inform model representation of phosphorus (P) limitation of tropical forest productivity. Gas exchange and nutrient content data were collected from 144 observations of upper canopy leaves from at least 65 species at two forest sites in Panama, differing in species composition, rainfall and soil fertility. Photosynthetic parameters were derived from analysis of assimilation rate vs internal CO2 concentration curves (A/Ci ), and relationships with foliar nitrogen (N) and P content were developed. The relationships between area-based photosynthetic parameters and nutrients were of similar strength for N and P and robust across diverse species and site conditions. The strongest relationship expressed maximum electron transport rate (Jmax ) as a multivariate function of both N and P, and this relationship was improved with the inclusion of independent data on wood density. Models that estimate photosynthesis from foliar N would be improved only modestly by including additional data on foliar P, but doing so may increase the capability of models to predict future conditions in P-limited tropical forests, especially when combined with data on edaphic conditions and other environmental drivers.
Collapse
Affiliation(s)
- Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - Ivan C Haworth
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - Anna M Jensen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - David J Weston
- Biosciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - Chonggang Xu
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama
| |
Collapse
|
40
|
Walker AP, Quaife T, van Bodegom PM, De Kauwe MG, Keenan TF, Joiner J, Lomas MR, MacBean N, Xu C, Yang X, Woodward FI. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (V cmax ) on global gross primary production. THE NEW PHYTOLOGIST 2017. [PMID: 28643848 DOI: 10.1111/nph.14623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The maximum photosynthetic carboxylation rate (Vcmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr-1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes.
Collapse
Affiliation(s)
- Anthony P Walker
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN, 37830-6301, USA
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Tristan Quaife
- Department of Meteorology, National Centre for Earth Observation, University of Reading, Reading, RG6 6BX, UK
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Martin G De Kauwe
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Trevor F Keenan
- Earth Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Joanna Joiner
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Mark R Lomas
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Natasha MacBean
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Chongang Xu
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Xiaojuan Yang
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN, 37830-6301, USA
| | - F Ian Woodward
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
41
|
Earth System Model Needs for Including the Interactive Representation of Nitrogen Deposition and Drought Effects on Forested Ecosystems. FORESTS 2017. [DOI: 10.3390/f8080267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Scafaro AP, Xiang S, Long BM, Bahar NHA, Weerasinghe LK, Creek D, Evans JR, Reich PB, Atkin OK. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. GLOBAL CHANGE BIOLOGY 2017; 23:2783-2800. [PMID: 27859952 DOI: 10.1111/gcb.13566] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/16/2016] [Indexed: 05/09/2023]
Abstract
Understanding of the extent of acclimation of light-saturated net photosynthesis (An ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax ) and electron transport (Jmax ) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth , An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth . Similarly, area-based rates of Vcmax at a measurement T of 25 °C (Vcmax25 ) linearly declined with increasing Tgrowth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth -mediated declines in Vcmax25 on An , complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25 .
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Shuang Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu, Sichuan, 610041, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Benedict M Long
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Nur H A Bahar
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | | | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, 1540 Cleveland Avenue North, St. Paul, MN, 55108, USA
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
43
|
Hasper TB, Dusenge ME, Breuer F, Uwizeye FK, Wallin G, Uddling J. Stomatal CO 2 responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits. Oecologia 2017; 184:43-57. [PMID: 28260113 PMCID: PMC5408058 DOI: 10.1007/s00442-017-3829-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/22/2017] [Indexed: 12/27/2022]
Abstract
Stomatal CO2 responsiveness and photosynthetic capacity vary greatly among plant species, but the factors controlling these physiological leaf traits are often poorly understood. To explore if these traits are linked to taxonomic group identity and/or to other plant functional traits, we investigated the short-term stomatal CO2 responses and the maximum rates of photosynthetic carboxylation (V cmax) and electron transport (J max) in an evolutionary broad range of tropical woody plant species. The study included 21 species representing four major seed plant taxa: gymnosperms, monocots, rosids and asterids. We found that stomatal closure responses to increased CO2 were stronger in angiosperms than in gymnosperms, and in monocots compared to dicots. Stomatal CO2 responsiveness was not significantly related to any of the other functional traits investigated, while a parameter describing the relationship between photosynthesis and stomatal conductance in combined leaf gas exchange models (g 1) was related to leaf area-specific plant hydraulic conductance. For photosynthesis, we found that the interspecific variation in V cmax and J max was related to within leaf nitrogen (N) allocation rather than to area-based total leaf N content. Within-leaf N allocation and water use were strongly co-ordinated (r 2 = 0.67), such that species with high fractional N investments into compounds maximizing photosynthetic capacity also had high stomatal conductance. We conclude that while stomatal CO2 responsiveness of tropical woody species seems poorly related to other plant functional traits, photosynthetic capacity is linked to fractional within-leaf N allocation rather than total leaf N content and is closely co-ordinated with leaf water use.
Collapse
Affiliation(s)
- Thomas B Hasper
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
| | - Mirindi E Dusenge
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 56, Huye, Rwanda
| | - Friederike Breuer
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
| | - Félicien K Uwizeye
- Department of Biology, University of Rwanda, University Avenue, PO Box 56, Huye, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
44
|
Voelker SL, Stambaugh MC, Renée Brooks J, Meinzer FC, Lachenbruch B, Guyette RP. Evidence that higher [CO 2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks. Oecologia 2017; 183:1183-1195. [PMID: 28220301 DOI: 10.1007/s00442-017-3831-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/29/2017] [Indexed: 12/13/2022]
Abstract
To test tree growth sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. Paleo oaks were sampled from Northern Missouri, USA and compared to a pollen-based, high-resolution paleo temperature reconstruction from Northern Illinois, USA. Growth data were from 53 paleo bur oak log cross sections collected in Missouri. These oaks were preserved in river and stream sediments and were radiocarbon-dated to a period of rapid climate change during the last deglaciation (10.5 and 13.3 cal kyr BP). Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data collected across the Great Plains, Midwest, and Upper Great Lakes regions. For modern oaks growing at an average [CO2] of 330 ppm, growth sensitivity to temperature (i.e., the slope of growth rate versus temperature) was about twice that of paleo oaks growing at an average [CO2] of 230 ppm. These data help to confirm that leaf-level predictions that photosynthesis and thus growth will be more sensitive to temperature at higher [CO2] in mature trees-suggesting that tree growth forest productivity will be increasingly sensitive to temperature under projected global warming and high-[CO2] conditions.
Collapse
Affiliation(s)
- Steven L Voelker
- Department of Plants, Soils and Climate, Utah State University, Logan, UT, 84322, USA.
| | - Michael C Stambaugh
- Department of Forestry, University of Missouri, 203ABNR Building, Columbia, MO, 65211, USA
| | - J Renée Brooks
- National Health and Environmental Effects Research Laboratory (NHEERL), Western Ecology Division, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR, 97333, USA
| | - Frederick C Meinzer
- Pacific Northwest Research Station, U.S.D.A. Forest Service, 3200 Jefferson Way, Corvallis, OR, 97330, USA
| | - Barbara Lachenbruch
- Department of Forest Ecosystems, Society, Oregon State University, Corvallis, OR, 97330, USA
| | - Richard P Guyette
- Department of Forestry, University of Missouri, 203ABNR Building, Columbia, MO, 65211, USA
| |
Collapse
|
45
|
Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü, Prentice IC, Serbin SP, Sitch S, Way DA, Zaehle S. A roadmap for improving the representation of photosynthesis in Earth system models. THE NEW PHYTOLOGIST 2017; 213:22-42. [PMID: 27891647 DOI: 10.1111/nph.14283] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 05/18/2023]
Abstract
Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO2 assimilation (A) to key environmental variables: light, temperature, CO2 concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models.
Collapse
Affiliation(s)
- Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources and Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-2061, USA
| | - Gordon Bonan
- National Center for Atmospheric Research, Boulder, CO, 80307-3000, USA
| | - Susanne von Caemmerer
- Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Linnaeus Building (Bldg 134) Linnaeus Way, Canberra, ACT, 0200, Australia
| | - Michael C Dietze
- Department of Earth and Environment, Boston University, Boston, MA, 02215, USA
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, 07701, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Andrew D B Leakey
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lina M Mercado
- Geography Department, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
- Center for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | - Ülo Niinemets
- Department of Plant Physiology, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - I Colin Prentice
- AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute for Climate Change, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest Agriculture & Forestry University, Yangling, 712100, China
| | - Shawn P Serbin
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Stephen Sitch
- Geography Department, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Sönke Zaehle
- Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
46
|
Atkin OK, Bahar NHA, Bloomfield KJ, Griffin KL, Heskel MA, Huntingford C, de la Torre AM, Turnbull MH. Leaf Respiration in Terrestrial Biosphere Models. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Aspinwall MJ, Drake JE, Campany C, Vårhammar A, Ghannoum O, Tissue DT, Reich PB, Tjoelker MG. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. THE NEW PHYTOLOGIST 2016; 212:354-67. [PMID: 27284963 DOI: 10.1111/nph.14035] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/28/2016] [Indexed: 05/03/2023]
Abstract
Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Courtney Campany
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave N., St Paul, MN, 55108, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
48
|
De Kauwe MG, Lin YS, Wright IJ, Medlyn BE, Crous KY, Ellsworth DS, Maire V, Prentice IC, Atkin OK, Rogers A, Niinemets Ü, Serbin SP, Meir P, Uddling J, Togashi HF, Tarvainen L, Weerasinghe LK, Evans BJ, Ishida FY, Domingues TF. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. THE NEW PHYTOLOGIST 2016; 210:1130-44. [PMID: 26719951 DOI: 10.1111/nph.13815] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/19/2015] [Indexed: 05/24/2023]
Abstract
Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax ). Estimating this parameter using A-Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci ) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat ) measurements, from which Vcmax can be extracted using a 'one-point method'. We used a global dataset of A-Ci curves (564 species from 46 field sites, covering a range of plant functional types) to test the validity of an alternative approach to estimate Vcmax from Asat via this 'one-point method'. If leaf respiration during the day (Rday ) is known exactly, Vcmax can be estimated with an r(2) value of 0.98 and a root-mean-squared error (RMSE) of 8.19 μmol m(-2) s(-1) . However, Rday typically must be estimated. Estimating Rday as 1.5% of Vcmax, we found that Vcmax could be estimated with an r(2) of 0.95 and an RMSE of 17.1 μmol m(-2) s(-1) . The one-point method provides a robust means to expand current databases of field-measured Vcmax , giving new potential to improve vegetation models and quantify the environmental drivers of Vcmax variation.
Collapse
Affiliation(s)
- Martin G De Kauwe
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yan-Shih Lin
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Vincent Maire
- Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - I Colin Prentice
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute - Climate Change and the Environment, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Alistair Rogers
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Shawn P Serbin
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JN, UK
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, SE-40530, Gothenburg, Sweden
| | - Henrique F Togashi
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Terrestrial Ecosystem Research Network, Ecosystem Modelling and Scaling Infrastructure, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), SE-901 83, Umeå, Sweden
| | - Lasantha K Weerasinghe
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Bradley J Evans
- Terrestrial Ecosystem Research Network, Ecosystem Modelling and Scaling Infrastructure, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - F Yoko Ishida
- College of Marine and Environmental Sciences, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Qld, 4870, Australia
| | - Tomas F Domingues
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, 3900, CEP 14040-901, Bairro Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
49
|
Abrams MD, Nowacki GJ. An interdisciplinary approach to better assess global change impacts and drought vulnerability on forest dynamics. TREE PHYSIOLOGY 2016; 36:421-427. [PMID: 26941289 DOI: 10.1093/treephys/tpw005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Marc D Abrams
- 307 Forest Resources Building, Department of Ecosystem Science and Management, Penn State University, University Park, PA 16802, USA
| | - Gregory J Nowacki
- Eastern Regional Office, USDA Forest Service, 626 E. Wisconsin Avenue, Milwaukee, WI 53202, USA
| |
Collapse
|
50
|
Atkin O. New Phytologist: bridging the 'plant function - climate modelling divide'. THE NEW PHYTOLOGIST 2016; 209:1329-1332. [PMID: 26840246 DOI: 10.1111/nph.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|