1
|
Hossain MM, Roy K. The development of classification-based machine-learning models for the toxicity assessment of chemicals associated with plastic packaging. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136702. [PMID: 39637787 DOI: 10.1016/j.jhazmat.2024.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Assessing chemical toxicity in materials like plastic packaging is critical to safeguarding public health. This study presents the development of classification-based machine learning models to predict the toxicity of chemicals associated with plastic packaging. Using an extensive dataset of chemical structures, we trained multiple machine learning models-Random Forest, Support Vector Machine, Linear Discriminant Analysis, and Logistic Regression-targeting endpoints such as Neurotoxicity, Hepatotoxicity, Dermatotoxicity, Carcinogenicity, Reproductive Toxicity, Skin Sensitization, and Toxic Pneumonitis. The dataset was pre-processed by selecting 2D molecular descriptors as feature inputs, with resampling methods (ADASYN, Borderline SMOTE, Random Over-sampler, SVMSMOTE Cluster Centroid, Near Miss, Random Under Sampler) applied to balance classes for accurate classification. A five-fold cross-validation technique was used to optimize model performance, with model parameters fine-tuned using grid search. The model performance was evaluated using accuracy (Acc), sensitivity (Se), specificity (Sp), and area under the receiver operating characteristic curve (AUC-ROC) metrics. In most of the cases, the model accuracy was 0.8 or above for both training and test sets. Additionally, SHAP (SHapley Additive exPlanations) values were utilized for feature importance analysis, highlighting significant descriptors contributing to toxicity predictions. The models were ranked using the Sum of Ranking Differences (SRD) method to systematically select the most effective model. The optimal models demonstrated high predictive accuracy and interpretability, providing a scalable and efficient solution for toxicity assessment compared to traditional methods. This approach offers a valuable tool for rapidly screening potentially hazardous chemicals in plastic packaging.
Collapse
Affiliation(s)
- Md Mobarak Hossain
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
2
|
Fung TKH, Cheung KK, Wang X, Lau BWM, Ngai SPC. Transcriptomic Profiling Reveals Differences in Slow-Twitch and Fast-Twitch Muscles of a Cigarette Smoke-Exposed Rat Model. J Cachexia Sarcopenia Muscle 2025; 16:e13633. [PMID: 39611217 DOI: 10.1002/jcsm.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Cigarette smoking is known to affect muscle function and exercise capacity, including muscle fatigue resistance. Most studies showed diminished cross-sectional area and fibre type shifting in slow-twitch muscles such as the soleus, while effects on fast-twitch muscles were seldom reported and the differential responses between muscle types in response to exposure to cigarette smoke (CS) were largely unknown. This study aimed to elucidate the histomorphological, biochemical and transcriptomic changes induced by CS on both slow-twitch and fast-twitch muscles. METHOD Male Sprague-Dawley rats were randomly divided into two groups: sham air (SA) and CS. The rats were exposed to CS for 8 weeks using an exposure chamber system to mimic smoking conditions. Histomorphological analyses on muscle fibre type and cross-sectional area were determined in soleus and extensor digitorum longus (EDL). Transcriptomic profiles were investigated for identifying differentially expressed genes (DEGs) and potential mechanistic pathways involved. Inflammatory responses in terms of the macrophage population and the level of inflammatory cytokines were measured. Markers for muscle-specific proteolysis were also examined. RESULT Soleus muscle, but not in EDL, exhibited a significant increase in Type IIa fibres (SA: 9.0 ± 3.3%; CS: 19.8 ± 2.4%, p = 0.002) and decrease in Type I fibres (SA: 90.1 ± 3.6%; CS: 77.9 ± 3.3%, p = 0.003) after CS exposure. RNA sequencing revealed 165 identified DEGs in soleus including upregulation of 'Cd68', 'Ccl2' and 'Ucp2' as well as downregulation of 'Ucp3', etc. Pathways enrichment analysis revealed that the upregulated pathways in soleus were related to immune system and cellular response, while the downregulated pathways were related to oxidative metabolism. Only 10 DEGs were identified in EDL with less enriched pathways. The soleus also showed elevated pro-inflammatory cytokines, and the total macrophage marker CD68 was significantly higher in soleus of CS compared to the SA group (CD68+/no. of fibre: SA = 60.3 ± 39.3%; CS = 106.5 ± 27.2%, p = 0.0039), while the two groups in EDL muscle showed no significant difference. The expression of E3 ubiquitin ligase atrogin-1 associated with muscle degradation pathways was 1.63-fold higher in the soleus after CS, while no significant differences were observed in the EDL. CONCLUSION The CS-induced inflammatory responses on soleus muscle are likely mediated via targeting mitochondrial-related signalling, resulting in mitochondrial dysfunction and impaired oxidative capacity. The presumably less active mitochondrial-related signalling in EDL renders it less susceptible to changes towards CS, accounting for differential impacts between muscle types.
Collapse
Affiliation(s)
- Timothy K H Fung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kwok Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xia Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Benson W M Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shirley P C Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
3
|
Hintikka T, Andersson MA, Marik T, Mikkola R, Andersson M, Kredics L, Kurnitski J, Salonen H. Revealing Stachybotrys-like fungal growth in buildings - Possible exposure highlighted through three case studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178408. [PMID: 39793137 DOI: 10.1016/j.scitotenv.2025.178408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Genus Stachybotrys (Stachybotryaceae, Hypocreales) requires high humidity to grow and represents one of the most notorious fungi associated with suspected illness in moist buildings. If Stachybotrys conidia are found in settled indoor dusts, their presence may indicate water intrusion and mold infestation revealed after dismantling the building structures. This study describes detection of Stachybotrys growth hidden inside the structures of three buildings in Finland. First, a novel microscopic screening method concentrating Stachybotrys conidia from settled dust was developed. The method is based on enrichment of conidia floating in the solution of saturated NaCl, separating them from sinking dust particles. Captured conidia were identified based on morphology and cultivated isolates were identified to species or genus level. The second part of the study describes the records of two persons sickened with asthma after exposure to long lasting growth of Stachybotrys in two of the buildings. After 38 years of the diagnosis the one person's asthma was declared cured in a medical report. The asthma of the other person developed into chronic illness, diagnosed by The Insurance Court as occupational asthma caused by a moisture-damaged workplace. Diversity and the metabolic activity of the microbes exposing the two persons in rural versus urban environments after their asthma diagnosis is offered as a preliminary and hypothetical explanation of the different outcome of the illnesses.
Collapse
Affiliation(s)
- Tuomas Hintikka
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland.
| | - Maria A Andersson
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland.
| | - Tamás Marik
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland.
| | - Magnus Andersson
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 04920 Saarentaus, Finland.
| | - László Kredics
- Department of Biotechnology and Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; Department of Civil Engineering and Architecture, Tallinn University of Technology, 19086 Tallinn, Estonia.
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
4
|
Alnagar AN, Motawea A, Zaghloul RA, Eldesoqui M, Abu Hashim II. A Novel Facile and Efficient Prophylaxis Avenue of Chitosan Oligosaccharide/PLGA Based Polydatin Loaded Nanoparticles Against Bleomycin-Induced Lung Inflammation in Experimental Rat Model. AAPS PharmSciTech 2025; 26:35. [PMID: 39820828 DOI: 10.1208/s12249-024-03022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects. Its clinical applications are hindered due to poor aqueous solubility, low bioavailability, and rapid metabolism by first-pass effect. Herein, we report the development of a novel chitosan oligosaccharide-coated PD-loaded Poly dl-lactide-co-glycolide nanoparticles (COS-coated PD/PLGA NPs) against a bleomycin-induced pulmonary inflammation in a rat model. The NPs exhibited a small particle size of 188.57 ± 5.68 nm and a high zeta potential of + 18.13 ± 2.75 mV with spherical architecture and sustained release pattern of PD. In vivo studies in bleomycin-induced lung inflammation in a rat model revealed the superior prophylactic activity of COS-coated PD/PLGA NPs over the free drug (PD) as demonstrated by histopathological and immunohistochemical analyses, alongside biochemical assays evaluating oxidative stress biomarkers and inflammatory cytokine levels. Overall, the optimized COS-coated PD/PLGA NPs formulation offers a promising prophylactic platform against many respiratory diseases.
Collapse
Affiliation(s)
- Ahmed Nashaat Alnagar
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, DiriyahRiyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
5
|
Hamadi N, Al-Salam S, Beegam S, Zaaba NE, Elzaki O, Nemmar A. Chronic Exposure to Two Regimens of Waterpipe Smoke Elicits Lung Injury, Genotoxicity, and Mitochondrial Impairment with the Involvement of MAPKs Activation in Mice. Int J Mol Sci 2025; 26:430. [PMID: 39796284 PMCID: PMC11722325 DOI: 10.3390/ijms26010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis. Only R-WPS increased the number of neutrophil polymorphs and plasma cells. R-WPS also significantly increased the chemokines CXCL1, CXCL2, and CCL2 in the lung, BALF, and plasma, while O-WPS increased CXCL1 and CXCL2 in the lung and CXCL1 in the plasma. Both exposure regimens significantly increased lung injury markers, including matrix metalloproteinase-9 and myeloperoxidase. Additionally, R-WPS induced a significant increase in the cytokines IL1β, IL6, and TNFα in the lung, BALF, and plasma, while O-WPS elevated IL1β and IL6 in the lung. Oxidative stress was observed, with increased levels of thiobarbituric acid reactive substances and superoxide dismutase in both the O-WPS and R-WPS groups. Exposure to either O-WPS or R-WPS triggered genotoxicity and altered mitochondrial complex activities. R-WPS exposure also resulted in elevated expression of p-JNK/JNK, p-ERK/ERK, and p-p38/p38, while O-WPS augmented the p-ERK/ERK ratio in the lungs. Taken together, these findings indicate that both O-WPS and R-WPS contribute to lung injury and induce inflammation, oxidative stress, genotoxicity, and mitochondrial dysfunction, with R-WPS having a more pronounced effect. These effects were associated with the activation of MAPKs.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates;
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| | - Abderrahim Nemmar
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.B.); (N.E.Z.); (O.E.)
| |
Collapse
|
6
|
Chalmers JD, Mall MA, Chotirmall SH, O'Donnell AE, Flume PA, Hasegawa N, Ringshausen FC, Watz H, Xu JF, Shteinberg M, McShane PJ. Targeting neutrophil serine proteases in bronchiectasis. Eur Respir J 2025; 65:2401050. [PMID: 39467608 DOI: 10.1183/13993003.01050-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis. Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in bronchiectasis, no drug that controls neutrophilic inflammation is licensed for the treatment of bronchiectasis. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of NE) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in bronchiectasis pathogenesis, and not just NE. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in bronchiectasis and improve disease outcomes as a result. Clinical trials for CatC inhibitors in bronchiectasis have reported positive phase III results. In this narrative review, we discuss the role of high NSP activity in bronchiectasis, and how this feature drives the associated morbidity and mortality seen in bronchiectasis. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the bronchiectasis lung, summarising clinical trial outcomes and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in bronchiectasis.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Henrik Watz
- Velocity Clinical Research Grosshansdorf, formerly Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research Grosshansdorf (DZL), Grosshansdorf, Germany
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Michal Shteinberg
- Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
- M. Shteinberg and P.J. McShane are joint senior authors
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
- M. Shteinberg and P.J. McShane are joint senior authors
| |
Collapse
|
7
|
Hazrati A, Mirarefin SMJ, Malekpour K, Rahimi A, Khosrojerdi A, Rasouli A, Akrami S, Soudi S. Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Front Immunol 2024; 15:1469696. [PMID: 39582867 PMCID: PMC11581898 DOI: 10.3389/fimmu.2024.1469696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
Due to the vital importance of the lungs, lung-related diseases and their control are very important. Severe inflammatory responses mediated by immune cells were among the leading causes of lung tissue pathology and damage during the COVID-19 pandemic. In addition, uncontrolled immune cell responses can lead to lung tissue damage in other infectious and non-infectious diseases. It is essential to control immune responses in a way that leads to homeostasis. Immunosuppressive drugs only suppress inflammatory responses and do not affect the homeostasis of reactions. The therapeutic application of mesenchymal stem cells (MSCs), in addition to restoring immune homeostasis, can promote the regeneration of lung tissue through the production of growth factors and differentiation into lung-related cells. However, the communication between MSCs and immune cells after treatment of pulmonary diseases is essential, and investigating this can help develop a clinical perspective. Different studies in the clinical phase showed that MSCs can reverse fibrosis, increase regeneration, promote airway remodeling, and reduce damage to lung tissue. The proliferation and differentiation potential of MSCs is one of the mechanisms of their therapeutic effects. Furthermore, they can secrete exosomes that affect the function of lung cells and immune cells and change their function. Another important mechanism is that MSCs reduce harmful inflammatory responses through communication with innate and adaptive immune cells, which leads to a shift of the immune system toward regulatory and hemostatic responses.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ashkan Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Antonio L, Visalli G, Facciolà A, Saija C, Bertuccio MP, Baluce B, Celesti C, Iannazzo D, Di Pietro A. Sterile inflammation induced by respirable micro and nano polystyrene particles in the pathogenesis of pulmonary diseases. Toxicol Res (Camb) 2024; 13:tfae138. [PMID: 39233846 PMCID: PMC11368663 DOI: 10.1093/toxres/tfae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Sterile inflammation is involved in the lung pathogenesis induced by respirable particles, including micro- and nanoplastics. Their increasing amounts in the ambient and in indoor air pose a risk to human health. In two human cell lines (A549 and THP-1) we assessed the proinflammatory behavior of polystyrene nanoplastics (nPS) and microplastics (mPS) (Ø 0.1 and 1 μm). Reproducing environmental aging, in addition to virgin, the cells were exposed to oxidized nPS/mPS. To study the response of the monocytes to the inflammatory signal transmitted by the A549 through the release of soluble factors (e.g. alarmins and cytokines), THP-1 cells were also exposed to the supernatants of previously nPS/mPS-treated A549. After dynamic-light-scattering (DLS) analysis and protein measurements for the assessment of protein corona in nPS/mPS, real-time PCR and enzyme-linked-immunosorbent (ELISA) assays were performed in exposed cells. The pro-inflammatory effects of v- and ox-nPS/mPS were attested by the imbalance of the Bax/Bcl-2 ratio in A549, which was able to trigger the inflammatory cascade, inhibiting the immunologically silent apoptosis. The involvement of NFkB was confirmed by the overexpression of p65 after exposure to ox-nPS and v- and ox-mPS. The fast and higher levels of IL-1β, only in THP-1 cells, underlined the NLPR3 inflammasome activation.
Collapse
Affiliation(s)
- Laganà Antonio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.p.a., Viale Italia, 98124 Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Caterina Saija
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Barbara Baluce
- Department of Transfusion Medicine and Hematology and Lombardy Regional Rare Blood Bank, IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122 Milan, Italy
| | - Consuelo Celesti
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Via Stagno d'Alcontres, 98125 Messina, Italy
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Via Stagno d'Alcontres, 98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
9
|
Mao Y, Alarfaj AA, Hussein-Al-Ali SH, Ma H. Diterpene Coronarin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Both In Vivo and In Vitro Models. Appl Biochem Biotechnol 2024; 196:4140-4155. [PMID: 37906408 DOI: 10.1007/s12010-023-04711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Acute lung injury (ALI) is a clinical condition occurs due to severe systemic inflammatory response for clinical stimulus like pneumonia, sepsis, trauma, aspiration, inhalation of toxic gases, and pancreatitis. Disruption of alveolar barriers, activation of macrophages, infiltration of neutrophils, and proinflammatory cytokines are the vital events occurs during ALI. The drugs which inhibit these inflammatory response can protect lungs from inflammatory insults. In this study, we examined the potency of phytochemical coronarin, a diterpene which have been proven to possess anti-inflammatory, antioxidant, antiangiogenic, and antitumor activities. Healthy BALB/c mice were induced to acute lung injury with intra-tracheal administration of LPS and then treated with 5 and 10 mg/kg concentration of coronarin. The wet/dry lung weight of mice were estimated to assess the induction of pulmonary edema. BALF fluid was analyzed for protein concentrations and immune cells count. Myeloperoxidase activity and levels of chemokines MCP-2 and MIP-2, iNOS, COX-2, and PGE-2 were quantified to assess the immunomodulatory effect of coronarin against LPS-induced ALI. The levels of proinflammatory cytokines was measured to examine the anti-inflammatory property of coronarin, and it was confirmed with histopathological analysis of the lung tissue. Murine RAW 264.7 cells were utilized for the in vitro analysis. Cell cytoxicity and cytoprotective property of coronarin was assessed with MTT assay in LPS-treated Murine RAW 264.7. The anti-inflammatory property of coronarin was further confirmed in in vitro condition by estimating the levels of pro-inflammatory cytokines in coronarin-treated and untreated LPS-induced cells. Overall, our in vivo and in vitro results confirm coronarin significantly inhibited the infiltration of neutrophils prevented immunodulatory activity and synthesis of proinflammatory cytokines and alleviated the acute lung injury induced by LPS. Coronarin is a potent anti-inflammatory drug which can be subjected to further research to be prescribed as drug for ALI.
Collapse
Affiliation(s)
- Ya Mao
- Department of Cardiothoracic Surgery, Yantai Mountain Hospital, Yantai, 264001, China
| | - Abdullah A Alarfaj
- Department of Respiratory II, Yantai Mountain Hospital, Yantai, 264001, China
| | - Samer Hasan Hussein-Al-Ali
- Faculty of Pharmacy, PO Box 33 and 22 Isra University Office 11622 by Queen Alia International Airport south of the capital, Amman, Jordan
| | - Hongxia Ma
- Department of thoracic surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
| |
Collapse
|
10
|
Ghosh R, Das M, Mondal S, Banerjee A, Roy L, Das AK, Pal D, Bhattacharya SS, Bhattacharyya M, Pal SK. Targeted Redox Balancing through Pulmonary Nanomedicine Delivery Reverses Oxidative Stress Induced Lung Inflammation. ChemMedChem 2024; 19:e202400037. [PMID: 38459687 DOI: 10.1002/cmdc.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Non-invasive delivery of drugs is important for the reversal of respiratory diseases essentially by-passing metabolic pathways and targeting large surface area of drug absorption. Here, we study the inhalation of a redox nano medicine namely citrate functionalized Mn3O4 (C-Mn3O4) duly encapsulated in droplet evaporated aerosols for the balancing of oxidative stress generated by the exposure of Chromium (VI) ion, a potential lung carcinogenic agent. Our optical spectroscopic in-vitro experiments demonstrates the efficacy of redox balancing of the encapsulated nanoparticles (NP) for the maintenance of a homeostatic condition. The formation of Cr-NP complex as an excretion of the heavy metal is also demonstrated through optical spectroscopic and high resolution transmission optical microscopy (HRTEM). Our studies confirm the oxidative stress mitigation activity of the Cr-NP complex. A detailed immunological assay followed by histopathological studies and assessment of mitochondrial parameters in pre-clinical mice model with chromium (Cr) induced lung inflammation establishes the mechanism of drug action to be redox-buffering. Thus, localised delivery of C-Mn3O4 NPs in the respiratory tract via aerosols can act as an effective nanotherapeutic agent against oxidative stress induced lung inflammation.
Collapse
Affiliation(s)
- Ria Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Rd, Kolkata, 700019, India
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700 106, India
| | - Monojit Das
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, 721102, India
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | - Susmita Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700 106, India
| | - Amrita Banerjee
- Department of Physics, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, 92, Acharya Prafulla Chandra Rd, Machuabazar, Kolkata, 700009, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, Kotwali, Coochbehar, 736101, India
| | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | | | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Rd, Kolkata, 700019, India
| | - Samir Kumar Pal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700 106, India
| |
Collapse
|
11
|
Lee S, Yoon SJ, Oh JH, Ryu JS, Park Y, Hwang ES. MPoMA protects against lung epithelial cell injury via p65 degradation. Biomed Pharmacother 2024; 175:116674. [PMID: 38703509 DOI: 10.1016/j.biopha.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1β, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Soheun Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Hyun Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunjeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
12
|
Bellomo A, Herbert J, Kudlak MJ, Laskin JD, Gow AJ, Laskin DL. Identification of early events in nitrogen mustard pulmonary toxicity that are independent of infiltrating inflammatory cells using precision cut lung slices. Toxicol Appl Pharmacol 2024; 486:116941. [PMID: 38677601 DOI: 10.1016/j.taap.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 μM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 μM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.
Collapse
Affiliation(s)
- Alyssa Bellomo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Melissa J Kudlak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Singer M. Is Pollution the Primary Driver of Infectious Syndemics? Pathogens 2024; 13:370. [PMID: 38787222 PMCID: PMC11124193 DOI: 10.3390/pathogens13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Syndemics, the adverse interaction of two or more coterminous diseases or other negative health conditions, have probably existed since human settlement, plant and animal domestication, urbanization, and the growth of social inequality beginning about 10-12,000 years ago. These dramatic changes in human social evolution significantly increased opportunities for the spread of zoonotic infectious diseases in denser human communities with increased sanitation challenges. In light of a growing body of research that indicates that anthropogenic air pollution causes numerous threats to health and is taking a far greater toll on human life and wellbeing than had been reported, this paper proposes the possibility that air pollution is now the primary driver of infectious disease syndemics. In support of this assertion, this paper reviews the growth and health impacts of air pollution, the relationship of air pollution to the development and spread of infectious diseases, and reported cases of air pollution-driven infectious disease syndemics, and presents public health recommendations for leveraging the biosocial insight of syndemic theory in responding to infectious disease.
Collapse
Affiliation(s)
- Merrill Singer
- Anthropology, Storrs Campus, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
He W, Chao J, Gu A, Wang D. Evaluation of 6-PPD quinone toxicity on lung of male BALB/c mice by quantitative proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171220. [PMID: 38412880 DOI: 10.1016/j.scitotenv.2024.171220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), a transformation product of tyre-derived 6-PPD, has been frequently detected in different environments. After 6-PPDQ exposure, we here aimed to examine dynamic lung bioaccumulation, lung injury, and the underlying molecular basis in male BALB/c mice. After single injection at concentration of 4 mg/kg, 6-PPDQ remained in lung up to day 28, and higher level of 6-PPDQ bioaccumulation in lung was observed after repeated injection. Severe inflammation was observed in lung after both single and repeated 6-PPDQ injection as indicated by changes of inflammatory cytokines (TNF-α, IL-6 and IL-10). Sirius red staining and hydroxyproline content analysis indicated that repeated rather than single 6-PPDQ injection induced fibrosis in lung. Repeated 6-PPDQ injection also severely impaired lung function in mice by influencing chord compliance (Cchord) and enhanced pause (Penh). Proteomes analysis was further carried out to identify molecular targets of 6-PPDQ after repeated injection, which was confirmed by transcriptional expression analysis and immunohistochemistry staining. Alterations in Ripk1, Fadd, Il-6st, and Il-16 expressions were identified to be associated with inflammation induction of lung after repeated 6-PPDQ injection. Alteration in Smad2 expression was identified to be associated with fibrosis formation in lung of 6-PPDQ exposed mice. Therefore, long-term and repeated 6-PPDQ exposure potentially resulted in inflammation and fibrosis in lung by affecting certain molecular signals in mammals. Our results suggested several aspects of lung injury caused by 6-PPDQ and provide the underlying molecular basis. These observations implied the possible risks of long-term 6-PPDQ exposure to human health.
Collapse
Affiliation(s)
- Wenmiao He
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aihua Gu
- School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
15
|
Gibb M, Liu JY, Sayes CM. The transcriptomic signature of respiratory sensitizers using an alveolar model. Cell Biol Toxicol 2024; 40:21. [PMID: 38584208 PMCID: PMC10999393 DOI: 10.1007/s10565-024-09860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Environmental contaminants are ubiquitous in the air we breathe and can potentially cause adverse immunological outcomes such as respiratory sensitization, a type of immune-driven allergic response in the lungs. Wood dust, latex, pet dander, oils, fragrances, paints, and glues have all been implicated as possible respiratory sensitizers. With the increased incidence of exposure to chemical mixtures and the rapid production of novel materials, it is paramount that testing regimes accounting for sensitization are incorporated into development cycles. However, no validated assay exists that is universally accepted to measure a substance's respiratory sensitizing potential. The lungs comprise various cell types and regions where sensitization can occur, with the gas-exchange interface being especially important due to implications for overall lung function. As such, an assay that can mimic the alveolar compartment and assess sensitization would be an important advance for inhalation toxicology. Some such models are under development, but in-depth transcriptomic analyses have yet to be reported. Understanding the transcriptome after sensitizer exposure would greatly advance hazard assessment and sustainability. We tested two known sensitizers (i.e., isophorone diisocyanate and ethylenediamine) and two known non-sensitizers (i.e., chlorobenzene and dimethylformamide). RNA sequencing was performed in our in vitro alveolar model, consisting of a 3D co-culture of epithelial, macrophage, and dendritic cells. Sensitizers were readily distinguishable from non-sensitizers by principal component analysis. However, few differentially regulated genes were common across all pair-wise comparisons (i.e., upregulation of genes SOX9, UACA, CCDC88A, FOSL1, KIF20B). While the model utilized in this study can differentiate the sensitizers from the non-sensitizers tested, further studies will be required to robustly identify critical pathways inducing respiratory sensitization.
Collapse
Affiliation(s)
- Matthew Gibb
- Institute of Biomedical Studies (BMS), Baylor University, Waco, TX, 76798-7266, USA
| | - James Y Liu
- Department of Environmental Science (ENV), Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Christie M Sayes
- Institute of Biomedical Studies (BMS), Baylor University, Waco, TX, 76798-7266, USA.
- Department of Environmental Science (ENV), Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA.
| |
Collapse
|
16
|
Noh M, Sim JY, Kim J, Ahn JH, Min HY, Lee JU, Park JS, Jeong JY, Lee JY, Lee SY, Lee HJ, Park CS, Lee HY. Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132932. [PMID: 37988864 DOI: 10.1016/j.jhazmat.2023.132932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a group of illnesses associated with unresolved inflammation in response to toxic environmental stimuli. Persistent exposure to PM is a major risk factor for COPD, but the underlying mechanism remains unclear. Using our established mouse model of PM-induced COPD, we find that repeated PM exposure provokes macrophage-centered chronic inflammation and COPD development. Mechanistically, chronic PM exposure induces transcriptional downregulation of HAAO, KMO, KYNU, and QPRT in macrophages, which are the enzymes of de novo NAD+ synthesis pathway (kynurenine pathway; KP), via elevated chromatin binding of the CCCTC-binding factor (CTCF) near the transcriptional regulatory regions of the enzymes. Subsequent reduction of NAD+ and SIRT1 function increases histone acetylation, resulting in elevated expression of pro-inflammatory genes in PM-exposed macrophages. Activation of SIRT1 by nutraceutical resveratrol mitigated PM-induced chronic inflammation and COPD development. In agreement, increased levels of histone acetylation and decreased expression of KP enzymes were observed in pulmonary macrophages of COPD patients. We newly provide an evidence that dysregulated NAD+ metabolism and consecutive SIRT1 deficiency significantly contribute to the pathological activation of macrophages during PM-mediated COPD pathogenesis. Additionally, targeting PM-induced intertwined metabolic and epigenetic reprogramming in macrophages is an effective strategy for COPD treatment.
Collapse
Affiliation(s)
- Myungkyung Noh
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jisung Kim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jee Hwan Ahn
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Jong-Uk Lee
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, South Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi do, South Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
17
|
Huang YM, Ma YH, Gao PY, Cui XH, Hou JH, Chi HC, Fu Y, Wang ZB, Feng JF, Cheng W, Tan L, Yu JT. Genetic susceptibility modifies the association of long-term air pollution exposure on Parkinson's disease. NPJ Parkinsons Dis 2024; 10:23. [PMID: 38233432 PMCID: PMC10794179 DOI: 10.1038/s41531-024-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Inconsistent findings exist regarding the potential association between polluted air and Parkinson's disease (PD), with unclear insights into the role of inherited sensitivity. This study sought to explore the potential link between various air pollutants and PD risk, investigating whether genetic susceptibility modulates these associations. The population-based study involved 312,009 initially PD-free participants with complete genotyping data. Annual mean concentrations of PM2.5, PM10, NO2, and NOx were estimated, and a polygenic risk score (PRS) was computed to assess individual genetic risks for PD. Cox proportional risk models were employed to calculate hazard ratios (HR) and 95% confidence intervals (CI) for the associations between ambient air pollutants, genetic risk, and incident PD. Over a median 12.07-year follow-up, 2356 PD cases (0.76%) were observed. Compared to the lowest quartile of air pollution, the highest quartiles of NO2 and PM10 pollution showed HRs and 95% CIs of 1.247 (1.089-1.427) and 1.201 (1.052-1.373) for PD incidence, respectively. Each 10 μg/m3 increase in NO2 and PM10 yielded elevated HRs and 95% CIs for PD of 1.089 (1.026-1.155) and 1.363 (1.043-1.782), respectively. Individuals with significant genetic and PM10 exposure risks had the highest PD development risk (HR: 2.748, 95% CI: 2.145-3.520). Similarly, those with substantial genetic and NO2 exposure risks were over twice as likely to develop PD compared to minimal-risk counterparts (HR: 2.414, 95% CI: 1.912-3.048). Findings suggest that exposure to air contaminants heightens PD risk, particularly in individuals genetically predisposed to high susceptibility.
Collapse
Affiliation(s)
- Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Han Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jia-Hui Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Hao-Chen Chi
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhi-Bo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 200040, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, 200040, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
18
|
Wu WB, Lee IT, Lin YJ, Wang SY, Hsiao LD, Yang CM. Silica Nanoparticles Shed Light on Intriguing Cellular Pathways in Human Tracheal Smooth Muscle Cells: Revealing COX-2/PGE 2 Production through the EGFR/Pyk2 Signaling Axis. Biomedicines 2024; 12:107. [PMID: 38255212 PMCID: PMC10813532 DOI: 10.3390/biomedicines12010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of manufactured silica nanoparticles (SiNPs) has become widespread in everyday life, household products, and various industrial applications. While the harmful effects of crystalline silica on the lungs, known as silicosis or chronic pulmonary diseases, are well understood, the impact of SiNPs on the airway is not fully explored. This study aimed to investigate the potential effects of SiNPs on human tracheal smooth muscle cells (HTSMCs). Our findings revealed that SiNPs induced the expression of cyclooxygenase-2 (COX-2) mRNA/protein and the production of prostaglandin E2 (PGE2) without causing cytotoxicity. This induction was transcription-dependent, as confirmed by cell viability assays and COX-2 luciferase reporter assays. Further analysis, including Western blot with pharmacological inhibitors and siRNA interference, showed the involvement of receptor tyrosine kinase (RTK) EGF receptor (EGFR), non-RTK Pyk2, protein kinase Cα (PKCα), and p42/p44 MAPK in the induction process. Notably, EGFR activation initiated cellular signaling that led to NF-κB p65 phosphorylation and translocation into the cell nucleus, where it bound and stimulated COX-2 gene transcription. The resulting COX-2 protein triggered PGE2 production and secretion into the extracellular space. Our study demonstrated that SiNPs mediate COX-2 up-regulation and PGE2 secretion in HTSMCs through the sequential activation of the EGFR/Pyk2/PKCα/p42/p44MAPKs-dependent NF-κB signaling pathway. Since PGE2 can have both physiological bronchodilatory and anti-inflammatory effects, as well as pathological pro-inflammatory effects, the increased PGE2 production in the airway might act as a protective compensatory mechanism and/or a contributing factor during airway exposure to SiNPs.
Collapse
Affiliation(s)
- Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 406040, Taiwan;
| | - Ssu-Ying Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| |
Collapse
|
19
|
Kwon D, Paul KC, Yu Y, Zhang K, Folle AD, Wu J, Bronstein JM, Ritz B. Traffic-related air pollution and Parkinson's disease in central California. ENVIRONMENTAL RESEARCH 2024; 240:117434. [PMID: 37858688 PMCID: PMC11232690 DOI: 10.1016/j.envres.2023.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Prior studies suggested that air pollution exposure may increase the risk of Parkinson's Disease (PD). We investigated the long-term impacts of traffic-related and multiple sources of particulate air pollution on PD in central California. METHODS Our case-control analysis included 761 PD patients and 910 population controls. We assessed exposure at residential and occupational locations from 1981 to 2016, estimating annual average carbon monoxide (CO) concentrations - a traffic pollution marker - based on the California Line Source Dispersion Model, version 4. Additionally, particulate matter (PM2.5) concentrations were based on a nationwide geospatial chemical transport model. Exposures were assessed as 10-year averages with a 5-year lag time prior to a PD diagnosis for cases and an interview date for controls, subsequently categorized into tertiles. Logistic regression models were used, adjusting for various factors. RESULTS Traffic-related CO was associated with an increased odds ratio for PD at residences (OR for T3 vs. T1: 1.58; 95% CI: 1.20, 2.10; p-trend = 0.02) and workplaces (OR for T3 vs. T1: 1.91; 95% CI: 1.22, 3.00; p-trend <0.01). PM2.5 was also positively associated with PD at residences (OR for T3 vs. T1: 1.62; 95% CI: 1.22, 2.15; p-trend <0.01) and workplaces (OR for T3 vs. T1: 1.85; 95% CI: 1.21, 2.85; p-trend <0.01). Associations remained robust after additional adjustments for smoking status and pesticide exposure and were consistent across different exposure periods. CONCLUSION We found that long-term modeled exposure to local traffic-related air pollution (CO) and fine particulates from multiple sources (PM2.5) at homes and workplaces in central California was associated with an increased risk of PD.
Collapse
Affiliation(s)
- Dayoon Kwon
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yu Yu
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; UCLA Center for Health Policy Research, University of California, Los Angeles, United States
| | - Keren Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Aline D Folle
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, United States
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
20
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
21
|
Guo J, Meng X, Zheng YM, Zhao SK, Qiang C, Zhou LB. Cigarette Smoke Mediates Nasal Epithelial Barrier Dysfunction via TNF-α. Am J Rhinol Allergy 2023; 37:646-655. [PMID: 37424240 DOI: 10.1177/19458924231184741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Extensive data suggest that exposure to cigarette smoke can induce pulmonary epithelial barrier dysfunction. However, the effects of cigarette smoke on the nasal epithelial barrier are still unclear. Here, we investigated the consequence and mechanism of cigarette smoke on the nasal epithelial barrier. METHODS Sprague Dawley rats were exposed to cigarette smoke for 3 or 6 months, and changes in inflammatory markers and nasal barrier function were evaluated. Moreover, underlying mechanisms were explored. Finally, normal human bronchial epithelial cells were cultured with or without tumor necrosis factor-alpha (TNF-α) in vitro, and the levels of continuity and tight junction-associated proteins were measured. RESULTS In vivo experiments showed that the nasal mucosal barrier function of rats exposed to cigarette smoke was disturbed. Indeed, proteins associated with tight junctions were decreased, and the levels of inflammatory factors, such as IL-8, IL-6, and TNF-α, were dramatically increased in comparison to those of control animals. In vitro, TNF-α was shown to disrupt the continuity of proteins associated with tight junctions and to downregulate the expression of these proteins in bronchial epithelial cells. CONCLUSIONS We found that cigarette smoke disrupted the nasal mucosal barrier, and the extent of the damage was correlated with the duration of cigarette smoke exposure. We showed that TNF-α can disrupt the continuity and attenuate the expression of tight junction proteins in human bronchial epithelial cells. Therefore, cigarette smoke may induce nasal epithelial barrier dysfunction through TNF-α.
Collapse
Affiliation(s)
- Ju Guo
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Meng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao-Ming Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shan-Kun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chen Qiang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Bo Zhou
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Zhang T, Yang F, Dai X, Liao H, Wang H, Peng C, Liu Z, Li Z, Shan J, Cao H. Role of Caveolin-1 on the molybdenum and cadmium exposure induces pulmonary ferroptosis and fibrosis in the sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122207. [PMID: 37467914 DOI: 10.1016/j.envpol.2023.122207] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Molybdenum (Mo) is an essential trace element that exists in all tissues of the human body, but excessive Mo intake has a toxic effect. Cadmium (Cd) is a widely known and harmful heavy metal that exists in the environment. Although studies on Mo and Cd are available, it is still unknown how the combination of Mo and Cd causes pulmonary injury. Forty-eight sheep that were 2 months old were chosen and randomly separated into four groups as follows: Control group, Mo group, Cd group, and Mo + Cd group. The experiment lasted 50 days. The results showed that Mo and/or Cd caused significant pathological damage and oxidative stress in the lungs of sheep. Moreover, Mo and/or Cd exposure could downregulate the expression levels of xCT (SLC7A11 and SLC3A2), GPX4 and FTH-1 and upregulate the expression levels of PTGS2 and NCOA4, which led to iron overload and ferroptosis. Ferroptosis induced Wnt/β-catenin-mediated fibrosis by elevating the expression levels of Caveolin-1 (CAV-1), Wnt 1, Wnt3a, β-catenin (CTNNB1), TCF4, Cyclin D1, mmp7, α-SMA (ACTA2), Collagen 1 (COL1A1) and Vimentin. These changes were particularly noticeable in the Mo and Cd combination group. In conclusion, these data demonstrated that Mo and/or Cd exposure led to lung ferroptosis by inhibiting the SLC7A11/GSH/GPX4 axis, which in turn increases CAV-1 expression and subsequently activates the Wnt/β-catenin pathway, leading to fibrosis in sheep lungs.
Collapse
Affiliation(s)
- Tao Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huan Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zirui Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zhiyuan Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
23
|
Tapak M, Sadeghi S, Ghazanfari T, Mosaffa N. Chemical exposure and alveolar macrophages responses: 'the role of pulmonary defense mechanism in inhalation injuries'. BMJ Open Respir Res 2023; 10:e001589. [PMID: 37479504 PMCID: PMC10364189 DOI: 10.1136/bmjresp-2022-001589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/28/2023] [Indexed: 07/23/2023] Open
Abstract
Epidemiological and clinical studies have indicated an association between particulate matter (PM) exposure and acute and chronic pulmonary inflammation, which may be registered as increased mortality and morbidity. Despite the increasing evidence, the pathophysiology mechanism of these PMs is still not fully characterised. Pulmonary alveolar macrophages (PAMs), as a predominant cell in the lung, play a critically important role in these pathological mechanisms. Toxin exposure triggers events associated with macrophage activation, including oxidative stress, acute damage, tissue disruption, remodelling and fibrosis. Targeting macrophage may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Biological toxins, their sources of exposure, physical and other properties, and their effects on the individuals are summarised in this article. Inhaled particulates from air pollution and toxic gases containing chemicals can interact with alveolar epithelial cells and immune cells in the airways. PAMs can sense ambient pollutants and be stimulated, triggering cellular signalling pathways. These cells are highly adaptable and can change their function and phenotype in response to inhaled agents. PAMs also have the ability to polarise and undergo plasticity in response to tissue damage, while maintaining resistance to exposure to inhaled agents.
Collapse
Affiliation(s)
- Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Alinasab Hospital, Labratory Department, Iranian Social Security Organization (ISSO), Tabriz, Iran
| | - Somaye Sadeghi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
- Department of Immunology, Shahed University, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Borgatta M, Wild P, Delobel J, Renella R, Hopf NB. Hematological variations in healthy participants exposed 2 h to propylene glycol ethers under controlled conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162865. [PMID: 36933710 DOI: 10.1016/j.scitotenv.2023.162865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Glycol ethers are solvents used in a plethora of occupational and household products exposing the users to potential toxic effects. Several glycol ethers derived from ethylene glycol induce hematological toxicity, such as anemia in workers. The exposure effects on blood cells of glycol ethers derived from propylene glycol are unknown in humans. The aim of our study was to evaluate blood parameters indicative of red blood cell (RBC) hemolysis and oxidative stress in participants exposed to propylene glycol (propylene glycol monobutyl ether (PGBE) and propylene glycol monomethyl ether (PGME)), two extensively used propylene glycol derivatives worldwide. Seventeen participants were exposed 2 h in a control inhalation exposure chamber to low PGME (35 ppm) and PGBE (15 ppm) air concentrations. Blood was regularly collected before, during (15, 30, 60, and 120 min), and 60 min after exposure for RBC and oxidative stress analyses. Urine was also collected for clinical effects related to hemolysis. Under the study conditions, our results showed that the blood parameters such as RBCs, hemoglobin concentration, and white blood cells tended to increase in response to PGME and PGBE exposures. These results raise questions about the possible effects in people regularly exposed to higher concentrations, such as workers.
Collapse
Affiliation(s)
- Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges-Lausanne, Switzerland.
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges-Lausanne, Switzerland; PW Statistical Consulting, 54520 Laxou, France.
| | - Julien Delobel
- Pediatric Hematology-Oncology Research Laboratory, Division of Pediatrics, Department "Woman-Mother-Child", Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Division of Pediatrics, Department "Woman-Mother-Child", Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges-Lausanne, Switzerland.
| |
Collapse
|
25
|
Hinkamp D, McCann M. Part 2: The Pediatric Hazards of Art Materials. Pediatr Ann 2023; 52:e219-e230. [PMID: 37280006 DOI: 10.3928/19382359-20230411-06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Children can encounter art materials that contain hazardous substances at school, in the home, and during outside activities. Hazardous substances can be found in both art materials that are made to be used by children and art materials used by adults. Some of these materials can be severe irritants, allergens, carcinogens, or other chronic disease hazards. Many of the most frequently used and potentially most hazardous materials are found in the categories of solvents, pigments, and adhesives. Selected members of these categories and where they may be found in common art materials are briefly discussed. Preventive techniques that specifically address the potential hazards of each category are included. [Pediatr Ann. 2023;52(6):e219-e230.].
Collapse
|
26
|
Shields PG, Ying KL, Brasky TM, Freudenheim JL, Li Z, McElroy JP, Reisinger SA, Song MA, Weng DY, Wewers MD, Whiteman NB, Yang Y, Mathé EA. A Pilot Cross-Sectional Study of Immunological and Microbiome Profiling Reveals Distinct Inflammatory Profiles for Smokers, Electronic Cigarette Users, and Never-Smokers. Microorganisms 2023; 11:1405. [PMID: 37374908 PMCID: PMC10303504 DOI: 10.3390/microorganisms11061405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Smokers (SM) have increased lung immune cell counts and inflammatory gene expression compared to electronic cigarette (EC) users and never-smokers (NS). The objective of this study is to further assess associations for SM and EC lung microbiomes with immune cell subtypes and inflammatory gene expression in samples obtained by bronchoscopy and bronchoalveolar lavage (n = 28). RNASeq with the CIBERSORT computational algorithm were used to determine immune cell subtypes, along with inflammatory gene expression and microbiome metatranscriptomics. Macrophage subtypes revealed a two-fold increase in M0 (undifferentiated) macrophages for SM and EC users relative to NS, with a concordant decrease in M2 (anti-inflammatory) macrophages. There were 68, 19, and 1 significantly differentially expressed inflammatory genes (DEG) between SM/NS, SM/EC users, and EC users/NS, respectively. CSF-1 and GATA3 expression correlated positively and inversely with M0 and M2 macrophages, respectively. Correlation profiling for DEG showed distinct lung profiles for each participant group. There were three bacteria genera-DEG correlations and three bacteria genera-macrophage subtype correlations. In this pilot study, SM and EC use were associated with an increase in undifferentiated M0 macrophages, but SM differed from EC users and NS for inflammatory gene expression. The data support the hypothesis that SM and EC have toxic lung effects influencing inflammatory responses, but this may not be via changes in the microbiome.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
- Department Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Kevin L. Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Theodore M. Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
- Department Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Jo L. Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14261, USA
| | - Zihai Li
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
| | - Joseph P. McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah A. Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Y. Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
| | - Mark D. Wewers
- Pulmonary and Critical Care Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Noah B. Whiteman
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
| | - Yiping Yang
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
| | - Ewy A. Mathé
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA; (K.L.Y.)
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20892, USA
| |
Collapse
|
27
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
28
|
Guo Q, Li Z, Jia S, Tong F, Ma L. Mechanism of Human Tubal Ectopic Pregnancy Caused by Cigarette Smoking. Reprod Sci 2023; 30:1074-1081. [PMID: 35962304 DOI: 10.1007/s43032-022-00947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/14/2022] [Indexed: 10/15/2022]
Abstract
In the past few decades, the smoking rate of women of childbearing age has increased. Epidemiological data has repeatedly shown that smoking women have an increased risk of various reproductive diseases, including ectopic pregnancy (EP), decreased fertility, adverse pregnancy outcomes, and failure of assisted reproduction. The oviduct was the target of cigarette smoke in many in vivo and in vitro studies. The fallopian tube is a well-designed organ. Its function is to collect and transport the ova to the fertilized site and provide a suitable environment for fertilization and early embryonic development. Lastly, the fallopian tube transports the pre-implantation embryo to the uterus. Various biological processes can be studied in the fallopian tubes, making it an excellent model for toxicology. This paper reviews the roles of the fallopian tube in gametes and embryo transportation, and the possible mechanism tobacco smoke contributes to tubal EP. A possible signal pathway might be a model to develop intervention of EP for pregnant women exposed to smoking.
Collapse
Affiliation(s)
- Quan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Shenyang, 36 Sanhao Street, 110004, Shenyang, China.
| | - Zaiyi Li
- Reproductive Medicine Center, Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, Guangdong, 510000, China
| | - Steve Jia
- RD Center, Pacificbio Inc. Irvine, Irvine, CA, 92602, USA
| | - Fangze Tong
- Murray Edwards College, University of Cambridge, Cambridge, CB3 0DF, UK
| | - Lin Ma
- Reproductive Medicine Center, Seventh Affiliated Hospital, Sun Yat-Sen University, 628 Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, Guangdong, 510000, China.
| |
Collapse
|
29
|
Nishida Y, Yagi H, Ota M, Tanaka A, Sato K, Inoue T, Yamada S, Arakawa N, Ishige T, Kobayashi Y, Arakawa H, Takizawa T. Oxidative stress induces MUC5AC expression through mitochondrial damage-dependent STING signaling in human bronchial epithelial cells. FASEB Bioadv 2023; 5:171-181. [PMID: 37020748 PMCID: PMC10068767 DOI: 10.1096/fba.2022-00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress increases the production of the predominant mucin MUC5AC in airway epithelial cells and is implicated in the pathogenesis of bronchial asthma and chronic obstructive pulmonary disease. Oxidative stress impairs mitochondria, releasing mitochondrial DNA into the cytoplasm and inducing inflammation through the intracytoplasmic DNA sensor STING (stimulator of interferon genes). However, the role of innate immunity in mucin production remains unknown. We aimed to elucidate the role of innate immunity in mucin production in airway epithelial cells under oxidative stress. Human airway epithelial cell line (NCI-H292) and normal human bronchial epithelial cells were used to confirm MUC5AC expression levels by real-time PCR when stimulated with hydrogen peroxide (H2O2). MUC5AC transcriptional activity was increased and mitochondrial DNA was released into the cytosol by H2O2. Mitochondrial antioxidants were used to confirm the effects of mitochondrial oxidative stress where antioxidants inhibited the increase in MUC5AC transcriptional activity. Cyclic GMP-AMP synthase (cGAS) or STING knockout (KO) cells were generated to investigate their involvement. H2O2-induced MUC5AC expression was suppressed in STING KO cells, but not in cGAS KO cells. The epidermal growth factor receptor was comparably expressed in STING KO and wild-type cells. Thus, mitochondria and STING play important roles in mucin production in response to oxidative stress in airway epithelial cells.
Collapse
Affiliation(s)
- Yutaka Nishida
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hisako Yagi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Masaya Ota
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
- Department of PediatricsNiigata University Graduate School of MedicineNiigataJapan
| | - Atsushi Tanaka
- Department of Medicine, Research Institute of Medical SciencesYamagata UniversityYamagataJapan
| | - Koichiro Sato
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takaharu Inoue
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Satoshi Yamada
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Naoya Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takashi Ishige
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Yasuko Kobayashi
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Hirokazu Arakawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| | - Takumi Takizawa
- Department of PediatricsGunma University Graduate School of MedicineGunmaJapan
| |
Collapse
|
30
|
Younis T, Jabeen F, Hussain A, Rasool B, Raza Ishaq A, Nawaz A, El-Nashar HAS, El-Shazly M. Antioxidant and Pulmonary Protective Potential of Fraxinus xanthoxyloides Bark Extract against CCl 4 -Induced Toxicity in Rats. Chem Biodivers 2023; 20:e202200755. [PMID: 36722706 DOI: 10.1002/cbdv.202200755] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Fraxinus xanthoxyloides is a perennial shrub belonging to family Oleaceae, traditionally used for malaria, jaundice, pneumonia, inflammation, and rheumatism. Our study is aimed to assess the total phenolics (TPC), flavonoids (TFC), terpenoids contents (TTC) and antioxidant profiling of F. xanthoxyloides methanol bark extract (FXBM) and its fractions, hexane, chloroform, ethyl acetate and aqueous, along with high-performance liquid chromatography with diode-array detection (HPLC-DAD). Further, the antioxidant and pulmonary protective potential was explored against carbon tetrachloride (CCl4 )-induced CCl4-induced pulmonary tissue damage in rats. The highest TPC, TFC and TTC were found in FXBM (133.29±4.19 mg/g), ethyl acetate fraction (279.55±10.35 mg/g), and chloroform fraction (0.79±0.06 mg/g), respectively. The most potent antioxidant capacity was depicted by FXBM (29.21±2.40 μg/mg) and ethyl acetate fraction (91.16±5.51 μg/mg). The HPLC-DAD analysis revealed the predominance of gallic, chlorogenic, vanillic and ferulic acid in FXBM. The administration of CCl4 induced oxidative stress, suppressed antioxidant enzymes' activities including catalase, peroxidase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, and glutathione reductase. Further, it increased thiobarbituric acid reactive substances (TBARS) and H2 O2 levels, induced DNA injuries and reduced the total protein and glutathione content in lung tissues. The treatment of rats with FXBM restored these biochemical parameters to the normal level. Moreover, the histopathological studies of lung tissues demonstrated that FXBM protected rats' lung tissues from oxidative damage restoring normal lung functions. Thus, F. xanthoxyloides bark extract is recommended as adjuvant therapy as protective agent for patients with lung disorders.
Collapse
Affiliation(s)
- Tahira Younis
- Department of Biochemistry and Biotechnology, The Women University Multan, 60000, Multan, Pakistan
- Department of Biochemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Faiza Jabeen
- Department of Zoology, University of Education Bank road campus, 54000, Lahore, Pakistan
| | - Ali Hussain
- Department of Zoology, University of the Punjab, 54590, Lahore, Pakistan
| | - Bilal Rasool
- Department of Zoology, Government College University, 38000, Faisalabad, Pakistan
| | - Ali Raza Ishaq
- Department of Zoology, Government College University, 38000, Faisalabad, Pakistan
| | - Atif Nawaz
- Department of Zoology, Government College University, 38000, Faisalabad, Pakistan
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, the German University in Cairo, 11835, Cairo, Egypt
| |
Collapse
|
31
|
Park J, Hong T, An G, Park H, Song G, Lim W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160761. [PMID: 36502969 DOI: 10.1016/j.scitotenv.2022.160761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various types of fungicides, especially triazole fungicides, are used to prevent fungal diseases on farmlands. However, the developmental toxicity of one of the triazole fungicides, triadimenol, remains unclear. Therefore, we used the zebrafish animal model, a representative toxicological model, to investigate it. Triadimenol induced morphological alterations in the eyes and body length along with yolk sac and heart edema. It also stimulated the production of reactive oxygen species and expression of inflammation-related genes and caused apoptosis in the anterior regions of zebrafish, especially in the heart. The phosphorylation levels of Akt, ERK, JNK, and p38 proteins involved in the PI3K and MAPK pathways, which are important for the development process, were also reduced by triadimenol. These changes led to malformation of the heart and vascular structures, as observed in the flk1:eGFP transgenic zebrafish models and a reduction in the heart rate. In addition, the expression of genes associated with cardiac and vascular development was also reduced. Therefore, we elucidated the mechanisms associated with triadimenol toxicity that leads to various abnormalities and developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
32
|
Cyclodextrin-Based Displacement Strategy of Sterigmatocystin from Serum Albumin as a Novel Approach for Acute Poisoning Detoxification. Int J Mol Sci 2023; 24:ijms24054485. [PMID: 36901918 PMCID: PMC10003537 DOI: 10.3390/ijms24054485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
This study demonstrates that sterigmatocystin (STC) interacts non-covalently with various cyclodextrins (CDs), showing the highest binding affinity for sugammadex (a γ-CD derivative) and γ-CD, and an almost order of magnitude lower affinity for β-CD. This difference in affinity was studied using molecular modelling and fluorescence spectroscopy, which demonstrated a better insertion of STC into larger CDs. In parallel, we showed that STC binds to human serum albumin (HSA) (a blood protein known for its role as a transporter of small molecules) with an almost two order of magnitude lower affinity compared to sugammadex and γ-CD. Competitive fluorescence experiments clearly demonstrated an efficient displacement of STC from the STC-HSA complex by cyclodextrins. These results are a proof-of-concept that CDs can be used to complex STC and related mycotoxins. Similarly, as sugammadex extracts neuromuscular relaxants (e.g., rocuronium and vecuronium) from blood and blocks their bioactivity, it could also be used as first aid upon acute intoxication to encapsulate a larger part of the STC mycotoxin from serum albumin.
Collapse
|
33
|
Nejaddehbashi F, Radan M, Bayati V, Dianat M, Mard SA, Mansouri Z. Adipose-derived mesenchymal stem cells in emphysema: Comparison of inflammatory markers changes in response to intratracheal and systemic delivery method. Tissue Cell 2023; 80:102011. [PMID: 36603371 DOI: 10.1016/j.tice.2022.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Cytokines are the most important inflammatory mediators and are well-known as the main cause of emphysema. Adipose-derived stem cells (ADSCs) as a cell-based treatment strategy could play a pivotal role in lung regeneration through anti-inflammatory and paracrine properties. Accordingly, the aim of this study was to the comparison of inflammation markers' improvement in response to the intratracheal and systemic delivery method of adipose-derived mesenchymal stem cells in emphysema. Forty-eight rats were divided into five groups including Control, Elastase (25 IU/kg, Intratracheal, at day first and 10th), Elastase+PBS, Intratracheal cell therapy (1 ×107, at day 28th), and Systemic cell therapy groups (1 ×107, Jugular vein, at day 28th). After 3 weeks, the blood gas analysis (PO2, PCO2 and pH), fibrinogen level, and C-reactive protein (CRP) concentrations were measured in all groups. In addition, inflammatory genes expression, and concentration levels of pro and anti-inflammatory cytokines (IL-6, IL-17, TNF-α, and TGF-β,) were evaluated using Real-time PCR and Elisa kits, respectively. The statistical analysis of our data shows that local administration leads to more significant treatment efficacy with decreased inflammation parameters such as WBC count and pro-inflammatory cytokines in comparison with systemic treatment. Besides, these results were approved by more reduction of CRP and fibrinogen concentration levels in blood samples of intra-tracheal AMSCs-treated rats compare with the systemic group. Moreover, the improvement in histopathology indexes of the local administrated group was significantly better than the systemic group. Accordingly, the obtained results suggest local administration as the most efficacious route for mesenchymal stem cells delivery in patients with emphysema.
Collapse
Affiliation(s)
- Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Cellular and Molecular Research Center & Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Vahid Bayati
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mansouri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
34
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Roy CJ, Ehrbar D, Van Slyke G, Doering J, Didier PJ, Doyle-Meyers L, Donini O, Vitetta ES, Mantis NJ. Serum antibody profiling identifies vaccine-induced correlates of protection against aerosolized ricin toxin in rhesus macaques. NPJ Vaccines 2022; 7:164. [PMID: 36526642 PMCID: PMC9755799 DOI: 10.1038/s41541-022-00582-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Inhalation of the biothreat agent, ricin toxin (RT), provokes a localized inflammatory response associated with pulmonary congestion, edema, neutrophil infiltration, and severe acute respiratory distress. The extreme toxicity of RT is the result of the toxin's B chain (RTB) promoting rapid uptake into alveolar macrophages and lung epithelial cells, coupled with the A chain's (RTA) potent ribosome-inactivating properties. We previously reported that intramuscular vaccination of rhesus macaques with a lyophilized, alum-adsorbed recombinant RTA subunit vaccine (RiVax®) was sufficient to confer protection against a lethal dose of aerosolized RT. That study implicated RT-specific serum IgG, toxin-neutralizing activity (TNA), and epitope-specific responses as being associated with immunity. However, it was not possible to define actual correlates of protection (COP) because all vaccinated animals survived the RT challenge. We addressed the issue of COP in the current study, by vaccinating groups of rhesus macaques with RiVax® following the previously determined protective regimen (100 µg on study days 0, 30 and 60) or one of two anticipated suboptimal regimens (100 µg on study days 30 and 60; 35 µg on study days 0, 30, and 60). Two unvaccinated animals served as controls. The animals were challenged with ~5 × LD50s of aerosolized RT on study day 110. We report that all vaccinated animals seroconverted prior to RT challenge, with the majority also having measurable TNA, although neither antibody levels nor TNA reached statistical significance with regard to a correlation with protection. By contrast, survival correlated with pre-challenge, epitope-specific serum IgG levels, derived from a competitive sandwich ELISA using a panel of toxin-neutralizing monoclonal antibodies directed against distinct epitopes on RiVax®. The identification of a species-neutral, competitive ELISA that correlates with vaccine-induced protection against RT in nonhuman represents an important advance in the development of medical countermeasures (MCM) against a persistent biothreat.
Collapse
Affiliation(s)
- Chad J Roy
- Tulane National Primate Research Center, Covington, LA, 70433, USA.
| | - Dylan Ehrbar
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Jennifer Doering
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | | | | | - Ellen S Vitetta
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA.
| |
Collapse
|
36
|
Li L, Zhang Y, Gong J, Yang G, Zhi S, Ren D, Zhao H. Cpt1a alleviates cigarette smoke‑induced chronic obstructive pulmonary disease. Exp Ther Med 2022; 25:54. [PMID: 36588819 PMCID: PMC9780514 DOI: 10.3892/etm.2022.11753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to determine the expression of carnitine palmitoyltransferase 1A (Cpt1a) in the lung tissue of chronic obstructive pulmonary disease (COPD) patients and its correlation with lung function. An increase in Cpt1a expression improved lung function in patients with COPD by inhibiting apoptosis and the inflammatory response of lung endothelial cells. Lung tissues of 20 patients with COPD and 10 control patients were collected, their Cpt1a expression was determined by western blotting and apoptosis and inflammation were assessed by haematoxylin-eosin staining, TUNEL assay and ELISA. Mice with knockout or overexpression of Cpt1a were constructed by lentivirus in vivo. A COPD model was induced by cigarette smoke and the role of Cpt1a in COPD was determined in vivo and in vitro. Cpt1a expression was positively correlated with lung function and negatively correlated with apoptosis and inflammation. Patients with COPD with higher expression of Cpt1a in lung tissues had improved lung function indices and lung tissue morphology with less apoptosis and decreased inflammatory response. Compared with the control group, COPD mice with Cpt1a knockdown had aggravated lung dysfunction and increased lung inflammation and apoptosis. Overexpression of Cpt1a alleviated lung dysfunction and reduced inflammatory response and apoptosis of lung tissues in COPD mice. Pulmonary microvascular endothelial cells of mice were isolated in vitro and the results were consistent with the findings obtained in vivo. In conclusion, the clinical, in vivo and in vitro data confirmed for the first time that Cpt1a alleviated lung dysfunction of patients with COPD by inhibiting apoptosis of endothelial cells and inflammatory responses.
Collapse
Affiliation(s)
- Lifang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yaqian Zhang
- School of Basic Medical Sciences, Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, P.R. China
| | - Jiannan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guang Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shuyin Zhi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Dongping Ren
- Department of R&D, USBAY Biotechnology Co., Ltd, Beijing 102006, P.R. China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China,School of Basic Medical Sciences, Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, P.R. China,Correspondence to: Professor Hui Zhao, Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
37
|
An in vitro alveolar model allows for the rapid assessment of chemical respiratory sensitization with modifiable biomarker endpoints. Chem Biol Interact 2022; 368:110232. [DOI: 10.1016/j.cbi.2022.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
38
|
Fabijanić I, Jurković M, Jakšić D, Piantanida I. Photoluminescent Gold/BSA Nanoclusters (AuNC@BSA) as Sensors for Red-Fluorescence Detection of Mycotoxins. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8448. [PMID: 36499945 PMCID: PMC9740986 DOI: 10.3390/ma15238448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The BSA-encapsulated gold nanoclusters (AuNC@BSA) have drawn considerable interest and demonstrated applications as biological sensors. In this study, we demonstrated that the red-emitting AuNC@BSA prepared using a modified procedure fully retained the binding of standard BSA-ligands (small molecule drugs), significantly improving fluorescence detection in some cases due to the red-emission property. Further, we showed that AuNC@BSA efficiently bind a series of aflatoxin-related mycotoxins as well as the aliphatic mycotoxin FB1, reporting interactions in the nanomolar range by instantaneous emission change at 680 nm. Such red emission detection is advantageous over current detection strategies for the same mycotoxins, based on complex mass spectrometry procedures or, eventually (upon chemical modification of the mycotoxin), by fluorescence detection in the UV range (<400 nm). The later technique yields fluorescence strongly overlapping with the intrinsic absorption and emission of biorelevant mixtures in which mycotoxins appear. Thus, here we present a new approach using the AuNC@BSA red fluorescence reporter for mycotoxins as a fast, cheap, and simple detection technique that offers significant advantages over currently available methods.
Collapse
Affiliation(s)
- Ivana Fabijanić
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Marta Jurković
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, 10002 Zagreb, Croatia
| |
Collapse
|
39
|
English PB, Von Behren J, Balmes JR, Boscardin J, Carpenter C, Goldberg DE, Horiuchi S, Richardson M, Solomon G, Valle J, Reynolds P. Association between long-term exposure to particulate air pollution with SARS-CoV-2 infections and COVID-19 deaths in California, U.S.A. ENVIRONMENTAL ADVANCES 2022; 9:100270. [PMID: 35912397 PMCID: PMC9316717 DOI: 10.1016/j.envadv.2022.100270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 05/08/2023]
Abstract
Previous studies have reported associations between air pollution and COVID-19 morbidity and mortality, but most have limited their exposure assessment to a large area, have not used individual-level variables, nor studied infections. We examined 3.1 million SARS-CoV-2 infections and 49,691 COVID-19 deaths that occurred in California from February 2020 to February 2021 to evaluate risks associated with long-term neighborhood concentrations of particulate matter less than 2.5 μm in diameter (PM2.5). We obtained individual address data on SARS-CoV-2 infections and COVID-19 deaths and assigned 2000-2018 1km-1km gridded PM2.5 surfaces to census block groups. We included individual covariate data on age and sex, and census block data on race/ethnicity, air basin, Area Deprivation Index, and relevant comorbidities. Our analyses were based on generalized linear mixed models utilizing a Poisson distribution. Those living in the highest quintile of long-term PM2.5 exposure had risks of SARS-CoV-2 infections 20% higher and risks of COVID-19 mortality 51% higher, compared to those living in the lowest quintile of long-term PM2.5 exposure. Those living in the areas of highest long-term PM2.5 exposure were more likely to be Hispanic and more vulnerable, based on the Area Deprivation Index. The increased risks for SARS-CoV-2 Infections and COVID-19 mortality associated with highest long-term PM2.5 concentrations at the neighborhood-level in California were consistent with a growing body of literature from studies worldwide, and further highlight the importance of reducing levels of air pollution to protect public health.
Collapse
Affiliation(s)
- Paul B English
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Julie Von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - John R Balmes
- Department of Medicine, University of California, San Francisco, CA, United States
| | - John Boscardin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Catherine Carpenter
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Debbie E Goldberg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Sophia Horiuchi
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Maxwell Richardson
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Gina Solomon
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
- Department of Medicine, University of California, San Francisco, CA, United States
| | - Jhaqueline Valle
- Tracking California Public Health Institute, 555 12th St., Suite 290, Oakland, CA 94607, United States
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Evidence of seasonal changes in airborne particulate matter concentration and occupation-specific variations in pulmonary function and haematological parameters among some workers in Enugu Southeast Nigeria: a randomized cross-sectional observational study. Arch Public Health 2022; 80:213. [PMID: 36138426 PMCID: PMC9502601 DOI: 10.1186/s13690-022-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Upsurge in cardiopulmonary dysfunctions in Enugu, Nigeria, involved mainly cement workers, automobile spray painters, woodworkers, and Cleaners and was worsened in the dry season, suggesting the need for an occupation-specific characterization of the disease features and seasonal evaluation of air quality for prevention and management. Methods We conducted a randomized cross-sectional study of eighty consenting participants (in Achara Layout, Enugu), comprising 20 cement workers (39.50 ± 14.95 years), 20 automobile spray painters (40.75 ± 9.85 years), 20 woodworkers (52.20 ± 9.77 years), and 20 cleaners (42.30 ± 9.06 years). The air quality, some haematological (fibrinogen-Fc, and C-reactive protein-CRP), and cardiopulmonary parameters were measured and analyzed using ANCOVA, at p < 0.05. Results The dry season particulate matter (PM) in ambient air exceeded the WHO standards in the New layout [PM10 = 541.17 ± 258.72 µg/m3; PM2.5 = 72.92 ± 25.81 µg/m3] and the University campus [PM10 = 244 ± 74.79 µg/m3; PM2.5 = 30.33 ± 16.10 µg/m3], but the former was twice higher. The PM differed significantly (p < 0.05) across the sites. Forced expiratory volume at the first second (FEV1) (F = 6.128; p = 0.001), and Peak expiratory flow rate (PEFR) (F = 5.523; p = 0.002), differed significantly across the groups. FEV1/FVC% was < 70% in cement workers (55.33%) and woodworkers (61.79%), unlike, automobile spray painters (72.22%) and cleaners (70.66%). FEV1 and work duration were significantly and negatively related in cement workers (r = -0.46; r2 = 0.2116; p = 0.041 one-tailed). CRP (normal range ≤ 3.0 mg/L) and Fc (normal range—1.5–3.0 g/L) varied in cement workers (3.32 ± 0.93 mg/L versus 3.01 ± 0.85 g/L), automobile spray painters (2.90 ± 1.19 mg/L versus 2.54 ± 0.99 mg/L), woodworkers (2.79 ± 1.10 mg/L versus 2.37 ± 0.92 g/L) and cleaners (3.06 ± 0.82 mg/L versus 2.54 ± 0.70 g/L). Conclusion(s) Poor air quality was evident at the study sites, especially in the dry season. Cement workers and automobile spray painters showed significant risks of obstructive pulmonary diseases while woodworkers had restrictive lung diseases. Cement workers and cleaners recorded the highest risk of coronary heart disease (CRP ≥ 3.0 mg/L). The similarity in Fc and CRP trends suggests a role for the inflammation-sensitive proteins in the determination of cardiovascular risk in cement workers and cleaners. Therefore, there are occupation-specific disease endpoints of public health concern that likewise warrant specific preventive and management approaches among the workers.
Collapse
|
41
|
Zhao N, Yi Y, Cao W, Fu X, Mei N, Li C. Serum cytokine levels for predicting immune-related adverse events and the clinical response in lung cancer treated with immunotherapy. Front Oncol 2022; 12:923531. [PMID: 36091125 PMCID: PMC9449836 DOI: 10.3389/fonc.2022.923531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022] Open
Abstract
Background At present, immunotherapy has become an important treatment for lung cancer. With the widespread use of immune checkpoint inhibitors (ICIs), we must be strict with the emergence of immune related adverse events (irAEs). There are also some patients who do not respond to immunotherapy. However, there was no biomarkers to predict the safety and efficacy of immunotherapy. The selection of immunotherapy beneficiaries contributes to improving the efficacy and safety of lung cancer treatment. Method The electronic medical records of 221 lung cancer patients with complete clinical data who received immunotherapy from the First Affiliated Hospital of Xi 'an Jiaotong University from November 2020 to October 2021 were collected and followed up. IBM SPSS Statistic 26.0 and R 4.1.2 software were used for statistical analysis and mapping. Results 1. A total of 221 lung cancer patients receiving immunotherapy were included in the study. Higher baseline levels of IL-1β (7.88 vs 16.16pg/mL, P=0.041) and IL-2 (1.28 vs 2.48pg/mL, P=0.001) were significantly associated with irAEs. Higher levels of IL-5 (2.64 vs 5.68pg/mL, P=0.013), IFN-α (1.70 vs 3.56pg/mL, P=0.004) and IFN-γ (6.14 vs 21.31pg/mL, P=0.022) after the first cycle therapy were associated with irAEs. There was no statistical significance between cytokines and irAEs after the second cycle therapy. Higher IL-5 levels in peripheral blood (9.50 vs 3.57pg/mL, P=0.032) were associated with the occurrence of irAEs after the third cycle therapy. 2.The efficacy of immunotherapy was assessed in 142 lung cancer patients. There was no statistical significance between baseline cytokine levels and clinical benefit. After the first cycle therapy, the level of serum cytokines had no statistical significance with the occurrence of immunotherapy clinical benefit. Lower serum levels of IL-10 (2.66 vs 1.26pg/mL, P=0.016) and IL-17 (8.47 vs 2.81pg/mL, P=0.015) were associated with clinical benefit after the second cycle therapy. Lower serum levels of IL-6 (10.19 vs 41.07pg/mL, P=0.013) and IL-8 (8.01 vs 17.22pg/mL, P=0.039) were associated with clinical benefit of immunotherapy after the third cycle therapy. Conclusion 1. Baseline IL-1β and IL-2 levels in peripheral blood were associated with the occurrence of irAEs in lung cancer patients. The levels of IL-5, IFN-α and IFN-γ during treatment were associated with irAEs. 2. Baseline cytokine levels in peripheral blood were not associated with immunotherapy efficacy. The levels of IL-6, IL-8, IL-10, and IL-17 levels during treatment were associated with immunotherapy efficacy.
Collapse
Affiliation(s)
- Ni Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China
| | - Ye Yi
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China
| | - Wen Cao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China
| | - Nan Mei
- Department of Hematology. The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chunli Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China,*Correspondence: Chunli Li,
| |
Collapse
|
42
|
Krabbe J, Kraus T, Krabbe H, Martin C, Ziegler P. Welding Fume Instillation in Isolated Perfused Mouse Lungs-Effects of Zinc- and Copper-Containing Welding Fumes. Int J Mol Sci 2022; 23:ijms23169052. [PMID: 36012318 PMCID: PMC9408907 DOI: 10.3390/ijms23169052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Zinc- and copper-containing welding fumes can cause systemic inflammation after exposure in humans. Recent ex vivo studies have shown that the observed inflammation originates from exposed immune cells. In vitro studies identified the soluble fraction of metal particles as the main effectors. Isolated perfused mouse lungs (IPLs) were perfused and ventilated for 270 min. Lungs were instilled with saline solution (control), welding fume particle suspension (WFs) or the soluble fraction of the welding fumes (SF-WFs). Bronchoalveolar lavage fluid (BALF) and perfusate samples were analyzed for cytokine levels and lung tissue mRNA expression levels were analyzed via RT-PCR. All lungs instilled with WFs did not complete the experiments due to a fatal reduction in tidal volume. Accordingly, IL-6 and MPO levels were significantly higher in BALF of WF lungs compared to the control. IL-6 and MPO mRNA expression levels were also increased for WFs. Lungs instilled with SF-WFs only showed mild reactions in tidal volume, with BALF and mRNA expression levels not significantly differing from the control. Zinc- and copper-containing welding fume particles adversely affect IPLs when instilled, as evidenced by the fatal loss in tidal volume and increased cytokine expression and secretion. The effects are mainly caused by the particles, not by the soluble fraction.
Collapse
Affiliation(s)
- Julia Krabbe
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8035028; Fax: +49-241-8082587
| | - Thomas Kraus
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Hanif Krabbe
- European Vascular Centre Aachen-Maastricht, Department of Vascular Surgery, Medical Faculty, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Patrick Ziegler
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
43
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
44
|
Wold LE, Tarran R, Crotty Alexander LE, Hamburg NM, Kheradmand F, St Helen G, Wu JC. Cardiopulmonary Consequences of Vaping in Adolescents: A Scientific Statement From the American Heart Association. Circ Res 2022; 131:e70-e82. [PMID: 35726609 DOI: 10.1161/res.0000000000000544] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the US Food and Drug Administration has not approved e-cigarettes as a cessation aid, industry has at times positioned their products in that way for adults trying to quit traditional cigarettes; however, their novelty and customizability have driven them into the hands of unintended users, particularly adolescents. Most new users of e-cigarette products have never smoked traditional cigarettes; therefore, understanding the respiratory and cardiovascular consequences of e-cigarette use has become of increasing interest to the research community. Most studies have been performed on adult e-cigarette users, but the majority of these study participants are either former traditional smokers or smokers who have used e-cigarettes to switch from traditional smoking. Therefore, the respiratory and cardiovascular consequences in this population are not attributable to e-cigarette use alone. Preclinical studies have been used to study the effects of naive e-cigarette use on various organ systems; however, almost all of these studies have used adult animals, which makes translation of health effects to adolescents problematic. Given that inhalation of any foreign substance can have effects on the respiratory and cardiovascular systems, a more holistic understanding of the pathways involved in toxicity could help to guide researchers to novel therapeutic treatment strategies. The goals of this scientific statement are to provide salient background information on the cardiopulmonary consequences of e-cigarette use (vaping) in adolescents, to guide therapeutic and preventive strategies and future research directions, and to inform public policymakers on the risks, both short and long term, of vaping.
Collapse
|
45
|
Porto GD, Haupenthal DPDS, Souza PS, Silveira GDB, Nesi RT, Feuser PE, Possato JC, de Andrade VM, Pinho RA, Silveira PCL. Effects of the intranasal application of gold nanoparticles on the pulmonary tissue after acute exposure to industrial cigarette smoke. J Biomed Mater Res B Appl Biomater 2022; 110:1234-1244. [PMID: 34894049 DOI: 10.1002/jbm.b.34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 11/09/2022]
Abstract
Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.
Collapse
Affiliation(s)
- Germano Duarte Porto
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Priscila Soares Souza
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Renata Tiscoski Nesi
- Biochemistry in Health, Graduate Program in Health Sciences, Medicine School, Pontifícia Universidade Católica do Paraná, Puerto Rico, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Jonathann Corrêa Possato
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Department of Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ricardo Aurino Pinho
- Biochemistry in Health, Graduate Program in Health Sciences, Medicine School, Pontifícia Universidade Católica do Paraná, Puerto Rico, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
46
|
Murata H, Barnhill LM, Bronstein JM. Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022; 37:894-904. [PMID: 35043999 PMCID: PMC9119911 DOI: 10.1002/mds.28922] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease, as well as other neurodegenerative disorders, are primarily characterized by pathological accumulation of proteins, inflammation, and neuron loss. Although there are some known genetic risk factors, most cases cannot be explained by genetics alone. Therefore, it is important to determine the environmental factors that confer risk and the mechanisms by which they act. Recent epidemiological studies have found that exposure to air pollution is associated with an increased risk for development of Parkinson's disease, although not all results are uniform. The variability between these studies is likely due to differences in what components of air pollution are measured, timing and methods used to determine exposures, and correction for other variables. There are several potential mechanisms by which air pollution could act to increase the risk for development of Parkinson's disease, including direct neuronal toxicity, induction of systemic inflammation leading to central nervous system inflammation, and alterations in gut physiology and the microbiome. Taken together, air pollution is an emerging risk factor in the development of Parkinson's disease. A number of potential mechanisms have been implicated by which it promotes neuropathology providing biological plausibility, and these mechanisms are likely relevant to the development of other neurodegenerative disorders such as Alzheimer's disease. This field is in its early stages, but a better understanding of how environmental exposures influence the pathogenesis of neurodegeneration is essential for reducing the incidence of disease and finding disease-modifying therapies. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Jeff M. Bronstein
- David Geffen School of Medicine at UCLA, Department of Neurology and Molecular Toxicology, 710 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
47
|
Zhao N, Yu H, Xi Y, Dong M, Wang Y, Sun C, Zhang J, Xu N, Liu W. MicroRNA-221-5p promotes [Korcheva, 2007 #167] via PI3K/Akt signaling pathway by targeting COL4a5. Toxicon 2022; 212:11-18. [DOI: 10.1016/j.toxicon.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
48
|
Kim JM, Heo HJ. The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol 2022; 31:957-970. [PMID: 35345441 PMCID: PMC8943496 DOI: 10.1007/s10068-022-01069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Catechins are a phytochemical present in plants such as tea leaves, beans, black grapes, cherries, and cacao, and have various physiological activities. It is reported that catechins have a health improvement effect and ameliorating effect against various diseases. In addition, antioxidant activity, liver damage prevention, cholesterol lowering effect, and anti-obesity activity were confirmed through in vivo animal and clinical studies. Although most diseases are reported as ones mediating various inflammations, the mechanism for improving inflammation remains unclear. Therefore, the current review article evaluates the physiological activity and various pharmacological actions of catechins and conclude by confirming an improvement effect on the inflammatory response.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
49
|
High Doses of Silica Nanoparticles Obtained by Microemulsion and Green Routes Compromise Human Alveolar Cells Morphology and Stiffness Differently. Bioinorg Chem Appl 2022; 2022:2343167. [PMID: 35140761 PMCID: PMC8820933 DOI: 10.1155/2022/2343167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
Among all the inorganic nanomaterials used in commercial products, industry, and medicine, the amorphous silica nanoparticles (SiO2 NPs) appeared to be often tolerated in living organisms. However, despite several toxicity studies, some concerns about the exposure to high doses of SiO2 NPs with different sizes were raised. Then, we used the microemulsion method to obtain stable SiO2 NPs having different sizes (110 nm, 50 nm, and 25 nm). In addition, a new one-pot green synthetic route using leaves extract of Laurus nobilis was performed, obtaining monodispersed ultrasmall SiO2 NPs without the use of dangerous chemicals. The NPs achieved by microemulsion were further functionalized with amino groups making the NPs surface positively charged. Then, high doses of SiO2 NPs (1 mg/mL and 3 mg/mL) achieved from the two routes, having different sizes and surface charges, were used to assess their impact on human alveolar cells (A549), being the best cell model mimicking the inhalation route. Cell viability and caspase-3 induction were analyzed as well as the cellular uptake, obtaining that the smallest (25 nm) and positive-charged NPs were more able to induce cytotoxicity, reaching values of about 60% of cell death. Surprisingly, cells incubated with green SiO2 NPs did not show strong toxicity, and 70% of them remained vital. This result was unusual for ultrasmall nanoobjects, generally highly toxic. The actin reorganization, nuclear morphology alteration, and cell membrane elasticity analyses confirmed the trend achieved from the biological assays. The obtained data demonstrate that the increase in cellular softness, i.e., the decrease in Young’s modulus, could be associated with the smaller and positive NPs, recording values of about 3 kPa. On the contrary, green NPs triggered a slight decrease of stiffness values (c.a. 6 kPa) compared to the untreated cells (c.a. 8 kPa). As the softer cells were implicated in cancer progression and metastasization, this evidence strongly supported the idea of a link between the cell elasticity and physicochemical properties of NPs that, in turn, influenced the interaction with the cell membrane. Thus, the green SiO2 NPs compromised cells to a lesser extent than the other SiO2 NPs types. In this scenario, the elasticity evaluation could be an interesting tool to understand the toxicity of NPs with the aim of predicting some pathological phenomena associated with their exposure.
Collapse
|
50
|
Rathore S, Varshney A, Mohan S, Dahiya P. An innovative approach of bioremediation in enzymatic degradation of xenobiotics. Biotechnol Genet Eng Rev 2022; 38:1-32. [PMID: 35081881 DOI: 10.1080/02648725.2022.2027628] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Worldwide, environmental pollution due to a complex mixture of xenobiotics has become a serious concern. Several xenobiotic compounds cause environmental contamination due to their severe toxicity, prolonged exposure, and limited biodegradability. From the past few decades, microbial-assisted degradation (bioremediation) of xenobiotic pollutants has evolved as the most effective, eco-friendly, and valuable approach. Microorganisms have unique metabolism, the capability of genetic modification, diversity of enzymes, and various degradation pathways necessary for the bioremediation process. Microbial xenobiotic degradation is effective but a slow process that limits its application in bioremediation. However, the study of microbial enzymes for bioremediation is gaining global importance. Microbial enzymes have a huge ability to transform contaminants into non-toxic forms and thereby reduce environmental pollution. Recently, various advanced techniques, including metagenomics, proteomics, transcriptomics, metabolomics are effectively utilized for the characterization, metabolic machinery, new proteins, metabolic genes of microorganisms involved in the degradation process. These advanced molecular techniques provide a thorough understanding of the structural and functional aspects of complex microorganisms. This review gives a brief note on xenobiotics and their impact on the environment. Particular attention will be devoted to the class of pollutants and the enzymes such as cytochrome P450, dehydrogenase, laccase, hydrolase, protease, lipase, etc. capable of converting these pollutants into innocuous products. This review attempts to deliver knowledge on the role of various enzymes in the biodegradation of xenobiotic pollutants, along with the use of advanced technologies like recombinant DNA technology and Omics approaches to make the process more robust and effective.
Collapse
Affiliation(s)
| | - Ayushi Varshney
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Sumedha Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Praveen Dahiya
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|