1
|
Guo Z, Liu P, Li T, Gao E, Bian J, Ren X, Xu B, Chen X, Huang H, Liu J, Yang X, Lu S. Associations of urinary nicotine metabolites and essential metals with metabolic syndrome in older adults: The mediation effect of insulin resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135969. [PMID: 39342858 DOI: 10.1016/j.jhazmat.2024.135969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Exposure to tobacco smoke and essential metals is linked with metabolic syndrome (MS). However, the joint effect of them on MS in older adults and the underlying mechanisms are still unclear. This large-scale study measured the urinary concentrations of 8 nicotine metabolites and 8 essential metals in 4564 older adults from Shenzhen, China. The biomarker of insulin resistance, triglyceride-glucose index (TyG), was also calculated. Restricted cubic splines (RCS), Bayesian kernel machine regression and quantile-based g-computation were used to access the single and joint effects of urinary nicotine metabolites and essential metals on MS and insulin resistance. Mediation analysis was performed to investigate the role of TyG in these relationships. Single urinary nicotine metabolite and essential metal had non-linear relationships with MS in RCS. The overall effect of urinary nicotine metabolites and essential metals was positively associated with MS. Urinary zinc (52.2 %) and copper (20.1 %) were the major contributors to MS, whereas molybdenum had a negative association with MS. TyG mediated 64.7 % of the overall effect of urinary nicotine metabolites and essential metals on MS. Overall, the mixture of urinary nicotine metabolites and essential metals had a dose-response relationship with MS. Insulin resistance was as a crucial mediated pathway in this association.
Collapse
Affiliation(s)
- Zhihui Guo
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; Beijing Daxing District Center for Disease Control and Prevention, Beijng 102699, China
| | - Erwei Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junye Bian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Wang X, Su S. The hidden impact: the rate of nicotine metabolism and kidney health. Front Endocrinol (Lausanne) 2024; 15:1424068. [PMID: 39355620 PMCID: PMC11442274 DOI: 10.3389/fendo.2024.1424068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Objectives The effects of nicotine metabolism on the kidneys of healthy individuals have not been determined. The nicotine metabolite ratio (NMR) indicates the rate of nicotine metabolism and is linked to smoking behaviors and responses to tobacco treatments. We conducted this study in order to investigated the relationship between nicotine metabolite ratio (NMR) and kidney function. Methods An analysis of cross-sectional data of adults was conducted using a population survey dataset (National Health and Nutrition Examination Survey Data 2013/2018 of the United States). A weighted multivariate regression analysis was conducted to estimate the correlation between NMR and kidney function. Furthermore, we apply fitting smooth curves to make the relationship between NMR and estimated glomerular filtration rate (eGFR) more visualized. Results The research included a total of 16153 participants. Weighted multivariate regression analyses adjusted for possible variables showed a negative relationship between NMR and estimated glomerular filtration rate (eGFR).The β (95%CI) of the regression equation between NMR and eGFR was -2.24 (-2.92, -1.55), the trend testing showed consistent results. NMR is positively correlated with urinary albumin creatinine ratio (uACR), but it is not statistically significant. A stratified analysis found a negative correlation between NMR and eGFR in all age, gender and diabetes subgroups, the results were not statistically significant among Mexican Americans and other races. Notably, each unit rise in NMR corresponded to a 4.54 ml/min·1.73m² lower eGFR in diabetic participants and a 6.04 ml/min·1.73m² lower eGFR in those aged 60 and above. Conclusions Our study shows that nicotine metabolite ratio is negatively associated with kidney function among most adults. It will be necessary to conduct more well-designed prospective clinical trials in order to determine the exact causal interactions between NMR and kidney function. Specific mechanisms also need to be further explored in basic experiments.
Collapse
Affiliation(s)
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional
Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Yakimavets V, Qiu T, Panuwet P, D'Souza PE, Brennan PA, Dunlop AL, Barry Ryan P, Boyd Barr D. Simultaneous quantification of urinary tobacco and marijuana metabolites using solid-supported liquid-liquid extraction coupled with liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123378. [PMID: 35908438 PMCID: PMC10317196 DOI: 10.1016/j.jchromb.2022.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Co-exposure to tobacco and marijuana has become common in areas where recreational marijuana use is legal. To assist in the determination of the combined health risks of this co-exposure, an analytical method capable of simultaneously measuring tobacco and marijuana metabolites is needed to reduce laboratory costs and the required sample volume. So far, no such analytical method exists. Thus, we developed and validated a method to simultaneously quantify urinary levels of trans-3'-hydroxycotinine (3OH-COT), cotinine (COT), and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (COOH-THC) to assess co-exposure to tobacco and marijuana. Urine (200 µL) was spiked with labelled internal standards and enzymatically hydrolyzed to liberate the conjugated analytes before extraction using solid-supported liquid-liquid extraction (SLE) with ethyl acetate serving as an eluent. The target analytes were separated on a C18 (4.6 × 100 mm, 5 μm) analytical column with a gradient mobile phase elution and analyzed using tandem mass spectrometry with multiple reaction monitoring of target ion transitions. Positive electrospray ionization (ESI) was used for 3OH-COT and COT, while negative ESI was used for COOH-THC. The total run time was 13 min. The extraction recoveries were 18.4-23.9 % (3OH-COT), 65.1-96.8 % (COT), and 80.6-95.4 % (COOH-THC). The method limits of quantification were 5.0 ng/mL (3OH-COT) and 2.5 ng/mL (COT and COOH-THC). The method showed good accuracy (82.5-98.5 %) and precision (1.22-6.21 % within-day precision and 1.42-6.26 % between-day precision). The target analytes were stable for at least 144 h inside the autosampler (10 °C). The analyses of reference materials and 146 urine samples demonstrated good method performance. The use of a 96-well plate for preparation makes the method useful for the analysis of large numbers of samples.
Collapse
Affiliation(s)
- Volha Yakimavets
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tian Qiu
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Priya E D'Souza
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Patricia A Brennan
- Department of Psychology, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
Effects of Genetic Variants in the Nicotine Metabolism Pathway on Smoking Cessation. Genet Res (Camb) 2022; 2022:2917881. [PMID: 36245555 PMCID: PMC9534651 DOI: 10.1155/2022/2917881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background We aimed to investigate the associations of various genetic variants in the nicotine metabolism pathway with smoking cessation (SC) in the Chinese Han population. Method A case-control study was conducted where 363 successful smoking quitters were referred to as cases, and 345 failed smoking quitters were referred to as controls. A total of 42 genetic variants in 10 genes were selectedand genotyped. The weighted gene score was applied to analyze the whole gene effect. Logistic regression was used to explore associations of each genetic variant and gene score with smoking cessation. Results Our study found that the variants CYP2A6∗4, rs11726322, rs12233719, and rs3100 were associated with a higher probability of quitting smoking, while rs3760657 was associated with a lower probability of quitting smoking. Moreover, the gene scores of CYP2D6, FMO3, UGT2B10, UGT1A9, UGT2B7, and UGT2B15 were shown to exert a positive effect, while the gene score of CYP2B6 was detected to exert a negative effect on successful smoking cessation. Conclusion This study revealed that genetic variants in the nicotine metabolic pathway were associated with smoking cessation in the Chinese Han population.
Collapse
|
5
|
Velázquez-Ulloa NA, Heres-Pulido ME, Santos-Cruz LF, Durán-Díaz A, Castañeda-Partida L, Browning A, Carmona-Alvarado C, Estrada-Guzmán JC, Ferderer G, Garfias M, Gómez-Loza B, Magaña-Acosta MJ, Perry HH, Dueñas-García IE. Complex interactions between nicotine and resveratrol in the Drosophila melanogaster wing spot test. Heliyon 2022; 8:e09744. [PMID: 35770151 PMCID: PMC9234589 DOI: 10.1016/j.heliyon.2022.e09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Nicotine (NIC) and resveratrol (RES) are chemicals in tobacco and wine, respectively, that are widely consumed concurrently worldwide. NIC is an alkaloid known to be toxic, addictive and to produce oxidative stress, while RES is thought of as an antioxidant with putative health benefits. Oxidative stress can induce genotoxic damage, yet few studies have examined whether NIC is genotoxic in vivo. In vitro studies have shown that RES can ameliorate deleterious effects of NIC. However, RES has been reported to have both antioxidant and pro-oxidant effects, and an in vivo study reported that 0.011 mM RES was genotoxic. We used the Drosophila melanogaster wing spot test to determine whether NIC and RES, first individually and then in combination, were genotoxic and/or altered the cell division. We hypothesized that RES would modulate NIC’s effects. NIC was genotoxic in the standard (ST) cross in a concentration-independent manner, but not genotoxic in the high bioactivation (HB) cross. RES was not genotoxic in either the ST or HB cross at the concentrations tested. We discovered a complex interaction between NIC and RES. Depending on concentration, RES was protective of NIC’s genotoxic damage, RES had no interaction with NIC, or RES had an additive or synergistic effect, increasing NIC’s genotoxic damage. Most NIC, RES, and NIC/RES combinations tested altered the cell division in the ST and HB crosses. Because we used the ST and HB crosses, we demonstrated that genotoxicity and cell division alterations were modulated by the xenobiotic metabolism. These results provide evidence of NIC’s genotoxicity in vivo at specific concentrations. Moreover, NIC’s genotoxicity can be modulated by its interaction with RES in a complex manner, in which their interaction can lead to either increasing NIC’s damage or protecting against it. Nicotine was genotoxic at specific concentrations in the Drosophila wing spot test. Resveratrol protected against nicotine’s genotoxic effects at some concentrations. Resveratrol increased nicotine’s genotoxicity at specific concentrations. Nicotine and resveratrol have a complex interaction in vivo. Studying chemicals in combination in vivo may uncover unexpected interactions.
Collapse
Affiliation(s)
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Browning
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - C Carmona-Alvarado
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J C Estrada-Guzmán
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - G Ferderer
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - M Garfias
- Biology Department, Lewis & Clark College, Portland, OR, USA.,Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - B Gómez-Loza
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M J Magaña-Acosta
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.,Department of Developmental Genetics & Molecular Physiology, Universidad Nacional Autónoma de México. Av Universidad, 2001, Col Chamilpa, Cuernavaca, Mexico
| | - H H Perry
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - I E Dueñas-García
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
6
|
Yang J, Hashemi S, Han W, Lee C, Song Y, Lim Y. Study on the daily Ad Libitum smoking habits of active Korean smokers and their effect on urinary smoking exposure and impact biomarkers. Biomarkers 2021; 26:691-702. [PMID: 34530669 DOI: 10.1080/1354750x.2021.1981448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Understanding interactions of smoking topography with biomarkers of exposure to tobacco is essential for accurate smoking risk assessments. METHODS In this study, the smoking topography and the levels of tobacco smoke exposure urinary biomarkers of a sample of active Korean smokers were quantified and measured. The results were used to investigate the effect of daily activities and smoking time on the smoking topography. Moreover, correlations between the smoking topography parameters and biomarkers were assessed. RESULTS No significant effect of either the daily activities or time on the smoking topography of the subjects were observed. Synchronic correlations of the cigarette consumption per day (CPD) and the average flow per puff with both urinary cotinine and trans-3'-hydroxycotinine were significant. For the urinary nicotine metabolites, the peak levels appeared when the CPD was over 19 cigarettes per day and the average puff velocity was between 35 and 45 ml/s. Nevertheless, when the average flow was over 60 ml/s, the levels of cotinine and trans-3'-hydroxycotinine significantly dropped. CONCLUSIONS The findings of this study may be beneficial for further smoking risk assessments with contributions of both the smoking topography and biomarkers to provide current smokers with applicable cession programs.Clinical significanceSmoking habits and levels of urinary biomarkers of Korean smokers are investigated.People with a higher dependency on nicotine smoke cigarettes with slower puffs.Effects of daily activities or time on smoking topography were not significant.Correlations between smoking topography and urinary biomarkers were significant.Peak biomarker levels were observed under certain smoking topography conditions.
Collapse
Affiliation(s)
- Jiyeon Yang
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shervin Hashemi
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonseok Han
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chaelin Lee
- Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Yoojin Song
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngwook Lim
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Wu CC, Wang HE, Liu YC, Zheng CM, Chu P, Lu KC, Chu CM, Chang YT. Sleeping, Smoking, and Kidney Diseases: Evidence From the NHANES 2017-2018. Front Med (Lausanne) 2021; 8:745006. [PMID: 34651001 PMCID: PMC8505692 DOI: 10.3389/fmed.2021.745006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Study Objectives: Smoking and sleep are modifiable factors associated with the chronic kidney diseases. However, the interaction of smoking and sleep on the renal function are still unclear. Therefore, we aimed to evaluate the interactive impacts of smoking and sleep on the renal function. Methods: Data were obtained from the National Health and Nutrition Examination Survey. The study population were categorized into nine subgroups by smoking (smoking every day, sometimes, and non-smokers recently) and sleep duration (short duration ≤ 6 h, normal duration 6-9 h, and longer duration ≥ 9 h on the weekdays). Results: The study group with a short sleep duration had significantly higher serum cotinine and hydrocotinine levels compared with the other two sleep groups. After adjusting the demographic characteristics (age, race, body mass index, and marital status), sleep quality (snoring or breathing cessation), and comorbidities (diabetes mellitus, hypertension, high cholesterol, anemia, congestive heart failure, coronary heart disease, and stroke), non-smokers with short or long sleep duration had significant lower estimated glomerular filtration rate (eGFR) levels than the study group who smoked every day and slept ≤ 6 h. The effects of sleep duration on eGFR levels varied with smoking status. For the study group smoking every day, eGFR levels increased as sleep duration decreased, whereas for the study group smoking sometimes, eGFR levels increased as sleep duration increased. The U-shaped effects of eGFR levels were observed among non-smokers whose normal sleep duration was associated with better eGFR levels. Normal sleep duration was an important protective factor of the renal function for non-smokers than smokers. Conclusions: The effects of sleep duration on eGFR levels varied with smoking status. Normal sleep duration was a protective factor and more crucial for non-smokers than for smokers.
Collapse
Affiliation(s)
- Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Department and Graduate Institute of Microbiology and Immunology, Taipei, Taiwan
| | - Han-En Wang
- Division of Nephrology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Chun Liu
- School of Public Health, National Defense Medical Center, Taipei City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- TMU Research Centre of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, School of Medicine, Fu-Jen Catholic Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chi-Ming Chu
- School of Public Health, National Defense Medical Center, Taipei City, Taiwan
- Department of Surgery, National Defense Medical Center, Songshan Branch of Tri-Service General Hospital, Taipei City, Taiwan
- Division of Biostatistics and Informatics, Department of Epidemiology, National Defense Medical Center, School of Public Health, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung City, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yu-Tien Chang
- School of Public Health, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
8
|
Tian S, Cao X, Greiner R, Li C, Guo A, Wishart DS. CyProduct: A Software Tool for Accurately Predicting the Byproducts of Human Cytochrome P450 Metabolism. J Chem Inf Model 2021; 61:3128-3140. [PMID: 34038112 DOI: 10.1021/acs.jcim.1c00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In silico metabolism prediction is a cheminformatic task of autonomously predicting the set of metabolic byproducts produced from a specified molecule and a set of enzymes or reactions. Here, we describe a novel machine learned in silico cytochrome P450 (CYP450) metabolism prediction suite, called CyProduct, that accurately predicts metabolic byproducts for a specified molecule and a human CYP450 isoform. It includes three modules: (1) CypReact, a tool that predicts if the query compound reacts with a given CYP450 enzyme, (2) CypBoM, a tool that accurately predicts the "bond site" of the reaction (i.e., which specific bonds within the query molecule react with the CYP isoform), and (3) MetaboGen, a tool that generates the metabolic byproducts based on CypBoM's bond-site prediction. CyProduct predicts metabolic biotransformation products for each of the nine most important human CYP450 enzymes. CypBoM uses an important new concept called "bond of metabolism" (BoM), which extends the traditional "site of metabolism" (SoM) by specifying the information about the set of chemical bonds that is modified or formed in a metabolic reaction (rather than the specific atom). We created a BoM database for 1845 CYP450-mediated Phase I reactions, then used this to train the CypBoM Predictor to predict the reactive bond locations on substrate molecules. CypBoM Predictor's cross-validated Jaccard score for reactive bond prediction ranged from 0.380 to 0.452 over the nine CYP450 enzymes. Over variants of a test set of 68 known CYP450 substrates and 30 nonreactants, CyProduct outperformed the other packages, including ADMET Predictor, BioTransformer, and GLORY, by an average of 200% (with respect to Jaccard score) in terms of predicting metabolites. The CyProduct suite and the data sets are freely available at https://bitbucket.org/wishartlab/cyproduct/src/master/.
Collapse
Affiliation(s)
- Siyang Tian
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8.,Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Alberta Machine Intelligence Institute (AMII), University of Alberta, 2-21 Athabasca Hall, Edmonton, Alberta Canada T6G 2E8
| | - Xuan Cao
- Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8.,Alberta Machine Intelligence Institute (AMII), University of Alberta, 2-21 Athabasca Hall, Edmonton, Alberta Canada T6G 2E8
| | | | - AnChi Guo
- Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - David S Wishart
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E8.,Department of Biological Science, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
9
|
Kawasaki Y, Li YS, Watanabe S, Ootsuyama Y, Kawai K. Urinary biomarkers for secondhand smoke and heated tobacco products exposure. J Clin Biochem Nutr 2021; 69:37-43. [PMID: 34376912 PMCID: PMC8325761 DOI: 10.3164/jcbn.20-183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/02/2022] Open
Abstract
Concerns have recently grown about the health effects of secondhand smoke exposure and heated tobacco products. The analysis of tobacco smoke biomarkers is critical to assess the health effects of tobacco smoke exposure. For this purpose, the simultaneous determinations of exposure markers and health effect markers would provide a better evaluation of smoke exposure. In this study, nicotine metabolites (nicotine, cotinine, trans-3'-hydroxycotinine) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine were analyzed as exposure markers. The DNA damage markers, 7-methylguanine and 8-hydroxy-2'-deoxyguanosine, were simultaneously measured as health effect markers. The results revealed significant levels of urinary nicotine metabolites and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in the subjects exposed to secondhand smoke and heated tobacco products. In addition, the urinary levels of 7-methylguanine and 8-hydroxy-2'-deoxyguanosine tended to be high for secondhand smoke and heated tobacco products exposures, as compared to those of non-smokers. These biomarkers will be useful for evaluating tobacco smoke exposure.
Collapse
Affiliation(s)
- Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Sintaroo Watanabe
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.,Japan Marine United Corporation Kure Shipyard, 2-1 Showa-cho, Kure 737-0027, Japan
| | - Yuko Ootsuyama
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.,Center for Stress-related Disease Control and Prevention, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
10
|
Perez-Paramo YX, Lazarus P. Pharmacogenetics factors influencing smoking cessation success; the importance of nicotine metabolism. Expert Opin Drug Metab Toxicol 2021; 17:333-349. [PMID: 33322962 PMCID: PMC8049967 DOI: 10.1080/17425255.2021.1863948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/12/2023]
Abstract
Introduction: Smoking remains a worldwide epidemic, and despite an increase in public acceptance of the harms of tobacco use, it remains the leading cause of preventable death. It is estimated that up to 70% of all smokers express a desire to quit, but only 3-5% of them are successful.Areas covered: The goal of this review was to evaluate the current status of smoking cessation treatments and the feasibility of implementing personalized-medicine approaches to these pharmacotherapies. We evaluated the genetics associated with higher levels of nicotine addiction and follow with an analysis of the genetic variants that affect the nicotine metabolic ratio (NMR) and the FDA approved treatments for smoking cessation. We also highlighted the gaps in the process of translating current laboratory understanding into clinical practice, and the benefits of personalized treatment approaches for a successful smoking cessation strategy.Expert opinion: Evidence supports the use of tailored therapies to ensure that the most efficient treatments are utilized in an individual's smoking cessation efforts. An understanding of the genetic effects on the efficacy of individualized smoking cessation pharmacotherapies is key to smoking cessation, ideally utilizing a polygenetic risk score that considers all genetic variation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
11
|
Andong FA, Orji EA, Ezenwaji NE, Nkemakolam AO, Melefa TD, Chukwurah AO, Ojonugwa OM, Hinmikaiye FF, Onwurah AI. Sub-acute oral toxicity study of aqueous extract of tobacco leaves ( Nicotiana tabacum L.) on lipid profile, the tissue, and serum of the liver and kidney of male Wistar rats. Biomarkers 2021; 26:127-137. [PMID: 33213209 DOI: 10.1080/1354750x.2020.1854346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/14/2020] [Indexed: 12/23/2022]
Abstract
CONTEXT Tobacco consumption may pose a very serious threat to the physiological state of the body; yet, fewer records have been documented in that regard. OBJECTIVE We investigated the impact of aqueous extract of tobacco leaves on the lipid profile, the tissue, and serum levels of the liver and kidney of male Wister rats. MATERIALS AND METHODS Rats (n = 52; weight = 33 - 47 g; ∼ 2½ weeks old) were acclimatised for 7 days and administered aqueous extract of tobacco leaves at 100, 200, 400, 0 mg/kg of body weight (to group A, B, C, D) for 30 days. RESULTS Compared with the control group, the kidney tissue and serum (i.e., urea and creatinine) were not influenced, in contrast, indices of the liver such as AST, ALT, and ALP, dose-dependently increased. Changes such as coagulative necrosis resulted in the infiltration of mononuclear inflammatory cells and the vacuolar degeneration of the liver. Beside the reduction in the high-density lipoprotein of the rats, there was an increase in the concentration of triglycerides, very low-density lipoprotein, low-density lipoprotein, and the total cholesterol. CONCLUSION Thus, extract of tobacco leaves can greatly influence the body lipid profile, beside the serum and tissues of the liver.
Collapse
Affiliation(s)
- Felix Atawal Andong
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
- Department of Zoology, A.P. Leventis Ornithological Research Institute, University of Jos, Jos, Nigeria
| | - Ebele Augustina Orji
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Ngozi Evelyn Ezenwaji
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Augustine Okorie Nkemakolam
- dDepartment of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | | | | |
Collapse
|
12
|
Borrego-Soto G, Perez-Paramo YX, Chen G, Santuario-Facio SK, Santos-Guzman J, Posadas-Valay R, Alvarado-Monroy FM, Balderas-Renteria I, Medina-Gonzalez R, Ortiz-Lopez R, Lazarus P, Rojas-Martinez A. Genetic variants in CYP2A6 and UGT1A9 genes associated with urinary nicotine metabolites in young Mexican smokers. THE PHARMACOGENOMICS JOURNAL 2020; 20:586-594. [PMID: 31959879 PMCID: PMC7375952 DOI: 10.1038/s41397-020-0147-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Nicotine is the major pharmacologically active substance in tobacco. Several studies have examined genotypes related to nicotine metabolism, but few studies have been performed in the Mexican population. The objective was to identify associations between gene variants in metabolizing enzymes and the urinary levels of nicotine metabolites among Mexican smokers. The levels of nicotine and its metabolites were determined in the urine of 88 young smokers from Mexico, and 167 variants in 24 genes associated with nicotine metabolism were genotyped by next-generation sequencing (NGS). Trans-3'-hydroxy-cotinine (3HC) and 4-hydroxy-4-(3-pyridyl)-butanoic acid were the most abundant metabolites (35 and 17%, respectively). CYP2A6*12 was associated with 3HC (p = 0.014). The rs145014075 was associated with creatinine-adjusted levels of nicotine (p = 0.035), while the rs12471326 (UGT1A9) was associated to cotinine-N-glucuronide (p = 0.030). CYP2A6 and UGT1A9 variants are associated to nicotine metabolism. 4HPBA metabolite was an abundant urinary metabolite in young Mexican smokers.
Collapse
Affiliation(s)
- Gissela Borrego-Soto
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Yadira X Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | | | - Jesus Santos-Guzman
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Rodolfo Posadas-Valay
- Facultad de Medicina, Centro Universitario de Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | | | | | - Ramses Medina-Gonzalez
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico.
| |
Collapse
|
13
|
Majdi A, Kamari F, Sadigh-Eteghad S, Gjedde A. Molecular Insights Into Memory-Enhancing Metabolites of Nicotine in Brain: A Systematic Review. Front Neurosci 2019; 12:1002. [PMID: 30697142 PMCID: PMC6341027 DOI: 10.3389/fnins.2018.01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023] Open
Abstract
Background: The alleged procognitive effects of nicotine and its metabolites in brain are controversial. Objective: Here, we review the pharmacologically active metabolites of nicotine in brain and their effects on neuronal mechanisms involving two main cognitive domains, i.e., learning and memory. Methods: We searched Embase, Medline via PubMed, Scopus, and Web of Science databases for entries no later than May 2018, and restricted the search to articles about nicotine metabolites and cognitive behavior or cognitive mechanisms. Results: The initial search yielded 425 articles, of which 17 were eligible for inclusion after application of exclusion criteria. Of these, 13 were experimental, two were clinical, and two were conference papers. Conclusions: The results revealed three pharmacologically active biotransformations of nicotine in the brain, including cotinine, norcotinine, and nornicotine, among which cotinine and nornicotine both had a procognitive impact without adverse effects. The observed effect was significant only for cotinine.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Kamari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Kosmider L, Delijewski M, Koszowski B, Sobczak A, Benowitz NL, Goniewicz ML. Slower nicotine metabolism among postmenopausal Polish smokers. Pharmacol Rep 2017; 70:434-438. [PMID: 29627689 DOI: 10.1016/j.pharep.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND A non-invasive phenotypic indicator of the rate of nicotine metabolism is nicotine metabolite ratio (NMR) defined as a ratio of two major metabolites of nicotine - trans-3'-hydroxycotinine/cotinine. The rate of nicotine metabolism has important clinical implications for the likelihood of successful quitting with nicotine replacement therapy (NRT). We conducted a study to measure NMR among Polish smokers. METHODS In a cross-sectional study of 180 daily cigarette smokers (42% men; average age 34.6±13.0), we collected spot urine samples and measured trans-3'-hydroxycotinine (3-HC) and cotinine levels with LC-MS/MS method. We calculated NMR (molar ratio) and analyzed variations in NMR among groups of smokers. RESULTS In the whole study group, an average NMR was 4.8 (IQR 3.4-7.3). The group of women below 51 years had significantly greater NMR compared to the rest of the population (6.4; IQR 4.1-8.8 vs. 4.3; IQR 2.8-6.4). No differences were found among group ages of male smokers. CONCLUSIONS This is a first study to describe variations in nicotine metabolism among Polish smokers. Our findings indicate that young women metabolize nicotine faster than the rest of population. This finding is consistent with the known effects of estrogen to induce CYP2A6 activity. Young women may require higher doses of NRT or non-nicotine medications for most effective smoking cessation treatment.
Collapse
Affiliation(s)
- Leon Kosmider
- Department of General and Inorganic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland; Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University and affiliated with Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, USA.
| | - Marcin Delijewski
- Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | | | - Andrzej Sobczak
- Department of General and Inorganic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland; Institute of Occupational Medicine and Environmental Health and Medical University of Silesia, Sosnowiec, Poland
| | - Neal L Benowitz
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, University of California, San Francisco, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Cancer Institute, Buffalo, USA
| |
Collapse
|
15
|
Linardi A, Damiani D, Longui CA. The use of aromatase inhibitors in boys with short stature: what to know before prescribing? ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:391-397. [PMID: 28977209 PMCID: PMC10118929 DOI: 10.1590/2359-3997000000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/06/2017] [Indexed: 11/22/2022]
Abstract
Aromatase is a cytochrome P450 enzyme (CYP19A1 isoform) able to catalyze the conversion of androgens to estrogens. The aromatase gene mutations highlighted the action of estrogen as one of the main regulators of bone maturation and closure of bone plate. The use of aromatase inhibitors (AI) in boys with short stature has showed its capability to improve the predicted final height. Anastrozole (ANZ) and letrozole (LTZ) are nonsteroidal inhibitors able to bind reversibly to the heme group of cytochrome P450. In this review, we describe the pharmacokinetic profile of both drugs, discussing possible drug interactions between ANZ and LTZ with other drugs. AIs are triazolic compounds that can induce or suppress cytochrome P450 enzymes, interfering with metabolism of other compounds. Hydroxilation, N-dealkylation and glucoronidation are involved in the metabolism of AIs. Drug interactions can occur with azole antifungals, such as ketoconazole, by inhibiting CYP3A4 and by reducing the clearance of AIs. Antiepileptic drugs (lamotrigine, phenobarbital, and phenytoin) also inhibit aromatase. Concomitant use of phenobarbital or valproate has a synergistic effect on aromatase inhibition. Therefore, it is important to understand the pharmacokinetics of AIs, recognizing and avoiding possible drug interactions and offering a safer prescription profile of this class of aromatase inhibitors. Arch Endocrinol Metab. 2017;61(3):391-7.
Collapse
Affiliation(s)
- Alessandra Linardi
- Departamento de Fisiologia, Unidade de Farmacologia, Faculdade de Ciências Médicas da Santa Casa de São Paulo (FCMSCSP), São Paulo, SP, Brasil
| | - Durval Damiani
- Departamento de Pediatria, Unidade de Endocrinologia Pediátrica, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Carlos A Longui
- Departamento de Fisiologia, Disciplina de Medicina Molecular, Unidade de Endocrinologia Pediátrica, FCMSCSP, São Paulo, SP, Brasil
| |
Collapse
|
16
|
Brossard P, Weitkunat R, Poux V, Lama N, Haziza C, Picavet P, Baker G, Lüdicke F. Nicotine pharmacokinetic profiles of the Tobacco Heating System 2.2, cigarettes and nicotine gum in Japanese smokers. Regul Toxicol Pharmacol 2017; 89:193-199. [PMID: 28760390 DOI: 10.1016/j.yrtph.2017.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022]
Abstract
Two open-label randomized cross-over studies in Japanese smokers investigated the single-use nicotine pharmacokinetic profile of the Tobacco Heating System (THS) 2.2, cigarettes (CC) and nicotine replacement therapy (Gum). In each study, one on the regular and one on the menthol variants of the THS and CC, both using Gum as reference, 62 subjects were randomized to four sequences: Sequence 1: THS - CC (n = 22); Sequence 2: CC - THS (n = 22); Sequence 3: THS - Gum (n = 9); Sequence 4: Gum - THS (n = 9). Plasma nicotine concentrations were measured in 16 blood samples collected over 24 h after single use. Maximal nicotine concentration (Cmax) and area under the curve from start of product use to time of last quantifiable concentration (AUC0-last) were similar between THS and CC in both studies, with ratios varying from 88 to 104% for Cmax and from 96 to 98% for AUC0-last. Urge-to-smoke total scores were comparable between THS and CC. The THS nicotine pharmacokinetic profile was close to CC, with similar levels of urge-to-smoke. This suggests that THS can satisfy smokers and be a viable alternative to cigarettes for adult smokers who want to continue using tobacco.
Collapse
Affiliation(s)
- Patrick Brossard
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Rolf Weitkunat
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Valerie Poux
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nicola Lama
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Christelle Haziza
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrick Picavet
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Gizelle Baker
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Frank Lüdicke
- PMI R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Estimation of Saliva Cotinine Cut-Off Points for Active and Passive Smoking during Pregnancy-Polish Mother and Child Cohort (REPRO_PL). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121216. [PMID: 27941658 PMCID: PMC5201357 DOI: 10.3390/ijerph13121216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
A reliable assessment of smoking status has significant public health implications and is essential for research purposes. The aim of this study was to determine optimal saliva cotinine cut-off values for smoking during pregnancy. The analyses were based on data from 1771 women from the Polish Mother and Child Cohort. Saliva cotinine concentrations were assessed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-ESI + MS/MS). The saliva cotinine cut-off value for active smoking was established at 10 ng/mL (sensitivity 96%, specificity 95%) and for passive smoking at 1.5 ng/mL (sensitivity 63%, specificity 71%). About 5% of the self-reported non-smoking women were classified as smokers based on the cotinine cut-off value. Significantly more younger, single, and less educated self-reported non-smokers had a cotinine concentration higher than 10 ng/mL compared to those who were older, married, and who had a university degree. Close to 30% of the non-smokers who indicated that smoking was not allowed in their home could be classified as exposed to passive smoking based on the cut-off value. The study suggests that self-reported smoking status is a valid measure of active smoking, whereas in the case of passive smoking, a combination of questionnaire data and biomarker verification may be required.
Collapse
|
18
|
Dupont P, Benyamina A, Aubin HJ. Sécurité d’emploi de la nicotine au long cours : le débat n’est pas clos. Rev Mal Respir 2016; 33:892-898. [DOI: 10.1016/j.rmr.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/07/2015] [Indexed: 02/02/2023]
|
19
|
Zhu W, Mantione KJ, Kream RM, Cadet P, Stefano GB. Cholinergic Regulation of Morphine Release from Human White Blood Cells: Evidence for a Novel Nicotinic Receptor via Pharmacological and Micro Array Analysis. Int J Immunopathol Pharmacol 2016; 20:229-37. [PMID: 17624236 DOI: 10.1177/039463200702000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent work from our laboratory has demonstrated that human white blood cells make morphine and that substances of abuse, i.e. nicotine, alcohol and cocaine have the ability to release this endogenous substance, suggesting a common mechanism of action. We now demonstrate that the nicotinic process is more complex than formerly envisioned. The incorporation rate of 125I-labeled morphine into PMN and MN are 7.85±0.36%, 1.42±0.19%, respectfully, suggesting in MN this process is of low activity. Separate incubations of PMN with varying concentrations of nicotine or the nicotine agonist epibatidine resulted in a statistically significant enhancement of 125I-trace labeled morphine released into the extracellular medium. In order to ascertain the specificity of the nicotine stimulated morphine release the following experiments were performed. Co-incubation of hexamethonium dichloride (5 μg/ml and at 10 μg/ml), which preferentially blocks nicotinic receptors at autonomic ganglia, with nicotine, exerted a very weak inhibitory effect. Co-incubation of α-BuTx or atropine or chlorisondamine diiodide or dihydro-β-erythroidine hydrobromide, an α4β2 receptor antagonist, did not block nicotine induced morphine release alone or in combination, suggesting either the response was not specific or it was mediated by a novel nicotinic receptor. Human leukocyte total RNA isolated from whole blood were analyzed, using the Human Genome Survey microarray (Applied Biosystems), for cholinergic receptor expression. PMN nicotinic receptor gene expression was present and contained numerous variants (eight). The number of variants suggests that indeed a novel nicotinic receptor may be mediating this effect, while simultaneously demonstrating the significance of the cholinergic receptor expression in these immune cells.
Collapse
Affiliation(s)
- W Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | |
Collapse
|
20
|
Pattanawongsa A, Nair PC, Rowland A, Miners JO. Human UDP-Glucuronosyltransferase (UGT) 2B10: Validation of Cotinine as a Selective Probe Substrate, Inhibition by UGT Enzyme-Selective Inhibitors and Antidepressant and Antipsychotic Drugs, and Structural Determinants of Enzyme Inhibition. ACTA ACUST UNITED AC 2015; 44:378-88. [PMID: 26669329 DOI: 10.1124/dmd.115.068213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Although there is evidence for an important role of UGT2B10 in the N-glucuronidation of drugs and other xenobiotics, the inhibitor selectivity of this enzyme is poorly understood. This study sought primarily to characterize the inhibition selectivity of UGT2B10 by UDP-glucuronosyltransferase (UGT) enzyme-selective inhibitors used for reaction phenotyping, and 34 antidepressant and antipsychotic drugs that contain an amine functional group. Initial studies demonstrated that cotinine is a highly selective substrate of human liver microsomal UGT2B10. The kinetics of cotinine N-glucuronidation by recombinant UGT and human liver microsomes (± bovine serum albumin) were consistent with the involvement of a single enzyme. Of the UGT enzyme-selective inhibitors employed for reaction phenotyping, only the UGT2B4/7 inhibitor fluconazole reduced recombinant UGT2B10 activity to an appreciable extent. The majority of antidepressant and antipsychotic drugs screened for effects on UGT2B10 inhibited enzyme activity with IC50 values <100 µM. The most potent inhibition was observed with the tricyclic antidepressants amitriptyline and doxepin and the tetracyclic antidepressant mianserin, and the structurally related compounds desloratadine and loratadine. Molecular modeling using a ligand-based approach indicated that hydrophobic and charge interactions are involved in inhibitor binding, whereas spatial features influence the potency of UGT2B10 inhibition. Respective mean Ki,u (± S.D.) values for amitriptyline, doxepin, and mianserin inhibition of human liver microsomal UGT2B10 were 0.61 ± 0.05, 0.95 ± 0.18, and 0.43 ± 0.01 µM. In vitro-in vivo extrapolation indicates that these drugs may perpetrate inhibitory drug-drug interactions when coadministered with compounds that are cleared predominantly by UGT2B10.
Collapse
Affiliation(s)
- Attarat Pattanawongsa
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| | - John O Miners
- Department of Clinical Pharmacology (A.P., P.C.N., A.R., J.O.M.) and Flinders Centre for Innovation in Cancer (A.R., P.C.N., J.O.M.), Flinders University School of Medicine, Adelaide, Australia
| |
Collapse
|
21
|
Uno T, Ogura C, Izumi C, Nakamura M, Yanase T, Yamazaki H, Ashida H, Kanamaru K, Yamagata H, Imaishi H. Point mutation of cytochrome P450 2A6 (a polymorphic variant CYP2A6.25) confers new substrate specificity towards flavonoids. Biopharm Drug Dispos 2015. [DOI: 10.1002/bdd.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chika Ogura
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chiho Izumi
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Masahiko Nakamura
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science; Kyoto Gakuen University; 1-1 Nanjo, Sogabe Kameoka Kyoto 621-8555 Japan
| | - Takeshi Yanase
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Hitoshi Ashida
- Laboratory of Biochemistry Frontiers, Graduate School of Agricultural Science; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamagata
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiromasa Imaishi
- Functional Analysis of Environmental Genes, Research Center for Environmental Genomics; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| |
Collapse
|
22
|
Takagi M, Sakamoto M, Itoh T, Fujiwara R. Underlying mechanism of drug–drug interaction between pioglitazone and gemfibrozil: Gemfibrozil acyl-glucuronide is a mechanism-based inhibitor of CYP2C8. Drug Metab Pharmacokinet 2015. [DOI: 10.1016/j.dmpk.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8198-213. [PMID: 26193290 PMCID: PMC4515717 DOI: 10.3390/ijerph120708198] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022]
Abstract
Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.
Collapse
|
24
|
Moritz F, Janicka M, Zygler A, Forcisi S, Kot-Wasik A, Kot J, Gebefügi I, Namiesnik J, Schmitt-Kopplin P. The compositional space of exhaled breath condensate and its link to the human breath volatilome. J Breath Res 2015; 9:027105. [DOI: 10.1088/1752-7155/9/2/027105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Wu XY, Zhou SY, Niu ZZ, Liu T, Xie CB, Chen WQ. CHRNA3 rs6495308 genotype as an effect modifier of the association between daily cigarette consumption and hypertension in Chinese male smokers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4156-69. [PMID: 25874685 PMCID: PMC4410239 DOI: 10.3390/ijerph120404156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/05/2015] [Accepted: 04/09/2015] [Indexed: 01/18/2023]
Abstract
Cigarette smoking is an important risk factor for hypertension. However, the effects on hypertension of the interaction between smoking and the genotype of the nicotinic acetylcholine receptor gene are unclear. The purpose of this study is to determine whether the CHRNA3 rs6495308 genotype affects the association between daily cigarette consumption and hypertension. We recruited 947 male smokers in southern China and used a questionnaire administered in face to face interviews to obtain information on their socio-demographic characteristics and smoking behavior. Blood samples were collected to test for CHRNA3 rs6495308 genotype variations. Three blood-pressure measurements were taken for each participant, and the average values recorded. We found that, compared with light smoking (<15 cigarettes per day), heavy smoking (≥15 cigarettes per day) yielded a greater risk of hypertension. We also observed that the interaction between daily cigarette consumption and the CHRNA3 rs6495308 genotype may affect hypertension. Heavy smokers with the homozygous mutant CHRNA3 rs6495308 genotype exhibited a significantly greater risk of hypertension than light smokers with wild-type CHRNA3 rs6495308 genotypes. The positive interaction between heavy smoking and the homozygous mutant CHRNA3 rs6495308 genotype was found to affect the likelihood of hypertension in Chinese male smokers.
Collapse
Affiliation(s)
- Xiao-Ying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Shan-Yu Zhou
- Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou, Guangdong 510000, China.
| | - Zhong-Zheng Niu
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 510000, China.
| | - Chuan-Bo Xie
- Division of Behavioral Medicine, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, NY 14228, USA.
| | - Wei-Qing Chen
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
26
|
Tanner JA, Chenoweth MJ, Tyndale RF. Pharmacogenetics of nicotine and associated smoking behaviors. Curr Top Behav Neurosci 2015; 23:37-86. [PMID: 25655887 DOI: 10.1007/978-3-319-13665-3_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This chapter summarizes genetic factors that contribute to variation in nicotine pharmacokinetics and nicotine's pharmacological action in the central nervous system (CNS), and how this in turn influences smoking behaviors. Nicotine, the major psychoactive compound in cigarette smoke, is metabolized by a number of enzymes, including CYP2A6, CYP2B6, FMOs, and UGTs, among others. Variation in the genes encoding these enzymes, in particular CYP2A6, can alter the rate of nicotine metabolism and smoking behaviors. Faster nicotine metabolism is associated with higher cigarette consumption and nicotine dependence, as well as lower quit rates. Variation in nicotine's CNS targets and downstream signaling pathways can also contribute to interindividual differences in smoking patterns. Binding of nicotine to neuronal nicotinic acetylcholine receptors (nAChRs) mediates the release of several neurotransmitters including dopamine and serotonin. Genetic variation in nAChRs, and in transporter and enzyme systems that leads to altered CNS levels of dopamine and serotonin, is associated with a number of smoking behaviors. To date, the precise mechanism underpinning many of these findings remains unknown. Considering the complex etiology of nicotine addiction, a more comprehensive approach that assesses the contribution of multiple gene variants, and their interaction with environmental factors, will likely improve personalized therapeutic approaches and increase smoking cessation rates.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
27
|
Patel YM, Stram DO, Wilkens LR, Park SSL, Henderson BE, Le Marchand L, Haiman CA, Murphy SE. The contribution of common genetic variation to nicotine and cotinine glucuronidation in multiple ethnic/racial populations. Cancer Epidemiol Biomarkers Prev 2014; 24:119-27. [PMID: 25293881 DOI: 10.1158/1055-9965.epi-14-0815] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The lung cancer risk of smokers varies by race/ethnicity even after adjustment for smoking. Evaluating the role of genetics in nicotine metabolism is likely important in understanding these differences, as disparities in risk may be related to differences in nicotine dose and metabolism. METHODS We conducted a genome-wide association study in search of common genetic variants that predict nicotine and cotinine glucuronidation in a sample of 2,239 smokers (437 European Americans, 364 African Americans, 453 Latinos, 674 Japanese Americans, and 311 Native Hawaiians) in the Multiethnic Cohort Study. Urinary concentration of nicotine and its metabolites were determined. RESULTS Among 11,892,802 variants analyzed, 1,241 were strongly associated with cotinine glucuronidation, 490 of which were also associated with nicotine glucuronidation (P < 5×10(-8)). The vast majority were within chromosomal region 4q13, near UGT2B10. Fifteen independent and globally significant SNPs explained 33.2% of the variation in cotinine glucuronidation, ranging from 55% for African Americans to 19% for Japanese Americans. The strongest single SNP association was for rs115765562 (P = 1.60 × 10(-155)). This SNP is highly correlated with a UGT2B10 splice site variant, rs116294140, which together with rs6175900 (Asp67Tyr) explains 24.3% of the variation. The top SNP for nicotine glucuronidation (rs116224959, P = 2.56 × 10(-43)) was in high LD (r(2) = 0.99) with rs115765562. CONCLUSIONS Genetic variation in UGT2B10 contributes significantly to nicotine and cotinine glucuronidation but not to nicotine dose. IMPACT The contribution of genetic variation to nicotine and cotinine glucuronidation varies significantly by racial/ethnic group, but is unlikely to contribute directly to lung cancer risk.
Collapse
Affiliation(s)
- Yesha M Patel
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel O Stram
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lynne R Wilkens
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii
| | - Sung-Shim L Park
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brian E Henderson
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Loic Le Marchand
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, Hawaii
| | - Christopher A Haiman
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sharon E Murphy
- Department of Biochemistry, Molecular Biology, and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
28
|
Craig EL, Zhao B, Cui JZ, Novalen M, Miksys S, Tyndale RF. Nicotine pharmacokinetics in rats is altered as a function of age, impacting the interpretation of animal model data. Drug Metab Dispos 2014; 42:1447-55. [PMID: 24980255 PMCID: PMC4152873 DOI: 10.1124/dmd.114.058719] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/30/2014] [Indexed: 01/29/2023] Open
Abstract
Several behavioral studies report that adolescent rats display a preference for nicotine compared with adults. However, age-related pharmacokinetic differences may confound the interpretation of these findings. Thus, differences in pharmacokinetic analyses of nicotine were investigated. Nicotine was administered via acute s.c. (1.0 mg base/kg) or i.v. (0.2 mg base/kg) injection to early adolescent (EA; postnatal day 25) and adult (AD; postnatal day 71) male Wistar rats. Nicotine and its primary metabolite, cotinine, and additional metabolites nornicotine, nicotine-1'-N-oxide, trans-3'-hydroxycotinine, and norcotinine were sampled from 10 minutes to 8 hours (plasma) and 2 to 8 hours (brain) post nicotine and analyzed by liquid chromatography-tandem mass spectrometry. Following s.c. nicotine, the EA cohort had lower levels of plasma nicotine, cotinine, and nicotine-1'-N-oxide at multiple time points, resulting in a lower area under the plasma concentration-time curve (AUC) for nicotine (P < 0.001), cotinine (P < 0.01), and nicotine-1'-N-oxide (P < 0.001). Brain levels were also lower for these compounds. In contrast, the EA cohort had higher plasma and brain AUCs (P < 0.001) for the minor metabolite nornicotine. Brain-to-plasma ratios varied for nicotine and its metabolites, and by age. Following i.v. nicotine administration, similar age-related differences were observed, and this route allowed detection of a 1.6-fold-larger volume of distribution and 2-fold higher plasma clearance in the EA cohort compared with the AD cohort. Thus, unlike in humans, there are substantial age differences in nicotine pharmacokinetics such that for a given nicotine dose, adolescent rats will have lower plasma and brain nicotine compared with adults, suggesting that this should be considered when interpreting animal model data.
Collapse
Affiliation(s)
- Evelyn L Craig
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada (E.L.C., B.Z., M.N., S.M., R.F.T.) and Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (J.Z.C.)
| | - Bin Zhao
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada (E.L.C., B.Z., M.N., S.M., R.F.T.) and Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (J.Z.C.)
| | - Jason Z Cui
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada (E.L.C., B.Z., M.N., S.M., R.F.T.) and Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (J.Z.C.)
| | - Maria Novalen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada (E.L.C., B.Z., M.N., S.M., R.F.T.) and Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (J.Z.C.)
| | - Sharon Miksys
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada (E.L.C., B.Z., M.N., S.M., R.F.T.) and Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (J.Z.C.)
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada (E.L.C., B.Z., M.N., S.M., R.F.T.) and Child & Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada (J.Z.C.)
| |
Collapse
|
29
|
McGuffey JE, Wei B, Bernert JT, Morrow JC, Xia B, Wang L, Blount BC. Validation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids--anatabine and anabasine--in smokers' urine. PLoS One 2014; 9:e101816. [PMID: 25013964 PMCID: PMC4094486 DOI: 10.1371/journal.pone.0101816] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Tobacco use is a major contributor to premature morbidity and mortality. The measurement of nicotine and its metabolites in urine is a valuable tool for evaluating nicotine exposure and for nicotine metabolic profiling--i.e., metabolite ratios. In addition, the minor tobacco alkaloids--anabasine and anatabine--can be useful for monitoring compliance in smoking cessation programs that use nicotine replacement therapy. Because of an increasing demand for the measurement of urinary nicotine metabolites, we developed a rapid, low-cost method that uses isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously quantifying nicotine, six nicotine metabolites, and two minor tobacco alkaloids in smokers' urine. This method enzymatically hydrolyzes conjugated nicotine (primarily glucuronides) and its metabolites. We then use acetone pretreatment to precipitate matrix components (endogenous proteins, salts, phospholipids, and exogenous enzyme) that may interfere with LC-MS/MS analysis. Subsequently, analytes (nicotine, cotinine, hydroxycotinine, norcotinine, nornicotine, cotinine N-oxide, nicotine 1'-N-oxide, anatabine, and anabasine) are chromatographically resolved within a cycle time of 13.5 minutes. The optimized assay produces linear responses across the analyte concentrations typically found in urine collected from daily smokers. Because matrix ion suppression may influence accuracy, we include a discussion of conventions employed in this procedure to minimize matrix interferences. Simplicity, low cost, low maintenance combined with high mean metabolite recovery (76-99%), specificity, accuracy (0-10% bias) and reproducibility (2-9% C.V.) make this method ideal for large high through-put studies.
Collapse
Affiliation(s)
- James E. McGuffey
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Binnian Wei
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John T. Bernert
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John C. Morrow
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Baoyun Xia
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lanqing Wang
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Benjamin C. Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
30
|
Fujiwara R, Itoh T. Extensive protein interactions involving cytochrome P450 3A4: a possible contributor to the formation of a metabolosome. Pharmacol Res Perspect 2014; 2:e00053. [PMID: 25505604 PMCID: PMC4186418 DOI: 10.1002/prp2.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 11/15/2022] Open
Abstract
Cytochrome P450 (CYP) 3A4 is a membrane protein that catalyzes hydroxylation of endogenous and exogenous substrates. Protein–protein interaction is a crucial factor that regulates the function of enzymes. However, protein–protein interactions involving human CYPs have not been fully understood. In this study, extensive protein–protein interactions involving CYP3A4 were determined by a shotgun analysis of immunoprecipitate utilizing anti-CYP3A4 antibody. Our shotgun analysis revealed that 149 proteins were immunoprecipitated with anti-CYP3A4 antibody in human liver microsomes. We further determined that 51 proteins of 149 proteins were specifically immunoprecipitated with the anti-CYP3A4 antibody. Our analysis demonstrated that other CYP isoforms are interacting with CYP3A4, which is in agreement with previous findings. Based on our current and previous findings, we propose that drug-metabolizing enzymes such as CYP3A4 and UDP-glucuronosyltransferase 2B7 form a metabolosome, which is a functional unit of metabolism consisting of multiple metabolism-related proteins.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
31
|
Fujiwara R, Itoh T. Extensive Protein-Protein Interactions Involving UDP-glucuronosyltransferase (UGT) 2B7 in Human Liver Microsomes. Drug Metab Pharmacokinet 2014; 29:259-65. [DOI: 10.2133/dmpk.dmpk-13-rg-096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Stragierowicz J, Mikołajewska K, Zawadzka-Stolarz M, Polańska K, Ligocka D. Estimation of cutoff values of cotinine in urine and saliva for pregnant women in Poland. BIOMED RESEARCH INTERNATIONAL 2013; 2013:386784. [PMID: 24228246 PMCID: PMC3818804 DOI: 10.1155/2013/386784] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022]
Abstract
Setting appropriate cutoff values and the use of a highly sensitive analytical method allow for correct classification of the smoking status. Urine-saliva pairs samples of pregnant women in the second and third trimester, and saliva only in the first trimester were collected. Offline SPE and LC-ESI-MS/MS method was developed in the broad concentration range (saliva 0.4-1000 ng/mL, urine 0.8-4000 ng/mL). The mean recoveries were 3.7 ± 7.6% for urine and 99.1 ± 2.6% for saliva. LOD for saliva was 0.12 ng/mL and for urine 0.05 ng/mL; LOQ was 0.4 ng/mL and 0.8 ng/mL, respectively. Intraday and interday precision equaled, respectively, 1.2% and 3.4% for urine, and 2.3% and 6.4% for saliva. There was a strong correlation between salivary cotinine and the uncorrected cotinine concentration in urine in the second and third trimesters of pregnancy. The cutoff values were established for saliva 12.9 ng/mL and urine 42.3 ng/mL or 53.1 μg/g creatinine with the ROC curve analysis. The developed analytical method was successfully applied to quantify cotinine, and a significant correlation between the urinary and salivary cotinine levels was found. The presented cut-off values for salivary and urinary cotinine ensure a categorization of the smoking status among pregnant women that is more accurate than self-reporting.
Collapse
Affiliation(s)
- Joanna Stragierowicz
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | - Karolina Mikołajewska
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | | | - Kinga Polańska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| | - Danuta Ligocka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy Street, 91-348 Lodz, Poland
| |
Collapse
|
33
|
Paelecke-Habermann Y, Paelecke M, Giegerich K, Reschke K, Kübler A. Implicit and explicit reward learning in chronic nicotine use. Drug Alcohol Depend 2013; 129:8-17. [PMID: 23098679 DOI: 10.1016/j.drugalcdep.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 08/30/2012] [Accepted: 09/04/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chronic tobacco use is related to specific neurobiological alterations in the dopaminergic brain reward system that can be termed "reward deficiency syndrome" in dependent nicotine consumers. The close linkage of dopaminergic activity and reward learning led us to expect implicit and explicit reward learning deficits in dependent compared to non-smokers. Smokers who maintain a less regular, occasional use may also, to a lesser extent, show implicit reward learning deficits. The purpose of our study was to examine the behavioral effects of the neurobiological alterations on reward related learning. We also tested whether any deficits observed in an abstinent state are also present in a satiated state. METHODS In two studies, we examined implicit and explicit reward learning in smokers. Participants were administered a probabilistic implicit reward learning task, and an explicit reward- and punishment-based trial-and-error learning task. In Study 1, we compared dependent, occasional, and non-smokers, and in Study 2 satiated and abstinent smokers. RESULTS In Study 1, chronic and occasional smokers showed impairments in both, implicit and explicit reward learning tasks. In Study 2, satiated smokers did not perform better than abstinent smokers. CONCLUSIONS The results support the hypothesis of reward learning deficits. These deficits are not limited to explicit but extend to implicit reward learning and cannot be explained by tobacco withdrawal.
Collapse
|
34
|
Pennington DL, Durazzo TC, Schmidt TP, Mon A, Abé C, Meyerhoff DJ. The effects of chronic cigarette smoking on cognitive recovery during early abstinence from alcohol. Alcohol Clin Exp Res 2013; 37:1220-7. [PMID: 23432133 DOI: 10.1111/acer.12089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/21/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol use disorders are related to neurocognitive abnormalities during early abstinence in those seeking treatment for alcohol dependence (ALC). Considerable evidence indicates that chronic cigarette smoking is associated with multiple neurocognitive deficiencies. However, very little is known about the effects of chronic smoking on neurocognitive recovery during early abstinence from alcohol. We evaluated whether cigarette smoking interferes with cognitive improvement during early abstinence from alcohol, a period thought important for maintaining long-term sobriety. METHODS Neurocognitive functions previously shown to be adversely affected by both alcohol use disorders and chronic cigarette smoking were evaluated. We assessed 35 smoking ALC (sALC) and 34 nonsmoking ALC (nsALC) at approximately 1 and 5 weeks of monitored abstinence. RESULTS Although neither group was clinically impaired, both cross-sectional and longitudinal deficiencies were observed in sALC versus nsALC in processing speed, working memory, and auditory-verbal learning and memory. Lifetime alcohol consumption, medical, and psychiatric comorbidities did not predict neurocognitive performance or improvement across assessments. Within sALC, greater drinking and smoking severities were synergistically (more than additively) related to less improvement on visuospatial learning and memory. Former smoking status in the nsALC-mediated group differences in auditory-verbal delayed recall. CONCLUSIONS Chronic cigarette smoking appears to negatively impact neurocognition during early abstinence from alcohol. Although the cognitive deficiencies observed in this cohort were not in a clinical range of impairment, they should be considered to enhance treatment efficacy. Our findings lend support to integrating smoking cessation as well as the individual assessment of cognition into early ALC treatment. Additionally, there is a need to elucidate the effects of current and former smoking status in future reports of neurocognition.
Collapse
Affiliation(s)
- David L Pennington
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Edavana VK, Dhakal IB, Williams S, Penney R, Boysen G, Yao-Borengasser A, Kadlubar S. Potential role of UGT1A4 promoter SNPs in anastrozole pharmacogenomics. Drug Metab Dispos 2013; 41:870-7. [PMID: 23371966 DOI: 10.1124/dmd.112.048157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anastrozole belongs to the nonsteroidal triazole-derivative group of aromatase inhibitors. Recently, clinical trials demonstrated improved antitumoral efficacy and a favorable toxicity with third-generation aromatase inhibitors, compared with tamoxifen. Anastrozole is predominantly metabolized by phase I oxidation with the potential for further phase II glucuronidation. It also, however, is subject to direct N-glucuronidation by UDP-glucuronosyltransferase 1A4 (UGT1A4). Anastrozole pharmacokinetics vary widely among patients, but pharmacogenomic studies of patients treated with anastrozole are sparse. In this study, we examined individual variability in the glucuronidation of anastrozole and its association with UGT1A4 promoter and coding region polymorphisms. In vitro assays using liver microsomal preparations from individual subjects (n = 96) demonstrated 235-fold variability in anastrozole glucuronidation. Anastrozole glucuronidation was correlated (r = 0.99; P < 0.0001) with lamotrigine glucuronidation (a diagnostic substrate for UGT1A4) and with UGT1A4 mRNA expression levels in human liver microsomes (r = 0.99; P < 0.0001). Recombinant UGT1A4 catalyzed anastrozole glucuronidation, which was inhibited by hecogenin (IC50 = 15 µM), a UGT1A4 specific inhibitor. The promoter region of UGT1A4 is polymorphic, and compared with those homozygous for the common allele, lower enzymatic activity was observed in microsomes from individuals heterozygous for -163G<A, -219T<G, and -217C<T (P = 0.009, P = 0.014, and P = 0.009, respectively). These results indicate that variability in glucuronidation could contribute to response to anastrozole in the treatment of breast cancer.
Collapse
Affiliation(s)
- Vineetha Koroth Edavana
- Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Durazzo TC, Hutchison KE, Fryer SL, Mon A, Meyerhoff DJ. Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence. Front Pharmacol 2012; 3:178. [PMID: 23087644 PMCID: PMC3469037 DOI: 10.3389/fphar.2012.00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/16/2012] [Indexed: 11/13/2022] Open
Abstract
Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT) are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of BDNF and COMT on neurocognition in alcohol dependence is unclear. The primary goal of this report was to investigate the associations of single nucleotide polymorphisms (SNPs) in BDNF Val66Met (rs6265) and COMT Val158Met (rs4680) with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC) who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. After controlling for COMT and BDNF genotypes, smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed, and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains after controlling for genotypes and alcohol consumption. In addition, COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that reported COMT Met carriers demonstrated better performance on measures of executive skills and general intelligence. Results also indicated that the poorer performance of smoking compared to non-smoking ALC across multiple neurocognitive domains was not mediated by COMT or BDNF genotype. Overall, the findings lend support to the expanding clinical movement to make smoking cessation programs available to smokers at the inception of treatment for alcohol/substance use disorders.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center San Francisco, CA, USA ; Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
OBJECTIVES Trans-3'-Hydroxycotinine (3HC) and its glucuronide are major nicotine metabolites excreted in the urine of smokers and other tobacco users. Although several members of the UDP-glucuronosyltransferase (UGT) family of enzymes were previously shown to be active in catalyzing the formation of 3HC and its glucuronide, a comprehensive screening of all known human UGT1A and 2B enzymes for glucuronidation activity against 3HC was not previously performed. METHODS In the present study, human liver microsomes (HLM), eight UGT1A and six UGT2B enzymes were screened for activity against 3HC. RESULTS UGT2B17 exhibited the highest O-glucuronidation activity, exhibiting a four-fold lower (P<0.005) KM (8.3 mmol/l) compared with that observed for UGTs 1A9 (35 mmol/l) or 2B7 (31 mmol/l) and a KM smaller compared with that observed for human liver microsomes (HLM; 26 mmol/l). The KM for 3HC-O-Gluc formation was 3.1-fold lower (P<0.0005) in HLM from male participants exhibiting the wild-type genotype UGT2B17 (*1/*1) compared with that in HLM from participants homozygous for the UGT2B17 deletion genotype [UGT2B17 (*2/*2)]. Both UGTs 2B10 and 1A4 exhibited 3HC-N-Gluc formation activity, with UGT2B10 exhibiting a four-fold lower (P<0.05) KM (13 mmol/l) compared with that observed for UGT1A4 (57 mmol/l) and, which was similar to the KM observed in HLM (14 mmol/l). There was 91 (P<0.0001) and 39% (P<0.001) decreases in the 3HC-N-Gluc formation activities in HLM from participants with the UGT2B10 (*2/*2) and UGT2B10 (*1/*2) genotypes, respectively, compared with that of HLM from participants with the wild-type UGT2B10 (*1/*1) genotype. CONCLUSION These results suggest that UGT2B17 and UGT2B10 play key roles in the glucuronidation of 3HC in the human liver and that functional polymorphisms in UGT2B17 and UGT2B10 are associated with significantly reduced glucuronidation activities against 3HC.
Collapse
|
38
|
Relationship between amounts of daily cigarette consumption and abdominal obesity moderated by CYP2A6 genotypes in Chinese male current smokers. Ann Behav Med 2012; 43:253-61. [PMID: 22160797 DOI: 10.1007/s12160-011-9318-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cigarette smoking is an important risk factor for abdominal obesity. However, the degree to which the CYP2A6 genotype moderates the relationship between smoking and abdominal obesity has not been established. PURPOSE This study aims to investigate whether or not the relationship between smoking quantity and abdominal obesity is influenced by CYP2A6 genotypes. METHODS Nine hundred fifty-four male current smokers were selected. A venous specimen was collected to test serum cotinine and CYP2A6 genotype, and all smokers were divided into heavy (>15 cigarettes/day) and light smokers (≤15 cigarettes/day). RESULTS Heavy smoking increased the risk of abdominal obesity (odds ratio (OR) = 1.57; 95% CI, 1.13-2.19) compared with light smoking. Furthermore, heavy smoking had a positive interactive effect with CYP2A6 poor metabolizer genotype on abdominal obesity (OR = 3.90; 95% CI, 1.25-12.18). Moreover, CYP2A6 poor metabolizer genotypes were associated with slower nicotine metabolism. CONCLUSIONS Heavy smoking may increase the risk of abdominal obesity-particularly in smokers with CYP2A6 poor metabolizer genotypes.
Collapse
|
39
|
Association between daily cigarette consumption and hypertension moderated by CYP2A6 genotypes in Chinese male current smokers. J Hum Hypertens 2012; 27:24-30. [PMID: 22217675 DOI: 10.1038/jhh.2011.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to assess whether cytochrome P450 enzyme 2A6 (CYP2A6) genotypes moderate the association between smoking and hypertension. In this study, 954 Chinese male current smokers from a community-based chronic disease screening project in Guangzhou were interviewed with a structured questionnaire about socio-demographic status, smoking and other health-related behaviors. Blood was collected for DNA extraction and CYP2A6 genotyping. Hypertension was defined according to 2007 ESH-ESC Practice Guidelines. A multivariate logistic regression was performed to examine the interaction between smoking quantity and CYP2A6 genotypes on hypertension after adjusting for age, education level and other potential confounders. Multivariate analyses indicated that smoking more than 15 cigarettes per day significantly increased the risk of hypertension (odds ratio (OR)=1.59, 95% confidence interval (CI)=1.21-2.10) compared with smoking 1-15 cigarettes per day, and further suggested that smoking interacted with normal CYP2A6 metabolizer genotype to increase the risk of hypertension. Smokers consuming more than 15 cigarettes per day with normal CYP2A6 metabolizer genotypes had the highest risk of hypertension (OR=2.04, 95% CI=1.11-3.75) compared with those consuming 1-15 cigarettes per day with slower CYP2A6 metabolizer genotypes. These findings demonstrated that smoking quantity was positively associated with hypertension and that CYP2A6 genotypes may moderate this relationship.
Collapse
|
40
|
Chen RJ, Ho YS, Wu CH, Wang YJ. Molecular Mechanisms of Nicotine-induced Bladder Cancer. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Yusof W, Hua GS. Gene, ethnic and gender influences predisposition of adverse drug reactions to artesunate among Malaysians. Toxicol Mech Methods 2011; 22:184-92. [PMID: 22003869 DOI: 10.3109/15376516.2011.623331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT Artesunate (AS) and amodiaquine (AQ) are two prodrugs widely used as antimalarial agents and are metabolized by the CYP P450 2A6 (CYP 2A6) and CYP P450 2C8 (CYP 2C8) enzymes, respectively. OBJECTIVE In this study, we aim to investigate the association of both genes on AS and AQ's tolerabilities in the hope of identifying a pharmacogenetic approach that could be useful in prediction and prevention of adverse drug reactions (ADRs) among Malaysian population. MATERIALS AND METHODS In this randomized crossover study, loose and AS/AQ formulations were administered to normal healthy volunteers (n = 24) over two study phases. The drugs' tolerabilities (incidence of facial flushing, giddiness, headache, nausea, abdominal discomfort, progression of liver enzymes and neutrophil counts) were compared between the two treatment arms. Volunteers were also genotyped for the CYP2C8 and CYP2A6 variants. RESULTS The frequency of the CYP2A6*1B, CYP2A6*4, CYP2A6*8 and CYP2A6*9 alleles were 54.2%, 16.7%, 4.2% and 10.4%, respectively. No mutations for CYP2C8 gene were, however, detected. Most (96%) of the subjects were of the Malay ethnicity. Subjects having the CYP2A6*1B variants responsible for ultra rapid metabolism of AS suffered a significantly higher incidence of ADRs. DISCUSSION Our study is the first to report that CYP2A6 genotyping influences AS's ADR. Gender also plays a role where females reported more incidences of nausea (p < 0.05). CONCLUSION It is concluded that genetic polymorphisms of CYP2A6 as well as gender influence the side effect profiles of subjects receiving AS among this Malaysian population.
Collapse
Affiliation(s)
- Wardah Yusof
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
42
|
Onoue S, Yamamoto N, Seto Y, Yamada S. Pharmacokinetic study of nicotine and its metabolite cotinine to clarify possible association between smoking and voiding dysfunction in rats using UPLC/ESI-MS. Drug Metab Pharmacokinet 2011; 26:416-22. [PMID: 21566343 DOI: 10.2133/dmpk.dmpk-11-rg-019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was undertaken to clarify the possible association between nicotine intake/cigarette smoking and detrusor instability. For pharmacokinetic characterization of nicotine and cotinine (a major and pharmacologically less active metabolite of nicotine), a rapid ultra-performance liquid chromatography/electrospray ionization-mass spectrometry (UPLC/ESI-MS) method was developed that requires only a small amount of sample and simple pretreatment. The UPLC/ESI-MS method was validated with a focus on specificity, sensitivity (limit of detection, 2.5 ng/mL; limit of quantification, 5 ng/mL), linearity (r > 0.998), accuracy (97.2-102.8%), precision (relative standard deviation <8%) and robustness in accordance with ICH guidelines (Q2B Validation of Analytical Procedures: Methodology). The developed method was successfully applied to determine nicotine and cotinine levels in rat biological samples such as plasma, urine and several tissues. After subcutaneous administration of nicotine ditartrate (2 mg/kg of body weight) in rats, the absorbed nicotine was rapidly and extensively metabolized into cotinine. However, nicotine was found to be predominant in cortex and bladder, where nicotinic acetylcholine receptors were expressed for neuronal control of voiding function. Repeated administration of nicotine led to a ca. 3-fold higher accumulation of nicotine than that of cotinine in rat urine. The results of the pharmacokinetic study using the UPLC/ESI-MS method further support the possible involvement of nicotine in increased risk of urinary dysfunction in smokers.
Collapse
Affiliation(s)
- Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| | | | | | | |
Collapse
|
43
|
Liu T, David SP, Tyndale RF, Wang H, Zhou Q, Ding P, He YH, Yu XQ, Chen W, Crump C, Wen XZ, Chen WQ. Associations of CYP2A6 genotype with smoking behaviors in southern China. Addiction 2011; 106:985-94. [PMID: 21205058 PMCID: PMC3074015 DOI: 10.1111/j.1360-0443.2010.03353.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the association of CYP2A6 genetic polymorphisms with smoking-related phenotypes in Chinese smokers. DESIGN Case-only genetic association study. SETTING Southern China. PARTICIPANTS A total of 1328 Han Chinese smokers who participated in a community-based chronic disease screening project in Guangzhou and Zhuhai from 2006 to 2007. MEASUREMENTS All participants answered a structured questionnaire about socio-demographic status and smoking behaviors and informative alleles were genotyped for the cytochrome P450 2A6 (CYP2A6) gene (CYP2A6*4,*5,*7,*9 and *10). FINDINGS The frequencies of CYP2A6*4, *5, *7, *9 and *10 alleles were 8.5, 1.2, 6.3, 13.5 and 2.4%, which corresponded to 48.9, 15.4, 24.2 and 11.5% of participants being classified as normal, intermediate, slow and poor metabolizers, respectively. Multivariate analyses in male smokers demonstrated that compared with normal metabolizers, poor metabolizers reported smoking fewer cigarettes per day [adjusted odds ratio (OR) = 0.49; 95% confidence interval (CI): 0.32-0.76], started smoking regularly later in life (adjusted OR = 1.55; 95% CI: 1.06-2.26) and, among former smokers, reported smoking for a shorter duration prior to quitting (adjusted OR = 0.33; 95% CI: 0.12-0.94). However, poor metabolizers were less likely to quit smoking and remain abstinent than normal metabolizers (adjusted OR = 0.54; 95% CI: 0.34-0.86). CONCLUSIONS Reduced metabolism function of cytochrome P450 2A6 in smokers appears to be associated with fewer cigarettes smoked, later initiation of smoking regularly, shorter smoking duration and lower likelihood of smoking cessation.
Collapse
Affiliation(s)
- Tao Liu
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74, Zhongshan Road 2, 510080, Guangzhou, China
| | - Sean P. David
- Center for Education in Family & Community Medicine and the Division of Family & Community Medicine, Stanford University, 1215 Welch Road, Modular G, Stanford, CA 94305, USA, SRI International, 333 Ravenswood Ave, Menlo Park, CA 943025, USA, Center for Primary Care & Prevention and the Department of Family Medicine, Brown Alpert Medical School, 111 Brewster Street, Pawtucket, RI 02860
| | - Rachel F. Tyndale
- The Center for Addiction and Mental Health and the Departments of Psychiatry, Pharmacology and Toxicology, University of Toronto, Canada M5S 1A8
| | - Hui Wang
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74, Zhongshan Road 2, 510080, Guangzhou, China
| | - Qian Zhou
- The Center for Addiction and Mental Health and the Departments of Psychiatry, Pharmacology and Toxicology, University of Toronto, Canada M5S 1A8
| | - Peng Ding
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74, Zhongshan Road 2, 510080, Guangzhou, China
| | - Yan-Hui He
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74, Zhongshan Road 2, 510080, Guangzhou, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-Sen University, 58, Zhongshan Road 2, 510080, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-Sen University, 58, Zhongshan Road 2, 510080, Guangzhou, China
| | - Casey Crump
- Center for Education in Family & Community Medicine and the Division of Family & Community Medicine, Stanford University, 1215 Welch Road, Modular G, Stanford, CA 94305, USA
| | - Xiao-Zhong Wen
- Department of Community Health, Brown University, Providence, RI, USA
| | - Wei-Qing Chen
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74, Zhongshan Road 2, 510080, Guangzhou, China,To whom correspondence should be addressed. Tel: +8620 87332199; Fax: +8620 87330446, (Wei-Qing Chen)
| |
Collapse
|
44
|
Yerger VB. Menthol's potential effects on nicotine dependence: a tobacco industry perspective. Tob Control 2011; 20 Suppl 2:ii29-36. [PMID: 21504929 PMCID: PMC3088468 DOI: 10.1136/tc.2010.041970] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/03/2011] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine what the tobacco industry knows about the potential effects menthol may have on nicotine dependence. METHODS A snowball strategy was used to systematically search the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu/) between 22 February and 29 April, 2010. Of the approximately 11 million documents available in the Legacy Tobacco Documents Library, the iterative searches returned tens of thousands of results. We qualitatively analysed a final collection of 309 documents relevant the effects of menthol on nicotine dependence. RESULTS The tobacco industry knows that menthol overrides the harsh taste of tobacco and alleviates nicotine's irritating effects, synergistically interacts with nicotine, stimulates the trigeminal nerve to elicit a 'liking' response for a tobacco product, and makes low tar, low nicotine tobacco products more acceptable to smokers than non-mentholated low delivery products. CONCLUSION Menthol is not only used in cigarettes as a flavour additive; tobacco companies know that menthol also has sensory effects and interacts with nicotine to produce tobacco products that are easier to smoke, thereby making it easier to expose smokers, especially those who are new and uninitiated, to the addictive power of nicotine.
Collapse
Affiliation(s)
- Valerie B Yerger
- Department of Social and Behavioral Sciences, Box 0612, University of California, San Francisco, San Francisco, CA 94143-0612, USA.
| |
Collapse
|
45
|
Rangiah K, Hwang WT, Mesaros C, Vachani A, Blair IA. Nicotine exposure and metabolizer phenotypes from analysis of urinary nicotine and its 15 metabolites by LC-MS. Bioanalysis 2011; 3:745-61. [PMID: 21452992 PMCID: PMC3134267 DOI: 10.4155/bio.11.42] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Smokers who inhale less deeply are exposed to lower amounts of the toxic substances present in tobacco smoke. In order to more rigorously assess tobacco smoke exposure, it is necessary to have an accurate method for quantifying nicotine and all of its known metabolites. METHODS A stable-isotope dilution LC-MRM/MS assay has been developed for quantification of urinary nicotine and the 15 possible metabolites that could arise from known metabolic pathways. Nicotine, cotinine, trans-3´-hydroxy-cotinine, nicotine-N-oxide, cotinine-N-oxide, nornicotine, norcotinine and 4-hydroxy-4-(3-pyridyl)butanoic acid were quantified by direct analysis. The corresponding glucuronide metabolites were quantified after urine hydrolysis with β-glucuronidase. RESULTS Nicotine and all 15 nicotine metabolites were quantified by LC-MRM/MS in most urine samples from 61 tobacco smokers. Urinary nicotine and metabolite concentrations ranged from 7.9 to 337.8 µM (mean 75.5 ± 67.8 µM). Three nicotine metabolizer phenotypes were established as reduced metabolizers (ratio < 8), normal metabolizers (ratio 8-30), and extensive metabolizers (ratio > 30). 4-hydroxy-4-(3-pyridyl)butanoic acid, which has not been quantified previously, was an abundant metabolite in all three phenotypes. CONCLUSION Using this assay it will now be possible to determine whether there are relationships between nicotine exposure and/or metabolizer phenotype with exposure to toxic substances that are present in tobacco smoke and/or to biological response biomarkers to tobacco smoking. This will help in identifying individuals at high risk for developing smoking-related diseases as well as those amenable to smoking cessation programs.
Collapse
Affiliation(s)
- Kannan Rangiah
- Centers for Cancer Pharmacology, Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Wei-Ting Hwang
- Department of Biostatistics & Epidemiology, University of Pennsylvania School of Medicine, PA, USA
| | - Clementina Mesaros
- Centers for Cancer Pharmacology, Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Anil Vachani
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Division of Pulmonary Medicine, University of Pennsylvania School of Medicine, PA, USA
| | - Ian A Blair
- Centers for Cancer Pharmacology, Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
46
|
Chen G, Giambrone NE, Dluzen DF, Muscat JE, Berg A, Gallagher CJ, Lazarus P. Glucuronidation genotypes and nicotine metabolic phenotypes: importance of functional UGT2B10 and UGT2B17 polymorphisms. Cancer Res 2010; 70:7543-52. [PMID: 20876810 DOI: 10.1158/0008-5472.can-09-4582] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucuronidation is an important pathway in the metabolism of nicotine, with previous studies suggesting that ∼22% of urinary nicotine metabolites are in the form of glucuronidated compounds. Recent in vitro studies have suggested that the UDP-glucuronosyltransferases (UGT) 2B10 and 2B17 play major roles in nicotine glucuronidation with polymorphisms in both enzymes shown to significantly alter the levels of nicotine-glucuronide, cotinine-glucuronide, and trans-3'-hydroxycotinine (3HC)-glucuronide in human liver microsomes in vitro. In the present study, the relationship between the levels of urinary nicotine metabolites and functional polymorphisms in UGTs 2B10 and 2B17 was analyzed in urine specimens from 104 Caucasian smokers. Based on their percentage of total urinary nicotine metabolites, the levels of nicotine-glucuronide and cotinine-glucuronide were 42% (P < 0.0005) and 48% (P < 0.0001), respectively, lower in the urine from smokers exhibiting the UGT2B10 (*1/*2) genotype and 95% (P < 0.05) and 98% (P < 0.05), respectively, lower in the urine from smokers with the UGT2B10 (*2/*2) genotype compared with the urinary levels in smokers having the wild-type UGT2B10 (*1/*1) genotype. The level of 3HC-glucuronide was 42% (P < 0.001) lower in the urine from smokers exhibiting the homozygous UGT2B17 (*2/*2) deletion genotype compared with the levels in urine from wild-type UGT2B17 subjects. These data suggest that UGTs 2B10 and 2B17 play important roles in the glucuronidation of nicotine, cotinine, and 3HC and suggest that the UGT2B10 codon 67 SNP and the UGT2B17 gene deletion significantly reduce overall glucuronidation rates of nicotine and its major metabolites in smokers.
Collapse
Affiliation(s)
- Gang Chen
- Molecular Epidemiology and Cancer Control Program, Penn State Cancer Institute, Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Bright RP, Civalier KM, Krahn L. Reliability of Self-Reported Nicotine Use as Determined by Serum Cotinine Levels in Patients Referred for Liver Transplantation. PSYCHOSOMATICS 2010. [DOI: 10.1016/s0033-3182(10)70721-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Heravi RE, Ramezani M, Behravan J. Association between nicotine metabolism and CYP2A6*1 and CYP2A6*4 genotypes in an Iranian population. DNA Cell Biol 2010; 29:369-73. [PMID: 20438369 DOI: 10.1089/dna.2009.0961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytochrome P450 (CYP) family is the principal enzyme system involved in the metabolism of xenobiotics and endogenous compounds. Among this family, CYP2A6 is one of the most important enzymes for metabolism of nicotine. In this study, the linkage of CYP2A6*1 and CYP2A6*4 genotypes with nicotine metabolism was investigated. A single polymerase chain reaction-restriction fragment length polymorphism was used to resolve the genotypes into CYP2A6*1 (wild type), CYP2A6*2, or CYP2A6*3. The population studied consisted of 200 healthy smokers from Mashhad city, North East of Iran. The urinary cotinine as the principal metabolite of nicotine was analyzed for 12 subjects (7 subjects with CYP2A6*1 as controls and 5 subjects with CYP2A6*4). The results indicated that cumulative urinary cotinine excretion in CYP2A6*4 genotype was about one-eighth compared with the control group (wild type). Cotinine formation from nicotine has individual and ethnic variability that correlated with the level of CYP2A6 expression. Moreover, urinary cotinine level was drastically lower in CYP2A6*4 subjects than in CYP2A6*1 subjects.
Collapse
Affiliation(s)
- Reza Entezari Heravi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
49
|
Zheng YL, Kosti O, Loffredo CA, Bowman E, Mechanic L, Perlmutter D, Jones R, Shields PG, Harris CC. Elevated lung cancer risk is associated with deficiencies in cell cycle checkpoints: genotype and phenotype analyses from a case-control study. Int J Cancer 2010; 126:2199-210. [PMID: 19626602 DOI: 10.1002/ijc.24771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell cycle checkpoints play critical roles in the maintenance of genomic integrity and inactivation of checkpoint genes are frequently perturbed in most cancers. In a case-control study of 299 non-small cell lung cancer cases and 550 controls in Baltimore, we investigated the association between gamma-radiation-induced G(2)/M arrest in cultured blood lymphocytes and lung cancer risk, and examined genotype-phenotype correlations between genetic polymorphisms of 20 genes involving in DNA repair and cell cycle control and gamma-radiation-induced G(2)/M arrest. The study was specifically designed to examine race and gender differences in risk factors. Our data indicated that a less efficient DNA damage-induced G(2)/M checkpoint was associated with an increased risk of lung cancer in African American women with an adjusted odds ratio (OR) of 2.63 (95% CI = 1.01-7.26); there were no statistically significant associations for Caucasians, or African American men. When the African American women were categorized into quartiles, a significant reverse trend of decreased G(2)/M checkpoint function and increased lung cancer risk was present, with lowest-vs.-highest quartile OR of 13.72 (95% CI = 2.30-81.92, p(trend) < 0.01). Genotype-phenotype correlation analysis indicated that polymorphisms in ATM, CDC25C, CDKN1A, BRCA2, ERCC6, TP53, and TP53BP1 genes were significantly associated with the gamma-radiation-induced G(2)/M arrest phenotype. This study provides evidence that a less efficient G(2)/M checkpoint is significantly associated with lung cancer risk in African American women. The data also suggested that the function of G(2)/M checkpoint is modulated by genetic polymorphisms in genes involved in DNA repair and cell cycle control.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Cancer Genetics and Epidemiology Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kim KY, Lee YJ, Chung BC, Hong J, Jung BH. Relations between toxicity and altered tissue distribution and urinary excretion of nicotine, cotinine, and hydroxycotinine after chronic oral administration of nicotine in rats. Drug Chem Toxicol 2010; 33:166-72. [DOI: 10.3109/01480540903196832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|