1
|
Ferreira RL, Parente Rocha JA, Leite VRMC, Moraes D, Graziani D, Pranchevicius MCDS, Soares CMDA. Proteomic profile of multidrug-resistant Serratia marcescens under meropenem challenge. Microb Pathog 2025; 204:107570. [PMID: 40222567 DOI: 10.1016/j.micpath.2025.107570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Serratia marcescens is an opportunistic bacterium implicated in the prevalence of serious nosocomial infections and increased outbreaks in Intensive Care Units (ICUs) and Neonatal Intensive Care Units (NICUs). S. marcescens strains are resistant to several antimicrobial classes and express numerous virulence factors that promote pathogenicity. In the present study, the proteomic profile of the multidrug-resistant (MDR) S. marcescens clinical isolate challenged with the antimicrobial meropenem was evaluated. The proteins obtained were analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MSE). A total of 199 induced proteins were identified revealing that multidrug-resistant S. marcescens promotes increasing of proteins related to energy metabolism and efflux pump and decreases synthesis of proteins related to oxidative stress response and cell mobility upon meropenem challenge, shedding some light on the relationship between expressed proteins and bacterial pathogenicity after antimicrobial induction.
Collapse
Affiliation(s)
- Roumayne Lopes Ferreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Juliana Alves Parente Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Vanessa Rafaela Milhomem Cruz Leite
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Dayane Moraes
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| | - Daniel Graziani
- Laboratório de Avaliação de Moléculas, Células e Tecidos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | | | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
2
|
Wang TT, Han T, Xiao X, Guo D, Sun X, Liu Y, Zhao L, Xu H, Li R, Jiang L, Zhang B, Chen B, Wang S, Wang H, Wang X, Zhang M, Zhang S, Wang J, Qu J, Chen HZ, Liu DP, Zhang X, Wang M. SIRT3 deficiency reduces PFKFB3-driven T-cell glycolysis and promotes arthritic inflammation. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1755-1769. [PMID: 40029452 DOI: 10.1007/s11427-024-2823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/18/2024] [Indexed: 03/05/2025]
Abstract
Cell metabolism is an indispensable biochemical process that provides the basic energy and materials necessary for normal cell function. Accumulating evidence implicates abnormal metabolism of T cells as playing a critical role in the pathogenesis of rheumatoid arthritis (RA). The deacetylase SIRT3 has been shown to directly regulate energy metabolism in nonimmune cells. However, the role of SIRT3 in T cells and whether it participates in RA process remain unclear. In this study, we demonstrated that T-cell glycolysis was inhibited after SIRT3 deficiency. Compared to wild-type mice, SIRT3 knockout mice exhibited more severe arthritis, cartilage erosion, and inflammation after immunization with antigen-induced arthritis (AIA). It is interesting to note that SIRT3 deficiency reduced the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a regulatory and rate-limiting enzyme in glycolysis. Overexpression of PFKFB3 was shown to restore the impaired ATP production caused by SIRT3 deficiency in T cells, and protects T cells from apoptosis. In summary, SIRT3 plays an important role in the regulation of T-cell metabolism in the pathogenesis of RA. SIRT3 deficiency decreases glycolysis, reduces ATP production, induces apoptosis in CD4+ T cells, and further promotes AIA in mice.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Clinical Biobank, Institute of Clinical Medicine, National Infrastructures for Translational Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taotao Han
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinyue Xiao
- Department of Rheumatology, Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dan Guo
- Clinical Biobank, Institute of Clinical Medicine, National Infrastructures for Translational Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haojie Xu
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Rong Li
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lingjuan Jiang
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bo Zhang
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Han Wang
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoxi Wang
- Clinical Biobank, Institute of Clinical Medicine, National Infrastructures for Translational Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Miao Zhang
- Clinical Biobank, Institute of Clinical Medicine, National Infrastructures for Translational Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Sumei Zhang
- Clinical Biobank, Institute of Clinical Medicine, National Infrastructures for Translational Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiahua Qu
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, 38105, USA
| | - Hou-Zao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - De-Pei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Alcântara GAS, do Nascimento MC, de Miranda LBL, de Almeida BO, Lima K, Rego EM, Costa-Lotufo LV, Machado-Neto JA. Eribulin exerts multitarget antineoplastic activity in glioma cells. Pharmacol Rep 2025; 77:817-828. [PMID: 40056292 DOI: 10.1007/s43440-025-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Gliomas, particularly glioblastomas, are highly aggressive cancers with rapid proliferation and poor prognosis. Current treatments have limited efficacy, highlighting the need for new therapeutic strategies. Eribulin mesylate, a synthetic macrocyclic ketone, has shown potential as an anticancer agent in several malignancies. This study investigates the cellular and molecular effects of eribulin in glioma models, focusing on its impact on cell cycle progression, apoptosis, mitochondrial function, and migration. METHODS Glioma cell lines were treated with eribulin. Cell viability was measured by MTT assay, and the cell cycle was analyzed by flow cytometry. Apoptosis was assessed through morphological changes, PARP1 cleavage, and γH2AX expression. Mitochondrial integrity and reactive oxygen species levels were evaluated by flow cytometry. Cell migration was assessed using a spheroid-based assay, and protein expression changes were analyzed by Western blotting. RESULTS Eribulin reduced cell viability, with HOG cells exhibiting the highest sensitivity. Cell cycle analysis showed G2/M phase arrest and morphological examination revealed polyploidy and apoptotic features. Mitochondrial dysfunction was observed, with decreased mitochondrial membrane potential and increased reactive oxygen species, particularly in HOG and T98G cells. Molecular analysis indicated activation of apoptotic pathways (PARP1 cleavage and γH2AX elevation) and reduced stathmin 1 expression. Eribulin also significantly reduced cell migration in HOG cells. CONCLUSION Eribulin demonstrates potent anti-glioma effects through apoptosis, mitochondrial dysfunction, and cell cycle disruption. These findings support its potential as a therapeutic option for glioblastoma treatment, warranting further investigation into its mechanisms and clinical applicability.
Collapse
Affiliation(s)
- Guilherme Augusto Sousa Alcântara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Mariane Cristina do Nascimento
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Livia Bassani Lins de Miranda
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Bruna Oliveira de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| |
Collapse
|
4
|
Fantini E, Daddiego L, Facella P, Perrella G, Bianco L, Fasano C, Alagna F, Savoia MA, Rigano D, Sirignano C, Scafati OT, Pacifico S, Piccolella S, Lopez L, Panara F. MYC2 influences rubber and sesquiterpene lactones synthesis in Taraxacum species. PLANTA 2025; 262:5. [PMID: 40413374 PMCID: PMC12103366 DOI: 10.1007/s00425-025-04719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
MAIN CONCLUSION This study showed that MYC2 transcriptionally regulates valuable metabolites in Taraxacum spp. through direct interaction with specific target gene promoters. The Russian dandelion (Taraxacum kok-saghyz) represents a promising alternative species, capable of producing several high-added-value compounds, including natural rubber. Nevertheless, further enhancements are required for its optimal utilization by the industry. Here, we explored the role of the bHLH transcription factor TksMYC2, homolog of AtMYC2, in the regulation of the biosynthesis of specialized metabolites and free fatty acids and in the control of natural rubber production. Metabolic analyses of Taraxacum kok-saghyz plants showed that the overexpression of TksMYC2 significantly affected the accumulation of metabolites in roots and leaves, such as sesquiterpene lactones, phenylpropanoids, and free fatty acids. Moreover, overexpressing plants presented a significant increase in natural rubber production in both Taraxacum kok-saghyz and its related species Taraxacum brevicorniculatum. The direct interaction of TksMYC2 with the regulatory regions of cis-prenyltransferase 2 (CPT2), small rubber particle proteins (SRPP1, SRPP3, and SRPP4), involved in the biosynthesis of natural rubber, and with the germacrene A oxidase (GAO), involved in the biosynthesis of sesquiterpenes, was demonstrated by chromatin immunoprecipitation coupled with quantitative PCR. Additionally, these genes were highly induced in the lines overexpressing TksMYC2. Our findings suggest that TksMYC2 and its downstream components may be valid targets for breeding programmes to increase the production of valuable metabolites, including natural rubber.
Collapse
Affiliation(s)
- Elio Fantini
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
| | - Loretta Daddiego
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
| | - Paolo Facella
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
| | - Giorgio Perrella
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Linda Bianco
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
| | - Carlo Fasano
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
| | - Fiammetta Alagna
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
| | - Michele Antonio Savoia
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Orazio Taglialatela Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Severina Pacifico
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Simona Piccolella
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Loredana Lopez
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy.
| | - Francesco Panara
- Trisaia Research Center, ENEA, S.S. 106 Ionica - Km 419+500, 75026, Rotondella, MT, Italy.
| |
Collapse
|
5
|
Pinto-Marín Á, Trilla-Fuertes L, Miranda Poma J, Vasudev NS, García-Fernández E, López-Vacas R, Miranda N, Wilson M, López-Camacho E, Pertejo A, Dittmann A, Kunz L, Brown J, Pedroche-Just Y, Zapater-Moros A, de Velasco G, Castellano D, González-Peramato P, Espinosa E, Banks RE, Fresno Vara JÁ, Gámez-Pozo A. A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study. Br J Cancer 2025:10.1038/s41416-025-03008-2. [PMID: 40335662 DOI: 10.1038/s41416-025-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Two thirds of renal cell carcinoma (RCC) patients have localized disease at diagnosis. A significant proportion of these patients will relapse. There is a need for prognostic biomarkers to improve risk-stratification and specific treatments for patients that relapse. The objective of this study is to determine the clinical utility of microRNA signatures as prognostic biomarkers in localized clear cell RCC (ccRCC) and propose new therapeutic targets in patients with a high-risk of relapse. PATIENTS AND METHODS The microRNA profiles from a discovery cohort of 71 T1-T2 ccRCC patients (n = 88) were analyzed using microarrays. MicroRNAs prognostic value was established, and a microRNAs signature predicting relapse for T1b-T3 disease was defined. Independent validation was carried out by qPCR in cohorts from UK (n = 75) and Spain (n = 180), and the TCGA cohort (n = 175). In the Spanish validation cohort, proteomics experiments were done. Proteins were extracted from FFPE tissue and analyzed using by data-independent acquisition mass spectrometry. Additionally, ccRCC TCGA RNA-seq data was also analyzed. Both protein and RNA-seq data was analyzed using Significance Analysis of Micorarrays (SAM) and probabilistic graphical models, which allow the identification of relevant biological processes between low and high-risk tumors. RESULTS A 9-microRNAs signature, Bio-miR, classified patients into low- and high-risk with disease-free survival (DFS) at 5 years of 87.12 vs. 54.17% respectively (p = 0.0086, HR = 3.58, 95%CI: 1.37-8.3). Results were confirmed in the validation cohorts with 5-year DFS rates of 94% vs. 62% in the UK cohort (HR = 7.14, p = 0.001), 82.9% vs. 58.7% in the Spanish cohort (HR = 2.46, p = 0.0013), and 5-year overall survival rates of 72.7% vs. 44.5% in the TCGA cohort (HR = 2.43, p = 0.0012). Among low-risk patients according to adjuvant immunotherapy clinical trial criteria, Bio-miR identified a high-risk group. Maybe those patients ought to be considered to receive adjuvant therapy. Proteins overexpressed in the high-risk group were mainly related to focal adhesion, serine and inositol metabolism, and angiogenesis. Probabilistic graphical models defined eight functional nodes related to specific biological processes. Differences between low- and high-risk tumors were detected in complement activation and translation functional nodes. In ccRCC TCGA cohort, 676 genes were differentially expressed between low and high-risk patients, mainly related to complement activation, adhesion, and chemokine and cytokine cascades. In this case, probabilistic graphical models defined ten functional nodes. Calcium binding, membrane, adhesion, extracellular matrix, blood microparticle, inflammatory response and immune response had higher functional node activity, and metabolism node, containing genes related to retinol and xenobiotic and CYP450 metabolism, had lower activity in the high-risk group. CONCLUSIONS Bio-miR dichotomizes ccRCC patients with non-metastatic disease into those with low- and high-risk of relapse. This has implications for treatment and follow-up, identifying patients most likely to benefit from adjuvant treatment in clinical trials, preventing unnecessary exposure to side-effects, and providing health economics benefits. Additionally, promising therapeutic targets, as angiogenesis, immune response, metabolism, or complement activation, were found deregulated in high-risk ccRCC patients defined by Bio-miR. These findings may be useful to select patients for tailored, molecularly-driven clinical trials. Identifying which patients with kidney cancer are most at risk of their cancer coming back after surgery is critical, so that they can be prioritized for early treatment. We have identified a combination of biomarkers present in the cancer tissue (called BiomiR) which can help to do this.
Collapse
Affiliation(s)
- Álvaro Pinto-Marín
- Medical Oncology Service, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain.
| | | | - Jesús Miranda Poma
- Medical Oncology Service, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain
| | - Naveen S Vasudev
- Leeds Institute of Medical Research at St James's, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | | | - Rocío López-Vacas
- Molecular Oncology Lab, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain
| | - Natalia Miranda
- Urology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Michelle Wilson
- Leeds Institute of Medical Research at St James's, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | | | - Ana Pertejo
- Medical Oncology Service, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain
| | - Antje Dittmann
- Proteomics Group, Functional Genomics Center Zurich, Zurich, Switzerland
| | - Laura Kunz
- Proteomics Group, Functional Genomics Center Zurich, Zurich, Switzerland
| | - Joanne Brown
- Leeds Institute of Medical Research at St James's, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | | | | | | | - Daniel Castellano
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Enrique Espinosa
- Medical Oncology Service, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Juan Ángel Fresno Vara
- Molecular Oncology Lab, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology Lab, Hospital Universitario La Paz, IDIPAZ, Madrid, Spain.
- Biomedica Molecular Medicine SL, Madrid, Spain.
| |
Collapse
|
6
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2498-2521. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
7
|
Das S, Thakur S, Cahais V, Virard F, Claeys L, Renard C, Cuenin C, Cros MP, Keïta S, Venuti A, Sirand C, Ghantous A, Herceg Z, Korenjak M, Zavadil J. Molecular and cell phenotype programs in oral epithelial cells directed by co-exposure to arsenic and smokeless tobacco. Biofactors 2025; 51:e70011. [PMID: 40056068 PMCID: PMC11962598 DOI: 10.1002/biof.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Chronic exposure to arsenic can lead to various health issues, including cancer. Concerns have been mounting about the enhancement of arsenic toxicity through co-exposure to various prevalent lifestyle habits. Smokeless tobacco (SLT) products are commonly consumed in South Asian countries, where their use frequently co-occurs with exposure to arsenic from contaminated groundwater. To decipher the in vitro molecular and cellular responses to arsenic and/or smokeless tobacco, we performed temporal multi-omics analysis of the transcriptome and DNA methylome remodeling in exposed hTERT-immortalized human normal oral keratinocytes (NOK), as well as arsenic and/or smokeless tobacco genotoxicity and mutagenicity investigations in NOK cells and in human p53 knock-in murine embryonic fibroblasts (Hupki MEF). RNAseq results from acute exposures of NOK cell to arsenic alone and in combination with smokeless tobacco extract revealed upregulation of genes with roles in cell cycle changes, apoptosis and inflammatory responses. This was in keeping with global DNA hypomethylation affecting genes involved in the same processes after chronic treatment. At the phenotypic level, we observed a dose-dependent decrease in NOK cell viability, induction of DNA damage, cell cycle changes and increased apoptosis, with the most pronounced effects observed under arsenic and SLT co-exposure conditions. Live-cell imaging experiments indicated that the DNA damage likely resulted from induction of apoptosis, an observation validated by a lack of exome-wide mutagenesis in response to chronic exposure to arsenic and/or smokeless tobacco. In sum, our integrative omics study provides novel insights into the acute and chronic responses to arsenic and smokeless tobacco (co-)exposure, with both types of responses converging on several key mechanisms associated with cancer hallmark processes. The resulting rich catalogue of molecular programs in oral cells regulated by arsenic and smokeless tobacco (co-)exposure may provide bases for future development of biomarkers for use in molecular cancer epidemiology studies of exposed populations at risk.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - François Virard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- University Claude Bernard Lyon 1, INSERM U1052–CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculty of Odontology, Hospices Civils de Lyon, Lyon, France
| | - Liesel Claeys
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Marie-Pierre Cros
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Keïta
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Assunta Venuti
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cécilia Sirand
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
8
|
Maloshenok LG, Panina YS, Bruskin SA, Zherdeva VV, Gessler NN, Rozumiy AV, Antonov EV, Deryabina YI, Isakova EP. Assessment of Recombinant β-Propeller Phytase of the Bacillus Species Expressed Intracellularly in Yarrowia lipolityca. J Fungi (Basel) 2025; 11:186. [PMID: 40137224 PMCID: PMC11943157 DOI: 10.3390/jof11030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Phytases of the PhyD class according to their pH optimum (7.0-7.8) and high thermal stability can claim to be used in the production of feed supplements. However, today they have no practical application in feed production because there are no suitable producers sufficient for its biotechnological production compared to the PhyA and PhyC class ones. Moreover, in most cases, the technologies with the enzymes produced in secretory form are preferable for the production of phytases, though upon microencapsulation in yeast-producing cells, the phytase thermal stability increases significantly compared to the extracellular form, which improves its compatibility with spray drying technology. In this study, we assayed the intracellular heterologous expression of PhyD phytase from Bacillus species in the Yarrowia lipolytica yeast cells. While the technology has been successfully used to synthesize PhyC phytase from Obesumbacterium proteus, PhyD phytase tends to aggregate upon intracellular accumulation. Furthermore, we evaluated the prospects for the production of encapsulated phytase of the PhyD class of high enzymatic activity when it accumulates in the cell cytoplasm of the Y. lipolytica extremophile yeast, a highly effective platform for the production of recombinant proteins.
Collapse
Affiliation(s)
- Liliya G. Maloshenok
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.G.M.); (Y.S.P.); (S.A.B.)
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Yulia S. Panina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.G.M.); (Y.S.P.); (S.A.B.)
| | - Sergey A. Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.G.M.); (Y.S.P.); (S.A.B.)
| | - Victoria V. Zherdeva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Alena V. Rozumiy
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Egor V. Antonov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| |
Collapse
|
9
|
Kim DH, Go HS, Jeon EJ, Nguyen TQT, Kim DY, Park H, Eom HJ, Kim SY, Park SC, Cho KA. The Impact of Toll-Like Receptor 5 on Liver Function in Age-Related Metabolic Disorders. Aging Cell 2025:e70009. [PMID: 39957532 DOI: 10.1111/acel.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Toll-like receptor 5 (TLR5) plays a critical role beyond its traditional function in innate immunity, significantly impacting metabolic regulation and liver health. Previously, we reported that TLR5 activation extends the healthspan and lifespan of aging mice. This study demonstrates that TLR5 deficiency leads to pronounced metabolic abnormalities with age, primarily affecting liver metabolic functions rather than intestinal inflammation. Comprehensive RNA sequencing analysis revealed that TLR5 deficiency induces gene expression changes in liver tissue similar to those caused by the methionine-choline deficient (MCD) diet, particularly affecting lipid metabolism and circadian rhythm-related genes. TLR5 knockout (TLR5 KO) mice displayed an increased propensity for liver fibrosis and lipid accumulation under the MCD diet, exacerbating liver pathology. Both hepatocytes and hepatic stellate cells in TLR5 KO mice were functionally impacted, leading to metabolic dysfunction and fibrosis. These findings suggest that TLR5 could be a significant target for addressing metabolic diseases that arise and worsen with aging. Furthermore, understanding the mechanisms by which TLR5 activation extends healthspan could provide valuable insights into therapeutic strategies for enhancing longevity and managing age-related metabolic disorders.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Hye Sun Go
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Eun Jae Jeon
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Thi Quynh Trang Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| | - Da Yeon Kim
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Hansung Park
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| | - Hyo-Ji Eom
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, South Korea
| | - Sang Chul Park
- Future Life and Society Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| | - Kyung A Cho
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| |
Collapse
|
10
|
Chen C, Zhang D, Niu X, Jin X, Xu H, Li W, Guo W. MYB30-INTERACTING E3 LIGASE 1 regulates LONELY GUY 5-mediated cytokinin metabolism to promote drought tolerance in cotton. PLANT PHYSIOLOGY 2025; 197:kiae580. [PMID: 39471489 DOI: 10.1093/plphys/kiae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024]
Abstract
Ubiquitination plays important roles in modulating the abiotic stress tolerance of plants. Drought seriously restricts agricultural production, but how ubiquitination participates in regulating drought tolerance remains largely unknown. Here, we identified a drought-inducible gene, MYB30-INTERACTING E3 LIGASE 1 (GhMIEL1), which encodes a RING E3 ubiquitin ligase in cotton (Gossypium hirsutum). GhMIEL1 was strongly induced by polyethylene glycol (PEG-6000) and the phytohormone abscisic acid. Overexpression and knockdown of GhMIEL1 in cotton substantially enhanced and reduced drought tolerance, respectively. GhMIEL1 interacted with the MYB transcription factor GhMYB66 and could ubiquitinate and degrade it in vitro. GhMYB66 directly bound to the LONELY GUY 5 (GhLOG5) promoter, a gene encoding cytokinin riboside 5'-monophosphate phosphoribohydrolase, to repress its transcription. Overexpression of GhMIEL1 and silencing of GhMYB66 altered the homeostasis of cytokinin of plant roots, increased total root length and number of root tips, and enhanced plant drought tolerance. Conversely, silencing GhLOG5 decreased total root length and number of root tips and reduced plant drought tolerance. Our studies reveal that the GhMIEL1-GhMYB66-GhLOG5 module positively regulates drought tolerance in cotton, which deepens our understanding of plant ubiquitination-mediated drought tolerance and provides insights for improving drought tolerance.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Novello MA, Bustamante CA, Svetaz LA, Goldy C, Valentini GH, Drincovich MF, Brotman Y, Fernie AR, Lara MV. Integrated Metabolomic, Lipidomic and Proteomic Analysis Define the Metabolic Changes Occurring in Curled Areas in Leaves With Leaf Peach Curl Disease. PLANT, CELL & ENVIRONMENT 2025; 48:1179-1200. [PMID: 39420723 DOI: 10.1111/pce.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Peach Leaf Curl Disease, caused by Taphrina deformans, is characterized by reddish hypertrophic and hyperplasic leaf areas. To comprehend the biochemical imbalances caused by the fungus, dissected symptomatic (C) and asymptomatic areas (N) from leaves with increasing disease extension were analyzed by an integrated approach including metabolomics, lipidomics, proteomics, and complementary biochemical techniques. Drastic metabolic differences were identified in C areas with respect to either N areas or healthy leaves, including altered chloroplastic functioning and composition, which differs from the typical senescence process. In C areas, alteration in redox-homoeostasis proteins and in triacylglycerols content, peroxidation and double bond index were observed. Proteomic data revealed induction of host enzymes involved in auxin and jasmonate biosynthesis and an upregulation of phenylpropanoid and mevalonate pathways and downregulation of the plastidic methylerythritol phosphate route. Amino acid pools were affected, with upregulation of proteins involved in asparagine synthesis. Curled areas exhibited a metabolic shift towards functioning as a sink tissue importing sugars, probably from N areas, and producing energy through fermentation and respiration and reductive power via the pentose phosphate route. Identifying the metabolic disturbances leading to disease symptoms is a key step in designing strategies to prevent or delay the progression of the disease.
Collapse
Affiliation(s)
- María Angelina Novello
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Andrea Svetaz
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Goldy
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriel Hugo Valentini
- Estación Experimental San Pedro, Instituto Nacional de Tecnología Agropecuaria (INTA), San Pedro, Argentina
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yariv Brotman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
12
|
Huang YL, Tsai TH, Shen ZQ, Chan YH, Tu CW, Tung CY, Wang PN, Tsai TF. Transcriptomic predictors of rapid progression from mild cognitive impairment to Alzheimer's disease. Alzheimers Res Ther 2025; 17:3. [PMID: 39754267 PMCID: PMC11697870 DOI: 10.1186/s13195-024-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Effective treatment for Alzheimer's disease (AD) remains an unmet need. Thus, identifying patients with mild cognitive impairment (MCI) who are at high-risk of progressing to AD is crucial for early intervention. METHODS Blood-based transcriptomics analyses were performed using a longitudinal study cohort to compare progressive MCI (P-MCI, n = 28), stable MCI (S-MCI, n = 39), and AD patients (n = 49). Statistical DESeq2 analysis and machine learning methods were employed to identify differentially expressed genes (DEGs) and develop prediction models. RESULTS We discovered a remarkable gender-specific difference in DEGs that distinguish P-MCI from S-MCI. Machine learning models achieved high accuracy in distinguishing P-MCI from S-MCI (AUC 0.93), AD from S-MCI (AUC 0.94), and AD from P-MCI (AUC 0.92). An 8-gene signature was identified for distinguishing P-MCI from S-MCI. CONCLUSIONS Blood-based transcriptomic biomarker signatures show great utility in identifying high-risk MCI patients, with mitochondrial processes emerging as a crucial contributor to AD progression.
Collapse
Affiliation(s)
- Yi-Long Huang
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan
| | - Tsung-Hsien Tsai
- Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan
| | - Yun-Hsuan Chan
- Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan
| | - Chih-Wei Tu
- Advanced Tech BU, Acer Inc., 8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi, New Taipei City, 221421, Taiwan
| | - Chien-Yi Tung
- The National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou, Taipei, 112201, Taiwan.
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Peitou, Taipei, 112, Taiwan.
| | - Ting-Fen Tsai
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou, Taipei, 112304, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli, 350401, Taiwan.
| |
Collapse
|
13
|
Illescas-Miranda J, Saiz-Pérez J, de Marcos A, Fenoll C, Mena M. Synthetic alleles to study MUTE-dependent molecular transitions in stomatal development. PHYSIOLOGIA PLANTARUM 2025; 177:e70072. [PMID: 39838505 DOI: 10.1111/ppl.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events. Their absence produces stomataless epidermis, hindering analysis of their roles during lineage development. MUTE drives the transition from proliferating meristemoids to guard mother cells, committed to stomatal fate. We aim to explore the molecular mechanisms underlying MUTE activity, using partial loss-of-function alleles predicted to impair DNA-binding and to potentially alter MUTE transcriptional activity. We engineered mutant allele coding sequences, generated Arabidopsis lines carrying them and analyzed their epidermal and transcriptional phenotypes using microscopy and RNA-seq. Synthetic alleles driven by the MUTE promoter rescued the stomata less phenotype of the seedling-lethal mute-3 mutant, enabling stomata differentiation and resulting in viable, fertile plants. Further examination of the developmental consequences of MUTE partial loss-of-function revealed arrested lineages, reduced stomatal abundance and altered stomatal spacing. Transcriptomic analysis of very young cotyledons from complemented lines indicated that only some MUTE targets require an intact MUTE bHLH domain. Comparison with existing lineage cell-specific transcriptional profiles showed that lineage development in the mutant lines was delayed compared to the wild-type but followed similar gene networks. These synthetic alleles provide new insight into MUTE ability to accurately and timely specify stomata formation.
Collapse
Affiliation(s)
| | - Josué Saiz-Pérez
- KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain
| | - Alberto de Marcos
- KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain
| | - Carmen Fenoll
- KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain
| | - Montaña Mena
- KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain
| |
Collapse
|
14
|
Dhar S, Kim SY, Shin HJ, Park J, Lee JY. The molecular framework balancing growth and defense in response to plant elicitor peptide-induced signals in Arabidopsis. THE PLANT CELL 2024; 37:koae327. [PMID: 39700410 DOI: 10.1093/plcell/koae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Elevated stress signaling compromises plant growth by suppressing proliferative and formative division in the meristem. Plant elicitor peptide, an endogenous danger signal triggered by biotic and abiotic stresses in Arabidopsis (Arabidopsis thaliana), suppresses proliferative division, alters xylem vessel organization, and disrupts cell-to-cell symplastic connections in roots. To gain insight into the dynamic molecular framework that modulates root development under elevated danger signals, we performed a time-course RNA-sequencing analysis of the root meristem after synthetic PEP1 treatment. Our analyses revealed that SALT TOLERANCE ZINC FINGER (STZ) and its homologs are a potential nexus between the stress response and proliferative cell cycle regulation. Through functional, phenotypic, and transcriptomic analyses, we observed that STZ differentially controls the cell cycle, cell differentiation, and stress response genes in various tissue layers of the root meristem. Moreover, we determined the STZ expression level critical for enabling the growth-defense tradeoff. These findings provide valuable information about the dynamic gene expression changes that occur upon perceiving danger signals in the root meristem and potential engineering strategies to generate stress-resilient plants.
Collapse
Affiliation(s)
- Souvik Dhar
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Soo Youn Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hee-Ji Shin
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jongsung Park
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Plant Immunity Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
15
|
Sánchez-Mendoza SE, de Deus-Wagatsuma VM, do Nascimento MC, Lima K, Machado-Neto JA, Djavaheri-Mergny M, Rego EM. All-trans retinoic acid potentiates cell death induced by quizartinib in acute myeloid leukemia with FLT3-ITD mutations. Ann Hematol 2024:10.1007/s00277-024-06089-w. [PMID: 39661129 DOI: 10.1007/s00277-024-06089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Acute myeloid leukemia (AML) with FLT3-ITD mutation represents a quarter of AML patients and is associated with high relapse rate and dismal prognosis. FLT3 tyrosine kinase inhibitors (TKIs) were developed in order to target this genetic alteration and among these TKIs, AC220 (quizartinib) combined with chemotherapy has already shown an increased overall survival for patients with AML with FLT3-ITD mutation. Even though this increase in overall survival was significant, it remains discrete, and relapse rate is still high, so there is an unmet medical need. All-trans retinoic acid (ATRA) is well known for its effectiveness in acute promyelocytic leukemia (APL) treatment and has already been shown to have synergistic effects combined with another TKI, sorafenib. In this study, quizartinib, a more potent FLT3-TKI, was tested in combination with ATRA in the AML FLT3-ITD positive cell lines MOLM-13 and MV4-11. ATRA has effectively improved AC220 induced cell death via caspase activation. In addition, ATRA in combination with AC220 treatment notably enhanced BECN1 cleavage compared to AC220 treatment alone. Finally, in a xenotransplantation model ATRA plus AC220 was more efficient to reduce the leukemic burden than monotherapy with ATRA or AC220. Taken together, our results are a proof of the concept that ATRA and AC220 have synergistic anti-leukemic effects.
Collapse
Affiliation(s)
| | | | | | - Keli Lima
- Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, SP, LIM31, Brazil
| | | | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, Inserm UMRS 1138, Sorbonne Université, Université de Paris Cité, Équipe labellisée par la Ligue contre le Cancer, Institut Universitaire de France, Paris, 75006, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, 94805, France
| | - Eduardo Magalhães Rego
- Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, Brazil.
- Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, SP, LIM31, Brazil.
- Hemocentro de São Paulo, Av. Dr. Enéas de Carvalho Aguiar 155, Prédio dos Ambulatórios, 1º Andar, São Paulo, SP, CEP 05403-000, Brazil.
| |
Collapse
|
16
|
Bendejacq-Seychelles A, Martinez L, Corréard A, Totozafy JC, Steinberg C, Pouvreau JB, Reibel C, Mouille G, Mondy S, Poulin L, Gibot-Leclerc S. Image Analysis and Untargeted Metabolomics Reveal Potential Phytotoxins from Fusarium venenatum Against Major Parasitic Weed Phelipanche ramosa (L.) Pomel. Toxins (Basel) 2024; 16:531. [PMID: 39728789 PMCID: PMC11678980 DOI: 10.3390/toxins16120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Branched broomrape (Phelipanche ramosa (L.) Pomel), an obligate parasitic weed with a wide host range, is known for its devasting effects on many crops worldwide. Soil fungi, notably Fusarium sp., are described as pathogenic to broomrape, while the hypothesis of the phytotoxicity of fusaric acid produced by F. verticillioides for parasitic weeds of the genus Orobanche has been proposed. Using image analysis and untargeted metabolomics, this study investigated fungal metabolites phytotoxic for P. ramosa and produced by the F. venenatum MIAE02836 strain, isolated from symptomatic broomrapes and identified as a promising candidate for broomrape biocontrol. Phytotoxicity tests of crude extracts from the fungus alone or in interaction with broomrape on P. ramosa microcalli and quantification of necrosis by image analysis confirmed the phytotoxic potential of F. venenatum MIAE02836 metabolites towards the early developmental stages of P. ramosa. Data analysis of a non-targeted metabolomics approach revealed numerous metabolites produced by F. venenatum MIAE02836. Four of them, accumulated during interaction with the parasitic plant, are known for their phytotoxic potential: maculosin, cyclo(Leu-Phe), phenylalanyl-D-histidine and anguidine. These results suggest that combining image acquisition of the microcalli screening test and untargeted metabolomic approach is an interesting and relevant method to characterize phytotoxic fungal metabolites.
Collapse
Affiliation(s)
- Ana Bendejacq-Seychelles
- Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France; (A.B.-S.); (C.S.); (C.R.); (S.M.)
| | - Lisa Martinez
- UMR 6286, CNRS, US2B, Nantes Université, F-44000 Nantes, France; (L.M.); (J.-B.P.); (L.P.)
| | - Anaïs Corréard
- Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France; (A.B.-S.); (C.S.); (C.R.); (S.M.)
| | - Jean Chrisologue Totozafy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78026 Versailles, France; (J.C.T.); (G.M.)
| | - Christian Steinberg
- Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France; (A.B.-S.); (C.S.); (C.R.); (S.M.)
| | - Jean-Bernard Pouvreau
- UMR 6286, CNRS, US2B, Nantes Université, F-44000 Nantes, France; (L.M.); (J.-B.P.); (L.P.)
| | - Carole Reibel
- Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France; (A.B.-S.); (C.S.); (C.R.); (S.M.)
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78026 Versailles, France; (J.C.T.); (G.M.)
| | - Samuel Mondy
- Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France; (A.B.-S.); (C.S.); (C.R.); (S.M.)
| | - Lucie Poulin
- UMR 6286, CNRS, US2B, Nantes Université, F-44000 Nantes, France; (L.M.); (J.-B.P.); (L.P.)
| | - Stéphanie Gibot-Leclerc
- Agroecologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France; (A.B.-S.); (C.S.); (C.R.); (S.M.)
| |
Collapse
|
17
|
Bisht N, Singh T, Ansari MM, Joshi H, Mishra SK, Chauhan PS. Plant growth-promoting Bacillus amyloliquefaciens orchestrate homeostasis under nutrient deficiency exacerbated drought and salinity stress in Oryza sativa L. seedlings. PLANTA 2024; 261:8. [PMID: 39643822 DOI: 10.1007/s00425-024-04585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
MAIN CONCLUSION Nutrient deficiency intensifies drought and salinity stress on rice growth. Bacillus amyloliquefaciens inoculation provides resilience through modulation in metabolic and gene regulation to enhance growth, nutrient uptake, and stress tolerance. Soil nutrient deficiencies amplify the detrimental effects of abiotic stresses, such as drought and salinity, creating substantial challenges for overall plant health and crop productivity. Traditional methods for developing stress-resistant varieties are often slow and labor-intensive. Previously, we demonstrated that plant growth-promoting rhizobacteria Bacillus amyloliquefaciens strain SN13 effectively alleviates stress induced by sub-optimum nutrient conditions in rice. In this study, we evaluated the effectiveness of SN13 in reducing the compounded impacts of drought and salinity under varying nutrient regimes in rice seedlings. The results demonstrated that PGPR inoculation not only improved the growth parameters, nutrient content, and physio-biochemical characteristics under nutrient-limited conditions, but also reduced the oxidative stress markers. The altered expression of stress-related and transcription factor genes (USP, DEF, CYP450, GST, MYB, and bZIP) revealed the regulatory effect of PGPR in enhancing stress tolerance through these genes. GC-MS-based untargeted metabolomic analysis revealed that PGPR significantly influenced various metabolic pathways, including galactose metabolism, fructose and mannose metabolism, and fatty acid biosynthesis pathways, suggesting that PGPR affects both energy production and stress-protective mechanisms, facilitating better growth and survival of rice seedlings.
Collapse
Affiliation(s)
- Nikita Bisht
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Tanya Singh
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Mogees Ansari
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harshita Joshi
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Shahank Kumar Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
18
|
de Queiroz GN, Lima K, de Miranda LBL, Rego EM, Traina F, Machado-Neto JA. NT157 exhibits antineoplastic effects by targeting IRS and STAT3/5 signaling in multiple myeloma. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S112-S121. [PMID: 38523043 PMCID: PMC11726112 DOI: 10.1016/j.htct.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple myeloma (MM) is a prevalent hematological malignancy with high recurrence and no definitive cure. The current study revisits the role of the IGF1/IGF1R axis in MM, introducing a novel inhibitor, NT157. The IGF1/IGF1R pathway is pivotal in MM, influencing cell survival, proliferation, and migration and impacting patient survival outcomes. NT157 targets intracellular proteins such as IRS and STAT proteins and demonstrates antineoplastic potential in hematological malignancies and solid tumors. In the present study, we assessed IGF1R signaling-related gene expression in MM patients and healthy donors, unveiling significant distinctions. MM cell lines displayed varying expression patterns of IGF1R-related proteins. A gene dependence analysis indicated the importance of targeting receptor and intracellular elements over autocrine IGF1. NT157 exhibited inhibitory effects on MM cell viability, clonal growth, cell cycle progression, and survival. Moreover, NT157 reduced IRS2 expression and STAT3, STAT5, and RPS6 activation and modulated oncogenes and tumor suppressors, fostering a tumor-suppressive molecular profile. In summary, our study demonstrates that the IGF1/IGF1R/IRS signaling axis is differentially activated in MM cells and the NT157's capacity to modulate crucial molecular targets, promoting antiproliferative effects and apoptosis in MM cells. NT157 may offer a multifaceted approach to enhance MM therapy.
Collapse
Affiliation(s)
- Gustavo Nery de Queiroz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | - Fabiola Traina
- Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil; Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
19
|
Salameh S, Guerrelli D, Miller JA, Desai M, Moise N, Yerebakan C, Bruce A, Sinha P, d'Udekem Y, Weinberg SH, Posnack NG. Connecting transcriptomics with computational modeling to reveal developmental adaptations in pediatric human atrial tissue. Am J Physiol Heart Circ Physiol 2024; 327:H1413-H1430. [PMID: 39453433 PMCID: PMC11684890 DOI: 10.1152/ajpheart.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Nearly 1% of babies are born with congenital heart disease-many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we collected right atrial tissue samples from pediatric patients (n = 117) undergoing heart surgery. Patients were stratified into five age groups. We measured age-dependent adaptations in cardiac gene expression and used computational modeling to simulate action potential and calcium transients. Enrichment of differentially expressed genes revealed age-dependent changes in several key biological processes (e.g., cell cycle, structural organization), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited age-dependent trends, with changes in calcium handling (INCX) and repolarization (IK1) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We observed a shift in repolarization reserve, with lower IKr expression in younger patients, a finding potentially tied to an increased amplitude of IKs that could be triggered by elevated sympathetic activation in pediatric patients. Collectively, this study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology, shedding light on molecular mechanisms underlying cardiac maturation and function throughout development.NEW & NOTEWORTHY To date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we demonstrate age-dependent adaptations in the gene expression profile of >100 atrial tissue samples collected from congenital heart disease patients. We coupled transcriptomics datasets with computational modeling to simulate action potentials and calcium transients for different pediatric age groups.
Collapse
Affiliation(s)
- Shatha Salameh
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia, United States
| | - Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, United States
| | - Jacob A Miller
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Manan Desai
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Can Yerebakan
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Alisa Bruce
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Pranava Sinha
- Division of Pediatric Cardiac Surgery, The University of Minnesota, Minneapolis, Minnesota, United States
| | - Yves d'Udekem
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia, United States
- Department of Pediatrics, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
20
|
Hernández-Cedeño M, Rodríguez-Ulloa A, Ramos Y, González LJ, Serrano-Díaz A, Zettl K, Wiśniewski JR, Martinez-Donato G, Guillen-Nieto G, Besada V, Domínguez-Horta MDC. Proteomic Profile Regulated by the Immunomodulatory Jusvinza Drug in Neutrophils Isolated from Rheumatoid Arthritis Patients. Biomedicines 2024; 12:2740. [PMID: 39767648 PMCID: PMC11727316 DOI: 10.3390/biomedicines12122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 01/16/2025] Open
Abstract
Jusvinza is an immunomodulatory drug composed of an altered peptide ligand (APL) designed from a novel CD4+ T cell epitope of human heat shock protein 60 (HSP60), an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). The peptide induces regulatory T cells and decreases levels of TNF-α and IL-17; pre-clinical and phase I clinical studies support its use for the treatment of RA. This peptide was repositioned for the treatment of COVID-19 patients with signs of hyperinflammation. Neutrophils play a pathogenic role in both RA and severe forms of COVID-19. To add novel evidence about the mechanism of action of Jusvinza, the proteomic profile regulated by this peptide of neutrophils isolated from four RA patients was investigated using LC-MS/MS and bioinformatics analysis. A total of 149 proteins were found to be differentially modulated in neutrophils treated with Jusvinza. The proteomic profile regulated by Jusvinza is characterized by the presence of proteins related to RNA splicing, phagocytosis, endocytosis, and immune functions. In response to Jusvinza treatment, several proteins that regulate the NF-κB signaling pathway were differentially modulated, supporting the peptide's anti-inflammatory effect. Proteins related to metabolic pathways that supply ATP for cellular functions or lipid metabolites with immunoregulatory properties were also identified. Additionally, several structural components of neutrophil extracellular traps (NETs) were decreased in Jusvinza-treated cells, supporting its impairment of this biological process. Of note, these findings were validated by in vitro experiments which confirmed that Jusvinza decreased NET formation. Such results provide evidence of the molecular mechanism of action and support the therapeutic potentialities of Jusvinza to treat other diseases characterized by hyperinflammation besides RA and COVID-19.
Collapse
Affiliation(s)
- Mabel Hernández-Cedeño
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - Anabel Serrano-Díaz
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Gillian Martinez-Donato
- Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (G.M.-D.); (G.G.-N.)
| | - Gerardo Guillen-Nieto
- Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (G.M.-D.); (G.G.-N.)
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (Y.R.); (L.J.G.); (V.B.)
| | - María del Carmen Domínguez-Horta
- Autoimmunity Project, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; (M.H.-C.); (A.S.-D.)
- Latin American School of Medicine, Havana 19108, Cuba
| |
Collapse
|
21
|
Zhang Y, Yang T, Han J, Su X, Cong Y, Zhou M, Wang Y, Lin T. Genome-Wide Identification of the ClpB Gene Family in Tomato and Expression Analysis Under Heat Stress. Int J Mol Sci 2024; 25:12325. [PMID: 39596389 PMCID: PMC11595012 DOI: 10.3390/ijms252212325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Tomato is a widely grown horticultural crop, and its growth process is often affected by high temperatures. Caseinolytic Protease B (ClpB), a homologous protein to heat shock protein 101 (HSP101), plays a vital role in plant heat adaptation and development. In this study, we identified six SlClpB genes in tomatoes, distributed across four chromosomes. Collinearity analysis revealed that the gene pairs SlClpB-2 and SlClpB-3A, as well as SlClpB-3C and SlClpB-12, resulted from segmental duplication events. Phylogenetic and motif analyses showed that ClpB proteins possess highly conserved domains across different species. We used RNA-seq data to analyze the expression patterns of the ClpB family. Among them, SlClpB-3A and SlClpB-12 exhibited increased expression in multiple tissues under heat stress. Specifically, SlClpB-2, SlClpB-3A, and SlClpB-3C were highly expressed in the fruit orange stage and in flower buds under heat treatment, while in seedlings, SlClpB-2 and SlClpB-3A exhibited heat-induced expression. Real-time quantitative fluorescent PCR (qRT-PCR) results showed that the expression of SlClpB-2 and SlClpB-3A was significantly increased under heat stress in the leaves and buds of Ailsa Craig, Micro-Tom, and M82. Overall, our findings provide valuable insights into the regulatory mechanisms of SlClpB genes in response to heat stress.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tailai Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Jiaxi Han
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Xiao Su
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Yanqing Cong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yan Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tao Lin
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| |
Collapse
|
22
|
Fonseca A, Riveras E, Moyano TC, Alvarez JM, Rosa S, Gutiérrez RA. Dynamic changes in mRNA nucleocytoplasmic localization in the nitrate response of Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4227-4245. [PMID: 38950037 DOI: 10.1111/pce.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Alejandro Fonseca
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Eleodoro Riveras
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás C Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - José M Alvarez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Center for Genome Regulation, Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Stahl A, Heider J, Wüst R, Fallgatter AJ, Schenke-Layland K, Volkmer H, Templin MF. Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia. BMC Psychiatry 2024; 24:757. [PMID: 39482642 PMCID: PMC11526604 DOI: 10.1186/s12888-024-06127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited. METHODS Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach. RESULTS SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ. CONCLUSIONS Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.
Collapse
Affiliation(s)
- Aaron Stahl
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| | - Johanna Heider
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| |
Collapse
|
24
|
Desai M, Sun B. Positions of cysteine residues reveal local clusters and hidden relationships to Sequons and Transmembrane domains in Human proteins. Sci Rep 2024; 14:25886. [PMID: 39468182 PMCID: PMC11519667 DOI: 10.1038/s41598-024-77056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Membrane proteins often possess critical structural features, such as transmembrane domains (TMs), N-glycosylation, and disulfide bonds (SS bonds), which are essential to their structure and function. Here, we extend the study of the motifs carrying N-glycosylation, i.e. the sequons, and the Cys residues supporting the SS bonds, to the whole human proteome with a particular focus on the Cys positions in human proteins with respect to those of sequons and TMs. As the least abundant amino acid residue in protein sequences, the positions of Cys residues in proteins are not random but rather selected through evolution. We discovered that the frequency of Cys residues in proteins is length dependent, and the frequency of CC gaps formed between adjacent Cys residues can be used as a classifier to distinguish proteins with special structures and functions, such as keratin-associated proteins (KAPs), extracellular proteins with EGF-like domains, and nuclear proteins with zinc finger C2H2 domains. Most importantly, by comparing the positions of Cys residues to those of sequons and TMs, we discovered that these structural features can form dense clusters in highly repeated and mutually exclusive modalities in protein sequences. The evolutionary advantages of such complementarity among the three structural features are discussed, particularly in light of structural dynamics in proteins that are lacking from computational predictions. The discoveries made here highlight the sequence-structure-function axis in biological organisms that can be utilized in future protein engineering toward synthetic biology.
Collapse
Affiliation(s)
- Manthan Desai
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
25
|
Perez-Wert P, Fernandez-Hernandez S, Gamez-Pozo A, Arranz-Alvarez M, Ghanem I, López-Vacas R, Díaz-Almirón M, Méndez C, Fresno Vara JÁ, Feliu J, Trilla-Fuertes L, Custodio A. Layer Analysis Based on RNA-Seq Reveals Molecular Complexity of Gastric Cancer. Int J Mol Sci 2024; 25:11371. [PMID: 39518924 PMCID: PMC11545517 DOI: 10.3390/ijms252111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric adenocarcinoma (GA) is a significant global health issue with poor prognosis, despite advancements in treatment. Although molecular classifications, such as The Cancer Genome Atlas (TCGA), provide valuable insights, their clinical utility remains limited. We performed a multi-layered functional analysis using TCGA RNA sequencing data to better define molecular subtypes and explore therapeutic implications. We reanalyzed TCGA RNA-seq data from 142 GA patients with localized disease who received adjuvant chemotherapy. Our approach included probabilistic graphical models and recurrent sparse k-means/consensus cluster algorithms for layer-based analysis. Our findings revealed survival differences among TCGA groups, with the GS subtype showing the poorest prognosis. We identified twelve functional nodes and seven biological layers, each with distinct functions. The combined molecular layer (CML) classification identified three prognostic groups that align with TCGA subtypes. CML2 (GS-like) displayed gene expression related to lipid metabolism, correlating with worse survival. Transcriptomic heterogeneity within the CIN subtype revealed clusters tied to proteolysis and lipid metabolism. We identified a subset of CIN tumors with profiles similar to MSI, termed CIN-MSI-like. Claudin-18, a key gene in proteolysis, was overexpressed across TCGA subtypes, suggesting it is a potential therapeutic target. Our study advances GA biology, enabling refined stratification and personalized treatment. Further studies are needed to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Pablo Perez-Wert
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (P.P.-W.); (I.G.); (J.F.)
| | - Sara Fernandez-Hernandez
- Molecular Oncology Laboratory, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (S.F.-H.); (A.G.-P.); (R.L.-V.); (J.Á.F.V.)
| | - Angelo Gamez-Pozo
- Molecular Oncology Laboratory, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (S.F.-H.); (A.G.-P.); (R.L.-V.); (J.Á.F.V.)
| | - Marina Arranz-Alvarez
- IdiPAZ Biobank, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Ismael Ghanem
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (P.P.-W.); (I.G.); (J.F.)
| | - Rocío López-Vacas
- Molecular Oncology Laboratory, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (S.F.-H.); (A.G.-P.); (R.L.-V.); (J.Á.F.V.)
| | - Mariana Díaz-Almirón
- Biostatistics Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Carmen Méndez
- Department of Pathology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Juan Ángel Fresno Vara
- Molecular Oncology Laboratory, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (S.F.-H.); (A.G.-P.); (R.L.-V.); (J.Á.F.V.)
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Jaime Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (P.P.-W.); (I.G.); (J.F.)
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Universidad Autónoma de Madrid, 28046 Madrid, Spain
- Medicine Department, Universidad Autónoma de Madrid, 28046 Madrid, Spain
| | - Lucia Trilla-Fuertes
- Molecular Oncology Laboratory, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (S.F.-H.); (A.G.-P.); (R.L.-V.); (J.Á.F.V.)
| | - Ana Custodio
- Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (P.P.-W.); (I.G.); (J.F.)
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| |
Collapse
|
26
|
Pranomphon T, López-Valiñas Á, Almiñana C, Mahé C, Brair VL, Parnpai R, Mermillod P, Bauersachs S, Saint-Dizier M. Oviduct epithelial spheroids during in vitro culture of bovine embryos mitigate oxidative stress, improve blastocyst quality and change the embryonic transcriptome. Biol Res 2024; 57:73. [PMID: 39438935 PMCID: PMC11494963 DOI: 10.1186/s40659-024-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In vitro embryo production is increasingly used for genetic improvement in cattle but bypasses the oviduct environment and exposes the embryos to oxidative stress with deleterious effects on further development. Here we aimed to examine the effect of oviduct epithelial spheroids (OES) on embryo development and quality in terms of morphology and gene expression during two co-culture times (4 days: up to embryonic genome activation at 8-16 cell stage vs. 7 days: up to blastocyst stage) and under two oxygen levels (5% vs. 20%). METHODS Bovine presumptive zygotes produced by in vitro fertilization (day 0) using in-vitro matured oocytes were cultured in droplets of synthetic oviductal fluid (SOF) medium with or without (controls) OES for 4 or 7 days under 5% or 20% oxygen (4 treated and 2 control groups). Cleavage rates were evaluated on day 2 and blastocyst rates on days 7-8. Expanded blastocysts on days 7-8 were evaluated for total cell numbers and gene expression analysis by RNA-sequencing. RESULTS Under 20% oxygen, blastocyst rates and total cell numbers were significantly higher in the presence of OES for 4 and 7 days compared to controls (P < 0.05), with no difference according to the co-culture time. Under 5% oxygen, the presence of OES did not affect blastocyst rates but increased the number of cells per blastocyst after 7 days of co-culture (P < 0.05). Both oxygen level and OES co-culture had a significant impact on the embryonic transcriptome. The highest number of differentially expressed genes (DEGs) was identified after 7 days of co-culture under 20% oxygen. DEGs were involved in a wide range of functions, including lipid metabolism, membrane organization, response to external signals, early embryo development, and transport of small molecules among the most significantly impacted. CONCLUSION OES had beneficial effects on embryo development and quality under both 5% and 20% oxygen, mitigating oxidative stress. Stronger effects on embryo quality and transcriptome were obtained after 7 than 4 days of co-culture. This study shows the impact of OES on embryo development and reveals potential molecular targets of OES-embryo dialog involved in response to stress and early embryonic development.
Collapse
Affiliation(s)
- Thanya Pranomphon
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Álvaro López-Valiñas
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
| | | | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland.
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France.
| |
Collapse
|
27
|
Jo E, Cho M, Choi S, Lee SJ, Choi E, Kim J, Kim JY, Kwon S, Lee JH, Park H. High-quality chromosome-level genome assembly of female Artemia franciscana reveals sex chromosome and Hox gene organization. Heliyon 2024; 10:e38687. [PMID: 39435060 PMCID: PMC11492255 DOI: 10.1016/j.heliyon.2024.e38687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Artemia is a crustacean genus belonging to the order Anostraca in the class Branchiopoda and lives in inland hypersaline lakes. Among the genus, A. franciscana is a valuable species as a fish food in the aquaculture industry or as an aquatic model organism for toxicity tests. However, genomic data for A. franciscana remains incomplete. In this study, high-quality genome assembly at the chromosome level of female A. franciscana was conducted by combining various sequencing and assembly technologies. The final A. franciscana assembled genome was 1.27 Gb in length, containing 21 chromosomal scaffolds (>10 Mb). The scaffold N50 was 45.3 Mb, with a complete BUSCO value of 91.0 %, thereby confirming that a high-quality genome was assembled. Gene annotation shows that the A. franciscana genome contained 67.26 % of repetitive sequences, and a total of 26,923 protein-coding genes were predicted. Among the 21 chromosome-scale scaffolds, chromosome 1 was identified as a sex chromosome Z. Additionally, five contigs of putative W chromosome fragments and the candidate sex-determining genes were suggested. Ten homeobox (Hox) genes were identified in A. franciscana on the chromosome 14, which were in two subclusters with a large gap. Hox gene organizations within 13 arthropods showed that four anostracans had conserved synteny. This study provides a new female Artemia genome with sex chromosome and the first complete genomic arrangement of the Hox cluster in Anostraca. This study will be a useful genomic and genetic reference for understanding the evolution and development of A. franciscana.
Collapse
Affiliation(s)
- Euna Jo
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seung Jae Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jang Yeon Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sooyeon Kwon
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
28
|
Fang J, Hu Y, Hu Z. Comparative analysis of codon usage patterns in 16 chloroplast genomes of suborder Halimedineae. BMC Genomics 2024; 25:945. [PMID: 39379800 PMCID: PMC11459826 DOI: 10.1186/s12864-024-10825-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
The Halimedineae are marine green macroalgae that play crucial roles as primary producers in various habitats, including coral reefs, rocky shores, embayments, lagoons, and seagrass beds. Several tropical species have calcified thalli, which contribute significantly to the formation of coral reefs. In this study, we investigated the codon usage patterns and the main factors influencing codon usage bias in 16 chloroplast genomes of the suborder Halimedineae. Nucleotide composition analysis revealed that the codons of these species were enriched in A/U bases and preferred to end in A/U bases, and the distribution of GC content followed a trend of GC1 > GC2 > GC3. 30 optimal codons encoding 17 amino acids were identified, and most of the optimal codons and all of the over-expressed codons preferentially ended with A/U. The neutrality plot, effective number of codons (ENc) plot, and parity rule 2 (PR2) plot analysis indicated that natural selection played a major role in shaping codon usage bias of the most Halimedineae species. The genetic relationships based on their RSCU values and chloroplast protein-coding genes showed the closely related species have similar codon usage patterns. This study describes, for the first time, the codon usage patterns and characterization of Halimedineae chloroplast genomes, and provides new insights into the evolution of this suborder.
Collapse
Affiliation(s)
- Jiao Fang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
| | - Yuquan Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China
| | - Zhangfeng Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Wang H, Liu C, Zhou X, Wan Y, Song X, Li W, Guo W. Suppressing a β-1,3-glucanase gene expression increases the seed and fibre yield in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:289-301. [PMID: 39154347 DOI: 10.1111/tpj.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Seeds are initiated from the carpel margin meristem (CMM) and high seed yield is top one of breeding objectives for many crops. β-1,3-glucanases play various roles in plant growth and developmental processes; however, whether it participates in CMM development and seed formation remains largely unknown. Here, we identified a β-1,3-glucanase gene (GLU19) as a determinant of CMM callose deposition and seed yield in cotton. GLU19 was differentially expressed in carpel tissues between Gossypium barbadense (Gb) and Gossypium hirsutum (Gh). Based on resequencing data, one interspecies-specific InDel in the promoter of GLU19 was further detected. The InDel was involved in the binding site of the CRABS CLAW (CRC) transcription factor, a regulator of carpel development. We found that the CRC binding affinity to the GLU19 promoter of G. barbadense was higher than that of G. hirsutum. Since G. barbadense yields fewer seeds than G. hirsutum, we speculated that stronger CRC binding to the GLU19 promoter activated higher expression of GLU19 which in turn suppressed seed production. Consistent with this hypothesis was that the overexpression of GhGLU19 caused reduced seed number, boll weight and less callose formation in CMM. Conversely, GhGLU19-knockdown (GhGLU19-KD) cotton led to the opposite phenotypes. By crossing GhGLU19-KD lines with several G. hirsutum and G. barbadense cotton accessions, all F1 and F2 plants carrying GhGLU19-KD transgenic loci exhibited higher seed yield than control plants without the locus. The increased seed effect was also found in the down-regulation of Arabidopsis orthologs lines, indicating that this engineering strategy may improve the seed yield in other crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
30
|
Tanegashima K, Tanaka Y, Ito T, Oda Y, Nakahara T. TROP2 Expression and Therapeutic Implications in Cutaneous Squamous Cell Carcinoma: Insights From Immunohistochemical and Functional Analysis. Exp Dermatol 2024; 33:e15196. [PMID: 39422290 DOI: 10.1111/exd.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer, but treatments for advanced cases have limited efficacy. Trophoblast cell-surface antigen 2 (TROP2) is a cell-surface protein that is widely expressed in various tumours, where it exerts significant influence over critical processes such as tumour cell growth, apoptosis, migration, invasion and metastasis. Sacituzumab govitecan, an antibody-drug conjugate (ADC) targeting TROP2, is emerging as a promising strategy for anticancer therapy. In this study, we investigated TROP2 expression in cSCC tissues from 51 patients and evaluated its function in the A431 human SCC cell line. Immunohistochemical analysis revealed TROP2 expression on the plasma membrane of cSCC tissues and A431 cells. A431 cells showed sensitivity to sacituzumab govitecan with a significant concentration-dependent decrease in viable cell number. In addition, Knockdown of TROP2 resulted in decreased expression of cyclin D1 and BCL-2, along with reduced cell viability. Knockdown of TROP2 also resulted in decreased expression of vimentin, along with reduced migratory capacity. These findings suggest that TROP2 plays a crucial role in cSCC cell proliferation and migration, and highlight the potential of sacituzumab govitecan as a promising therapeutic option for cSCC.
Collapse
Affiliation(s)
- Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Schippers JHM, von Bongartz K, Laritzki L, Frohn S, Frings S, Renziehausen T, Augstein F, Winkels K, Sprangers K, Sasidharan R, Vertommen D, Van Breusegem F, Hartman S, Beemster GTS, Mhamdi A, van Dongen JT, Schmidt-Schippers RR. ERFVII-controlled hypoxia responses are in part facilitated by MEDIATOR SUBUNIT 25 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:748-768. [PMID: 39259461 DOI: 10.1111/tpj.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Flooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated. Here, we show that the ERFVII factors RELATED TO APETALA 2.2 (RAP2.2) and RAP2.12 cooperate with the Mediator complex subunit AtMED25 to coordinate gene expression under hypoxia in Arabidopsis thaliana. Respective med25 knock-out mutants display reduced low-oxygen stress tolerance. AtMED25 physically associates with a distinct set of hypoxia core genes and its loss partially impairs transcription under hypoxia due to decreased RNA polymerase II recruitment. Association of AtMED25 with target genes requires the presence of ERFVII transcription factors. Next to ERFVII protein stabilisation, also the composition of the Mediator complex including AtMED25 is potentially affected by hypoxia stress as shown by protein-complex pulldown assays. The dynamic response of the Mediator complex to hypoxia is furthermore supported by the fact that two subunits, AtMED8 and AtMED16, are not involved in the establishment of hypoxia tolerance, whilst both act in coordination with AtMED25 under other environmental conditions. We furthermore show that AtMED25 function under hypoxia is independent of ethylene signalling. Finally, functional conservation at the molecular level was found for the MED25-ERFVII module between A. thaliana and the monocot species Oryza sativa, pointing to a potentially universal role of MED25 in coordinating ERFVII-dependent transcript responses to hypoxia in plants.
Collapse
Affiliation(s)
- Jos H M Schippers
- Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany
| | - Kira von Bongartz
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Lisa Laritzki
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Stephanie Frohn
- Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| | - Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| | - Frauke Augstein
- Department of Organismal Biology, Physiological Botany, and Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, Uppsala, SE-75651, Sweden
| | - Katharina Winkels
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Katrien Sprangers
- IMPRES Research Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, G.U.613, Antwerpen, 2020, Belgium
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Sjon Hartman
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg, 79104, Germany
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Schänzlestraße 1, Freiburg, 79104, Germany
| | - Gerrit T S Beemster
- IMPRES Research Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, G.U.613, Antwerpen, 2020, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| |
Collapse
|
32
|
Gu L, Lai Y, Zhang G, Yang Y, Zhang B, Wang J, Zhang Z, Li M. Genome-Wide Identification of the Rehmannia glutinosa miRNA Family and Exploration of Their Expression Characteristics Caused by the Replant Disease Formation-Related Principal Factor. Genes (Basel) 2024; 15:1239. [PMID: 39336830 PMCID: PMC11431045 DOI: 10.3390/genes15091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rehmannia glutinosa, a highly valuable medicinal plant in China, is encountering severe replant disease. Replant disease represents a complex stress driven by multiple principal factors (RDFs), including allelochemicals, microbes, and their interactions. miRNAs are recognized as key regulators of plant response to stresses; however, their specific roles within RDFs are not entirely clear. Methods: This study builds six RDF treatments, comprising R. glutinosa continuously planted (SP), normally planted (NP), and NP treated with ferulic acid (FA), Fusarium oxysporum (FO), and a combination of FA with FO (FAFO). sRNA-seq technology was used to identify crucial miRNAs in response to diverse RDFs. Results: In total, 30 sRNA datasets were generated from the SP, NP, FA, FO, and FAFO samples. A total of 160 known and 41 novel miRNAs (RgmiRNAs) were identified in the R. glutinosa genome based on the sRNA database. Abundance analysis revealed that RgmiRNAs in SP exhibited a distinct expression profile in comparison with others. Of these, 124, 86, 86, and 90 RgmiRNAs were differentially expressed in SP, FA, FO, and FAFO compared with NP. Target analysis indicated that RgmiRNAs downregulated in both SP and RDFs impede the organism growth of R. glutinosa. RgmiRNAs upregulated in SP can disrupt root formation and nutrient metabolism, in which, two RgmiR398 were uniquely expressed in SP. It was confirmed to target RgCSD genes. The expression patterns of RgmiR398 and RgCSD indicated that replant disease induces the oxidative damage of R. glutinosa through RgmiR398. Conclusions:RgmiRNA profiling under RDFs provides a theoretical basis for the further clarification of RgmiRNA function in replant disease.
Collapse
Affiliation(s)
- Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanlin Lai
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guojun Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Bao Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianming Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Li ZA, Fahad M, Li WC, Tariq L, Liu MM, Liu YN, Wang TX. Comparative Analysis of Phytohormone Biosynthesis Genes Responses to Long-Term High Light in Tolerant and Sensitive Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:2628. [PMID: 39339602 PMCID: PMC11435395 DOI: 10.3390/plants13182628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Phytohormones are vital for developmental processes, from organ initiation to senescence, and are key regulators of growth, development, and photosynthesis. In natural environments, plants often experience high light (HL) intensities coupled with elevated temperatures, which pose significant threats to agricultural production. However, the response of phytohormone-related genes to long-term HL exposure remains unclear. Here, we examined the expression levels of genes involved in the biosynthesis of ten phytohormones, including gibberellins, cytokinins, salicylic acid, jasmonic acid, abscisic acid, brassinosteroids, indole-3-acetic acid, strigolactones, nitric oxide, and ethylene, in two winter wheat cultivars, Xiaoyan 54 (XY54, HL tolerant) and Jing 411 (J411, HL sensitive), when transferred from low light to HL for 2-8 days. Under HL, most genes were markedly inhibited, while a few, such as TaGA2ox, TaAAO3, TaLOG1, and TaPAL2, were induced in both varieties. Interestingly, TaGA2ox2 and TaAAO3 expression positively correlated with sugar content but negatively with chlorophyll content and TaAGP expression. In addition, we observed that both varieties experienced a sharp decline in chlorophyll content and photosynthesis performance after prolonged HL exposure, with J411 showing significantly more sensitivity than XY54. Hierarchical clustering analysis classified the phytohormone genes into the following three groups: Group 1 included six genes highly expressed in J411; Group 2 contained 25 genes drastically suppressed by HL in both varieties; and Group 3 contained three genes highly expressed in XY54. Notably, abscisic acid (ABA), and jasmonic acid (JA) biosynthesis genes and their content were significantly higher, while gibberellins (GA) content was lower in XY54 than J411. Together, these results suggest that the differential expression and content of GA, ABA, and JA play crucial roles in the contrasting responses of tolerant and sensitive wheat cultivars to leaf senescence induced by long-term HL. This study enhances our understanding of the mechanisms underlying HL tolerance in wheat and can guide the development of more resilient wheat varieties.
Collapse
Affiliation(s)
- Zhi-Ang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wan-Chang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Miao-Miao Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ya-Nan Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tai-Xia Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
34
|
Clanchy FI, Borghese F, Bystrom J, Balog A, Penn H, Hull DN, Mageed RA, Taylor PC, Williams RO. Inflammatory disease status and response to TNF blockade are associated with mechanisms of endotoxin tolerance. J Autoimmun 2024; 148:103300. [PMID: 39116634 DOI: 10.1016/j.jaut.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.
Collapse
Affiliation(s)
- Felix Il Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | - Henry Penn
- Northwick Park Hospital, Harrow, United Kingdom
| | - Dobrina N Hull
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
35
|
Phian S, Verma H, Singh DN, Singh Y, Lal R, Rawat CD. Comparative genomics reveal unique markers to monitor by routine PCR assay bioinoculant of Sphingobium indicum B90A in hexachlorocyclohexane (HCH) contaminated soils. Indian J Microbiol 2024; 64:1266-1277. [PMID: 39282163 PMCID: PMC11399485 DOI: 10.1007/s12088-024-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/29/2024] [Indexed: 09/18/2024] Open
Abstract
Bioinoculants of Sphingobium indicum B90A have been used to decontaminate hexachlorocyclohexane (HCH)-contaminated soils in the past. There is no selective or convenient method available to track the added B90A in HCH-contaminated soils in the presence of several native sphingomonads. Here, we describe a method, BioMarkTrack, for tracking B90A bioinoculant by simple amplification of the B90A specific biomarker genes. Whole-genome sequence data of 120 different genera of sphingomonads (Sphingobium, Novosphingobium, Sphingomonas, Sphingopyxis, and Sphingosinicella) were retrieved from the NCBI database and annotated. Intra- and inter-genus similarity searches, including the genome of B90A as a reference was conducted. 122 unique gene sequences were identified in strain B90A, out of which 45 genes were selected that showed no similarity with the NCBI non-redundant (NR) database or gene sequences in the publicly available database. Primers were designed for amplification of 4 biomarkers. To validate the biomarkers B90A tracking efficacy in bioaugmented soils, a microcosm study was conducted in which sterile garden and HCH-contaminated dumpsite soils were amended with strain B90A. Amplification of the biomarker was observed both in sterile garden soil and HCH-contaminated dumpsite soil but not in control (lacking B90A) samples. Further, the primer set was used to track B90A in a bioremediation field trial soil, demonstrating the convenience and efficiency of the simple PCR-based method, which can be employed for tracking B90A in bioaugmented soils. The approach as presented here can be employed on different bioinoculants to identify unique biomarkers and then tracking these organisms during bioremediation. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01321-7.
Collapse
Affiliation(s)
- Sonika Phian
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi, 110007 India
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007 India
| | - Durgesh Narain Singh
- BioNEST-BHU, InnoResTech Foundation, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Yogendra Singh
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007 India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019 India
| | - Charu Dogra Rawat
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi, 110007 India
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007 India
| |
Collapse
|
36
|
Rao SW, Liu CJ, Liang D, Duan YY, Chen ZH, Li JJ, Pang HQ, Zhang FX, Shi W. Multi-omics and chemical profiling approaches to understand the material foundation and pharmacological mechanism of sophorae tonkinensis radix et rhizome-induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118224. [PMID: 38642623 DOI: 10.1016/j.jep.2024.118224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.
Collapse
Affiliation(s)
- Si-Wei Rao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuan-Yuan Duan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Han-Qing Pang
- Institute of Translational Medicine, Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, PR China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
37
|
Madzharova E, Sabino F, Kalogeropoulos K, Francavilla C, Auf dem Keller U. Substrate O-glycosylation actively regulates extracellular proteolysis. Protein Sci 2024; 33:e5128. [PMID: 39074261 DOI: 10.1002/pro.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
38
|
Smal M, Memoli D, Alexandrova E, Di Rosa D, D'Agostino Y, Russo F, Giurato G, Nassa G, Tarallo R, Weisz A, Rizzo F. Small non-coding RNA transcriptomic profiling in adult and fetal human brain. Sci Data 2024; 11:767. [PMID: 38997254 PMCID: PMC11245507 DOI: 10.1038/s41597-024-03604-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) make up ~1% of the transcriptome; nevertheless, they play significant roles in regulating cellular processes. Given the complexity of the central nervous system, sncRNAs likely hold particular importance in the human brain. In this study, we provide sncRNA transcriptomic profiles in a range of adult and prenatal brain regions, with a focus on piRNAs, due to their underexplored expression in somatic cells and tissue-specific nature. Using the WIND workflow, which combines two detection methods, we found 1333 (731 miRNAs, 249 piRNAs, 285 snoRNAs, and 68 other sncRNAs) and 1445 unique sncRNAs (770 miRNAs, 307 piRNAs, 289 snoRNAs, and 79 other sncRNAs) in developing and adult brains, respectively. Significant variations were found upon comparison of fetal and adult brain groups, with 82 miRNAs, 17 piRNAs, and 70 snoRNAs enriched in fetal brains and 22 miRNAs, 11 piRNAs in adult brains. This dataset represents a valuable resource for exploring the sncRNA roles in brain function, their involvement in neurological diseases, and the molecular mechanisms behind brain region interactions.
Collapse
Affiliation(s)
- Marharyta Smal
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Domenico Di Rosa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
| | - Ylenia D'Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy
| | - Fabio Russo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy.
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy.
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, SA, Italy.
- Medical Genomics Program, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', University of Salerno, Salerno, Italy.
- Genome Research Center for Health - CRGS, Campus of Medicine - University of Salerno, 84081, Baronissi, SA, Italy.
| |
Collapse
|
39
|
Pérez-Pons A, Teodosio C, Jara-Acevedo M, Henriques A, Navarro-Navarro P, García-Montero AC, Álvarez-Twose I, Lecrevisse Q, Fluxa R, Sánchez-Muñoz L, Caldas C, Pozo J, Martín S, Sanfeliciano TC, Pedreira CE, Botafogo V, González-López O, Mayado A, Orfao A. T-cell immune profile in blood of systemic mastocytosis: Association with disease features. Allergy 2024; 79:1921-1937. [PMID: 38299742 DOI: 10.1111/all.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Systemic mastocytosis (SM) is a heterogeneous disease characterized by an expansion of KIT-mutated mast cells (MC). KIT-mutated MC display activated features and release MC mediators that might act on the tumour microenvironment and other immune cells. Here, we investigated the distribution of lymphocyte subsets in blood of patients with distinct subtypes of SM and determined its association with other disease features. METHODS We studied the distribution of TCD4+ and TCD4- cytotoxic cells and their subsets, as well as total NK- and B cells, in blood of 115 SM patients-38 bone marrow mastocytosis (BMM), 67 indolent SM (ISM), 10 aggressive SM (ASM)- and 83 age-matched healthy donors (HD), using spectral flow cytometry and the EuroFlow Immunomonitoring panel, and correlated it with multilineage KITD816V, the alpha-tryptasemia genotype (HαT) and the clinical manifestations of the disease. RESULTS SM patients showed decreased counts (vs. HD) of TCD4- cytotoxic cells, NK cells and several functional subsets of TCD4+ cells (total Th1, Th2-effector memory, Th22-terminal effector and Th1-like Tregs), together with increased T-follicular-helper and Th1/Th17-like Treg counts, associated with different immune profiles per diagnostic subtype of SM, in multilineal versus MC-restricted KITD816V and in cases with a HαT+ versus HαT- genotype. Unique immune profiles were found among BMM and ISM patients with MC-restricted KITD816V who displayed HαT, anaphylaxis, hymenoptera venom allergy, bone disease, pruritus, flushing and GI symptoms. CONCLUSION Our results reveal altered T- and NK-cell immune profiles in blood of SM, which vary per disease subtype, the pattern of involvement of haematopoiesis by KITD816V, the HαT genotype and specific clinical manifestations of the disease.
Collapse
Affiliation(s)
- Alba Pérez-Pons
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Cristina Teodosio
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - María Jara-Acevedo
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Sequencing Service (NUCLEUS), Universidad de Salamanca, Salamanca, Spain
| | - Ana Henriques
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Paula Navarro-Navarro
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Sequencing Service (NUCLEUS), Universidad de Salamanca, Salamanca, Spain
| | - Andrés C García-Montero
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Iván Álvarez-Twose
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
| | - Quentin Lecrevisse
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Laura Sánchez-Muñoz
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Virgen del Valle Hospital, CIBERONC, Toledo, Madrid, Spain
| | - Carolina Caldas
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Julio Pozo
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Martín
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Carlos E Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vitor Botafogo
- Department of Hematology and Hemotherapy, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Oscar González-López
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
| | - Andrea Mayado
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Cancer Research Center (IBMCC, USAL-CSIC), Universidad de Salamanca, Salamanca, Spain
- Biomedical Research Networking Center Consortium (CIBERONC; CB16/12/00400), Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Spanish Network on Mastocytosis (REMA), Toledo, Salamanca, Spain
| |
Collapse
|
40
|
Palmulli R, Couty M, Piontek MC, Ponnaiah M, Dingli F, Verweij FJ, Charrin S, Tantucci M, Sasidharan S, Rubinstein E, Kontush A, Loew D, Lhomme M, Roos WH, Raposo G, van Niel G. CD63 sorts cholesterol into endosomes for storage and distribution via exosomes. Nat Cell Biol 2024; 26:1093-1109. [PMID: 38886558 DOI: 10.1038/s41556-024-01432-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles such as exosomes are now recognized as key players in intercellular communication. Their role is influenced by the specific repertoires of proteins and lipids, which are enriched when they are generated as intraluminal vesicles (ILVs) in multivesicular endosomes. Here we report that a key component of small extracellular vesicles, the tetraspanin CD63, sorts cholesterol to ILVs, generating a pool that can be mobilized by the NPC1/2 complex, and exported via exosomes to recipient cells. In the absence of CD63, cholesterol is retrieved from the endosomes by actin-dependent vesicular transport, placing CD63 and cholesterol at the centre of a balance between inward and outward budding of endomembranes. These results establish CD63 as a lipid-sorting mechanism within endosomes, and show that ILVs and exosomes are alternative providers of cholesterol.
Collapse
Affiliation(s)
- Roberta Palmulli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Mickaël Couty
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France
| | - Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Maharajah Ponnaiah
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Florent Dingli
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Frederik J Verweij
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Stéphanie Charrin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Matteo Tantucci
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France
| | - Sajitha Sasidharan
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, Inserm, Paris, France
| | - Anatol Kontush
- ICAN, National Institute for Health and Medical Research, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (IHU ICAN, ICAN OMICS and ICAN I/O), F-75013, Paris, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248, Paris Cedex 05, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248, Paris Cedex 05, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université de Paris, Paris, France.
- CRCI2NA, Nantes Université, Inserm UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
41
|
Chaubal R, Gardi N, Joshi S, Pantvaidya G, Kadam R, Vanmali V, Hawaldar R, Talker E, Chitra J, Gera P, Bhatia D, Kalkar P, Gurav M, Shetty O, Desai S, Krishnan NM, Nair N, Parmar V, Dutt A, Panda B, Gupta S, Badwe R. Surgical Tumor Resection Deregulates Hallmarks of Cancer in Resected Tissue and the Surrounding Microenvironment. Mol Cancer Res 2024; 22:572-584. [PMID: 38394149 PMCID: PMC11148542 DOI: 10.1158/1541-7786.mcr-23-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
UNLABELLED Surgery exposes tumor tissue to severe hypoxia and mechanical stress leading to rapid gene expression changes in the tumor and its microenvironment, which remain poorly characterized. We biopsied tumor and adjacent normal tissues from patients with breast (n = 81) and head/neck squamous cancers (HNSC; n = 10) at the beginning (A), during (B), and end of surgery (C). Tumor/normal RNA from 46/81 patients with breast cancer was subjected to mRNA-Seq using Illumina short-read technology, and from nine patients with HNSC to whole-transcriptome microarray with Illumina BeadArray. Pathways and genes involved in 7 of 10 known cancer hallmarks, namely, tumor-promoting inflammation (TNF-A, NFK-B, IL18 pathways), activation of invasion and migration (various extracellular matrix-related pathways, cell migration), sustained proliferative signaling (K-Ras Signaling), evasion of growth suppressors (P53 signaling, regulation of cell death), deregulating cellular energetics (response to lipid, secreted factors, and adipogenesis), inducing angiogenesis (hypoxia signaling, myogenesis), and avoiding immune destruction (CTLA4 and PDL1) were significantly deregulated during surgical resection (time points A vs. B vs. C). These findings were validated using NanoString assays in independent pre/intra/post-operative breast cancer samples from 48 patients. In a comparison of gene expression data from biopsy (analogous to time point A) with surgical resection samples (analogous to time point C) from The Cancer Genome Atlas study, the top deregulated genes were the same as identified in our analysis, in five of the seven studied cancer types. This study suggests that surgical extirpation deregulates the hallmarks of cancer in primary tumors and adjacent normal tissue across different cancers. IMPLICATIONS Surgery deregulates hallmarks of cancer in human tissue.
Collapse
Affiliation(s)
- Rohan Chaubal
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Nilesh Gardi
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Shalaka Joshi
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Gouri Pantvaidya
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Rasika Kadam
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vaibhav Vanmali
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rohini Hawaldar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Clinical Research Secretariat, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Elizabeth Talker
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Jaya Chitra
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Poonam Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Dimple Bhatia
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Prajakta Kalkar
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Mamta Gurav
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Omshree Shetty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Sangeeta Desai
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | | | - Nita Nair
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- 3D Printing Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Amit Dutt
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Binay Panda
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sudeep Gupta
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rajendra Badwe
- Department of Surgical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Hypoxia and Clinical Genomics Lab (Clinician Scientist Laboratory), Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| |
Collapse
|
42
|
Feliu J, Gámez-Pozo A, Martínez-Pérez D, Pérez-Wert P, Matamala-Luengo D, Viñal D, Kunz L, López-Vacas R, Dittmann A, Rodríguez-Salas N, Custodio A, Fresno Vara JÁ, Trilla-Fuertes L. Functional proteomics of colon cancer Consensus Molecular Subtypes. Br J Cancer 2024; 130:1670-1678. [PMID: 38486123 PMCID: PMC11091086 DOI: 10.1038/s41416-024-02650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND The Colorectal Cancer Subtyping Consortium established four Consensus Molecular Subtypes (CMS) in colorectal cancer: CMS1 (microsatellite-instability [MSI], Immune), CMS2 (Canonical, epithelial), CMS3 (Metabolic), and CMS4 (Mesenchymal). However, only MSI tumour patients have seen a change in their disease management in clinical practice. This study aims to characterise the proteome of colon cancer CMS and broaden CMS's clinical utility. METHODS One-hundred fifty-eight paraffin samples from stage II-III colon cancer patients treated with adjuvant chemotherapy were analysed through DIA-based mass-spectrometry proteomics. RESULTS CMS1 exhibited overexpression of immune-related proteins, specifically related to neutrophils, phagocytosis, antimicrobial response, and a glycolytic profile. These findings suggested potential therapeutic strategies involving immunotherapy and glycolytic inhibitors. CMS3 showed overexpression of metabolic proteins. CMS2 displayed a heterogeneous protein profile. Notably, two proteomics subtypes within CMS2, with different protein characteristics and prognoses, were identified. CMS4 emerged as the most distinct group, featuring overexpression of proteins related to angiogenesis, extracellular matrix, focal adhesion, and complement activation. CMS4 showed a high metastatic profile and suggested possible chemoresistance that may explain its worse prognosis. CONCLUSIONS DIA proteomics revealed new features for each colon cancer CMS subtype. These findings provide valuable insights into potential therapeutic targets for colorectal cancer subtypes in the future.
Collapse
Affiliation(s)
- Jaime Feliu
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
- Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Madrid, Spain.
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.
| | - Angelo Gámez-Pozo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Daniel Martínez-Pérez
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Pablo Pérez-Wert
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - David Viñal
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Kunz
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Rocío López-Vacas
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | | | - Nuria Rodríguez-Salas
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Ana Custodio
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | | |
Collapse
|
43
|
Hikmat H, Le Targa L, Boschi C, Py J, Bedotto M, Morand A, Cassir N, Aherfi S, La Scola B, Colson P. Sequencing and characterization of human bocavirus genomes from patients diagnosed in Southern France between 2017 and 2022. J Med Virol 2024; 96:e29706. [PMID: 38888111 DOI: 10.1002/jmv.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The diversity and evolution of the genomes of human bocavirus (HBoV), which causes respiratory diseases, have been scarcely studied. Here, we aimed to obtain and characterize HBoV genomes from patients's nasopharyngeal samples collected between 2017 and 2022 period (5 years and 7 months). Next-generation sequencing (NGS) used Illumina technology after having implemented using GEMI an in-house multiplex PCR amplification strategy. Genomes were assembled and analyzed with CLC Genomics, Mafft, BioEdit, MeV, Nextclade, MEGA, and iTol. A total of 213 genomes were obtained. Phylogeny classified them all as of Bocavirus 1 (HBoV1) species. Five HBoV1 genotypic clusters determined by hierarchical clustering analysis of 27 variable genome positions were scattered over the study period although with differences in yearly prevalence. A total of 167 amino acid substitutions were detected. Besides, coinfection was observed for 52% of the samples, rhinoviruses then adenoviruses (HAdVs) being the most common viruses. Principal component analysis showed that HBoV1 genotypic cluster α tended to be correlated with HAdV co-infection. Subsequent HAdV typing for HBoV1-positive samples and negative controls demonstrated that HAdVC species predominated but HAdVB was that significantly HBoV1-associated. Overall, we described here the first HBoV1 genomes sequenced for France. HBoV1 and HAdVB association deserves further investigation.
Collapse
Affiliation(s)
- Houmadi Hikmat
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Lorlane Le Targa
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Biosellal, Lyon, France
| | - Celine Boschi
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Justine Py
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Marielle Bedotto
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Morand
- Service d'Accueil des Urgences Pédiatriques, Hôpital Nord, AP-HM, Marseille, France
- Service de Pédiatrie Générale, Hôpital Timone, AP-HM, Marseille, France
| | - Nadim Cassir
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Sarah Aherfi
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Philippe Colson
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
44
|
Su PS, Li J, Zang D, Wang Z, Wu Y, Chi S, Sun F, Niu Y, Hua X, Yan J, Ge W. Genome-wide evolutionary analysis of TKL_CTR1-DRK-2 gene family and functional characterization reveals that TaCTR1 positively regulates flowering time in wheat. BMC Genomics 2024; 25:474. [PMID: 38745148 PMCID: PMC11092142 DOI: 10.1186/s12864-024-10383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Flowering time has an important effect on regional adaptation and yields for crops. The tyrosine kinase-like (TKL) gene family is widely existed and participates in many biological processes in plants. Furthermore, only few TKLs have been characterized functions in controlling flowering time in wheat. RESULTS Here, we report that TaCTR1, a tyrosine kinase-like (TKL) gene, regulates flowering time in wheat. Based on identification and evolutionary analysis of TKL_CTR1-DRK-2 subfamily in 15 plants, we proposed an evolutionary model for TaCTR1, suggesting that occurrence of some exon fusion events during evolution. The overexpression of TaCTR1 caused early flowering time in transgenic lines. Transcriptomics analysis enabled identification of mass differential expression genes including plant hormone (ET, ABA, IAA, BR) signaling, flavonoid biosynthesis, phenolamides and antioxidant, and flowering-related genes in TaCTR1 overexpression transgenic lines compared with WT plants. qRT-PCR results showed that the expression levels of ethylene (ET) signal-related genes (ETR, EIN, ERF) and flowering-related genes (FT, PPD1, CO, PRR, PHY) were altered in TaCTR1-overexpressing wheat compared with WT plants. Metabonomics analysis showed that flavonoid contents were altered. CONCLUSIONS Thus, the results show that TaCTR1 plays a positive role in controlling flowering time by activating various signaling pathways and regulating flowering-related genes, and will provide new insights on the mechanisms of wheat flowering regulation.
Collapse
Affiliation(s)
- Peisen S Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China.
| | - Jingyu Li
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Dongtian Zang
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Zhiyu Wang
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Yangyang Wu
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Shatong Chi
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Fanting Sun
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Yufei Niu
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Xuewen Hua
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| | - Wenyang Ge
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, P.R. China.
| |
Collapse
|
45
|
Nishikawa T, Miyahara E, Yamazaki I, Ikawa K, Nakagawa S, Kodama Y, Kawano Y, Okamoto Y. Effects of High-Dose Cyclophosphamide on Ultrastructural Changes and Gene Expression Profiles in the Cardiomyocytes of C57BL/6J Mice. Diseases 2024; 12:85. [PMID: 38785740 PMCID: PMC11120609 DOI: 10.3390/diseases12050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The pathogenesis of cyclophosphamide (CY)-induced cardiotoxicity remains unknown, and methods for its prevention have not been established. To elucidate the acute structural changes that take place in myocardial cells and the pathways leading to myocardial damage under high-dose CY treatments, we performed detailed pathological analyses of myocardial tissue obtained from C57BL/6J mice subjected to a high-dose CY treatment. Additionally, we analysed the genome-wide cardiomyocyte expression profiles of mice subjected to the high-dose CY treatment. Treatment with CY (400 mg/kg/day intraperitoneally for two days) caused marked ultrastructural aberrations, as observed using electron microscopy, although these aberrations could not be observed using optical microscopy. The expansion of the transverse tubule and sarcoplasmic reticulum, turbulence in myocardial fibre travel, and a low contractile protein density were observed in cardiomyocytes. The high-dose CY treatment altered the cardiomyocyte expression of 1210 genes (with 675 genes upregulated and 535 genes downregulated) associated with cell-cell junctions, inflammatory responses, cardiomyopathy, and cardiac muscle function, as determined using microarray analysis (|Z-score| > 2.0). The expression of functionally important genes related to myocardial contraction and the regulation of calcium ion levels was validated using real-time polymerase chain reaction analysis. The results of the gene expression profiling, functional annotation clustering, and Kyoto Encyclopedia of Genes and Genomes pathway functional-classification analysis suggest that CY-induced cardiotoxicity is associated with the disruption of the Ca2+ signalling pathway.
Collapse
Affiliation(s)
- Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Emiko Miyahara
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | | | - Kazuro Ikawa
- Department of Clinical Pharmacotherapy, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yuichi Kodama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yoshifumi Kawano
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (E.M.); (S.N.); (Y.K.); (Y.K.); (Y.O.)
| |
Collapse
|
46
|
Park Y, Muthuramalingam P, Jeong JH, Kim SH, Shin H. Physiological and metabolic analyses reveal the proline-mediated flowering delay mechanism in Prunus persica. FRONTIERS IN PLANT SCIENCE 2024; 15:1302975. [PMID: 38726296 PMCID: PMC11079198 DOI: 10.3389/fpls.2024.1302975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 05/12/2024]
Abstract
Peaches are susceptible to various environmental stresses. Particularly in late spring, freezing temperatures can damage peaches and consequently, affect their productivity. Therefore, flowering delay is a prominent strategy for avoiding spring frost damage. Our previous study confirmed that treatment with 5% sodium alginate and 100 mM CaCl2 (5AG) to avoid frost damage during the blooming stage delays flowering. To reveal the flowering delay mechanism of peaches, this study systematically analyzed the modification of amino acid profiles in control and 5AG-treated peach plants at different day intervals. Our findings indicate that arginine (Arg), glutamate (Glu), and proline (Pro) levels differed between the control and 5AG-treated peach shoots throughout the phenological development of flower buds. Furthermore, two amino acids (Arg and Glu) are involved in the Pro pathway. Thus, using a computational metabolomics method, Pro biosynthesis and its characteristics, gene ontology, gene synteny, cis-regulatory elements, and gene organizations were examined to decipher the involvement of Pro metabolism in peach flowering delay. In addition, qRT-PCR analysis revealed the transcriptional regulation of Pro-related and flowering-responsive genes and their role in flowering delay. Overall, this pilot study provides new insights into the role of Pro in the flowering delay mechanisms in Prunus persica through 5AG treatment.
Collapse
Affiliation(s)
- Yeonju Park
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Pandiyan Muthuramalingam
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Hoon Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, Republic of Korea
| | - Seung Heui Kim
- Department of Fruit Science, Korea National College of Agriculture and Fisheries, Jeonju, Republic of Korea
| | - Hyunsuk Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
47
|
Jankowski MS, Griffith D, Shastry DG, Pelham JF, Ginell GM, Thomas J, Karande P, Holehouse AS, Hurley JM. Disordered clock protein interactions and charge blocks turn an hourglass into a persistent circadian oscillator. Nat Commun 2024; 15:3523. [PMID: 38664421 PMCID: PMC11045787 DOI: 10.1038/s41467-024-47761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Organismal physiology is widely regulated by the molecular circadian clock, a feedback loop composed of protein complexes whose members are enriched in intrinsically disordered regions. These regions can mediate protein-protein interactions via SLiMs, but the contribution of these disordered regions to clock protein interactions had not been elucidated. To determine the functionality of these disordered regions, we applied a synthetic peptide microarray approach to the disordered clock protein FRQ in Neurospora crassa. We identified residues required for FRQ's interaction with its partner protein FRH, the mutation of which demonstrated FRH is necessary for persistent clock oscillations but not repression of transcriptional activity. Additionally, the microarray demonstrated an enrichment of FRH binding to FRQ peptides with a net positive charge. We found that positively charged residues occurred in significant "blocks" within the amino acid sequence of FRQ and that ablation of one of these blocks affected both core clock timing and physiological clock output. Finally, we found positive charge clusters were a commonly shared molecular feature in repressive circadian clock proteins. Overall, our study suggests a mechanistic purpose for positive charge blocks and yielded insights into repressive arm protein roles in clock function.
Collapse
Affiliation(s)
- Meaghan S Jankowski
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jacqueline F Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joshua Thomas
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
48
|
Valdez RM, Rivera BN, Chang Y, Pennington JM, Fischer KA, Löhr CV, Tilton SC. Assessing susceptibility for polycyclic aromatic hydrocarbon toxicity in an in vitro 3D respiratory model for asthma. FRONTIERS IN TOXICOLOGY 2024; 6:1287863. [PMID: 38706568 PMCID: PMC11066177 DOI: 10.3389/ftox.2024.1287863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
There is increased emphasis on understanding cumulative risk from the combined effects of chemical and non-chemical stressors as it relates to public health. Recent animal studies have identified pulmonary inflammation as a possible modifier and risk factor for chemical toxicity in the lung after exposure to inhaled pollutants; however, little is known about specific interactions and potential mechanisms of action. In this study, primary human bronchial epithelial cells (HBEC) cultured in 3D at the air-liquid interface (ALI) are utilized as a physiologically relevant model to evaluate the effects of inflammation on toxicity of polycyclic aromatic hydrocarbons (PAHs), a class of contaminants generated from incomplete combustion of fossil fuels. Normal HBEC were differentiated in the presence of IL-13 for 14 days to induce a profibrotic phenotype similar to asthma. Fully differentiated normal and IL-13 phenotype HBEC were treated with benzo[a]pyrene (BAP; 1-40 μg/mL) or 1% DMSO/PBS vehicle at the ALI for 48 h. Cells were evaluated for cytotoxicity, barrier integrity, and transcriptional biomarkers of chemical metabolism and inflammation by quantitative PCR. Cells with the IL-13 phenotype treated with BAP result in significantly (p < 0.05) decreased barrier integrity, less than 50% compared to normal cells. The effect of BAP in the IL-13 phenotype was more apparent when evaluating transcriptional biomarkers of barrier integrity in addition to markers of mucus production, goblet cell hyperplasia, type 2 asthmatic inflammation and chemical metabolism, which all resulted in dose-dependent changes (p < 0.05) in the presence of BAP. Additionally, RNA sequencing data showed that the HBEC with the IL-13 phenotype may have increased potential for uncontrolled proliferation and decreased capacity for immune response after BAP exposure compared to normal phenotype HBEC. These data are the first to evaluate the role of combined environmental factors associated with inflammation from pre-existing disease and PAH exposure on pulmonary toxicity in a physiologically relevant human in vitro model.
Collapse
Affiliation(s)
- Reese M. Valdez
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Brianna N. Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Jamie M. Pennington
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
| | - Kay A. Fischer
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Christiane V. Löhr
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Susan C. Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
49
|
Nieto-Romero V, García-Torralba A, Molinos-Vicente A, Moya FJ, Rodríguez-Perales S, García-Escudero R, Salido E, Segovia JC, García-Bravo M. Restored glyoxylate metabolism after AGXT gene correction and direct reprogramming of primary hyperoxaluria type 1 fibroblasts. iScience 2024; 27:109530. [PMID: 38577102 PMCID: PMC10993186 DOI: 10.1016/j.isci.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR-Cas9, following two different strategies: accurate point mutation (c.731T>C) correction or knockin of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.
Collapse
Affiliation(s)
- Virginia Nieto-Romero
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Aida García-Torralba
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco José Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)-ISCIII, Research Institute Hospital 12 de Octubre (imas12)-University Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Eduardo Salido
- Pathology Department, Hospital Universitario de Canarias, Universidad La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 38320 Tenerife, Spain
| | - José-Carlos Segovia
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
50
|
Walter B, Hirsch S, Kuhlburger L, Stahl A, Schnabel L, Wisser S, Haeusser LA, Tsiami F, Plöger S, Aghaallaei N, Dick AM, Skokowa J, Schmees C, Templin M, Schenke-Layland K, Tatagiba M, Nahnsen S, Merk DJ, Tabatabai G. Functionally-instructed modifiers of response to ATR inhibition in experimental glioma. J Exp Clin Cancer Res 2024; 43:77. [PMID: 38475864 DOI: 10.1186/s13046-024-02995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The DNA damage response (DDR) is a physiological network preventing malignant transformation, e.g. by halting cell cycle progression upon DNA damage detection and promoting DNA repair. Glioblastoma are incurable primary tumors of the nervous system and DDR dysregulation contributes to acquired treatment resistance. Therefore, DDR targeting is a promising therapeutic anti-glioma strategy. Here, we investigated Ataxia telangiectasia and Rad3 related (ATR) inhibition (ATRi) and functionally-instructed combination therapies involving ATRi in experimental glioma. METHODS We used acute cytotoxicity to identify treatment efficacy as well as RNAseq and DigiWest protein profiling to characterize ATRi-induced modulations within the molecular network in glioma cells. Genome-wide CRISPR/Cas9 functional genomic screens and subsequent validation with functionally-instructed compounds and selected shRNA-based silencing were employed to discover and investigate molecular targets modifying response to ATRi in glioma cell lines in vitro, in primary cultures ex vivo and in zebrafish and murine models in vivo. RESULTS ATRi monotherapy displays anti-glioma efficacy in vitro and ex vivo and modulates the molecular network. We discovered molecular targets by genome-wide CRISPR/Cas9 loss-of-function and activation screens that enhance therapeutic ATRi effects. We validated selected druggable targets by a customized drug library and functional assays in vitro, ex vivo and in vivo. CONCLUSION In conclusion, our study leads to the identification of novel combination therapies involving ATRi that could inform future preclinical studies and early phase clinical trials.
Collapse
Affiliation(s)
- Bianca Walter
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sophie Hirsch
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Laurence Kuhlburger
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Quantitative Biology Center, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Leonard Schnabel
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Silas Wisser
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Lara A Haeusser
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Foteini Tsiami
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sarah Plöger
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, Department of Internal Medicine II, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Advaita M Dick
- Division of Translational Oncology, Department of Internal Medicine II, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, Department of Internal Medicine II, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christian Schmees
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
| | - Katja Schenke-Layland
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Marcos Tatagiba
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Quantitative Biology Center, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Daniel J Merk
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- Cluster of Excellence (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, 72076, Tübingen, Germany.
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|