1
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
2
|
Lv G, Yang M, Gai K, Jia Q, Wang Z, Wang B, Li X. Multiple functions of HMGB1 in cancer. Front Oncol 2024; 14:1384109. [PMID: 38725632 PMCID: PMC11079206 DOI: 10.3389/fonc.2024.1384109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear DNA-binding protein with a dual role in cancer, acting as an oncogene and a tumor suppressor. This protein regulates nucleosomal structure, DNA damage repair, and genomic stability within the cell, while also playing a role in immune cell functions. This review comprehensively evaluates the biological and clinical significance of HMGB1 in cancer, including its involvement in cell death and survival, its potential as a therapeutic target and cancer biomarker, and as a prosurvival signal for the remaining cells after exposure to cytotoxic anticancer treatments. We highlight the need for a better understanding of the cellular markers and mechanisms involved in the involvement of HMGB1in cancer, and aim to provide a deeper understanding of its role in cancer progression.
Collapse
Affiliation(s)
- Guangyao Lv
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Menglin Yang
- Quality Management Department, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Keke Gai
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiong Jia
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhenzhen Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Bin Wang
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xueying Li
- School of Health, Binzhou Polytechnic, Binzhou, China
| |
Collapse
|
3
|
Wei T, Liu J, Li C, Tan Y, Wei R, Wang J, Wu H, Li Q, Liu H, Tang Y, Li X. Revealing the extracellular function of HMGB1 N-terminal region acetylation assisted by a protein semi-synthesis approach. Chem Sci 2023; 14:10297-10307. [PMID: 37772093 PMCID: PMC10530822 DOI: 10.1039/d3sc01109g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
HMGB1 (high-mobility group box 1) is a non-histone chromatin-associated protein that has been widely reported as a representative damage-associated molecular pattern (DAMP) and to play a pivotal role in the proinflammatory process once it is in an extracellular location. Accumulating evidence has shown that HMGB1 undergoes extensive post-translational modifications (PTMs) that actively regulate its conformation, localization, and intermolecular interactions. However, fully characterizing the functional implications of these PTMs has been challenging due to the difficulty in accessing homogeneous HMGB1 with site-specific PTMs of interest. In this study, we developed a streamlined protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation, STL/CPL). This methodology enabled us to generate a series of N-terminal region acetylated HMGB1 proteins. Further studies revealed that acetylation regulates HMGB1-heparin interaction and modulates HMGB1's stability against thrombin, representing a regulatory switch to control HMGB1's extracellular activity.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Can Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ruohan Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jinzheng Wang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Qingrong Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
4
|
Chen R, Zou J, Kang R, Tang D. The Redox Protein High-Mobility Group Box 1 in Cell Death and Cancer. Antioxid Redox Signal 2023; 39:569-590. [PMID: 36999916 DOI: 10.1089/ars.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Significance: As a redox-sensitive protein, high-mobility group box 1 (HMGB1) is implicated in regulating stress responses to oxidative damage and cell death, which are closely related to the pathology of inflammatory diseases, including cancer. Recent Advances: HMGB1 is a nonhistone nuclear protein that acts as a deoxyribonucleic acid chaperone to control chromosomal structure and function. HMGB1 can also be released into the extracellular space and function as a damage-associated molecular pattern protein during cell death, including during apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, alkaliptosis, and cuproptosis. Once released, HMGB1 binds to membrane receptors to shape immune and metabolic responses. In addition to subcellular localization, the function and activity of HMGB1 also depend on its redox state and protein posttranslational modifications. Abnormal HMGB1 plays a dual role in tumorigenesis and anticancer therapy (e.g., chemotherapy, radiation therapy, and immunotherapy) depending on the tumor types and stages. Critical Issues: A comprehensive understanding of the role of HMGB1 in cellular redox homeostasis is important for deciphering normal cellular functions and pathological manifestations. In this review, we discuss compartmental-defined roles of HMGB1 in regulating cell death and cancer. Understanding these advances may help us develop potential HMGB1-targeting drugs or approaches to treat oxidative stress-related diseases or pathological conditions. Future Directions: Further studies are required to dissect the mechanism by which HMGB1 maintains redox homeostasis under different stress conditions. A multidisciplinary effort is also required to evaluate the potential applications of precisely targeting the HMGB1 pathway in human health and disease. Antioxid. Redox Signal. 39, 569-590.
Collapse
Affiliation(s)
- Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis; Central South University, Changsha, China
- Department of Infectious Diseases; Xiangya Hospital, Central South University, Changsha, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Lu P, Li Y, Dai G, Zhang Y, Shi L, Zhang M, Wang H, Rui Y. HMGB1: a potential new target for tendinopathy treatment. Connect Tissue Res 2023; 64:362-375. [PMID: 37032550 DOI: 10.1080/03008207.2023.2199089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Tendinopathy describes a complex pathology of the tendon characterized by abnormalities in the microstructure, composition, and cellularity of the tendon, leading to pain, limitation of activity and reduced function. Nevertheless, the mechanism of tendinopathy has not been fully elucidated, and the treatment of tendinopathy remains a challenge. High mobility group box 1 (HMGB1), a highly conserved and multifaceted nuclear protein, exerts multiple roles and high functional variability and is involved in many biological and pathological processes. In recent years, several studies have suggested that HMGB1 is associated with tendinopathy and may play a key role in the pathogenesis of tendinopathy. Therefore, this review summarizes the expression and distribution of HMGB1 in tendinopathy, focuses on the roles of HMGB1 and HMGB1-based potential mechanisms involved in tendinopathy, and finally summarizes the findings on HMGB1-based therapeutic approaches in tendinopathy, probably providing new insight into the mechanism and further potential therapeutic targets of tendinopathy.
Collapse
Affiliation(s)
- Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingjuan Li
- School of Medicine, Southeast University, Nanjing, China
- Department of Geriatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Gao B, Wang S, Li J, Han N, Ge H, Zhang G, Chang M. HMGB1, angel or devil, in ischemic stroke. Brain Behav 2023; 13:e2987. [PMID: 37062906 PMCID: PMC10176004 DOI: 10.1002/brb3.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION High-mobility group box 1 protein (HMGB1) is extensively involved in causing ischemic stroke, pathological damage of ischemic brain injury, and neural tissue repair after ischemic brain injury. However, the precise role of HMGB1 in ischemic stroke remains to be elucidated. METHODS Comprehensive literature search and narrative review to summarize the current field of HMGB1 in cerebral ischemic based on the basic structure, structural modification, and functional roles of HMGB1 described in the literature. RESULTS Studies have exhibited the crucial roles of HMGB1 in cell death, immunity and inflammation, thrombosis, and remodeling and repair. HMGB1 released after cerebral infarction is extensively involved in the pathological injury process in the early stage of cerebral infarction, whereas it is involved in the promotion of brain tissue repair and remodeling in the late stage of cerebral infarction. HMGB1 plays a neurotrophic role in acute white matter stroke, whereas it causes sustained activation of inflammation and plays a damaging role in chronic white matter ischemia. CONCLUSIONS HMGB1 plays a complex role in cerebral infarction, which is related to not only the modification of HMGB1 and bound receptors but also different stages and subtypes of cerebral infarction. future studies on HMGB1 should investigate the spatial and temporal dynamics of HMGB1 after cerebral infarction. Moreover, future studies on HMGB1 should attempt to integrate different stages and infarct subtypes of cerebral infarction.
Collapse
Affiliation(s)
- Bin Gao
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Shuwen Wang
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Jiangfeng Li
- Department of Neurosurgerythe First Hospital of Yu'linYu'linShaanxiChina
| | - Nannan Han
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Hanming Ge
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Gejuan Zhang
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| | - Mingze Chang
- Department of NeurologyXi'an No. 3 Hospitalthe Affiliated Hospital of Northest UniversityXi'anShaanxiP.R. China
| |
Collapse
|
7
|
Teng S, Zhu Z, Wu C, He Y, Zhou S. Inflachromene inhibits intimal hyperplasia through the HMGB1/2- regulated TLR4-NF-κB pathway. Int Immunopharmacol 2023; 119:110198. [PMID: 37087872 DOI: 10.1016/j.intimp.2023.110198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
The contractile-syntheticphenotypicconversion of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis, vascular restenosis, and hypertension. Our previous study explored the correlation between high mobility group box protein (HMGB) 1 and HMGB2 and neointimal hyperplasia after vascular injury. In the present study, we explore whether inflachromene (ICM), a novel inhibitor of the expression of both HMGB1 and HMGB2, modulates phenotypic changes in VSMCs and the mechanisms involved. Mice treated with ICM after carotid artery wire injury showed a decrease in excessive neointimal hyperplasia compared with that in the vehicle groups. In cultured VSMCs, pretreatment with ICM suppressed the angiotensin II (Ang II)-induced phenotypic conversion, proliferation, and migration. We discovered that ICM reduced the Ang II-induced upregulation of the expression of HMGB1 and HMGB2 and inhibited their shuttling between the nucleus and the cytosol. Mechanistically, Ang II-treated VSMCs exhibited higher levels of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) phosphorylation, which were attenuated by ICM. In addition, the NF-κB inhibitor Bay-117082 abolished the recombinant HMGB1-mediated VSMC phenotypic conversion, proliferation, and migration. Furthermore, ICM ameliorated the Ang II-induced increases in NAD[P]H oxidase expression, thereby attenuating the Ang II-induced proliferation and migration. These results reveal that ICM pretreatment attenuates Ang II-induced VSMC dedifferentiation, proliferation, and migration may by regulating the TLR4-NF-kB pathway. Thus, ICM is a potential therapy and preventive treatment for vascular proliferative diseases.
Collapse
Affiliation(s)
- Shuai Teng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenkai Wu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhu He
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Su T, Li C, Zhang Y, Yue L, Chen Y, Qian X, Shi S. Upregulation of HMGB1 promotes vascular dysfunction in the soft palate of patients with obstructive sleep apnea via the TLR4/NF-κB/VEGF pathway. FEBS Open Bio 2023; 13:246-256. [PMID: 36479843 PMCID: PMC9900083 DOI: 10.1002/2211-5463.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by the collapse of the soft palate in the upper airway, resulting in chronic intermittent hypoxia during sleep. Therefore, an understanding of the molecular mechanisms underlying pathophysiological dysfunction of the soft palate in OSA is necessary for the development of new therapeutic strategies. In the present study, we observed that high mobility group protein box 1 (HMGB1) was released by a large infiltration of macrophages in the soft palate of OSA patients. The toll-like receptor 4/nuclear factor kappa B pathway was observed to be activated by the release of HMGB1, and this was accompanied by an increased expression of pro-inflammatory factors, including tumor necrosis factor-α and interleukin-6. Importantly, increased expression of toll-like receptor 4 was observed in endothelial cells, contributing to upregulation of the angiogenesis-related factors vascular endothelial-derived growth factor and matrix metalloproteinase 9. Moreover, we confirmed the effect of the HMGB1-mediated toll-like receptor 4/nuclear factor kappa B pathway on cell proliferation and angiogenesis in an in vitro cell model of human umbilical vein endothelial cells. We conclude that HMGB1 may be a potential therapeutic target for preventing angiogenesis and pathology in OSA.
Collapse
Affiliation(s)
- Tiantian Su
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Cong Li
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Yu Zhang
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Lei Yue
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Yuqin Chen
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Xiaoqiong Qian
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| | - Song Shi
- ENT DepartmentTongren Hospital, Shanghai Jiao Tong University School of MedicineChina
| |
Collapse
|
9
|
Abstract
Ferroptosis has gained interest due to it immunogenicity and the higher sensitivity of cancer cells to it. However, it was recently shown that ferroptosis in tumor-associated neutrophils leads to immunosuppression and negatively impacts therapy. Here, we discuss the potential implications of the two sides (friend versus foe) of ferroptosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Robin Demuynck
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
10
|
Rafikov R, Rischard F, Vasilyev M, Varghese MV, Yuan JXJ, Desai AA, Garcia JGN, Rafikova O. Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex. Transl Res 2022; 247:1-18. [PMID: 35405322 PMCID: PMC10062382 DOI: 10.1016/j.trsl.2022.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mikhail Vasilyev
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mathews V Varghese
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Joe G N Garcia
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Olga Rafikova
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|
11
|
Pritchard KA, Jing X, Teng M, Wells C, Jia S, Afolayan AJ, Jarzembowski J, Day BW, Naylor S, Hessner MJ, Konduri GG, Teng RJ. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS One 2022; 17:e0269564. [PMID: 36018859 PMCID: PMC9417039 DOI: 10.1371/journal.pone.0269564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.
Collapse
Affiliation(s)
- Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Xigang Jing
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Clive Wells
- Electron Microscope Facility, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Adeleye J. Afolayan
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Jason Jarzembowski
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Billy W. Day
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Stephen Naylor
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Martin J. Hessner
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - G. Ganesh Konduri
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,* E-mail:
| |
Collapse
|
12
|
Borde C, Dillard C, L’Honoré A, Quignon F, Hamon M, Marchand CH, Faccion RS, Costa MGS, Pramil E, Larsen AK, Sabbah M, Lemaire SD, Maréchal V, Escargueil AE. The C-Terminal Acidic Tail Modulates the Anticancer Properties of HMGB1. Int J Mol Sci 2022; 23:ijms23147865. [PMID: 35887213 PMCID: PMC9319070 DOI: 10.3390/ijms23147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.
Collapse
Affiliation(s)
- Chloé Borde
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Clémentine Dillard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Aurore L’Honoré
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005 Paris, France;
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, F-75248 Paris, France;
| | - Marion Hamon
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005 Paris, France; (M.H.); (C.H.M.)
| | - Christophe H. Marchand
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005 Paris, France; (M.H.); (C.H.M.)
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine, UMR7238, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France;
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, UMR8226, F-75005 Paris, France
| | - Roberta Soares Faccion
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Hospital do Câncer I, Centro de Pesquisas do Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Praça da Cruz Vermelha 23/6° andar, Rio de Janeiro 20230-130, Brazil
| | - Maurício G. S. Costa
- Fundação Oswaldo Cruz, Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Elodie Pramil
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Alliance for Research in Cancerology-APREC, Tenon Hospital, F-75020 Paris, France
| | - Annette K. Larsen
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Michèle Sabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Stéphane D. Lemaire
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine, UMR7238, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France;
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, UMR8226, F-75005 Paris, France
| | - Vincent Maréchal
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Correspondence: (V.M.); (A.E.E.); Tel.: +33-(0)-1-44-27-31-53 (V.M.); +33-(0)-1-49-28-46-44 (A.E.E.)
| | - Alexandre E. Escargueil
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Correspondence: (V.M.); (A.E.E.); Tel.: +33-(0)-1-44-27-31-53 (V.M.); +33-(0)-1-49-28-46-44 (A.E.E.)
| |
Collapse
|
13
|
Festoff BW, Dockendorff C. The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules 2021; 11:1558. [PMID: 34827556 PMCID: PMC8615608 DOI: 10.3390/biom11111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Interest in the role of coagulation and fibrinolysis in the nervous system was active in several laboratories dating back before cloning of the functional thrombin receptor in 1991. As one of those, our attention was initially on thrombin and plasminogen activators in synapse formation and elimination in the neuromuscular system, with orientation towards diseases such as amyotrophic lateral sclerosis (ALS) and how clotting and fibrinolytic pathways fit into its pathogenesis. This perspective is on neuro-thromboinflammation, emphasizing this emerging concept from studies and reports over more than three decades. It underscores how it may lead to novel therapeutic approaches to treat the ravages of neurotrauma and neurodegenerative diseases, with a focus on PAR1, ALS, and parmodulins.
Collapse
Affiliation(s)
- Barry W. Festoff
- PHLOGISTIX LLC, Department of Neurology, University of Kansas Medical School, Kansas City, MO 64108, USA
| | | |
Collapse
|
14
|
Caserta S, Ghezzi P. Release of redox enzymes and micro-RNAs in extracellular vesicles, during infection and inflammation. Free Radic Biol Med 2021; 169:248-257. [PMID: 33862160 DOI: 10.1016/j.freeradbiomed.2021.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Many studies reported that redox enzymes, particularly thioredoxin and peroxiredoxin, can be released by cells and act as soluble mediators in immunity. Recently, it became clear that peroxiredoxins can be secreted via the exosome-release route, yet it remains unclear how this exactly happens and why. This review will first introduce briefly the possible redox states of protein cysteines and the role of redox enzymes in their regulation. We will then discuss the studies on the extracellular forms of some of these enzymes, their association with exosomes/extracellular vesicles and with exosome micro-RNAs (miRNAs)/mRNAs involved in oxidative processes, relevant in infection and inflammation.
Collapse
Affiliation(s)
- Stefano Caserta
- Department of Biomedical Sciences, Hardy Building, The University of Hull, Hull, HU6 7RX, United Kingdom
| | - Pietro Ghezzi
- Department of Clinical Experimental Medicine, Brighton & Sussex Medical School, Brighton, BN19RY, United Kingdom.
| |
Collapse
|
15
|
Xiao Y, Sun Y, Liu W, Zeng F, Shi J, Li J, Chen H, Tu C, Xu Y, Tan Z, Gong F, Shu X, Zheng F. HMGB1 Promotes the Release of Sonic Hedgehog From Astrocytes. Front Immunol 2021; 12:584097. [PMID: 33868221 PMCID: PMC8047406 DOI: 10.3389/fimmu.2021.584097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
High mobility group box 1 protein (HMGB1) is known to be a trigger of inflammation in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, it may play a different role in some way. Here we investigated the effect of HMGB1 on promoting sonic hedgehog (shh) release from astrocytes as well as the possible signal pathway involved in it. Firstly, shh increased in astrocytes after administration of recombinant HMGB1 or decreased after HMGB1 was blocked when stimulated by homogenate of the onset stage of EAE. Moreover, the expression of HMGB1 receptors, toll-like receptor (TLR) 2 and receptor for advanced glycation end products (RAGE) increased after HMGB1 administration in primary astrocytes. However, the enhancing effect of HMGB1 on shh release from astrocytes was suppressed only after RAGE was knocked out or blocked. Mechanistically, HMGB1 functioned by activating RAGE-mediated JNK, p38, stat3 phosphorylation. Moreover, HMGB1 could induce shh release in EAE. Additionally, intracerebroventricular injection of recombinant shh protein on the onset stage of EAE alleviated the progress of disease and decreased demylination, compared to the mice with normal saline treatment. Overall, HMGB1 promoted the release of shh from astrocytes through signal pathway JNK, p38 and stat3 mediated by receptor RAGE, which may provide new insights of HMGB1 function in EAE.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Glycyrrhizic Acid/pharmacology
- HMGB1 Protein/genetics
- HMGB1 Protein/pharmacology
- Hedgehog Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/prevention & control
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
- Mice
Collapse
Affiliation(s)
- Yifan Xiao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Medicine, Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, China
- Department of Neurobiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wei Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- School of Medicine, Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - FanFan Zeng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chang Tu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- School of Medicine, Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
16
|
Behl T, Sharma E, Sehgal A, Kaur I, Kumar A, Arora R, Pal G, Kakkar M, Kumar R, Bungau S. Expatiating the molecular approaches of HMGB1 in diabetes mellitus: Highlighting signalling pathways via RAGE and TLRs. Mol Biol Rep 2021; 48:1869-1881. [PMID: 33479829 DOI: 10.1007/s11033-020-06130-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) has become one of the major healthcare challenges worldwide in the recent times and inflammation being one of its key pathogenic process/mechanism affect several body parts including the peripheral and central nervous system. High-mobility group box 1 (HMGB1) is one of the major non-histone proteins that plays a key role in triggering the inflammatory response. Upon its release into the extracellular milieu, HMGB1 acts as an "alarmin" for the immune system to initiate tissue repair as a component of the host defense system. Furthermore, HMGB1 along with its downstream receptors like Toll-like receptors (TLRs) and receptors for advanced glycation end products (RAGE) serve as the suitable target for DM. The forthcoming research in the field of diabetes would potentially focus on the development of alternative approaches to target the centre of inflammation that is primarily mediated by HMGB1 to improve diabetic-related complications. This review covers the therapeutic actions of HMGB1 protein, which acts by activating the RAGE and TLR molecules to constitute a functional tripod system, in turn activating NF-κB pathway that contributes to the production of mediators for pro-inflammatory cytokines associated with DM. The interaction between TLR2 and TLR4 with ligands present in the host and the activation of RAGE stimulates various immune and metabolic responses that contribute to diabetes. This review emphasizes to elucidate the role of HMGB1 in the initiation and progression of DM and control over the inflammatory tripod as a promising therapeutic approach in the management of DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Eshita Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Giridhari Pal
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Munish Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
17
|
McCoy MG, Nascimento DW, Veleeparambil M, Murtazina R, Gao D, Tkachenko S, Podrez E, Byzova TV. Endothelial TLR2 promotes proangiogenic immune cell recruitment and tumor angiogenesis. Sci Signal 2021; 14. [PMID: 33986920 DOI: 10.1126/scisignal.abc5371] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptor 2 (TLR2) is implicated in various pathologies, mainly in terms of its function within innate immune cells. However, TLR2 is also present in endothelial cells. Here, we explored the physiological and pathophysiological roles of endothelial TLR2 signaling. We found that TLR2 was highly abundant in the endothelium within various tissues using TLR2-IRES-EGFP reporter mice and was required for proinflammatory endothelial cell function. Endothelial cells lacking TLR2 exhibited reduced proinflammatory potential at the protein, cell, and tissue levels. Loss of endothelial TLR2 blunted the inflammatory response to both exogenous and endogenous danger signals in endothelial cells in culture and in vivo. Endothelial TLR2 promoted tumor growth, angiogenesis, and protumorigenic immune cell recruitment in a mouse model of prostate cancer. Furthermore, the cell surface localization of P-selectin and the subsequent production of other critical cell adhesion molecules (such as E-selectin, ICAM-1 and VCAM-1) that recruit immune cells required endothelial TLR2. Our findings demonstrate that endothelial cells actively contribute to innate immune pathways and propose that endothelial TLR2 has a pathological role in proinflammatory conditions.
Collapse
Affiliation(s)
- Michael G McCoy
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Daniel W Nascimento
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Manoj Veleeparambil
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Rakhylia Murtazina
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Svyatoslav Tkachenko
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Eugene Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| | - Tatiana V Byzova
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, OH, USA 44195
| |
Collapse
|
18
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Min HJ, Park JS, Kim KS, Kang M, Seo JH, Yoon JH, Kim CH, Cho HJ. Serum high-mobility group box 1 protein level correlates with the lowest SaO 2 in patients with sleep apnea: a preliminary study. Braz J Otorhinolaryngol 2021; 88:875-881. [PMID: 33461910 PMCID: PMC9615530 DOI: 10.1016/j.bjorl.2020.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Serum level of high-mobility group box 1 protein is reportedly correlated with the severity of obstructive sleep apnea. Objective We tried to evaluate the possibility of using the serum high-mobility group box 1 protein level as a biologic marker in obstructive sleep apnea patients. Methods We generated a chronic intermittent hypoxia murine model that reflected human obstructive sleep apnea. Obstructive sleep apnea patients who underwent polysomnography were prospectively enrolled. Serum samples were obtained from mice and obstructive sleep apnea patients, and the serum high-mobility group box1 protein level was measured by enzyme-linked immunosorbent assay. Results Serum high-mobility group box 1 protein level was 56.16 ± 30.33 ng/mL in chronic intermittent hypoxia and 18.63 ± 6.20 ng/mL in control mice (p < 0.05). The mean apnea-hypopnea index and respiratory disturbance index values of enrolled obstructive sleep apnea patients were 50.35 ± 27.96 and 51.56 ± 28.53, respectively, and the mean serum high-mobility group box 1 protein level was 30.13 ± 19.97 ng/mL. The apnea–hypopnea index and respiratory disturbance index were not significantly correlated with the serum high-mobility group box 1 protein level (p > 0.05). Instead, this protein level was significantly correlated with lowest arterial oxygen concentration (SaO2) (p < 0.05). Conclusion High-mobility group box 1 protein may be involved in the pathogenesis of obstructive sleep apnea, and the possibility of this protein being a useful biologic marker in obstructive sleep apnea should be further evaluated.
Collapse
Affiliation(s)
- Hyun Jin Min
- Chung-Ang University College of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Seoul, Republic of Korea; Chung-Ang University Hospital, Biomedical Research Institute, Seoul, Republic of Korea
| | - Joon Soon Park
- Chung-Ang University College of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Seoul, Republic of Korea
| | - Kyung Soo Kim
- Chung-Ang University College of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Seoul, Republic of Korea
| | - Miran Kang
- Yonsei University College of Medicine, Department of Otorhinolaryngology, Seoul, Republic of Korea
| | - Ju Hee Seo
- Yonsei University College of Medicine, Department of Otorhinolaryngology, Seoul, Republic of Korea
| | - Joo-Heon Yoon
- Yonsei University College of Medicine, Department of Otorhinolaryngology, Seoul, Republic of Korea; Yonsei University College of Medicine, The Airway Mucus Institute, Seoul, Republic of Korea
| | - Chang-Hoon Kim
- Yonsei University College of Medicine, Department of Otorhinolaryngology, Seoul, Republic of Korea; Yonsei University College of Medicine, The Airway Mucus Institute, Seoul, Republic of Korea
| | - Hyung-Ju Cho
- Yonsei University College of Medicine, Department of Otorhinolaryngology, Seoul, Republic of Korea; Yonsei University College of Medicine, The Airway Mucus Institute, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020; 9:E1664. [PMID: 32664328 PMCID: PMC7407638 DOI: 10.3390/cells9071664] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Liezl Heyman
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Yastira Ramdas
- The Breast Care Centre, Netcare Milpark, 9 Guild Road, Parktown, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
21
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-Mediated Neuroinflammatory Responses in Brain Injuries: Potential Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2020; 21:ijms21134609. [PMID: 32610502 PMCID: PMC7370155 DOI: 10.3390/ijms21134609] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| | - Iekhsan Othman
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
- Correspondence: (Y.N.P.); (C.P.); (M.F.S.); Tel.: +6-01-8396-0285 (Y.N.P.); +30-210-746-2610 (C.P.); +60-3-5514-6000 (ext. 44483) or +60-3-5514-4483 (M.F.S.); Fax: +30-210-746-2703 (C.P.); +601-4283-2410 (M.F.S.)
| |
Collapse
|
22
|
Zhong H, Li X, Zhou S, Jiang P, Liu X, Ouyang M, Nie Y, Chen X, Zhang L, Liu Y, Tao T, Tang J. Interplay between RAGE and TLR4 Regulates HMGB1-Induced Inflammation by Promoting Cell Surface Expression of RAGE and TLR4. THE JOURNAL OF IMMUNOLOGY 2020; 205:767-775. [PMID: 32580932 DOI: 10.4049/jimmunol.1900860] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Receptor for advanced glycation end-products (RAGE) and TLR4 play an important role in the inflammatory response against High-mobility group box 1 protein (HMGB1), a late proinflammatory cytokine and a damage-associated molecular pattern. As cell surface receptors, both RAGE and TLR4 are constantly trafficking between the cytoplasm and plasma membrane. However, whether TLR4 is related to the intracellular transport of RAGE in HMGB1-induced inflammation remains unknown. In this study, we demonstrated that HMGB1 not only increased RAGE expression in both the cytoplasm and plasma membrane but also upregulated the expression of TLR4 in the plasma membrane. Knocking out of RAGE led to decreased MAPK activation, TLR4 cellular membrane expression, and corresponding inflammatory cytokine generation. Meanwhile, inhibiting MAPK activation also decreased TLR4 surface expression. These results indicated that HMGB1 may bind to cell surface RAGE receptors on the cell surface, leading to MAPK activation, thus promoting TLR4 translocation on the cell surface, but does not regulate its transcription and translation. In contrast, TLR4 can increase the transcription and translation of RAGE, which translocates to the cell surface and is able to bind to more HMGB1. The cell surface receptors TLR4 and RAGE bind to HMGB1, leading to the transcription and secretion of inflammatory cytokines. Finally, we also observed these results in the mice pseudofracture model, which is closely related to HMGB1-induced inflammatory response. All these results demonstrated that the interplay between RAGE and TLR4 are critical for HMGB1-induced inflammatory response.
Collapse
Affiliation(s)
- Hanhui Zhong
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaolian Li
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Shuangnan Zhou
- Liver Transplantation Center, the Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ping Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xiaolei Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Mingwen Ouyang
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Ying Nie
- Department of Anesthesiology, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510510, China
| | - Xinying Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangdong 510006, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518040, China; and
| | - Tao Tao
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.,Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524037, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; .,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
23
|
Gacaferi H, Mimpen JY, Baldwin MJ, Snelling SJB, Nelissen RGHH, Carr AJ, Dakin SG. The potential roles of high mobility group box 1 (HMGB1) in musculoskeletal disease: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hamez Gacaferi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
- Department of Orthopaedics Leiden University Medical Centre Leiden The Netherlands
| | - Jolet Y. Mimpen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Mathew J. Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Sarah J. B. Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | | | - Andrew J. Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| | - Stephanie G. Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) Botnar Research Centre University of Oxford Oxford UK
| |
Collapse
|
24
|
Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin JS. Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Front Immunol 2020; 11:1189. [PMID: 32587593 PMCID: PMC7297982 DOI: 10.3389/fimmu.2020.01189] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Most extracellular proteins are secreted via the classical endoplasmic reticulum (ER)/Golgi-dependent secretion pathway; however, some proteins, including a few danger-associated molecular patterns (DAMPs), are secreted via non-classical ER/Golgi-independent secretion pathways. The evolutionarily conserved high mobility group box1 (HMGB1) is a ubiquitous nuclear protein that can be released by almost all cell types. HMGB1 lacks signal peptide and utilizes diverse non-canonical secretion mechanisms for its extracellular export. Although the post-translational modifications of HMGB1 were demonstrated, the oxidation of HMGB1 and secretion mechanisms are not highlighted yet. We currently investigated that peroxiredoxins I and II (PrxI/II) induce the intramolecular disulfide bond formation of HMGB1 in the nucleus. Disulfide HMGB1 is preferentially transported out of the nucleus by binding to the nuclear exportin chromosome-region maintenance 1 (CRM1). We determined the kinetics of HMGB1 oxidation in bone marrow-derived macrophage as early as a few minutes after lipopolysaccharide treatment, peaking at 4 h while disulfide HMGB1 accumulation was observed within the cells, starting to secrete in the late time point. We have shown that HMGB1 oxidation status, which is known to determine the biological activity in extracellular HMGB1, is crucial for the secretion of HMGB1 from the nucleus. This review summarizes selected aspects of HMGB1 redox biology relevant to the induction and propagation of inflammatory diseases. We implicate the immunological significance and the need for novel HMGB1 inhibitors through mechanism-based studies.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Sue Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bin Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Hun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, South Korea
| |
Collapse
|
25
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|
26
|
Rafikov R, Nair V, Sinari S, Babu H, Sullivan JC, Yuan JXJ, Desai AA, Rafikova O. Gender Difference in Damage-Mediated Signaling Contributes to Pulmonary Arterial Hypertension. Antioxid Redox Signal 2019; 31:917-932. [PMID: 30652485 PMCID: PMC6765065 DOI: 10.1089/ars.2018.7664] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims: Pulmonary arterial hypertension (PAH) is a progressive lethal disease with a known gender dimorphism. Female patients are more susceptible to PAH, whereas male patients have a lower survival rate. Initial pulmonary vascular damage plays an important role in PAH pathogenesis. Therefore, this study aimed at investigating the role of gender in activation of apoptosis/necrosis-mediated signaling pathways in PAH. Results: The media collected from pulmonary artery endothelial cells (PAECs) that died by necrosis or apoptosis were used to treat naive PAECs. Necrotic cell death stimulated phosphorylation of toll-like receptor 4, accumulation of interleukin 1 beta, and expression of E-selectin in a redox-dependent manner; apoptosis did not induce any of these effects. In the animal model of severe PAH, the necrotic marker, high mobility group box 1 (HMGB1), was visualized in the pulmonary vascular wall of male but not female rats. This vascular necrosis was associated with male-specific redox changes in plasma, activation of the same inflammatory signaling pathway seen in response to necrosis in vitro, and an increased endothelial-leukocyte adhesion in small pulmonary arteries. In PAH patients, gender-specific changes in redox homeostasis correlated with the prognostic marker, B-type natriuretic peptide. Males had also shown elevated circulating levels of HMGB1 and pro-inflammatory changes. Innovation: This study discovered the role of gender in the initiation of damage-associated signaling in PAH and highlights the importance of the gender-specific approach in PAH therapy. Conclusion: In PAH, the necrotic cell death is augmented in male patients compared with female patients. Factors released from necrotic cells could alter redox homeostasis and stimulate inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Vineet Nair
- Division of Cardiology, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Shripad Sinari
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, Arizona
| | | | | | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, University of Arizona, Tucson, Arizona
| | - Ankit A Desai
- Division of Cardiology, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
27
|
|
28
|
Kang R, Tang D. The Dual Role of HMGB1 in Pancreatic Cancer. JOURNAL OF PANCREATOLOGY 2018; 1:19-24. [PMID: 33442484 PMCID: PMC7802798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of exocrine pancreatic cancer with a 9% five-year survival rate. High mobility group box 1 (HMGB1) is a nuclear protein that can act as a DNA chaperone in the sustainment of chromosome structure and function. When released into the extracellular space, HMGB1 becomes the most well-characterized damage-associated molecular pattern (DAMP) to trigger immune responses. Recent evidence indicates that intracellular HMGB1 is a novel tumor suppressor in PDAC, which is connected to its role in the prevention of oxidative stress, genomic instability, and histone release. However, since extracellular HMGB1 is a DAMP and pro-inflammatory cytokine, cancer cells can also exploit it to survive through the receptor for advanced glycation endproducts (RAGE) in the pancreatic tumor microenvironment. Interestingly, targeting the HMGB1-RAGE pathway has become a new anticancer therapy strategy for PDAC.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
29
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
30
|
Mihm S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int J Mol Sci 2018; 19:ijms19103104. [PMID: 30309020 PMCID: PMC6213769 DOI: 10.3390/ijms19103104] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammatory liver diseases in the absence of pathogens such as intoxication by xenobiotics, cholestatic liver injury, hepatic ischemia-reperfusion injury (I/R), non-alcoholic steatohepatitis (NASH), or alcoholic liver disease (ALD) remain threatening conditions demanding specific therapeutic options. Caused by various different noxae, all these conditions have been recognized to be triggered by danger- or death-associated molecular patterns (DAMPs), discompartmentalized self-structures released by dying cells. These endogenous, ectopic molecules comprise proteins, nucleic acids, adenosine triphosphate (ATP), or mitochondrial compounds, among others. This review resumes the respective modes of their release—passively by necrotic hepatocytes or actively by viable or apoptotic parenchymal cells—and their particular roles in sterile liver pathology. It addresses their sensors and the initial inflammatory responses they provoke. It further addresses a resulting second wave of parenchymal death that might be of different mode, boosting the release of additional, second-line DAMPs. Thus, triggering a more complex and pronounced response. Initial and secondary inflammatory responses comprise the activation of Kupffer cells (KCs), the attraction and activation of monocytes and neutrophil granulocytes, and the induction of type I interferons (IFNs) and their effectors. A thorough understanding of pathophysiology is a prerequisite for identifying rational therapeutic targets.
Collapse
Affiliation(s)
- Sabine Mihm
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany.
| |
Collapse
|
31
|
Huang J, Liu K, Zhu S, Xie M, Kang R, Cao L, Tang D. AMPK regulates immunometabolism in sepsis. Brain Behav Immun 2018; 72:89-100. [PMID: 29109024 DOI: 10.1016/j.bbi.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 01/07/2023] Open
Abstract
Sepsis and septic shock remain challenging for intensive care units worldwide and have limited treatment options; therefore, identification of targetable key players in systemic inflammation and multiple organ failure is urgently needed. Here, we show that AMP-activated protein kinase (AMPK) is a negative regulator of bioenergetic reprogramming in immune cells and suppresses sepsis development in vivo. Mechanistically, AMPK deficiency increases pyruvate kinase isozyme M2 (PKM2)-dependent aerobic glycolysis, which leads to the release of high mobility group box 1 (HMGB1, a late mediator of lethal systemic inflammation) in macrophages and monocytes. Consequently, activation of AMPK by A-769662 protects whereas depletion of AMPKα in myeloid cells promotes endotoxic shock and polymicrobial sepsis in mice. Additionally, administration of the PKM2 inhibitor shikonin reduces lactate production, HMGB1 release, and septic death in AMPKα-deficient mice. These findings suggest that disruption of the AMPK-dependent immunometabolism pathway may contribute to sepsis development and hence constitute a target for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan 410011, People's Republic of China
| | - Ke Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Hunan 410011, People's Republic of China.
| | - Shan Zhu
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, 510510, People's Republic of China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Daolin Tang
- The Third Affiliated Hospital, Center for DAMP Biology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory of Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, 510510, People's Republic of China; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
32
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
33
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Citation(s) in RCA: 3974] [Impact Index Per Article: 662.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
34
|
Elfeky M, Yoneshiro T, Okamatsu-Ogura Y, Kimura K. Adiponectin suppression of late inflammatory mediator, HMGB1-induced cytokine expression in RAW264 macrophage cells. J Biochem 2018; 163:143-153. [PMID: 29048484 DOI: 10.1093/jb/mvx069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 12/27/2022] Open
Abstract
High-mobility group protein B1 (HMGB1) is a late inflammatory mediator released from inflammatory cells when stimulated, resulting in exaggerating septic symptoms. We recently demonstrated that full-length adiponectin, a potent anti-inflammatory adipokine, inhibits lipopolysaccharide-induced HMGB1 release. However, the effects of adiponectin on HMGB1-induced exaggerating signals currently remain unknown. This study aimed to investigate the effects of adiponectin on the pro-inflammatory function of HMGB1 in RAW264 macrophage cells. The treatment of RAW264 cells with HMGB1 significantly up-regulated the mRNA expression of tumour necrosis factor-α, interleukin-1β and C-X-C motif chemokine 10. HMGB1-induced cytokine expression was markedly suppressed by a toll-like receptor 4 (TLR4) antagonist and slightly suppressed by an antagonist of the receptor for advanced glycation end products. A prior treatment with full-length or globular adiponectin dose-dependently suppressed all types of HMGB1-induced cytokine expression, and this suppression was abolished by compound C, an AMPK inhibitor, but not by the haem oxygenase (HO)-1 inhibitor, zinc protoporphyrin IX. Both forms of adiponectin also reduced the mRNA expression of TLR4. These results suggest that full-length and globular adiponectin suppress HMGB1-induced cytokine expression through an AMPK-mediated HO-1-independent pathway.
Collapse
Affiliation(s)
- Mohamed Elfeky
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi9, Kita-ku, Sapporo 060-0818, Japan.,Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Edfina, Rosetta-Line, Rashid, Behera Governate 22758, Egypt
| | - Takeshi Yoneshiro
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi9, Kita-ku, Sapporo 060-0818, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiro Kimura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
35
|
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High mobility group box-1 (HMGb1) protein, a nuclear non-histone protein that is released or secreted from the cell in response to damage or stress, is a sentinel for the immune system that plays a critical role in cell survival/death pathways. This review highlights key features of the endogenous danger-associated molecular pattern (DAMP) protein, HMGb1 in the innate inflammatory response along with various cofactors and receptors that regulate its downstream effects. The evidence demonstrating increased levels of HMGb1 in human inflammatory diseases and conditions is presented, along with a summary of current small molecule or peptide-like antagonists proven to specifically target HMGb1. Additionally, we delineate the measures needed toward validating this protein as a clinically relevant biomarker or bioindicator and as a relevant drug target.
Collapse
Affiliation(s)
- Sonya VanPatten
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| | - Yousef Al-Abed
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| |
Collapse
|
36
|
Schille S, Crauwels P, Bohn R, Bagola K, Walther P, van Zandbergen G. LC3-associated phagocytosis in microbial pathogenesis. Int J Med Microbiol 2017; 308:228-236. [PMID: 29169848 DOI: 10.1016/j.ijmm.2017.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Phagocytosis is essential for uptake and elimination of pathogenic microorganisms. Autophagy is a highly conserved mechanism for incorporation of cellular constituents to replenish nutrients by degradation. Recently, parts of the autophagy machinery - above all microtubule-associated protein 1 light chain 3 (LC3) - were found to be specifically recruited to phagosomal membranes resulting in phagosome-lysosome fusion and efficient degradation of internalized cargo in a process termed LC3-associated phagocytosis (LAP). Many pathogenic bacterial, fungal and parasitic microorganisms reside within LAP-targeted single-membrane phagosomes or vacuoles after infection of host cells. In this minireview we describe the state of knowledge on the interaction of pathogens with LAP or LAP-like pathways and report on various pathogens that have evolved strategies to circumvent degradation in LAP compartments.
Collapse
Affiliation(s)
- Stefan Schille
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Peter Crauwels
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Rebecca Bohn
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Katrin Bagola
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Paul Walther
- Central Facility for EM, Ulm University, Ulm, Germany
| | - Ger van Zandbergen
- Department of Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany; Institute for Immunology, University Medicine Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
37
|
Imbalzano E, Quartuccio S, Di Salvo E, Crea T, Casciaro M, Gangemi S. Association between HMGB1 and asthma: a literature review. Clin Mol Allergy 2017. [PMID: 28630596 PMCID: PMC5471678 DOI: 10.1186/s12948-017-0068-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Recently, some studies demonstrated that HMGB1, as proinflammatory mediator belonging to the alarmin family, has a key role in different acute and chronic immune disorders. Asthma is a complex disease characterised by recurrent and reversible airflow obstruction associated to airway hyper-responsiveness and airway inflammation. Objective This literature review aims to analyse advances on HMGB1 role, employment and potential diagnostic application in asthma. Methods We reviewed experimental studies that investigated the pathogenetic role of HMGB in bronchial airway hyper-responsiveness, inflammation and the correlation between HMGB1 level and asthma. Results A total of 19 studies assessing the association between HMGB1 and asthma were identified. Conclusions What emerged from this literature review was the confirmation of HMGB-1 involvement in diseases characterised by chronic inflammation, especially in pulmonary pathologies. Findings reported suggest a potential role of the alarmin in being a stadiation method and a marker of therapeutic efficacy; finally, inhibiting HMGB1 in humans in order to contrast inflammation should be the aim for future further studies.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sebastiano Quartuccio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Eleonora Di Salvo
- IBIM-CNR Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy
| | - Teresa Crea
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
38
|
Abstract
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver ischemia-reperfusion injury involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver ischemia-reperfusion injury in patients.
Collapse
|
39
|
Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, Hoda MN, Dhandapani KM. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2614-2626. [PMID: 28533056 DOI: 10.1016/j.bbadis.2017.05.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term morbidity worldwide. Despite decades of pre-clinical investigation, therapeutic strategies focused on acute neuroprotection failed to improve TBI outcomes. This lack of translational success has necessitated a reassessment of the optimal targets for intervention, including a heightened focus on secondary injury mechanisms. Chronic immune activation correlates with progressive neurodegeneration for decades after TBI; however, significant challenges remain in functionally and mechanistically defining immune activation after TBI. In this review, we explore the burgeoning evidence implicating the acute release of damage associated molecular patterns (DAMPs), such as adenosine 5'-triphosphate (ATP), high mobility group box protein 1 (HMGB1), S100 proteins, and hyaluronic acid in the initiation of progressive neurological injury, including white matter loss after TBI. The role that pattern recognition receptors, including toll-like receptor and purinergic receptors, play in progressive neurological injury after TBI is detailed. Finally, we provide support for the notion that resident and infiltrating macrophages are critical cellular targets linking acute DAMP release with adaptive immune responses and chronic injury after TBI. The therapeutic potential of targeting DAMPs and barriers to clinical translational, in the context of TBI patient management, are discussed.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - Nancy M Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
40
|
Gougeon ML. Alarmins and central nervous system inflammation in HIV-associated neurological disorders. J Intern Med 2017; 281:433-447. [PMID: 27862491 DOI: 10.1111/joim.12570] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the era of highly active antiretroviral therapy (HAART), HIV-1-associated neurocognitive disorders (HAND) persist in infected individuals with adequate immunological and virological status. Risk factors for cognitive impairment include hepatitis C virus co-infection, host genetic factors predisposing to HAND, the early establishment of the virus in the CNS and its persistence under HAART; thus, the CNS is an important reservoir for HIV. Microglial cells are permissive to HIV-1, and NLRP3 inflammasome-associated genes were found expressed in brains of HIV-1-infected persons, contributing to brain disease. Inflammasomes can be triggered by alarmins or danger-associated molecular patterns (DAMPs), which directly stimulate the production of proinflammatory mediators by glial cells, contribute to blood-brain barrier injury through induction of release of various proteases and allow the passage of infected macrophages, and trigger IL-1β release from primed cells. Amongst alarmins involved in HIV-1-induced neuropathogenesis, IL-33 and high-mobility group box 1 (HMGB1) are of particular interest. Neurocognitive alterations were recently associated with dysregulation of the IL-33/ST2 axis in the CNS, leading to the induction of neuronal apoptosis, decrease in synaptic function and neuroinflammation. Specific biomarkers, including HMGB1 and anti-HMGB1 antibodies, have been identified in cerebrospinal fluid from patients with HAND, correlated with immune activation and identifying a very early stage of neurocognitive impairment that precedes changes in metabolites detected by magnetic resonance spectroscopy. Moreover, HMGB1 plays a crucial role in HIV-1 persistence in dendritic cells and in the constitution of viral reservoirs. In this review, the mechanisms whereby alarmins contribute to HIV-1-induced CNS inflammation and neuropathogenesis will be discussed.
Collapse
Affiliation(s)
- M-L Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| |
Collapse
|
41
|
Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E. The self-association of HMGB1 and its possible role in the binding to DNA and cell membrane receptors. FEBS Lett 2017; 591:282-294. [PMID: 28027393 DOI: 10.1002/1873-3468.12545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/04/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
Abstract
High mobility group box 1 (HMGB1), a chromatin protein, interacts with DNA and controls gene expression. However, when HMGB1 is released from apoptotic or damaged cells, it triggers proinflammatory reactions by interacting with various receptors, mainly receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The self-association of HMGB1 has been found to be crucial for its DNA-related biological functions. It is influenced by several factors, such as ionic strength, pH, specific divalent metal cations, redox environment and acetylation. This self-association may also play a role in the interaction with RAGE and TLRs and the concomitant inflammatory responses. Future studies should address the potential role of HMGB1 self-association on its interactions with DNA, RAGE and TLRs, as well as the influence of physicochemical factors in different cellular environments on these interactions.
Collapse
Affiliation(s)
- Wresti L Anggayasti
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Ricardo L Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Steve Bottomley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Erik Helmerhorst
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
42
|
Sun Q, Loughran P, Shapiro R, Shrivastava IH, Antoine DJ, Li T, Yan Z, Fan J, Billiar TR, Scott MJ. Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology 2017; 65:253-268. [PMID: 27774630 PMCID: PMC5191963 DOI: 10.1002/hep.28893] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Sterile liver inflammation, such as liver ischemia-reperfusion, hemorrhagic shock after trauma, and drug-induced liver injury, is initiated and regulated by endogenous mediators including DNA and reactive oxygen species. Here, we identify a mechanism for redox-mediated regulation of absent in melanoma 2 (AIM2) inflammasome activation in hepatocytes after redox stress in mice, which occurs through interaction with cytosolic high mobility group box 1 (HMGB1). We show that in liver during hemorrhagic shock in mice and in hepatocytes after hypoxia with reoxygenation, cytosolic HMGB1 associates with AIM2 and is required for activation of caspase-1 in response to cytosolic DNA. Activation of caspase-1 through AIM2 leads to subsequent hepatoprotective responses such as autophagy. HMGB1 binds to AIM2 at a non-DNA-binding site on the hematopoietic interferon-inducible nuclear antigen domain of AIM2 to facilitate inflammasome and caspase-1 activation in hepatocytes. Furthermore, binding of HMGB1 to AIM2 is stronger with fully reduced all-thiol HMGB1 than with partially oxidized disulfide-HMGB1, and binding strength corresponds to caspase-1 activation. These data suggest that HMGB1 redox status regulates AIM2 inflammasome activation. CONCLUSION These findings suggest a novel and important mechanism for regulation of AIM2 inflammasome activation in hepatocytes during redox stress and may suggest broader implications for how this and other inflammasomes are activated and how their activation is regulated during cell stress, as well as the mechanisms of inflammasome regulation in nonimmune cell types. (Hepatology 2017;65:253-268).
Collapse
Affiliation(s)
- Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Richard Shapiro
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Tunliang Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Department of Anesthesiology, Third Xiangya Hospital of Central South University, Hunan, China
| | - Zhengzheng Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Surgical Research, Veterans Affairs Pittsburgh Healthcare Systems, Pittsburgh, PA
| | | | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
43
|
Reed KR, Song F, Young MA, Hassan N, Antoine DJ, Gemici NPB, Clarke AR, Jenkins JR. Secreted HMGB1 from Wnt activated intestinal cells is required to maintain a crypt progenitor phenotype. Oncotarget 2016; 7:51665-51673. [PMID: 27323825 PMCID: PMC5239505 DOI: 10.18632/oncotarget.10076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/29/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal cancer (CRC) arises via multiple genetic changes. Mutation of the tumour suppressor gene APC, a key regulator of Wnt signalling, is recognised as a frequent early driving mutation in CRC. We have previously shown that conditional loss of Apc within the murine small intestine (Apcfloxmice) results in acute Wnt signalling activation, altered crypt-villus architecture and many hallmarks of neoplasia. Our transctipomic profiling (Affymetrix Microarrays) and proteomic profiling (iTRAQ-QSTAR) of Apc-deficient intestine inferred the involvement of High Mobility Group Box 1 (Hmgb1) in CRC pathogenesis. Here we assess the contribution of HMGB1 to the crypt progenitor phenotype seen following Apc loss. RESULTS Elevated HMGB1 was confirmed in intestinal epithelia and serum following conditional loss of Apc. Treatment of Apcflox mice with anti-HMGB1 neutralising antibody significantly reduced many of the crypt progenitor phenotypes associated with Apc loss; proliferation and apoptosis levels were reduced, cell differentiation was restored and the expansion of stem cell marker expression was eradicated. METHODS Hmgb1 levels in intestinal epithelia and serum in Apcflox and ApcMin mice were assessed using qRT-PCR, Western blot and ELISA assays. The functional importance of elevated extracellular Hmgb1 was assessed using an anti-HMGB1 neutralising antibody in Apcflox mice. CONCLUSIONS HMGB1 is expressed and secreted from intestinal epithelial cells in response to Wnt signalling activation. This secreted HMGB1 is required to maintain nearly all aspects of the crypt progenitor phenotype observed following Apc loss and add to the body of accumulating evidence indicating that targeting HMGB1 may be a viable novel therapeutic approach.
Collapse
Affiliation(s)
- Karen R. Reed
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Fei Song
- Infrafrontier GmbH, Neuherberg / München, 85764, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Maddy A. Young
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Nurudeen Hassan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- Cardiff School of Health Sciences at Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
| | - Daniel J. Antoine
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Nesibe-Princess B. Gemici
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - John R. Jenkins
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
44
|
Exner R, Sachet M, Arnold T, Zinn-Zinnenburg M, Michlmayr A, Dubsky P, Bartsch R, Steger G, Gnant M, Bergmann M, Bachleitner-Hofmann T, Oehler R. Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy. Cancer Med 2016; 5:2350-8. [PMID: 27457217 PMCID: PMC5055166 DOI: 10.1002/cam4.827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022] Open
Abstract
The response to neoadjuvant chemotherapy in breast cancer patients is usually assessed by pCR and RCB score. However, the prognostic value of these parameters is still in discussion. We showed recently that an epirubicin/docetaxel therapy is associated with an increase in the cell death marker high‐mobility group box 1 protein (HMGB1) in the circulation. Here, we investigate whether this increase correlates with the long‐term outcome. Thirty‐six early breast cancer patients under neoadjuvant epirubicin/docetaxel combination chemotherapy were included in this study. To determine the immediate effect of this treatment on HMGB1, we collected blood samples before and 24–96 h after the initial dose. This time course was then compared to the 5‐year follow‐up of the patients. HMGB1 levels varied before chemotherapy between 4.1 and 11.3 ng/mL and reacted differently in response to therapy. Some patients showed an increase while others did not show any changes. Therefore, we subdivided the patient collective into two groups: patients with an at least 1.1 ng/mL increase in HMGB1 and patients with smaller changes. The disease‐free survival was longer in the HMGB1 increase group (56.2 months vs. 46.6 months), but this difference did not reach significance. The overall survival (OS) was significantly better in patients with an increase in HMGB1 (log rank P = 0.021). These data suggest that an immediate increase in HMGB1 levels correlates with improved outcome in early breast cancer patients receiving neoadjuvant chemotherapy, and may be a valuable complementary biomarker for early estimation of prognosis.
Collapse
Affiliation(s)
- Ruth Exner
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Monika Sachet
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Tobias Arnold
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Mercedes Zinn-Zinnenburg
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Anna Michlmayr
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Peter Dubsky
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Rupert Bartsch
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Guenther Steger
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Michael Gnant
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Michael Bergmann
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Thomas Bachleitner-Hofmann
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria
| | - Rudolf Oehler
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, A-1090, Austria.
| |
Collapse
|
45
|
Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, Zhu S, Li W, Li J, de Kleijn DP, Olofsson PS, Warren HS, He M, Al-Abed Y, Roth J, Antoine DJ, Chavan SS, Andersson U, Tracey KJ. Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 2016; 1:85375. [PMID: 27294203 DOI: 10.1172/jci.insight.85375] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secreted by activated cells or passively released by damaged cells, extracellular HMGB1 is a prototypical damage-associated molecular pattern (DAMP) inflammatory mediator. During the course of developing extracorporeal approaches to treating injury and infection, we inadvertently discovered that haptoglobin, the acute phase protein that binds extracellular hemoglobin and targets cellular uptake through CD163, also binds HMGB1. Haptoglobin-HMGB1 complexes elicit the production of antiinflammatory enzymes (heme oxygenase-1) and cytokines (e.g., IL-10) in WT but not in CD163-deficient macrophages. Genetic disruption of haptoglobin or CD163 expression significantly enhances mortality rates in standardized models of intra-abdominal sepsis in mice. Administration of haptoglobin to WT and to haptoglobin gene-deficient animals confers significant protection. These findings reveal a mechanism for haptoglobin modulation of the inflammatory action of HMGB1, with significant implications for developing experimental strategies targeting HMGB1-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Huan Yang
- Laboratories of Biomedical Science and
| | - Haichao Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Shu Zhu
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Wei Li
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | - Dominique Pv de Kleijn
- Laboratory of Cardiovascular Immunology, University Medical Center, Utrecht, Netherlands
| | | | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | - Jesse Roth
- Diabetes and Diabetes-related Disorders, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Daniel J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
46
|
Abstract
RATIONALE Alcoholism is a primary, chronic relapsing disease of brain reward, motivation, memory, and related circuitry. It is characterized by an individual's continued drinking despite negative consequences related to alcohol use, which is exemplified by alcohol use leading to clinically significant impairment or distress. Chronic alcohol consumption increases the expression of innate immune signaling molecules (ISMs) in the brain that alter cognitive processes and promote alcohol drinking. OBJECTIVES Unraveling the mechanisms of alcohol-induced neuroimmune gene induction is complicated by positive loops of multiple cytokines and other signaling molecules that converge on nuclear factor kappa-light-chain-enhancer of activated B cells and activator protein-1 leading to induction of additional neuroimmune signaling molecules that amplify and expand the expression of ISMs. RESULTS Studies from our laboratory employing reverse transcription polymerase chain reaction (RT-PCR) to assess mRNA, immunohistochemistry and Western blot analysis to assess protein expression, and others suggest that ethanol increases brain neuroimmune gene and protein expression through two distinct mechanisms involving (1) systemic induction of innate immune molecules that are transported from blood to the brain and (2) the direct release of high-mobility group box 1 (HMGB1) from neurons in the brain. Released HMGB1 signals through multiple receptors, particularly Toll-like receptor (TLR) 4, that potentiate cytokine receptor responses leading to a hyperexcitable state that disrupts neuronal networks and increases excitotoxic neuronal death. Innate immune gene activation in brain is persistent, consistent with the chronic relapsing disease that is alcoholism. Expression of HMGB1, TLRs, and other ISMs is increased several-fold in the human orbital frontal cortex, and expression of these molecules is highly correlated with each other as well as lifetime alcohol consumption and age of drinking onset. CONCLUSIONS The persistent and cumulative nature of alcohol on HMGB1 and TLR gene induction support their involvement in alcohol-induced long-term changes in brain function and neurodegeneration.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, CB# 7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, 27599-7178, USA.
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, CB# 7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, 27599-7178, USA
| |
Collapse
|
47
|
Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-Dependent HMGB1 Isoforms as Pivotal Co-Ordinators of Drug-Induced Liver Injury: Mechanistic Biomarkers and Therapeutic Targets. Antioxid Redox Signal 2016; 24:652-65. [PMID: 26481429 DOI: 10.1089/ars.2015.6406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.
Collapse
Affiliation(s)
- Jonathan D Lea
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Joanna I Clarke
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Niamh McGuire
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
48
|
High Mobility Group-Box 1 (HMGB1) levels are increased in amniotic fluid of women with intra-amniotic inflammation-determined preterm birth, and the source may be the damaged fetal membranes. Cytokine 2016; 81:82-7. [PMID: 26954343 DOI: 10.1016/j.cyto.2016.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND High Mobility Group Box-1 (HMGB1) is considered a prototype alarmin molecule. Upon its extracellular release, HMGB1 engages pattern recognition receptors and the Receptor for Advanced Glycation End-products (RAGE) followed by an outpouring of inflammatory cytokines, including interleukin (IL)-6. METHODS We assayed the amniotic fluid (AF) levels of HMGB1 and IL-6 in 255 women that either had a normal pregnancy outcome or delivered preterm. Immunohistochemistry on fetal membranes was used for cellular localization and validation of immunoassay findings. HMGB1 also was analyzed in amniochorion tissue explants subjected to endotoxin. RESULTS AF HMGB1 levels are not gestational age regulated but are increased in women with intra-amniotic inflammation and preterm birth. The likely source is the damaged amniochorion, as demonstrated by immunohistochemistry and explant experiments. CONCLUSIONS Our research supports a role for HMGB1 in the inflammatory response leading to preterm birth. As a delayed phase cytokine, in utero exposure to elevated AF HMGB1 levels may have an impact on the newborn beyond the time of birth.
Collapse
|
49
|
Gangemi S, Casciaro M, Trapani G, Quartuccio S, Navarra M, Pioggia G, Imbalzano E. Association between HMGB1 and COPD: A Systematic Review. Mediators Inflamm 2015; 2015:164913. [PMID: 26798204 PMCID: PMC4698778 DOI: 10.1155/2015/164913] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
HMGB1 is an alarmin, a protein that warns and activates inflammation. Chronic obstructive pulmonary disease (COPD) is characterised by a progressive airflow obstruction and airway inflammation. Current anti-inflammatory therapies are poorly effective in maintaining lung function and symptoms of COPD. This underlines the need for finding new molecular targets involved in disease pathogenesis in order to block pathology progression. This review aims to analyse latest advances on HMGB1 role, utilisation, and potential application in COPD. To this purpose we reviewed experimental studies that investigated this alarmin as marker as well as a potential treatment in chronic obstructive pulmonary disease. This systematic review was conducted according to PRISMA guidelines. In almost all the studies, it emerged that HMGB1 levels are augmented in smokers and in patients affected by COPD. It emerged that cigarette smoking, the most well-known causative factor of COPD, induces neutrophils death and necrosis. The necrosis of neutrophil cells leads to HMGB1 release, which recruits other neutrophils in a self-maintaining process. According to the results reported in the paper both inhibiting HMGB1 and its receptor (RAGE) and blocking neutrophils necrosis (inducted by cigarette smoking) could be the aim for further studies.
Collapse
Affiliation(s)
- Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital “G. Martino”, University of Messina, 98125 Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital “G. Martino”, University of Messina, 98125 Messina, Italy
| | - Giovanni Trapani
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sebastiano Quartuccio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, University Pole Annunziata, 98168 Messina, Italy
| | - Giovanni Pioggia
- Institute of Applied Sciences and Intelligent Systems (ISASI), Messina Unit, 98100 Messina, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
50
|
Weber DJ, Allette YM, Wilkes DS, White FA. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction. Antioxid Redox Signal 2015; 23:1316-28. [PMID: 25751601 PMCID: PMC4685484 DOI: 10.1089/ars.2015.6299] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Deceased patients who have suffered severe traumatic brain injury (TBI) are the largest source of organs for lung transplantation. However, due to severely compromised pulmonary lung function, only one-third of these patients are eligible organ donors, with far fewer capable of donating lungs (∼ 20%). As a result of this organ scarcity, understanding and controlling the pulmonary pathophysiology of potential donors are key to improving the health and long-term success of transplanted lungs. RECENT ADVANCES Although the exact mechanism by which TBI produces pulmonary pathophysiology remains unclear, it may be related to the release of damage-associated molecular patterns (DAMPs) from the injured tissue. These heterogeneous, endogenous host molecules can be rapidly released from damaged or dying cells and mediate sterile inflammation following trauma. In this review, we highlight the interaction of the DAMP, high-mobility group box protein 1 (HMGB1) with the receptor for advanced glycation end-products (RAGE), and toll-like receptor 4 (TLR4). CRITICAL ISSUES Recently published studies are reviewed, implicating the release of HMGB1 as producing marked changes in pulmonary inflammation and physiology following trauma, followed by an overview of the experimental evidence demonstrating the benefits of blocking the HMGB1-RAGE axis. FUTURE DIRECTIONS Targeting the HMGB1 signaling axis may increase the number of lungs available for transplantation and improve long-term benefits for organ recipient patient outcomes.
Collapse
Affiliation(s)
- Daniel J Weber
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Surgery, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yohance M Allette
- 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine , Indianapolis, Indiana
| | - David S Wilkes
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,4 Department of Medicine, Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Fletcher A White
- 1 Center for Immunobiology, Indiana University School of Medicine , Indianapolis, Indiana.,5 Department of Anesthesia, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|