1
|
Rahmannia M, Poudineh M, Mirzaei R, Aalipour MA, Shahidi Bonjar AH, Goudarzi M, Kheradmand A, Aslani HR, Sadeghian M, Nasiri MJ, Sechi LA. Strain-specific effects of probiotics on depression and anxiety: a meta-analysis. Gut Pathog 2024; 16:46. [PMID: 39245752 PMCID: PMC11382490 DOI: 10.1186/s13099-024-00634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Depression and anxiety are pervasive mental health disorders with substantial global burdens. Probiotics, live microorganisms known for their health benefits, have emerged as a potential therapeutic intervention for these conditions. This systematic review and meta-analysis aim to evaluate the strain-specific effects of probiotics on relieving depressive and anxiety symptoms while elucidating underlying mechanisms. METHODS EMBASE, Cochrane CENTRAL and PubMed/Medline were systematically queried to identify studies released until May 15, 2024. Randomized Controlled Trials (RCTs) that employed standardized assessment tools for depression and anxiety namely Beck Depression Inventory (BDI), Hamilton Depression Rating Scale (HAMD), Depression Anxiety Stress Scales (DASS), or Montgomery-Asberg Depression Rating Scale (MADRS) were included. RESULTS 12 RCTs involving 707 participants were included. Seven RCTs utilizing the BDI questionnaire demonstrated a significant decrease in depressive symptoms favoring probiotics containing strains such as Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus salivarius, Bifidobacterium bifidum, Bifidobacterium lactis, Bifidobacterium breve, and Bifidobacterium longum (MD: -2.69, CI95%: -4.22/-1.16, p value: 0.00). Conversely, RCTs using HAMD showed a non-significant reduction in depressive symptoms (MD: -1.40, CI95%: -3.29/0.48, p value: 0.14). RCTs employing DASS and MADRS scales also showed no significant differences. CONCLUSION This meta-analysis offers valuable insights into the strain-specific effects of probiotics containing Lactobacillus and Bifidobacterium species on depressive and anxiety symptoms. While our findings suggest a significant reduction in depressive symptoms based on the BDI scale favoring probiotics, the lack of significant effects observed on the HAMD, DASS, and MADRS scales underscores the complexity inherent in these conditions. It is imperative to acknowledge the mixed results across different measurement scales, indicating the need for cautious interpretation. Therefore, we advocate for a nuanced understanding of probiotics' impacts on various dimensions of mood, emphasizing the necessity for further research.
Collapse
Affiliation(s)
- Maryam Rahmannia
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Poudineh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Mirzaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Aalipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hashem Shahidi Bonjar
- Scientist of Dental Materials and Restorative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kheradmand
- Department of Psychiatry, Taleghani Hospital Clinical Research Development Unit, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aslani
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghian
- Department of Psychiatry, Taleghani Hospital Clinical Research Development Unit, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Zhang M, Feng Y, Zhong Z, Du Q, Yu W, Wu J, Huang X, Huang Z, Xie G, Shu H. Host Gut-Derived Probiotic, Exiguobacterium acetylicum G1-33, Improves Growth, Immunity, and Resistance to Vibrio harveyi in Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Microorganisms 2024; 12:1688. [PMID: 39203530 PMCID: PMC11357496 DOI: 10.3390/microorganisms12081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Several exogenous probiotics are applicable in fish culture; however, challenges in isolation and verification have hindered the full utilization of numerous host probiotics. Therefore, this study aimed to apply the host probiotic Exiguobacterium acetylicum G1-33 to hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) cultures and explore its mechanism of action. In total, 360 hybrid grouper were divided into four groups, which were fed the following for 60 days: three received commercial feed with varying concentrations of E. acetylicum G1-33 (106, 108, and 1010 CFU/g), while a control group received commercial feed. The results showed that supplementation with 106 and 108 CFU/g of E. acetylicum G1-33 enhanced gut morphology, upregulated growth-related genes (ghr1, igf-2, s6k1, tor), and promoted growth, with supplementation with 108 CFU/g resulting in the most notable enhancement. However, supplementation with 1010 CFU/g inhibited growth, possibly because of changes in intestinal morphology. Additionally, supplementation with E. acetylicum G1-33 upregulated the expression of immune-related genes (c3, myd88, Cu/Zn-sod, tlr3, and tnf2) in the liver and head kidney but led to an increase in malondialdehyde content, as well as a decrease in alkaline phosphatase and acid phosphatase activities, in the liver and serum, indicating increased oxidative stress. Moreover, supplementation with 106 and 108 CFU/g E. acetylicum G1-33 enhanced the widespread expression of immune-related genes in the head kidney and liver, respectively, and improved resistance to Vibrio harveyi, whereas supplementation with 1010 CFU/g weakened this resistance. In conclusion, E. acetylicum G1-33, particularly at 108 CFU/g, emerged as an effective probiotic, optimizing growth performance and immunity in hybrid grouper. This research is pioneering in its application of E. acetylicum in mariculture, potentially broadening the range of probiotic strategies in aquaculture.
Collapse
Affiliation(s)
- Mingqing Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuwei Feng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Zhongxuan Zhong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Qianping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.Y.); (X.H.); (Z.H.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510500, China;
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.Y.); (X.H.); (Z.H.)
| | - Zhong Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China; (W.Y.); (X.H.); (Z.H.)
| | - Guangting Xie
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (M.Z.); (Y.F.); (Z.Z.); (Q.D.); (G.X.)
| |
Collapse
|
3
|
Vivekanandan KE, Kasimani R, Kumar PV, Meenatchisundaram S, Sundar WA. Overview of cloning in lactic acid bacteria: Expression and its application of probiotic potential in inflammatory bowel diseases. Biotechnol Appl Biochem 2024; 71:881-895. [PMID: 38576028 DOI: 10.1002/bab.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Inflammatory bowel disease (IBD) imposes a significant impact on the quality of life for affected individuals. However, there was a current lack of a systematic summary regarding the latest epidemic trends and the underlying pathogenesis of IBD. This highlights the need for a thorough examination of both the epidemiological aspects of IBD and the specific mechanisms by which lactic acid bacteria (LAB) contribute to mitigating this condition. In developed countries, higher incidences and death rates of IBD have been observed, influenced by a combination of environmental and genetic factors. LAB offer significant advantages and substantial potential for enhancing IBD treatment. LAB's capabilities include the production of bioactive metabolites, regulation of gut immunity, protection of intestinal mechanical barriers, inhibition of oxidative damage, and restoration of imbalanced gut microbiota. The review suggests that screening effective LAB using cell models and metabolites, optimizing LAB intake through dose-effect studies, enhancing utilization through nanoencapsulation and microencapsulation, investigating mechanisms to deepen the understanding of LAB, and refining clinical study designs. These efforts aim to contribute to comprehending the epidemic trend, pathogenesis, and treatment of IBD, ultimately fostering the development of targeted therapeutic products, such as LAB-based interventions.
Collapse
Affiliation(s)
- K E Vivekanandan
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - R Kasimani
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - P Vinoth Kumar
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - S Meenatchisundaram
- Department of Microbiology, Shree Nehru Maha Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - William Arputha Sundar
- Department of Pharmaceuticals, Swamy Vivekananda College of Pharmacy, Namakkal, Tamil Nadu, India
| |
Collapse
|
4
|
Hameed M, Noor F, Hussain H, Khan RG, Khattak Haroon Ur Rashid S, Haroon Ur Rashid S, Atiq A, Ali H, Rida SE, Abbasi MA. Gut-Brain Axis: Investigating the Effects of Gut Health on Cognitive Functioning in Adults. Cureus 2024; 16:e64286. [PMID: 39130956 PMCID: PMC11315957 DOI: 10.7759/cureus.64286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION The gut-brain axis is a bidirectional communication network linking the gastrointestinal tract and the central nervous system via neuronal, hormonal, and antibody signaling pathways. Central to this connection is gut health, encompassing the balance and functionality of gut microbiota, which significantly impacts on mental and cognitive health. This study investigates the association between gut health and cognitive functioning in adults, highlighting the mechanisms by which gut microbiota influence brain health. OBJECTIVE To examine the effects of gut health on adult cognitive performance, with a focus on the processes by which gut microbiota impacts brain health. METHODS A quantitative cross-sectional study was conducted in Islamabad from January 2024 to April 2024, involving 140 adult participants. Data were collected using a comprehensive 16-item gut health questionnaire and the cognition self-assessment rating scale (C-SARS). The psychometric properties of these scales were assessed, and the data were analyzed using Statistical Product and Service Solutions (SPSS, v26; IBM SPSS Statistics for Windows, Armonk, NY). Analytical and descriptive statistics, including regression, chi-square, independent sample t-tests, and mean and standard deviation, were applied. RESULTS The study found moderate associations between gut health and cognitive performance, particularly in memory and processing speed (R² = 0.17, β = -1.9, p = 0.12 for general cognition; R² = 0.01, β = -0.98, p = 0.02 for memory; R² = 0.03, β = -0.18, p = 0.03 for processing speed). Gender and marital status differences were significant, with males exhibiting better gut health scores than females (M = 34.1, SD = 3.2 vs. M = 31.2, SD = 3.2, p = 0.00), and singles showing better cognitive performance compared to married individuals (M = 9.4, SD = 5.4 vs. M = 6.5, SD = 3.7, p = 0.03). CONCLUSION The study highlights significant associations between gut health and cognitive functions, suggesting that gut microbiota composition can influence cognitive performance. Gender and marital status differences underscore the need to consider individual differences in gut-brain axis research. Future studies should replicate these findings in larger samples and explore gut microbiota-targeted interventions for cognitive health enhancement.
Collapse
Affiliation(s)
- Muddsar Hameed
- Department of Clinical Psychology, Shifa Tameer-e-Millat University, Islamabad, PAK
| | - Fatima Noor
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| | - Hamza Hussain
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| | - Raja Gohar Khan
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| | | | | | - Alina Atiq
- Department of Internal Medicine, Al Nafees Medical College and Hospital, Islamabad, PAK
| | - Hassan Ali
- Department of Psychology, Birmingham City University, Birmingham, GBR
| | - Seerat E Rida
- Department of Internal Medicine, Bahria University Medical and Dental College, Karachi, PAK
| | - Mahrukh Anwar Abbasi
- Department of Internal Medicine, Foundation University Medical College, Islamabad, PAK
| |
Collapse
|
5
|
Frank CE, Sadeghi J, Heath DD, Semeniuk CAD. Behavioral transcriptomic effects of triploidy and probiotic therapy (Bifidobacterium, Lactobacillus, and Lactococcus mixture) on juvenile Chinook salmon (Oncorhynchus tshawytscha). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12898. [PMID: 38817102 PMCID: PMC11140169 DOI: 10.1111/gbb.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Aquaculturists use polyploid fish to maximize production albeit with some unintended consequences including compromised behaviors and physiological function. Given benefits of probiotic therapies (e.g., improved immune response, growth, and metabolism), we explored probiotic supplementation (mixture of Bifidobacterium, Lactobacillus, and Lactococcus), to overcome drawbacks. We first examined fish gut bacterial community composition using 16S metabarcoding (via principal coordinate analyses and PERMANOVA) and determined probiotics significantly impacted gut bacteria composition (p = 0.001). Secondly, we examined how a genomic disruptor (triploidy) and diet supplements (probiotics) impact gene transcription and behavioral profiles of hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Juveniles from four treatment groups (diploid-regular feed, diploid-probiotic feed, triploid-regular feed, and triploid-probiotic feed; n = 360) underwent behavioral assays to test activity, exploration, neophobia, predator evasion, aggression/sociality, behavioral sensitivity, and flexibility. In these fish, transcriptional profiles for genes associated with neural functions (neurogenesis/synaptic plasticity) and biomarkers for stress response and development (growth/appetite) were (i) examined across treatments and (ii) used to describe behavioral phenotypes via principal component analyses and general linear mixed models. Triploids exhibited a more active behavioral profile (p = 0.002), and those on a regular diet had greater Neuropeptide Y transcription (p = 0.02). A growth gene (early growth response protein 1, p = 0.02) and long-term neural development genes (neurogenic differentiation factor, p = 0.003 and synaptysomal-associated protein 25-a, p = 0.005) impacted activity and reactionary profiles, respectively. Overall, our probiotic treatment did not compensate for triploidy. Our research highlights novel applications of behavioral transcriptomics for identifying candidate genes and dynamic, mechanistic associations with complex behavioral repertoires.
Collapse
Affiliation(s)
- Chelsea E. Frank
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Javad Sadeghi
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Daniel D. Heath
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Christina A. D. Semeniuk
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
6
|
Murakami H, Ko T, Ouchi H, Namba T, Ebihara S, Kobayashi S. Bifidobacterium adolescentis SBT2786 Improves Sleep Quality in Japanese Adults with Relatively High Levels of Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2024; 16:1702. [PMID: 38892634 PMCID: PMC11174696 DOI: 10.3390/nu16111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Sleep disorders associated with lifestyle changes and unhealthy habits are major public health concerns. Our previous study showed that Bifidobacterium adolescentis SBT2786 has a potent sleep-promoting effect on fruit flies. Fruit flies share many similarities with mammals, making them suitable model organisms for studying sleep. Thus, in the present study, we conducted a randomized, double-blind, placebo-controlled clinical trial to test whether SBT2786 has sleep-enhancing effects in humans. In this study, 61 participants in the SBT2786 group and 65 participants in the placebo group were analyzed. The results showed that SBT2786 increased sleep time; however, it predominantly increased light sleep and did not improve subjective sleep quality. Interestingly, mood improvement was observed. A subgroup analysis was conducted on participants with high stress levels, and results showed that these participants experienced an increase in sleep duration and an improvement in sleepiness upon waking up and reported feeling well-rested during the day. We concluded that SBT2786 may improve sleep quality, particularly in individuals experiencing high levels of stress, and that SBT2786 can be used as a dietary supplement to improve sleep and mood.
Collapse
Affiliation(s)
- Hiroki Murakami
- Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan; (H.M.); (T.K.); (H.O.)
| | - Taro Ko
- Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan; (H.M.); (T.K.); (H.O.)
| | - Haruka Ouchi
- Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan; (H.M.); (T.K.); (H.O.)
| | - Toshiharu Namba
- CPCC Company Limited, 3-3-10 Nihonbashi Hongokucho, Chuo-ku, Tokyo 103-0021, Japan;
| | - Shukuko Ebihara
- Chiyoda Paramedical Care Clinic, 3-3-10 Nihonbashi Hongokucho, Chuo-ku, Tokyo 103-0021, Japan
| | - Shunjiro Kobayashi
- Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan; (H.M.); (T.K.); (H.O.)
| |
Collapse
|
7
|
Camilleri E, Blundell R, Baral B, Karpiński TM, Aruci E, Atrooz OM. A comprehensive review on the health benefits, phytochemicals, and enzymatic constituents for potential therapeutic and industrial applications of Turkey tail mushrooms. DISCOVER APPLIED SCIENCES 2024; 6:257. [DOI: 10.1007/s42452-024-05936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/02/2024] [Indexed: 08/23/2024]
Abstract
AbstractThis comprehensive literature review delves into the multifaceted attributes of Trametes versicolor, commonly known as turkey tail mushroom. The turkey tail mushroom stands as a noteworthy source of diverse bioactive compounds with potent health benefits. This review offers a contemporary synthesis of its phytochemical constituents and their multifaceted impacts on human health. The mushroom's intricate composition, encompassing polysaccharides, phenols, and triterpenes, underpins its remarkable therapeutic potential. Focusing on key attributes such as anti-cancer, anti-microbial, and immunomodulatory activities, this review delves into the intricate mechanisms by which the turkey tail mushroom exerts its effects. In addition, the exploration extends to the enzymatic constituents inherent in the mushroom and their industrial significance. Mechanisms of action for both phytochemicals and enzymes are studied, providing a well-rounded understanding of their roles in conferring therapeutic and industrial benefits. This synthesis of research aims to provide an up-to-date perspective on turkey tail mushrooms' versatile applications. By intertwining the exploration of health benefits and enzymatic constituents, this review offers insights into the potential of harnessing this natural resource for innovative therapeutic strategies and industrial applications. Overall, it contributes to the advancement of knowledge and utilisation of turkey tail mushrooms' diverse properties for human health and industrial progress.
Collapse
|
8
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
10
|
Jang HJ, Lee NK, Paik HD. Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink. Food Sci Anim Resour 2024; 44:255-268. [PMID: 38764505 PMCID: PMC11097033 DOI: 10.5851/kosfa.2023.e83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 05/21/2024] Open
Abstract
Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| |
Collapse
|
11
|
Oviedo-León JF, Cornejo-Mazón M, Ortiz-Hernández R, Torres-Ramírez N, Hernández-Sánchez H, Castro-Rodríguez DC. Exploration adhesion properties of Liquorilactobacillus and Lentilactobacillus isolated from two different sources of tepache kefir grains. PLoS One 2024; 19:e0297900. [PMID: 38324577 PMCID: PMC10849267 DOI: 10.1371/journal.pone.0297900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Due to the distinctive characteristics of probiotics, it is essential to pinpoint strains originating from diverse sources that prove efficacious in addressing a range of pathologies linked to dysfunction of the intestinal barrier. Nine strains of lactic acid bacteria were isolated from two different sources of tepache kefir grains (KAS2, KAS3, KAS4, KAS7, KAL4, KBS2, KBS3, KBL1 and KBL3), and were categorized to the genus Lacticaseibacillus, Liquorilactobacillus, and Lentilactobacillus by 16S rRNA gene. Kinetic behaviors of these strains were evaluated in MRS medium, and their probiotic potential was performed: resistance to low pH, tolerance to pepsin, pancreatin, bile salts, antibiotic resistance, hemolytic activity, and adhesion ability. KAS7 strain presented a higher growth rate (0.50 h-1) compared with KAS2 strain, who presented a lower growth rate (0.29 h-1). KBS2 strain was the only strain that survived the in vitro stomach simulation conditions (29.3%). Strain KBL1 demonstrated significantly higher viability (90.6%) in the in vitro intestine simulation conditions. Strain KAS2 demonstrated strong hydrophilic character with chloroform (85.6%) and xylol (57.6%) and a higher percentage of mucin adhesion (87.1%). However, strains KBS2 (84.8%) and KBL3 (89.5%) showed the highest autoaggregation values. In terms of adhesion to the intestinal epithelium in rats, strains KAS2, KAS3 and KAS4 showed values above 80%. The growth of the strains KAS2, KAS3, KAS4, KBS2, and KBL3 was inhibited by cefuroxime, cefotaxime, tetracycline, ampicillin, erythromycin, and cephalothin. Strains KBS2 (41.9% and 33.5%) and KBL3 (42.5% and 32.8%) had the highest co-aggregation values with S. aureus and E. coli. The results obtained in this study indicate that lactic acid bacteria isolated from tepache can be considered as candidates for potentially probiotic bacteria, laying the foundations to evaluate their probiotic functionality in vivo and thus to be used in the formulation of functional foods.
Collapse
Affiliation(s)
- Julián Fernando Oviedo-León
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Maribel Cornejo-Mazón
- Departamento Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Mexico City, Mexico
| | - Rosario Ortiz-Hernández
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Diana C. Castro-Rodríguez
- Investigadores CONAHCyT, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
12
|
Miller BC, Mathai M, Yadav H, Jain S. Geroprotective potential of microbiome modulators in the Caenorhabditis elegans model. GeroScience 2024; 46:129-151. [PMID: 37561384 PMCID: PMC10828408 DOI: 10.1007/s11357-023-00901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Aging is associated with cellular and physiological changes, which significantly reduce the quality of life and increase the risk for disease. Geroprotectors improve lifespan and slow the progression of detrimental aging-related changes such as immune system senescence, mitochondrial dysfunction, and dysregulated nutrient sensing and metabolism. Emerging evidence suggests that gut microbiota dysbiosis is a hallmark of aging-related diseases and microbiome modulators, such as probiotics (live bacteria) or postbiotics (non-viable bacteria/bacterial byproducts) may be promising geroprotectors. However, because they are strain-specific, the geroprotective effects of probiotics and postbiotics remain poorly understood and understudied. Drosophila melanogaster, Caenorhabditis elegans, and rodents are well-validated preclinical models for studying lifespan and the role of probiotics and/or postbiotics, but each have their limitations, including cost and their translation to human aging biology. C. elegans is an excellent model for large-scale screening to determine the geroprotective potential of drugs or probiotics/postbiotics due to its short lifecycle, easy maintenance, low cost, and homology to humans. The purpose of this article is to review the geroprotective effects of microbiome modulators and their future scope, using C. elegans as a model. The proposed geroprotective mechanisms of these probiotics and postbiotics include delaying immune system senescence, preventing or reducing mitochondrial dysfunction, and regulating food intake (dietary restriction) and metabolism. More studies are warranted to understand the geroprotective potential of probiotics and postbiotics, as well as other microbiome modulators, like prebiotics and fermented foods, and use them to develop effective therapeutics to extend lifespan and reduce the risk of debilitating aging-related diseases.
Collapse
Affiliation(s)
- Brandi C Miller
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Megha Mathai
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, 12901 Bruce B Downs Blvd, MDC 78, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Shaposhnikov LA, Tishkov VI, Pometun AA. Lactobacilli and Klebsiella: Two Opposites in the Fight for Human Health. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S71-S89. [PMID: 38621745 DOI: 10.1134/s0006297924140050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 04/17/2024]
Abstract
The problem of antibiotic resistance is currently very acute. Numerous research and development of new antibacterial drugs are being carried out that could help cope with various infectious agents. One of the promising directions for the search for new antibacterial drugs is the search among the probiotic strains present in the human gastrointestinal tract. This review is devoted to characteristics of one of these probiotic strains that have been studied to date: Limosilactobacillus reuteri. The review discusses its properties, synthesis of various compounds, as well as role of this strain in modulating various systems of the human body. The review also examines key characteristics of one of the most harmful among the currently known pathogenic organisms, Klebsiella, which is significantly resistant to antibiotics existing in medical practice, and also poses a great threat of nosocomial infections. Discussion of characteristics of the two strains, which have opposite effects on human health, may help in creation of new effective antibacterial drugs without significant side effects.
Collapse
Affiliation(s)
- Leonid A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
14
|
Shirbhate U, Bajaj P, Chandak M, Jaiswal P, Sarangi S, Suchak D, Bharti L. Clinical Implications of Probiotics in Oral and Periodontal Health: A Comprehensive Review. Cureus 2023; 15:e51177. [PMID: 38283527 PMCID: PMC10816831 DOI: 10.7759/cureus.51177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Probiotic therapy represents a novel concept in dentistry. The microbial nature of dental plaque can be altered, or the probiotic strategy can efficiently inhibit oral pathogens. Probiotics are dietary supplements that are vital for boosting immunity as they include beneficial bacteria and yeast. In dentistry and medicine, the interest in probiotics, prebiotics, and synbiotics is increasing. By forming a biofilm and assisting in preventing dental cavities, probiotics play a crucial role in dentistry and significantly impact immunity. Prebiotics are non-digestible dietary supplements that enhance health by increasing the quantity and activity of beneficial bacteria such as Lactobacilli and Bifidobacteria. It has been demonstrated that prebiotics, in addition to probiotics, can help treat oral diseases. They promote the growth and activity of beneficial organisms while inhibiting potentially harmful bacteria's growth and activity. Synbiotics are dietary supplements that combine probiotics and prebiotics, believed to work in tandem through a process known as synergism. Studies have indicated that synbiotics, or a combination of probiotics with a prebiotic, may have greater efficacy than either supplement alone.
Collapse
Affiliation(s)
- Unnati Shirbhate
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan Bajaj
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manoj Chandak
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Jaiswal
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swayangprabha Sarangi
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dhwani Suchak
- Department of Orthodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Lovely Bharti
- Department of Orthodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
15
|
Kim H, Lee K, Kim JY, Shim JJ, Lim J, Kim JY, Lee JL. Lactobacillus helveticus Isolated from Raw Milk Improves Liver Function, Hepatic Steatosis, and Lipid Metabolism in Non-Alcoholic Fatty Liver Disease Mouse Model. Microorganisms 2023; 11:2466. [PMID: 37894124 PMCID: PMC10609090 DOI: 10.3390/microorganisms11102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Here, we show that Lactiplantibacillus plantarum LP158 (LP158), Lactobacillus helveticus HY7804 (HY7804), and Lacticaseibacillus paracasei LPC226 (LPC226) isolated from raw milk alleviate non-alcoholic fatty acid disease (NAFLD) in a C57BL/6 mouse model. Lactic acid bacteria (LAB) were screened for their ability to inhibit fatty acid accumulation in palmitic acid (PA)-treated HepG2 cells, and three strains were selected based on the results. We also investigated hemolytic activity and antibiotic resistance of the three strains. LP158, HY7804, and LPC226 suppressed expression of mRNA encoding genes related to lipogenesis, and increased expression of genes related to β-oxidation, in a PA-induced HepG2 cell model. Moreover, when LP158, HY7804, and LPC226 were administered at 109 CFU/kg/day for 8 weeks to mice with dietary-induced NAFLD, they all modulated blood biochemistry markers and reduced steatosis in liver tissue. Also, all three strains significantly reduced expression of mRNA encoding lipogenesis genes (Fasn, Acaca, and Srebp-1c) and inflammatory factors (Tnfα and Ccl-2) and fibrosis factors, and increased expression of a β-oxidation gene (Acox1) in the liver. In particular, HY7804 showed the strongest effects both in vitro and in vivo. Therefore, HY7804, LP158, and LPC226 can be proposed as potential supplements that can improve NAFLD through anti-steatosis, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Hyeonji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Kippeum Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Ju-Yeon Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| |
Collapse
|
16
|
Tabashsum Z, Scriba A, Biswas D. Alternative approaches to therapeutics and subtherapeutics for sustainable poultry production. Poult Sci 2023; 102:102750. [PMID: 37207572 DOI: 10.1016/j.psj.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
The world population is growing rapidly and thus its demand for food is growing as well. To meet the demand of the ever-increasing number of consumers, the poultry industry and both of its main sectors-conventional and organic/cage-free farming-are expanding in parallel. Due to increasing demand of poultry products and higher mortality rate of chicks (an average 0.3% increase of mortality over last 5 yr), both conventional and organic poultry farming systems struggle with various issues; animal welfare, environmental sustainability, and antibiotic resistance of the prevailing zoonotic/enteric pathogens are common issues for conventional farming whereas slow growth rate, higher costs, inefficient land use, different diseases of the chicken, and cross-contamination with bacterial pathogens into the final products are the major issues for organic poultry farming. On top of these issues, the use of subtherapeutic antibiotics was recently banned in conventional farming systems and by definition the organic farming system cannot use the antibiotics/synthetic chemicals even for therapeutic use. In conventional farming system, use of therapeutic antibiotics may result in residuals antibiotics in the final products. As a result, sustainable alternatives are in demand to mitigate the prevailing issues for both conventional and organic farming. Potential alternatives may include bacteriophages, vaccination, probiotics, plant-derived prebiotics, and synbiotics. These alternatives have beneficial attributes and shortcomings of their use in both conventional and organic poultry production system. In this review, we'll discuss the scope of these potential alternatives as therapeutics and subtherapeutics in sustainable poultry production and ways to improve their efficacy.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Aaron Scriba
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Shaaban S, Genena S, Elraggal A, Hamad GM, Meheissen MA, Moussa S. Antibacterial effectiveness of multi-strain probiotics supernatants intracanal medication on Enterococcus faecalis biofilm in a tooth model. BMC Oral Health 2023; 23:228. [PMID: 37081415 PMCID: PMC10116691 DOI: 10.1186/s12903-023-02914-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND To assess the antibacterial activity of multi-strain probiotics supernatants (MSP); Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus acidophilus as an intracanal medication on Enterococcus faecalis (E. faecalis) biofilm in a tooth model. METHODS Sixty extracted human single-rooted teeth with single canals were instrumented, sterilized, and inoculated with E. faecalis. After 21 days of incubation, four specimens were randomly selected to validate the biofilm formation by scanning electron microscope (SEM). The remaining specimens were randomly divided (n = 14), according to the intracanal medication (ICM) received into: Ca(OH)2: calcium hydroxide paste (35% Ultra Cal XS Ca(OH)2), Probiotics supernatants: MSP in poloxamer gel vehicle Poloxamer: poloxamer gel vehicle and, Control: E. faecalis biofilm only. The tested groups were further subdivided into two equal subgroups (n = 7) according to the incubation period (24 h and 7 days). Shaved dentin chips were obtained and collected by H-files and paper points, respectively for bacterial culture. The antibacterial activity was assessed after each incubation period quantitatively and qualitatively using bacterial colony-forming units per milliliter (CFUs/ml) and SEM, respectively. RESULTS The lowest CFUs/ml was found in Ca (OH)2 with a significant difference compared to other groups after 24 h. After 7 days, a similar outcome was found with a further significant reduction of CFUs/ml in all groups with no statistical difference between Ca(OH)2 and probiotics supernatants groups. Ca (OH)2 and Probiotics supernatants groups showed a significant (p < 0.05) percentage of overall bacterial reduction (100.00 ± 0.00% and 70.30 ± 12.95%, respectively) compared to poloxamer and control groups (27.80 ± 14.45 and 28.29 ± 19.79). SEM images showed a bacteria-free state in the Ca(OH)2 group after 7 days while few bacteria were found in the probiotics supernatants group. An extensive invasion of bacteria was found in poloxamer and controls groups. CONCLUSION MSP has a potential antibacterial effect on E. faecalis growth closely similar to the routinely used Ca (OH)2.
Collapse
Affiliation(s)
- Shymaa Shaaban
- Division of Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Salma Genena
- Division of Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Alaaeldin Elraggal
- Division of Operative Dentistry, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Gamal M Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTACity), New Borg El-Arab, Alexandria, Egypt
| | - Marwa A Meheissen
- Medical Microbiology & Immunology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sybel Moussa
- Division of Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Horvathova K, Modrackova N, Splichal I, Splichalova A, Amin A, Ingribelli E, Killer J, Doskocil I, Pechar R, Kodesova T, Vlkova E. Defined Pig Microbiota with a Potential Protective Effect against Infection with Salmonella Typhimurium. Microorganisms 2023; 11:microorganisms11041007. [PMID: 37110429 PMCID: PMC10146858 DOI: 10.3390/microorganisms11041007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A balanced microbiota is a main prerequisite for the host's health. The aim of the present work was to develop defined pig microbiota (DPM) with the potential ability to protect piglets against infection with Salmonella Typhimurium, which causes enterocolitis. A total of 284 bacterial strains were isolated from the colon and fecal samples of wild and domestic pigs or piglets using selective and nonselective cultivation media. Isolates belonging to 47 species from 11 different genera were identified by MALDI-TOF mass spectrometry (MALDI-TOF MS). The bacterial strains for the DPM were selected for anti-Salmonella activity, ability to aggregate, adherence to epithelial cells, and to be bile and acid tolerant. The selected combination of 9 strains was identified by sequencing of the 16S rRNA gene as Bacillus sp., Bifidobacterium animalis subsp. lactis, B. porcinum, Clostridium sporogenes, Lactobacillus amylovorus, L. paracasei subsp. tolerans, Limosilactobacillus reuteri subsp. suis, and Limosilactobacillus reuteri (two strains) did not show mutual inhibition, and the mixture was stable under freezing for at least 6 months. Moreover, strains were classified as safe without pathogenic phenotype and resistance to antibiotics. Future experiments with Salmonella-infected piglets are needed to test the protective effect of the developed DPM.
Collapse
Affiliation(s)
- Kristyna Horvathova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eugenio Ingribelli
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Tereza Kodesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
19
|
Dashtbanei S, Keshtmand Z. A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics Antimicrob Proteins 2023; 15:226-238. [PMID: 35819625 DOI: 10.1007/s12602-022-09946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Cadmium (Cd) produces severe oxidative stress, which can result in serious clinical consequences and tissue injury. The aim of the present survey was to investigate the protective effects of native Iranian probiotics (Lactobacillus rhamnosus, L. helveticus, and L. casei) against cadmium (Cd)-induced toxicity against the small intestine and lung at histopathological and biochemical levels. MATERIALS AND METHODS Twenty-one adult male Wistar rats were randomized into three groups of seven rats (control, Cd-treated (3 mg/kg), and concomitant Cd and mix probiotic treatment for 30 days). Histological alterations were appraised via hematoxylin & eosin, Trichrome Masson, and PAS staining. The qRT-PCR technique was applied to assess the expression of pro-apoptotic, anti-apoptotic, and pro-inflammatory genes. Antioxidant enzymes activity was measured via ZellBio kits. RESULTS Probiotic-treated rats displayed low production of lipid peroxides, reduced malondialdehyde (MDA) level, and elevated contents of superoxide dismutase (SOD) and catalase (CAT) enzymes compared with Cd-treated rats. The results of qRT-PCR demonstrated the up-regulation of Bax, p53, and caspase 3 and down-regulation of Bcl2, TNF-α, and IL-6 genes in both the intestine and lungs of mix probiotic-treated rats compared with Cd-treated animals. Histopathological findings revealed that the probiotic formulation improved Cd-triggered tissue damage in the intestine and lungs. CONCLUSION The strong cytoprotective benefits of Iranian probiotics against Cd-induced tissue injury observed in this study may be due to their anti-inflammatory and antioxidant properties. Therefore, additional clinical and experimental research is required to explain the precise mechanisms of probiotics' beneficial impacts and underline their potential therapeutic use.
Collapse
Affiliation(s)
- Shadi Dashtbanei
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Chioma Mgbodile F, Nwagu TNT. Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. BIOTECHNOLOGY REPORTS 2023; 38:e00795. [PMID: 37041970 PMCID: PMC10066861 DOI: 10.1016/j.btre.2023.e00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The current paper focuses on the impact of probiotics, African fermented foods and bioactive peptides on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity and related viral infections. Using probiotics or bioactive peptides as therapeutic adjuncts appears superior to standard care alone. Probiotics play critical roles in innate and adaptive immune modulation by balancing the gut microbiota to combat viral infections, secondary bacterial infections and microbial dysbiosis. African fermented foods contain abundant potential probiotic microorganisms such as the lactic acid bacteria (LAB), Saccharomyces, and Bacillus. More so, fermented food-derived bioactive peptides play vital roles in preventing cardiovascular diseases, hypertension, lung injury, diabetes, and other COVID-19 comorbidities. Regularly incorporating potential probiotics and bioactive peptides into diets should enable a build-up of the benefits in the body system that may result in a better prognosis, especially in COVID-19 patients with underlying complexities. Despite the reported therapeutic potentials of probiotics and fermented foods, numerous setbacks exist regarding their application in disease management. These shortfalls underscore an evident need for more studies to evaluate the specific potentials of probiotics and traditional fermented foods in ameliorating SARS-CoV-2 and other viral infections.
Collapse
|
21
|
Reino-Gelardo S, Palop-Cervera M, Aparisi-Valero N, Espinosa-San Miguel I, Lozano-Rodríguez N, Llop-Furquet G, Sanchis-Artero L, Cortés-Castell E, Rizo-Baeza M, Cortés-Rizo X. Effect of an Immune-Boosting, Antioxidant and Anti-Inflammatory Food Supplement in Hospitalized COVID-19 Patients: A Prospective Randomized Pilot Study. Nutrients 2023; 15:nu15071736. [PMID: 37049576 PMCID: PMC10096722 DOI: 10.3390/nu15071736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Background: COVID-19 disease is a serious global health problem. Few treatments have been shown to reduce mortality and accelerate time to recovery. The aim of this study was to evaluate the potential effect of a food supplement (probiotics, prebiotics, vitamin D, zinc and selenium) in patients admitted with COVID-19. Methods: A prospective randomized non-blinded clinical trial was conducted in a sample of 162 hospitalized patients diagnosed with COVID-19 recruited over eight months. All patients received standard treatment, but the intervention group (n = 67) was given one food supplement stick daily during their admission. After collecting the study variables, a statistical analysis was performed comparing the intervention and control groups and a multivariate analysis controlling for variables that could act as confounding factors. Results: ROC curve analysis with an area under the curve (AUC) value of 0.840 (p < 0.001; 95%CI: 0.741–0.939) of the food supplement administration vs. recovery indicated good predictive ability. Moreover, the intervention group had a shorter duration of digestive symptoms compared with the control group: 2.6 ± 1.3 vs. 4.3 ± 2.2 days (p = 0.001); patients with non-severe disease on chest X-ray had shorter hospital stays: 8.1 ± 3.9 vs. 11.6 ± 7.4 days (p = 0.007). Conclusions: In this trial, the administration of a food supplement (Gasteel Plus®) was shown to be a protective factor in the group of patients with severe COVID-19 and allowed early recovery from digestive symptoms and a shorter hospital stay in patients with a normal–mild–moderate chest X-ray at admission (ClinicalTrials.gov number, NCT04666116).
Collapse
Affiliation(s)
| | | | - Nieves Aparisi-Valero
- Clinical Analysis and Microbiology Service, Hospital of Sagunto, 46520 Sagunto, Spain
| | | | | | - Gonzalo Llop-Furquet
- Clinical Analysis and Microbiology Service, Hospital of Sagunto, 46520 Sagunto, Spain
| | | | - Ernesto Cortés-Castell
- Department of Pharmacology, Pediatrics and Organic Chemistry, Miguel Hernández University, 03690 Alicante, Spain
| | | | - Xavier Cortés-Rizo
- Internal Medicine Department, Hospital of Sagunto, 46520 Sagunto, Spain
- Department of Medicine, Cardenal Herrera-CEU University, 46520 Valencia, Spain
| |
Collapse
|
22
|
Mirjalili M, Salari Sharif A, Sangouni AA, Emtiazi H, Mozaffari-Khosravi H. Effect of probiotic yogurt consumption on glycemic control and lipid profile in patients with type 2 diabetes mellitus: A randomized controlled trial. Clin Nutr ESPEN 2023; 54:144-149. [PMID: 36963856 DOI: 10.1016/j.clnesp.2023.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus (T2DM) is a common endocrine disease. Altered gut microbiota (Dysbiosis) is closely associated with development of T2DM. Growing body of evidence hypothesized that probiotics intake may be useful for patients with T2DM. We investigated the effect of probiotic yogurt consumption on glycemic control and lipid profile in patients with T2DM. METHODS In this 12-week randomized controlled clinical trial, seventy-two patients with T2DM were randomly assigned to the intervention group (IG) that received 200 g/d probiotic yogurt containing 4.65 × 106 CFU/g Lactobacillus acidophilus and Bifidobacterium lactis) or placebo group (PG) that received 200 g/d conventional yogurt. RESULTS We found no difference between two groups in fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-c) and low density lipoprotein-cholesterol (LDL-c) after intervention. After adjusting for baseline values of covariate, a significant reduction in HbA1c (mean change: -0.76 ± 1.3 vs. -0.15 ± 1.3; P = 0.01), TC (mean change: -10.61 ± 27.8 vs. -2.97 ± 35.0; P = 0.02) and LDL-c (mean change: -8.62 ± 21.7 vs. 0.02 ± 25.8; P = 0.004) was observed in the IG compared to the PG. In addition, a non-significant trend to reduction was observed in term of FPG (mean change: -19.61 ± 29.1 vs. -4.19 ± 24.2; P = 0.13). TG and HDL-c remained unchanged. CONCLUSIONS Probiotic yogurt consumption may be useful for patients with T2DM. More well-designed clinical trials with longer intervention duration are required. Registered on 30 July 2022 at Iranian Registry of Clinical Trials (IRCT20220226054125N1) with URL: https://www.irct.ir/trial/62304.
Collapse
Affiliation(s)
- Mohammadreza Mirjalili
- Clinical Research Development Center of Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Salari Sharif
- Research Center of Nursing and Midwifery Care, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Ali Sangouni
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamideh Emtiazi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
23
|
Leska A, Nowak A, Rosicka-Kaczmarek J, Ryngajłło M, Czarnecka-Chrebelska KH. Characterization and Protective Properties of Lactic Acid Bacteria Intended to Be Used in Probiotic Preparation for Honeybees (Apis mellifera L.)—An In Vitro Study. Animals (Basel) 2023; 13:ani13061059. [PMID: 36978601 PMCID: PMC10044574 DOI: 10.3390/ani13061059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Lactic acid bacteria (LAB) are widely used probiotics and offer promising prospects for increasing the viability of honeybees. Thus, the probiotic potential of 10 LAB strains was determined, which in our previous studies showed the most potent protective abilities. In the current study, we investigated various properties of probiotic candidates. The tested LAB strains varied in susceptibility to tested antibiotics. Isolates showed high viability in sugar syrups and gastrointestinal conditions. None of the LAB strains exhibited β-hemolytic activity, mutual antagonism, mucin degradation, hydrogen peroxide production capacity, or bile salt hydrolase (BSH) activity. Additionally, the cytotoxicity of LAB cell-free supernatants (CFS) was assessed, as well as the effect of CFS from P. pentosaceus 14/1 on the cytotoxicity of coumaphos and chlorpyrifos in the Caco-2 cell line. The viability of Caco-2 cells reached up to 89.81% in the presence of the highest concentration of CFS. Furthermore, LAB metabolites decreased the cytotoxicity of insecticides (up to 19.32%) thus demonstrating cytoprotective activity. All tested LAB strains produced lactic, acetic, and malonic acids. This research allowed the selection of the most effective LAB strains, in terms of probiosis, for future in vivo studies aimed at developing an ecologically protective biopreparation for honeybees.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (A.L.); (A.N.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Karolina Henryka Czarnecka-Chrebelska
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, 5 Mazowiecka Str. (A-6 Building), 92-215 Lodz, Poland
| |
Collapse
|
24
|
Bharindwal S, Goswami N, Jha P, Pandey S, Jobby R. Prospective Use of Probiotics to Maintain Astronaut Health during Spaceflight. Life (Basel) 2023; 13:life13030727. [PMID: 36983881 PMCID: PMC10058446 DOI: 10.3390/life13030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining an astronaut's health during space travel is crucial. Multiple studies have observed various changes in the gut microbiome and physiological health. Astronauts on board the International Space Station (ISS) had changes in the microbial communities in their gut, nose, and skin. Additionally, immune system cell alterations have been observed in astronauts with changes in neutrophils, monocytes, and T-cells. Probiotics help tackle these health issues caused during spaceflight by inhibiting pathogen adherence, enhancing epithelial barrier function by reducing permeability, and producing an anti-inflammatory effect. When exposed to microgravity, probiotics demonstrated a shorter lag phase, faster growth, improved acid tolerance, and bile resistance. A freeze-dried Lactobacillus casei strain Shirota capsule was tested for its stability on ISS for a month and has been shown to enhance innate immunity and balance intestinal microbiota. The usage of freeze-dried spores of B. subtilis proves to be advantageous to long-term spaceflight because it qualifies for all the aspects tested for commercial probiotics under simulated conditions. These results demonstrate a need to further study the effect of probiotics in simulated microgravity and spaceflight conditions and to apply them to overcome the effects caused by gut microbiome dysbiosis and issues that might occur during spaceflight.
Collapse
Affiliation(s)
- Sahaj Bharindwal
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Department of Biology, University of Naples Federico II, 80131 Naples, Italy
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Nidhi Goswami
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Sunandan Divatia School of Science, NMIMS University Mumbai, Mumbai 400056, Maharashtra, India
| | - Siddharth Pandey
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
| | - Renitta Jobby
- Amity Centre of Excellence in Astrobiology, Amity University Mumbai, Mumbai 410206, Maharashtra, India
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
25
|
Hsu C, Ghannoum M, Cominelli F, Martino LD. Mycobiome and Inflammatory Bowel Disease: Role in Disease Pathogenesis, Current Approaches and Novel Nutritional-based Therapies. Inflamm Bowel Dis 2023; 29:470-479. [PMID: 35851921 PMCID: PMC9977251 DOI: 10.1093/ibd/izac156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 12/09/2022]
Abstract
Inflammatory bowel disease (IBD), a disorder characterized by chronic inflammation of the gastrointestinal (GI) tract and a range of adverse health effects including diarrhea, abdominal pain, vomiting, and bloody stools, affects nearly 3.1 million genetically susceptible adults in the United States today. Although the etiology of IBD remains unclear, genetics, stress, diet, and gut microbiota dysbiosis- especially in immunocompromised individuals- have been identified as possible causes of disease. Although previous research has largely focused on the role of bacteria in IBD pathogenesis, recently observed alterations of fungal load and biodiversity in the GI tract of afflicted individuals suggest interkingdom interactions amongst different gut microbial communities, particularly between bacteria and fungi. These discoveries point to the potential utilization of treatment approaches such as antibiotics, antifungals, probiotics, and postbiotics that target both bacteria and fungi in managing IBD. In this review, we discuss the impact of specific fungi on disease pathogenesis, with a focus on the highly virulent genus Candida and how the presence of certain co-enzymes impacts its virulence. In addition, we evaluate current gut microbiome-based therapeutic approaches with the intention of better understanding the mechanisms behind novel therapies.
Collapse
Affiliation(s)
- Caitlyn Hsu
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology and Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, 44106, USA
| | - Fabio Cominelli
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Pathology, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
- Department of Medicine, Case Western University School of Medicine, Cleveland, Ohio, 44106, USA
| |
Collapse
|
26
|
Anticancer properties of curcumin-treated Lactobacillus plantarum against the HT-29 colorectal adenocarcinoma cells. Sci Rep 2023; 13:2860. [PMID: 36801895 PMCID: PMC9938284 DOI: 10.1038/s41598-023-29462-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Probiotic bacteria with functions of importance to the health and well-being of the host exhibit various medicinal properties including anti-proliferative properties against cancer cells. There are observations demonstrating probiotic bacteria and their metabolomics can be different in various populations with different eating habits. Here, Lactobacillus plantarum was treated with curcumin (the major compound of turmeric), and its resistance to the curcumin was determined. After then the cell-free supernatants of untreated bacteria (CFS) and bacteria treated with curcumin (cur-CFS) were isolated and their anti-proliferative properties against HT-29 colon cancer cells were compared. The ability of L. plantarum treated with curcumin to combat a variety of pathogenic bacterial species and its ability to survive in acidic conditions were evidence that the probiotic properties of the bacterium were unaffected by the curcumin treatment. L. plantarum treated with curcumin and intact L. plantarum were both able to live in acidic conditions, according to the results of the resistance to low pH test. The MTT result showed that CFS and cur-CFS dose-dependently decreased the growth of HT29 cells with a half-maximal inhibitory concentration of 181.7 and 116.3 µL/mL at 48 h, respectively. Morphological alteration of DAPI-stained cells also exhibited significant fragmentation in the chromatin within the nucleus of cur-CFS-treated cells compared to CFS-treated HT29 cells. Moreover, flow cytometry analyses of apoptosis and cell cycle confirmed DAPI staining and MTT assay results and stipulated the increased occurrence of programmed cell death (apoptosis) in cur-CFS-treated cells (~ 57.65%) compared to CFS-treated cells (~ 47%). These results were more confirmed with qPCR and exhibited the upregulation of Caspase 9-3 and BAX genes, and downregulation of the BCL-2 gene in cur-CFS- and CFS-treated cells. In conclusion, turmeric spice and curcumin may affect the metabolomics of probiotics in intestinal flora which could subsequently influence their anticancer properties.
Collapse
|
27
|
Dhami M, Raj K, Singh S. Relevance of Gut Microbiota to Alzheimer's Disease (AD): Potential Effects of Probiotic in Management of AD. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
28
|
Bifidobacterium longum subsp. longum 5 1A Attenuates Signs of Inflammation in a Murine Model of Food Allergy. Probiotics Antimicrob Proteins 2023; 15:63-73. [PMID: 34558015 DOI: 10.1007/s12602-021-09846-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
Food allergy is a pathological condition that can lead to hives, swelling, gastrointestinal distress, cardiovascular and respiratory compromise, and even anaphylaxis. The lack of treatment resources emphasizes the necessity for new therapeutic strategies, and in this way, probiotics has been pointed out as an alternative, especially because of its immunomodulatory properties. The goal of this study was to evaluate the probiotic effect of Bifidobacterium longum subsp. longum 51A (BL51A) in a murine model of ovalbumin (OVA) food allergy, as well as to investigate the effect of the dose and viability of the bacteria on the proposed model. For this purpose, the probiotic effect was assessed by clinical, immunological, and histological parameters in mice treated or not with the BL51A and sensitized or not with OVA. Oral administration of BL51A prevented weight loss and reduced serum levels of IgE anti-OVA and of sIgA in the intestinal fluid. Also, it reduced the intestinal permeability, proximal jejunum damage, recruitment of eosinophils and neutrophils, and levels of eotaxin-1, CXCL1/KC, IL4, IL5, IL6, IL13, and TNF. Furthermore, the treatment was able to increase the levels of IL10. Investigating different doses administered, the level of 108 CFU showed the best results in terms of protective effect. In addition, the administration of the inactivated bacteria did not present any beneficial effect. Results demonstrate that BL51A promotes a systemic immunomodulatory protective effect in a murine model of food allergy that depends on the dose and viability of the bacteria, suggesting its use as probiotic in such disease.
Collapse
|
29
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Dabaghzadeh A, Ghaffari J, Moradi S, Sayadian Separghan D. Probiotics on chronic urticaria: A randomized clinical trial study. CASPIAN JOURNAL OF INTERNAL MEDICINE 2023; 14:192-198. [PMID: 37223293 PMCID: PMC10201112 DOI: 10.22088/cjim.14.2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/19/2022] [Accepted: 01/26/2021] [Indexed: 05/25/2023]
Abstract
Background Urticaria is a common itchy skin condition characterized by swelling and erythema. A variety of treatments is available today. The purpose of this study was to evaluate the clinical effects of probiotic use in patients with chronic resistant urticaria. Methods This four-way blind randomized clinical trial was conducted between June 2019 and June 2020. Study population consisted of patients with chronic urticaria who did not respond well to first line treatment with antihistamines. For the intervention group, antihistamine (cetirizine) and probiotics (femilact capsule) and for the control group, antihistamine (cetirizine) and placebo were administered twice a day for 8 weeks. The "Urticarial Activity for 7 Days" (UAS7) questionnaire was used to assess urticaria activity and the Dermatology Life Quality Index (DLQI) questionnaire was used to assess the quality of life of patients. Results Patients' age range was 7 to 30 years with a mean and standard deviation of 23.6±9.2 years. 31 (81.57%) cases were females and 7 (18.42%) cases were males. Twenty patients were in the intervention group and eighteen patients were in the control group. The mean scores of UAS7 questionnaire were reduced in both groups, but it was more significant in the intervention group (9.6±6.4) compared to the control group (12.7±8.1) at the end of week eight of treatment (P=0.036). Also, there was no significant difference in the quality of life between the two groups after 8 weeks (P=0.805). Conclusion This study showed that probiotic consumption along with antihistamines significantly improved the activity of urticaria but not the quality of life of patients.
Collapse
Affiliation(s)
- Abbas Dabaghzadeh
- Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Ghaffari
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Siavash Moradi
- Community Medicine Specialist, Education Development Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Sayadian Separghan
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
31
|
Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J 2022; 74:87. [PMID: 36583819 PMCID: PMC9803803 DOI: 10.1186/s43044-022-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dealing with cardiac arrhythmia is a difficult challenge. Choosing between different anti-arrhythmic drugs (AADs) while being cautious about the pro-arrhythmic characteristics of some of these drugs and their diverse interaction with other drugs is a real obstacle. MAIN BODY Gut microbiota (GM), in our bodies, are now being considered as a hidden organ which can regulate our immune system, digest complex food, and secrete bioactive compounds. Yet, GM are encountered in the pathophysiology of arrhythmia and can affect the pharmacokinetics of AADs, as well as some anti-thrombotics, resulting in altering their bioavailability, therapeutic function and may predispose to some of their unpleasant adverse effects. CONCLUSIONS Knowledge of the exact role of GM in the pharmacokinetics of these drugs is now essential for better understanding of the art of arrhythmia management. Also, it will help deciding when to consider probiotics as an adjunctive therapy while treating arrhythmia. This should be discovered in the near future.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- grid.7776.10000 0004 0639 9286Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Rather IA, Lew LC, Kamli MR, Hakeem KR, Sabir JSM, Park YH, Hor YY. The Inhibition of SARS-CoV-2 and the Modulation of Inflammatory Responses by the Extract of Lactobacillus sakei Probio65. Vaccines (Basel) 2022; 10:vaccines10122106. [PMID: 36560517 PMCID: PMC9787410 DOI: 10.3390/vaccines10122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In the three years since the first outbreak of COVID-19 in 2019, the SARS-CoV-2 virus has continued to be prevalent in our community. It is believed that the virus will remain present, and be transmitted at a predictable rate, turning endemic. A major challenge that leads to this is the constant yet rapid mutation of the virus, which has rendered vaccination and current treatments less effective. In this study, the Lactobacillus sakei Probio65 extract (P65-CFS) was tested for its safety and efficacy in inhibiting SARS-CoV-2 replication. Viral load quantification by RT-PCR showed that the P65-CFS inhibited SARS-CoV-2 replication in human embryonic kidney (HEK) 293 cells in a dose-dependent manner, with 150 mg/mL being the most effective concentration (60.16% replication inhibition) (p < 0.05). No cytotoxicity was inflicted on the HEK 293 cells, human corneal epithelial (HCE) cells, or human cervical (HeLa) cells, as confirmed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The P65-CFS (150 mg/mL) also reduced 83.40% of reactive oxidizing species (ROS) and extracellular signal-regulated kinases (ERK) phosphorylation in virus-infected cells, both of which function as important biomarkers for the pathogenesis of SARS-CoV-2. Furthermore, inflammatory markers, including interferon-α (IFN-α), IFN-ß, and interleukin-6 (IL-6), were all downregulated by P65-CFS in virus-infected cells as compared to the untreated control (p < 0.05). It was conclusively found that L. sakei Probio65 showed notable therapeutic efficacy in vitro by controlling not only viral multiplication but also pathogenicity; this finding suggests its potential to prevent severe COVID-19 and shorten the duration of infectiousness, thus proving useful as an adjuvant along with the currently available treatments.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.A.R.); (Y.-Y.H.)
| | - Lee-Ching Lew
- Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Republic of Korea
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1341, Bangladesh
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yong-Ha Park
- Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Republic of Korea
- Department of Biotechnology, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- PYH Lab, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Yan-Yan Hor
- Probionic Corporation Jeonbuk Institute for Food-Bioindustry, 111-18, Wonjangdong-gil, Deokjin-gu, Jeonju-si 54810, Republic of Korea
- Correspondence: (I.A.R.); (Y.-Y.H.)
| |
Collapse
|
33
|
Guo S, Li B, Wang D, Li L, Chen Y, Menghe B. Metabolomic analysis of cooperative adaptation between Co-cultured Lacticaseibacillus casei Zhang and Lactiplantibacillus plantarum P8. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Food for the mind: The journey of probiotics from foods to ANTI-Alzheimer’s disease therapeutics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Binding and Detoxification of Insecticides by Potentially Probiotic Lactic Acid Bacteria Isolated from Honeybee ( Apis mellifera L.) Environment-An In Vitro Study. Cells 2022; 11:cells11233743. [PMID: 36496999 PMCID: PMC9740702 DOI: 10.3390/cells11233743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabiting the digestive tract of honeybees are known for their ability to detoxify xenobiotics. The effect of chlorpyrifos, coumaphos, and imidacloprid on the growth of LAB strains was tested. All strains showed high resistance to these insecticides. Subsequently, the insecticide binding ability of LAB was investigated. Coumaphos and chlorpyrifos were bound to the greatest extent (up to approx. 64%), and imidacloprid to a much weaker extent (up to approx. 36%). The insecticides were detected in extra- and intracellular extracts of the bacterial cell wall. The ability of selected LAB to reduce the cyto- and genotoxicity of insecticides was tested on two normal (ovarian insect Sf-9 and rat intestinal IEC-6) cell lines and one cancer (human intestinal Caco-2) cell line. All strains exhibited various levels of reduction in the cyto- and genotoxicity of tested insecticides. It seems that coumaphos was detoxified most potently. The detoxification abilities depended on the insecticide, LAB strain, and cell line. The detoxification of insecticides in the organisms of honeybees may reduce the likelihood of the penetration of these toxins into honeybee products consumed by humans and may contribute to the improvement of the condition in apiaries and honeybee health.
Collapse
|
36
|
Faccinetto-Beltrán P, Aguirre-López LO, Bañuelos-Pineda J, Reza-Zaldívar EE, Santacruz A, Hernández-Brenes C, Pérez-Carrillo E, Jacobo-Velázquez DA. Fish oil and probiotics supplementation through milk chocolate improves spatial learning and memory in male Wistar rats. Front Nutr 2022; 9:1023653. [DOI: 10.3389/fnut.2022.1023653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundCognition and brain function is critical through childhood and should be improved with balanced diets. Incorporating bioactive ingredients such as omega-3 polyunsaturated fatty acids (ω3 PUFAs) and probiotics into food formulations could be used as an approach to improve cognitive function. This study evaluated the effects on cognitive capacity of complementing rodent diets with chocolate, by itself and in combination with ω3 PUFAs from fish oil and probiotics.MethodsSpatial learning and memory in the rats were determined by the Barnes maze test in short- and long-term memory. Samples from the cecum were obtained to assess microbial counts (Lactobacillus, Bifidobacterium, Enterobacteriaceae, and total bacteria), and brains were recovered to analyze the neural morphology of the tissues. Also, glucose, brain weights, and epididymal tissue were analyzed.ResultsThe combination of chocolate with fish oil and probiotics improved the memory of rats compared to the result of each bioactive compound when evaluated separately. Treatments did not affect sugar level, epididymal adipose tissue, or brain weight. On the other hand, consuming probiotics alone or in combination with chocolate decreased Enterobacteria counts, while Lactobacillus and Bifidobacteria counts were not affected. Neural morphological analysis showed that combining chocolate with probiotics and ω3 PUFAs increased the number of neurons in the hippocampal CA1 and CA3 regions.ConclusionChocolate added with probiotics and ω3 PUFAs improved spatial memory and learning in the studied model.
Collapse
|
37
|
Rizvi SAA, Einstein GP, Tulp OL, Sainvil F, Branly R. Introduction to Traditional Medicine and Their Role in Prevention and Treatment of Emerging and Re-Emerging Diseases. Biomolecules 2022; 12:1442. [PMID: 36291651 PMCID: PMC9599697 DOI: 10.3390/biom12101442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious diseases have been a threat to human health globally. The relentless efforts and research have enabled us to overcome most of the diseases through the use of antiviral and antibiotic agents discovered and employed. Unfortunately, the microorganisms have the capability to adapt and mutate over time and antibiotic and antiviral resistance ensues. There are many challenges in treating infections such as failure of the microorganisms to respond to the therapeutic agents, which has led to more chronic infections, complications, and preventable loss of life. Thus, a multidisciplinary approach and collaboration is warranted to create more potent, effective, and versatile therapies to prevent and eradicate the old and newly emerging diseases. In the recent past, natural medicine has proven its effectiveness against various illnesses. Most of the pharmaceutical agents currently used can trace their origin to the natural products in one way, shape, or form. The full potential of natural products is yet to be realized, as numerous natural resources have not been explored and analyzed. This merits continuous support in research and analysis of ancient treatment systems to explore their full potential and employ them as an alternative or principal therapy.
Collapse
Affiliation(s)
- Syed A. A. Rizvi
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
| | - George P. Einstein
- College of Medicine, University of Science, Arts and Technology, Olveston P.O. Box 506, UK
| | - Orien L. Tulp
- College of Medicine, University of Science, Arts and Technology, Olveston P.O. Box 506, UK
| | - Frantz Sainvil
- College of Medicine, University of Science, Arts and Technology, Olveston P.O. Box 506, UK
| | - Rolando Branly
- Physical Sciences Department, Broward College, Davie, FL 33332, USA
| |
Collapse
|
38
|
Tsukanov VV, Vasyutin AV, Tonkikh JL. Efficacy of probiotics for the treatment of irritable bowel syndrome. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:119-126. [DOI: 10.21518/2079-701x-2022-16-15-119-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
A review of current literature data was made, substantiating the high prevalence and social significance of irritable bowel syndrome (IBS). In different regions of the world, the prevalence of IBS ranges from 10% to 15%. The pathogenesis of IBS is a multifactorial process, including dysmotility, sluggish immune inflammation, changes in intestinal permeability, dysbiosis, exposure to infectious agents, malnutrition, neurohumoral dysregulation, changes in the central nervous system (psychological stress, cognitive dysfunction) in combination with genetic factors. The complexity of the pathogenesis determines the heterogeneity of the clinical manifestations of IBS, among which there may be forms with a predominance of pain, constipation, diarrhea, flatulence, which in turn complicates approaches to the treatment of this disease. The decisive importance of fecal dysbiosis for the pathogenesis of functional bowel pathology is now recognized. A 2019 systematic review showed a clear decrease in the genera Bifidobacterium and Faecalibacterium, an increase in the families Lactobacillaceae, Enterobacteriaceae and the genus Bacteroides in patients with IBS compared with healthy individuals. The Rome IV criteria, the recommendations of the British Society of Gastroenterology, the United European Gastroenterology and the European Society for Neurogastroenterology and Motility, the Russian Gastroenterological Association substantiate the use of probiotics for the treatment of IBS. Placebo-controlled clinical studies confirm the action of Bifidobacterium longum 35624 to normalize the frequency and form of stools, relieve general symptoms, abdominal pain, bloating, and improve the quality of life in patients with IBS. The expert council, held on March 18, 2022 in Moscow, chaired by the chief gastroenterologist of the Ministry of Health of the Russian Federation, Academician of the RAS V.T. Ivashkin, confirmed the effectiveness of probiotics for the treatment of IBS.
Collapse
Affiliation(s)
- V. V. Tsukanov
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Separate Subdivision “Scientific Research Institute of Medical Problems of the North”
| | - A. V. Vasyutin
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Separate Subdivision “Scientific Research Institute of Medical Problems of the North”
| | - Ju. L. Tonkikh
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Separate Subdivision “Scientific Research Institute of Medical Problems of the North”
| |
Collapse
|
39
|
Savigamin C, Samuthpongtorn C, Mahakit N, Nopsopon T, Heath J, Pongpirul K. Probiotic as a Potential Gut Microbiome Modifier for Stroke Treatment: A Systematic Scoping Review of In Vitro and In Vivo Studies. Nutrients 2022; 14:nu14173661. [PMID: 36079918 PMCID: PMC9460291 DOI: 10.3390/nu14173661] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pharmacologic and non-pharmacologic treatments for stroke are essential but can be costly or harmful, whereas probiotics are a promising alternative. This scoping review aimed to synthesize the in vitro and in vivo evidence of probiotics on stroke-related neurological, biochemical, and histochemical outcomes. METHODS A systematic review was conducted in PubMed, Embase, and Cochrane Central Register of Clinical Trials (CENTRAL) up to 7 May 2021. Titles and abstracts were screened and assessed by two independent reviewers. The initial screening criteria aimed to include studies using probiotics, prebiotics, and symbiotics both in vitro and in vivo for the prevention and/or treatment of stroke. RESULTS Of 6293 articles, 4990 passed the initial screen after excluding duplication articles, of which 36 theme-related full texts were assessed and 13 were included in this review. No in vitro studies passed the criteria to be included in this review. Probiotics can ameliorate neurological deficits and show their anti-inflammation and anti-oxidative properties. Decreased loss of cerebral volume and inhibition of neuronal apoptosis were revealed in histopathological evidence. CONCLUSIONS There are potential cognitive benefits of probiotic supplementation, especially among animal models, on decreasing cerebral volume, increasing neurological score, and decreasing the inflammatory response. However, further investigation is needed to validate these conclusions in various populations.
Collapse
Affiliation(s)
- Chatuthanai Savigamin
- Department of Parasitology, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
| | - Chatpol Samuthpongtorn
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
| | - Nuttida Mahakit
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
| | - Tanawin Nopsopon
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia Heath
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, School of Global Health, Chulalongkorn University Faculty of Medicine, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Clinical Research Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Correspondence:
| |
Collapse
|
40
|
Stuivenberg G, Daisley B, Akouris P, Reid G. In vitro assessment of histamine and lactate production by a multi-strain synbiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3419-3427. [PMID: 35875231 PMCID: PMC9304488 DOI: 10.1007/s13197-021-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
Recent studies suggest histamine and d-lactate may negatively impact host health. As excess histamine is deleterious to the host, the identification of bacterial producers has contributed to concerns over the consumption of probiotics or live microorganisms in fermented food items. Some probiotic products have been suspected of inducing d-lactic-acidosis; an illness associated with neurocognitive symptoms such as ataxia. The goals of the present study were to test the in vitro production of histamine and d-lactate by a 24-strain daily synbiotic and to outline methods that others can use to test for their production. Using enzymatic based assays, no significant production of histamine was observed compared to controls (P > 0.05), while d-lactate production was comparable to a commercially available probiotic with no associated health risk. These assays provide a means to add to the safety profile of synbiotic and probiotic products.
Collapse
|
41
|
Lawrence GW, McCarthy N, Walsh CJ, Kunyoshi TM, Lawton EM, O’Connor PM, Begley M, Cotter PD, Guinane CM. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 2022; 14:2100203. [PMID: 35877697 PMCID: PMC9318236 DOI: 10.1080/19490976.2022.2100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/μl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.
Collapse
Affiliation(s)
- Garreth W. Lawrence
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Niamh McCarthy
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Calum J. Walsh
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | - Paula M. O’Connor
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland,Paul D. Cotter Food Biosciences, Teagasc Food Research Centre Moorepark, APC Microbiome Ireland, Cork, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork, Ireland,CONTACT Caitriona M. Guinane Department of Biological Sciences, Munster Technological University, Cork, Ireland
| |
Collapse
|
42
|
Kumar M, Karthika S, Anjitha N, Varalakshmi P, Ashokkumar B. Screening for probiotic attributes of lactic acid bacteria isolated from human milk and evaluation of their anti-diabetic potentials. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2092494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manoj Kumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Karthika
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
43
|
Kumari A, Bhawal S, Kapila S, Kapila R. Strain-specific effects of probiotic Lactobacilli on mRNA expression of epigenetic modifiers in intestinal epithelial cells. Arch Microbiol 2022; 204:411. [PMID: 35729284 DOI: 10.1007/s00203-022-03027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
The epigenome of an organism is as important as the genome for the normal development and functioning of an individual. The human epigenome can be affected by various environmental factors including nutrients, microbiota and probiotics through epigenetic modifiers and mediates various health-promoting effects. The present study was aimed to explore the temporal changes in DNA and histone modifiers (DNMT1, TET2, p300, HDAC1, KMT2A, KDM5B, EzH2 and JMJD3) in intestinal epithelial cells (Caco-2) by probiotic lactobacilli (Limosilactobacillus fermentum MTCC 5898 and Lacticaseibacillus rhamnosus MTCC 5897) in comparison to opportunistic commensal pathogen Escherichia coli (ATCC 14849). Cells were treated separately with probiotic strains and E. coli for different durations and temporal changes in gene expression among DNA and histone modifiers were measured. Time-dependent studies showed that L. fermentum enhanced the transcription of epigenetic modifiers at 12 h of treatment (P < 0.05) contrary to E. coli which reduced the expression of these genes during the same duration of treatment. On the other hand, probiotic L. rhamnosus was not able to induce any significant changes in gene expression of these modifiers. Furthermore, during the exclusion of E. coli by L. fermentum, the probiotic was found to resist the changes made by E. coli in the transcription of some of the epigenetic modifiers. Thus, it is concluded that the probiotics modulated the mRNA expression of DNA and histone modifiers contrarily to E. coli in a strain-specific manner.
Collapse
Affiliation(s)
- Ankita Kumari
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Shalaka Bhawal
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Suman Kapila
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India
| | - Rajeev Kapila
- Division of Animal Biochemistry, National Dairy Research Institute (NDRI), Karnal, Haryana, 132001, India.
| |
Collapse
|
44
|
Perry A, Stephanou A, Rayman MP. Dietary factors that affect the risk of pre-eclampsia. BMJ Nutr Prev Health 2022; 5:118-133. [PMID: 35814725 PMCID: PMC9237898 DOI: 10.1136/bmjnph-2021-000399] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Pre-eclampsia affects 3%-5% of pregnant women worldwide and is associated with a range of adverse maternal and fetal outcomes, including maternal and/or fetal death. It particularly affects those with chronic hypertension, pregestational diabetes mellitus or a family history of pre-eclampsia. Other than early delivery of the fetus, there is no cure for pre-eclampsia. Since diet or dietary supplements may affect the risk, we have carried out an up-to-date, narrative literature review to assess the relationship between nutrition and pre-eclampsia. Several nutrients and dietary factors previously believed to be implicated in the risk of pre-eclampsia have now been shown to have no effect on risk; these include vitamins C and E, magnesium, salt, ω-3 long-chain polyunsaturated fatty acids (fish oils) and zinc. Body mass index is proportionally correlated with pre-eclampsia risk, therefore women should aim for a healthy pre-pregnancy body weight and avoid excessive gestational and interpregnancy weight gain. The association between the risk and progression of the pathophysiology of pre-eclampsia may explain the apparent benefit of dietary modifications resulting from increased consumption of fruits and vegetables (≥400 g/day), plant-based foods and vegetable oils and a limited intake of foods high in fat, sugar and salt. Consuming a high-fibre diet (25-30 g/day) may attenuate dyslipidaemia and reduce blood pressure and inflammation. Other key nutrients that may mitigate the risk include increased calcium intake, a daily multivitamin/mineral supplement and an adequate vitamin D status. For those with a low selenium intake (such as those living in Europe), fish/seafood intake could be increased to improve selenium intake or selenium could be supplemented in the recommended multivitamin/mineral supplement. Milk-based probiotics have also been found to be beneficial in pregnant women at risk. Our recommendations are summarised in a table of guidance for women at particular risk of developing pre-eclampsia.
Collapse
Affiliation(s)
- Abigail Perry
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Anna Stephanou
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
45
|
Tsamakis K, Galinaki S, Alevyzakis E, Hortis I, Tsiptsios D, Kollintza E, Kympouropoulos S, Triantafyllou K, Smyrnis N, Rizos E. Gut Microbiome: A Brief Review on Its Role in Schizophrenia and First Episode of Psychosis. Microorganisms 2022; 10:microorganisms10061121. [PMID: 35744639 PMCID: PMC9227193 DOI: 10.3390/microorganisms10061121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence highlighting the role of gut microbiota as a biological basis of psychiatric disorders. The existing literature suggest that cognitive and emotional activities can be influenced by microbes through the microbiota–gut–brain axis and implies an association between alterations in the gut microbiome and several psychiatric conditions, such as autism, depression, bipolar disorder and psychosis. The aim of this review is to summarise recent findings and provide concise updates on the latest progress of the role of gut microbiota in the development and maintenance of psychiatric symptoms in schizophrenia and the first episode of psychosis. Despite the lack of consistent findings in regard to specific microbiome changes related to psychosis, the emerging literature reports significant differences in the gut microbiome of schizophrenic subjects compared to healthy controls and increasingly outlines the significance of an altered microbiome composition in the pathogenesis, development, symptom severity and prognosis of psychosis. Further human studies are, however, required, which should focus on identifying the drivers of microbiota changes in psychosis and establish the direction of causality between psychosis and microbiome alterations.
Collapse
Affiliation(s)
- Konstantinos Tsamakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK
- Institute of Medical and Biomedical Education, St George’s, University of London, London SW17 0RE, UK
- Correspondence:
| | - Sofia Galinaki
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Ioannis Hortis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Evangelia Kollintza
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Stylianos Kympouropoulos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| |
Collapse
|
46
|
Emami E, Mt Sherwin C, Heidari-Soureshjani S. Effect of probiotics on urinary tract infections in children: A systematic review and meta-analysis. Curr Rev Clin Exp Pharmacol 2022; 19:CRCEP-EPUB-123117. [PMID: 35507743 DOI: 10.2174/2772432817666220501114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most prevalent bacterial infections that occur in children worldwide. OBJECTIVE This meta-analysis aims to investigate the utility of probiotics as preventive therapy in children with a UTI. METHODS The Web of Science, PubMed, and Scopus were searched for articles that investigated the relationship between probiotic consumption and the risk of UTIs. The quality of the articles was evaluated using the Jadad scale. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effects model. Subgroup analyses and sensitivity analyses were also conducted. The Cochran Q test and the statistic I2 were used to evaluate heterogeneity. To determine any potential publication bias, the Egger's and Begg's tests were used. RESULTS In total, eleven studies were selected for systematic review and meta-analysis. Compared to children who did not receive probiotics, the OR of developing or having a recurring urinary tract infection in those who received probiotics was 0.94 (95% CI; 0.88-0.999; p-value=0.046). The Begg's and Egger's tests showed no evidence of publication bias between probiotics and the risk of developing new or recurring urinary tract infections. CONCLUSION Based on this systematic review and meta-analysis, probiotics could be an alternative therapy for children who are at risk of developing a UTI. They are non-pharmaceutical options and could be used as natural prophylaxis for UTIs. However, the currently published evidence does not irrefutably confirm that probiotics provide a protective effect against urinary bacterial infections. Therefore, there need to be large-scale randomized clinical trials undertaken to investigate the possible prophylaxis of probiotics.
Collapse
Affiliation(s)
- Elham Emami
- Emam Hossein Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catherine Mt Sherwin
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children\'s Hospital, One Children\'s Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
47
|
Farzana M, Shahriar S, Jeba FR, Tabassum T, Araf Y, Ullah MA, Tasnim J, Chakraborty A, Naima TA, Marma KKS, Rahaman TI, Hosen MJ. Functional food: complementary to fight against COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:33. [PMID: 35284580 PMCID: PMC8899455 DOI: 10.1186/s43088-022-00217-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Background The novel coronavirus has embarked on a global pandemic and severe mortality with limited access for its treatments and medications. For the lack of time, research, and enough efficacy, most vaccines are underdeveloped or unreachable to society. However, many recent studies suggest various alternative, complementary remedies for COVID-19, which are functional foods. This review provides an overview of how functional foods can play a great role through modulating the host immune system, generating antiviral activities, and synthesizing biologically active agents effective against the coronavirus. Main body This review article summarizes the natural defense mechanisms in tackling SARS-CoV-2 alongside conventional therapeutic options and their corresponding harmful side effects. By analyzing bioactive components of functional foods, we have outlined its different contributions to human health and its potential immunomodulatory and antiviral properties that can enhance resistivity to viral infection. Moreover, we have provided a myriad of accessible and cost-effective functional foods that could be further investigated to target specific key symptoms of COVID-19 infections. Finally, we have found various functional foods with potent bioactive compounds that can inhibit or prevent COVID-19 infections and disease progression. Short conclusion Numerous functional foods can help the body fight COVID-19 through several mechanisms such as the reduced release of pro-inflammatory cytokines, reduced expression of ACE2 receptors in cells, and inhibiting essential enzymes in SARS-CoV-2.
Collapse
Affiliation(s)
- Maisha Farzana
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Sagarika Shahriar
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Faria Rahman Jeba
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Tahani Tabassum
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Jarin Tasnim
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Taslima Anjum Naima
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
48
|
Escobar YNH, O’Piela D, Wold LE, Mackos AR. Influence of the Microbiota-Gut-Brain Axis on Cognition in Alzheimer’s Disease. J Alzheimers Dis 2022; 87:17-31. [PMID: 35253750 PMCID: PMC10394502 DOI: 10.3233/jad-215290] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gut microbiota is made up of trillions of microbial cells including bacteria, viruses, fungi, and other microbial bodies and is greatly involved in the maintenance of proper health of the host body. In particular, the gut microbiota has been shown to not only be involved in brain development but also in the modulation of behavior, neuropsychiatric disorders, and neurodegenerative diseases including Alzheimer’s disease. The precise mechanism by which the gut microbiota can affect the development of Alzheimer’s disease is unknown, but the gut microbiota is thought to communicate with the brain directly via the vagus nerve or indirectly through signaling molecules such as cytokines, neuroendocrine hormones, bacterial components, neuroactive molecules, or microbial metabolites such as short-chain fatty acids. In particular, interventions such as probiotic supplementation, fecal microbiota transfer, and supplementation with microbial metabolites have been used not only to study the effects that the gut microbiota has on behavior and cognitive function, but also as potential therapeutics for Alzheimer’s disease. A few of these interventions, such as probiotics, are promising candidates for the improvement of cognition in Alzheimer ’s disease and are the focus of this review.
Collapse
Affiliation(s)
- Yael-Natalie H. Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Devin O’Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
49
|
Alameri F, Tarique M, Osaili T, Obaid R, Abdalla A, Masad R, Al-Sbiei A, Fernandez-Cabezudo M, Liu SQ, Al-Ramadi B, Ayyash M. Lactic Acid Bacteria Isolated from Fresh Vegetable Products: Potential Probiotic and Postbiotic Characteristics Including Immunomodulatory Effects. Microorganisms 2022; 10:389. [PMID: 35208844 PMCID: PMC8880326 DOI: 10.3390/microorganisms10020389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to perform effectively in the gastrointestinal tract (GIT) is one of the most significant criteria in the selection of potential probiotic bacteria. Thus, the present study aimed to investigate the potential probiotic characteristics of some selected lactic acid bacteria (LAB) isolated from vegetable products. Probiotic characteristics included tolerance to acid and bile, cholesterol-removing ability, bile salt hydrolysis, resistance against lysozyme and antibiotics, production of exopolysaccharides (EPS), antimicrobial and hemolytic activities, and cell surface characteristics (auto-aggregation, co-aggregation, and hydrophobicity). The survival rate of isolates after G120 ranged from 8.0 to 8.6 Log10 CFU/mL. After the intestinal phase (IN-120), the bacterial count ranged from 7.3 to 8.5 Log10 CFU/mL. The bile tolerance rates ranged from 17.8 to 51.1%, 33.6 to 63.9%, and 55.9 to 72.5% for cholic acid, oxgall, and taurocholic acid, respectively. Isolates F1, F8, F23, and F37 were able to reduce cholesterol (>30%) from the broth. The auto-aggregation average rate increased significantly after 24 h for all isolates, while two isolates showed the highest hydrophobicity values. Moreover, isolates had attachment capabilities comparable to those of HT-29 cells, with an average of 8.03 Log10 CFU/mL after 2 h. All isolates were resistant to lysozyme and vancomycin, and 8 out of the 17 selected isolates displayed an ability to produce exopolysaccharides (EPS). Based on 16S rRNA sequencing, LAB isolates were identified as Enterococcus faecium, E. durans, E. lactis, and Pediococcus acidilactici.
Collapse
Affiliation(s)
- Fatima Alameri
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (M.T.)
| | - Mohammad Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (M.T.)
| | - Tareq Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 32223, United Arab Emirates; (T.O.); (R.O.)
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Riyad Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 32223, United Arab Emirates; (T.O.); (R.O.)
| | - Abdelmoneim Abdalla
- Food Science Department, College of Agriculture, South Valley University, Qena 83523, Egypt;
| | - Razan Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (R.M.); (B.A.-R.)
| | - Ashraf Al-Sbiei
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (A.A.-S.); (M.F.-C.)
| | - Maria Fernandez-Cabezudo
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (A.A.-S.); (M.F.-C.)
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (R.M.); (B.A.-R.)
- Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (M.T.)
| |
Collapse
|
50
|
Probiotics Alleviate Oxidative Stress in H 2O 2-Exposed Hepatocytes and t-BHP-Induced C57BL/6 Mice. Microorganisms 2022; 10:microorganisms10020234. [PMID: 35208690 PMCID: PMC8877580 DOI: 10.3390/microorganisms10020234] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/29/2023] Open
Abstract
Antioxidants protect against oxidative stress that can damage proteins, the cellular immune system, and DNA. In recent studies, probiotics have been shown to impart a microbial balance to the gastrointestinal tract, demonstrating significant antioxidant capacity. In this study, the probiotic properties and antioxidant mechanism of probiotics were evaluated in HepG2 cells and in an animal model. The characteristics of Lactococcus lactis MG5125, Bifidobacterium bifidum MG731, and Bifidobacterium animalis subsp. lactis MG741, which were used as lactic acid bacteria in this study, were analyzed. The results revealed the safety and stability of these probiotics in the gastrointestinal tract because they did not cause hemolysis and had excellent intestinal adhesion (75–84%). In HepG2 cells, the three probiotics alleviated H2O2-induced oxidative stress by mediating lipid peroxidation and glutathione levels and upregulating antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. In the tBHP-induced mouse model, administration of the three probiotics reduced hepatic aspartate transaminase, alanine transaminase, and lipid peroxidation levels. In conclusion, Lc. lactis MG5125, B. bifidum MG731, and B. lactis MG741 showed considerable antioxidant activity both in vitro and in vivo.
Collapse
|