1
|
Zhang J, Liu D, Liang X, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Synthesis and characterization of selenium nanoparticles stabilized by Grifola frondosa polysaccharides and gallic acid conjugates. Int J Biol Macromol 2024; 278:134787. [PMID: 39153675 DOI: 10.1016/j.ijbiomac.2024.134787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Selenium nanoparticles (SeNPs) are of interest for their versatility and low toxicity, but bare SeNPs are unstable and tend to aggregate and precipitate as black elemental Se, which limits the application of SeNPs. This study evaluated the physicochemical properties, physical stability, antioxidant activities and cytotoxicity of SeNPs stabilized by Grifola frondosa polysaccharides (GFPs) and GFPs-gallic acid conjugates (GFPs-GA). The results showed that the particle size (PZ), polymer index (PDI) and zeta potential (ZP) of the GFPs-SeNPs and GFPs-GA-SeNPs were 58.72 ± 0.53 nm, 0.11, -8.36 ± 0.21 mV and 61.80 ± 0.16 nm, 0.12, -9.37 ± 0.13 mV, respectively. Besides, the GFPs-SeNPs and GFPs-GA-SeNPs remained stable when stored at 4 °C for 70 days in darkness. SeNPs stabilized with GFPs have improved the antioxidant activity and selective toxicity to tumour cells. Interestingly, SeNPs stabilized with GFPs-GA further enhanced these biological activities. This work provided a simple and effective method to construct well-dispersed SeNPs in aqueous systems, demonstrating the important roles of GFPs and GFPs-GA in the size control, dispersion and stabilization of SeNPs. The prepared GFPs-SeNPs and GFPs-GA-SeNPs can serve as good selenium supplements and have potential prospects for antioxidant activity and tumour inhibition.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Dongming Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xia Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
2
|
Xie F, Liu X, Liu N, Feng X, He Z, Din ZU, Cheng S, Luo Y, Cai J. Effect of degree of substitution of octenyl succinate on starch micelles for synthesis and stability of selenium nanoparticles: Towards selenium supplements. Int J Biol Macromol 2024; 280:135586. [PMID: 39276897 DOI: 10.1016/j.ijbiomac.2024.135586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
To develop a promising selenium supplement that overcomes the instability and poor water dispersibility of selenium nanoparticles (SeNPs), we synthesized a series of amphiphilic octenyl succinic anhydride starch (OSAS) through esterification. As the degree of substitution (DS) increased, the particle size of OSAS micelles and the critical micelle concentration (CMC) decreased. FTIR and XRD analysis confirmed the successful introduction of octenyl succinic anhydride groups onto starch. Subsequently, OSAS micelles were used as carriers to synthesize SeNPs via in situ chemical reduction, forming SeNPs-loaded self-assembled starch nano-micelles (OSAS-SeNPs). The OSAS-SeNPs exhibited spherical dispersion in water with an average diameter of 116.1 ± 2.3 nm, contributed to enhanced hydrophobic interactions. TEM images showed a core-shell structure with SeNPs as the core and OSAS as the shell. FTIR results indicated hydrogen bonding interactions between OSAS and SeNPs. Due to the negatively charged OSAS shell and hydrogen bonding (OH⋯Se), OSAS-SeNPs remained non-aggregated for one month at room temperature, demonstrating remarkable stability. This study suggests that using OSAS can address the synthesis and stability issues of SeNPs, making it a potential selenium supplement candidate for further evaluation as an anticancer agent.
Collapse
Affiliation(s)
- Fang Xie
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Nian Liu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiaofang Feng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Microbiology & Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jie Cai
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
3
|
Salah M, Elkabbany NAS, Partila AM. Evaluation of the cytotoxicity and antibacterial activity of nano-selenium prepared via gamma irradiation against cancer cell lines and bacterial species. Sci Rep 2024; 14:20523. [PMID: 39227447 PMCID: PMC11372082 DOI: 10.1038/s41598-024-69730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
A recent scientific investigation has shown promising results of selenium nanoparticles (SeNPs) for the anticancer and antimicrobial activities. This study aims to evaluate the effects of PVP SeNPs on bacterial strains, including Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). Also, its antitumor activity against the MRC-5 carcinoma cell line. SeNPs were prepared via gamma irradiation using PVP as a capping agent, and their size and morphological structure were determined using HRTEM. The size of the SeNPs ranged from 36 to 66.59 nm. UV-vis spectra confirmed the formation of SeNPs, while FTIR measurement confirmed a change in the PVP structure after adding selenium nanoparticles. The highest effect was reported on HepG2 by an IC50 with a value of 8.87 µg/ml, followed by HeLa, PC3, MCF-7, and Caco2 cell lines, respectively. Furthermore, ZOI reached 36.33 ± 3.05 mm. The best value of the minimum inhibitory concentration (MIC) was 0.313 µg/ml. Scanning electron microscope (SEM) imaging against bacteria showed deformations and distortions in their structures. Transmission electron (TEM) revealed ultrastructure changes in treated bacteria because of the free radicals that made cytotoxicity which confirmed by Electron spin resonance (ESR).
Collapse
Affiliation(s)
- M Salah
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Nesreen A S Elkabbany
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Abir M Partila
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt.
| |
Collapse
|
4
|
Bian Y, Zhao K, Hu T, Tan C, Liang R, Weng X. A Se Nanoparticle/MgFe-LDH Composite Nanosheet as a Multifunctional Platform for Osteosarcoma Eradication, Antibacterial and Bone Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403791. [PMID: 38958509 PMCID: PMC11434235 DOI: 10.1002/advs.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Despite advances in treating osteosarcoma, postoperative tumor recurrence, periprosthetic infection, and critical bone defects remain critical concerns. Herein, the growth of selenium nanoparticles (SeNPs) onto MgFe-LDH nanosheets (LDH) is reported to develop a multifunctional nanocomposite (LDH/Se) and further modification of the nanocomposite on a bioactive glass scaffold (BGS) to obtain a versatile platform (BGS@LDH/Se) for comprehensive postoperative osteosarcoma management. The uniform dispersion of negatively charged SeNPs on the LDH surface restrains toxicity-inducing aggregation and inactivation, thus enhancing superoxide dismutase (SOD) activation and superoxide anion radical (·O2 -)-H2O2 conversion. Meanwhile, Fe3+ within the LDH nanosheets can be reduced to Fe2+ by depleting glutathione (GSH) in the tumor microenvironments (TME), which can catalyze H2O2 into highly toxic reactive oxygen species. More importantly, incorporating SeNPs significantly promotes the anti-bacterial and osteogenic properties of BGS@LDH/Se. Thus, the developed BGS@LDH/Se platform can simultaneously inhibit tumor recurrence and periprosthetic infection as well as promote bone regeneration, thus holding great potential for postoperative "one-stop-shop" management of patients who need osteosarcoma resection and scaffold implantation.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| | - Kexin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P. R. China
| |
Collapse
|
5
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2024:e2401523. [PMID: 39205539 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ana I Matos
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carmine D'Amico
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Risto Koivula
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Helena F Florindo
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
| |
Collapse
|
6
|
Haseeb HA, Khan MA, Rasheed H, Zahid MU, Doan TD, Siddique MAR, Ahmad U, Bokhari SAI. Polygonum bistorta Linn. as a green source for synthesis of biocompatible selenium nanoparticles with potent antimicrobial and antioxidant properties. Biometals 2024:10.1007/s10534-024-00622-0. [PMID: 39127845 DOI: 10.1007/s10534-024-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.
Collapse
Affiliation(s)
- Hafiz Abdul Haseeb
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Muhammad Aslam Khan
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan.
| | - Hassam Rasheed
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Muhammad Usman Zahid
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Thu Dung Doan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Muhammad Aamir Ramzan Siddique
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Uzair Ahmad
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan.
| |
Collapse
|
7
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Annamalai KK, Selvaraj B, Subramanian K, Binsuwaidan R, Saeed M. Antibiofilm and antivirulence activity of selenium nanoparticles synthesized from cell-free extract of moderately halophilic bacteria. Microb Pathog 2024; 193:106740. [PMID: 38897360 DOI: 10.1016/j.micpath.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Biofilm-forming microbes can pose a major health risk that is difficult to combat. Nanotechnology, on the other hand, represents a novel technique for combating and eliminating biofilm-forming microbes. In this study, the selenium nanoparticles (SeNPs) were biosynthesized from moderate halophilic bacteria isolated from Pichavaram mangrove sediments. The bacterial strain S8 was found to be efficient for SeNPs synthesis and hence identified by 16s r RNA sequencing as Shewanella sp. In UV- spectral analysis the SeNPs displayed a peak at 320 nm due to surface plasmon resonance (SPR). The cell-free extract of Shewanella sp. and SeNPs indicates that the various functional groups in the cell-free extract were mainly involved in the synthesis and stabilization of SeNPs. The SeNPs had a spherical form with average diameter of 49 ± 0.01 nm, according to the FESEM analysis. The EDX shows the distinctive peaks of selenium at 1.37, 11.22.12.49 Kev. In the agar well diffusion method, the SeNPs show inhibitory activity against all the test pathogens with the highest activity noted against P.aeruginosa with a zone of inhibition of 22.7 ± 0.3 mm. The minimal inhibitory concentration (MIC) value of 80 μg/ml, minimal bactericidal concentration (MBC) of 160 μg/ml, and susceptibility constant of 0.043 μg/ml show that SeNPs highly effective against P.aeruginosa. The Sub-MIC value of SeNPs of 20 μg/ml was found to inhibit P.aeruginosa biofilm by 85% as compared to the control. Further, the anti-virulence properties viz., pyocyanin, pyoverdine, hemolytic, and protease inhibition revealed the synthesized SeNPs from halophilic bacteria control the pathogenicity of P.aeruginosa.
Collapse
Affiliation(s)
- Kishore Kumar Annamalai
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Bharathi Selvaraj
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600007, Tamil Nadu, India.
| | - Kumaran Subramanian
- PG and Research Department of Microbiology, Sri Sankara Arts and Science College, Kancheepuram, 631561, Tamil Nadu, India
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
9
|
Pyrzynska K. Plant Extracts for Production of Functionalized Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3748. [PMID: 39124412 PMCID: PMC11313377 DOI: 10.3390/ma17153748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
In recent years, selenium nanoparticles (SeNPs) have attracted expanding consideration, particularly in the nanotechnology field. This element participates in important biological processes, such as antioxidant defense, immune function, and thyroid hormone regulation, protecting cells from oxidative damage. Selenium in the form of nanoscale particles has drawn attention for its biocompatibility, bioavailability, and low toxicity; thus, it has found several biomedical applications in diagnosis, treatment, and monitoring. Green methods for SeNP synthesis using plant extracts are considered to be single-step, inexpensive, and eco-friendly processes. Besides acting as natural reductants, compounds from plant extracts can also serve as natural capping agents, stabilizing the size of nanoparticles and contributing to the enhanced biological properties of SeNPs. This brief overview presents the recent developments in this area, focusing on the synthesis conditions and the characteristics of the obtained SeNPs.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Hamman N, Ramburrun P, Dube A. Selenium Nanoparticle Activity against S. mutans Biofilms as a Potential Treatment Alternative for Periodontitis. Pharmaceutics 2024; 16:450. [PMID: 38675111 PMCID: PMC11055075 DOI: 10.3390/pharmaceutics16040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of periodontal biofilms and prevailing antimicrobial resistance issues continue to pose a great challenge to the treatment of periodontitis. Here, we report on selenium nanoparticles (SeNPs) as a treatment alternative for periodontitis by determining their antibiofilm activity against S. mutans biofilms and the potential role of particle size in disrupting biofilms. SeNPs were synthesised via a reduction reaction. Various physicochemical characterisations were conducted on the NPs, including size and shape. The microbroth dilution method was used to conduct the biofilm and antibiofilm assay against S. mutans, which was analysed by absorbance. SeNPs displayed hydrodynamic sizes as low as 46 ± 4 nm at a volume ratio of 1:5 (sodium selenite/ascorbic acid) with good monodispersity and stability. Hydrodynamic sizes of SeNPs after resuspension in tryptic soy broth supplemented with 2.5% sucrose (TSB + 2.5% suc.) and incubated at 37 °C for 24 h, ranged from 112 to 263 nm, while the zeta potential values increased to greater than -11 mV. The biofilm assay indicated that S. mutans are weakly adherent, bordering on moderately adherent biofilm producers. The minimum biofilm inhibitory concentration (MBIC) was identified at 500 µg/mL. At a 1000 µg/mL concentration, SeNPs were able to inhibit S. mutan biofilms up to 99.87 ± 2.41% at a volume ratio of 1:1. No correlation was found between antibiofilm activity and particle size; however, antibiofilm activity was proven to be concentration-dependant. SeNPs demonstrate antibiofilm activity and may be useful for further development in treating periodontitis.
Collapse
Affiliation(s)
- Naasika Hamman
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa;
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa;
| |
Collapse
|
12
|
Salaramoli S, Joshaghani HR, Hosseini M, Hashemy SI. Therapeutic Effects of Selenium on Alpha-Synuclein Accumulation in Substantia Nigra Pars Compacta in a Rat Model of Parkinson's Disease: Behavioral and Biochemical Outcomes. Biol Trace Elem Res 2024; 202:1115-1125. [PMID: 37386228 DOI: 10.1007/s12011-023-03748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder characterized by the accumulation of accumulated alpha-synuclein (α-Syn) in substantia nigra. Research has shown that selenium (Se) can protect neural cells through the actions of selenoproteins, including selenoprotein P (SelP) and selenoprotein S (SelS), which participate in endoplasmic reticulum-associated protein degradation (ERAD). In this study, we investigated the potential protective role of Se in a pre-clinical PD rat model.We aimed to evaluate the therapeutic effects of Se administration in the 6-hydroxydopamine (6-OHDA) induced unilateral rat PD model. Male Wistar rats were utilised for unilateral PD animal model which were subjected to stereotaxic surgery and injected with 20 μg 6-OHDA/5 μl 0.2% ascorbate saline. After confirming the model, the rats were intraperitoneally injected with 0.1, 0.2, and 0.3 mg/kg of sodium selenite for 7 days. We then performed behavioral tests, including apomorphine-induced rotation, hanging, and rotarod tests. Following sacrifice, we analysed the substantia nigra area of the brain and serum for protein quantification, element analysis, and gene expression analysis.Our results indicate that the administration of 0.3 mg/kg of Se improved the motor deficiency in hanging, rotarod, and apomorphine-induced rotational tests. While there was no significant improvement in the expression of α-Syn, Se increased the expression of selenoproteins. Additionally, levels of selenoproteins, Se, and α-Syn both brain and serum were re-established by the treatment, suggesting the role of Se on the α-Syn accumulation. Furthermore, Se improved PD-induced biochemical deficits by increasing the levels of SelS and SelP (p<0.005).In conclusion, our findings suggest that Se may have a protective role in PD. 0.3 mg/kg dosage of Se increased the expression of selenoproteins, reduced the accumulation of α-Syn in the brain, and improved PD-induced motor deficits. These results suggest that Se may be a potential therapeutic option for PD treatment.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioural Sciences Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
14
|
Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhang T, Zhao C. Selenium nanoparticles: Enhanced nutrition and beyond. Crit Rev Food Sci Nutr 2023; 63:12360-12371. [PMID: 35848122 DOI: 10.1080/10408398.2022.2101093] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selenium is a trace nutrient that has both nutritional and nutraceutical functions, whereas narrow nutritional range of selenium intake limits its use. Selenium nanoparticles (SeNPs) are less toxic and more bioavailable than traditional forms of selenium, suggesting that SeNPs have the potential to replace traditional selenium in food industries and/or biomedical fields. From the perspective of how SeNPs can be applied in health area, this review comprehensively discusses SeNPs in terms of its preparation, nutritional aspect, detoxification effect of heavy metals, nutraceutical functions and anti-pathogenic microorganism effects. By physical, chemical, or biological methods, inorganic selenium can be transformed into SeNPs which have increased stability and bioavailability as well as low toxicity. SeNPs are more effective than traditional selenium form in synthesizing selenoproteins like glutathione peroxidases. SeNPs can reshape the digestive system to facilitate digestion and absorption of nutrients. SeNPs have shown excellent potential to adjunctively treat cancer patients, enhance immune system, control diabetes, and prevent rheumatoid arthritis. Additionally, SeNPs have good microbial anti-pathogenic effects and can be used with other antimicrobial agents to fight against pathogenic bacteria, fungi, or viruses. Development of novel SeNPs with enhanced functions can greatly benefit the food-, nutraceutical-, and biomedical industries.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wei Zhang
- Weihai Baihe Biology Technological Co., Ltd, Rongcheng, Shandong, China
| | - Yutong Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Naicheng Xin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongdi Wei
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| |
Collapse
|
15
|
Hashem AH, Saied E, Ali OM, Selim S, Al Jaouni SK, Elkady FM, El-Sayyad GS. Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility. Appl Biochem Biotechnol 2023; 195:5753-5776. [PMID: 36705842 DOI: 10.1007/s12010-023-04326-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
The green synthesis of selenium nanoparticles (Se NPs) had been synthesized by pomegranate peel extract (PPE). The antimicrobial, antioxidant, and anticancer activities of the synthesized Se NPs, as well as their hemocompatibility, were investigated. Se NPs were characterized by UV-Vis., SEM, XRD, HR-TEM, DLS, EDX, FTIR, and mapping techniques. HR-TEM image represented the spheroidal forms with moderately monodispersed NPs with a mean diameter 14.5 nm. The SEM image of Se NPs, incorporated with PPE, exhibits uniform NP surfaces, and the appearance was clear. The antimicrobial results confirmed the potential of Se NPs to hinder the growth of some tested pathogenic microbes. Results revealed that Se NPs exhibited promising antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Streptococcus mutans where inhibition zones were 29, 16, 41, 22, and 54 mm, respectively. Likewise, it exhibited antifungal activity where the values of inhibition zones were 41, 40, 38, and 36 mm against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and A. niger, respectively. The antioxidant activities of Se NPs at concentrations 250-4000 µg/mL were greater than 90% in all cases. Se NP concentrations of 500 µg/mL or less are safe in usage according to hemocompatibility study. Se NPs had an IC50 of 113.73 µg/mL in a cytotoxicity experiment. Results revealed that Se NPs have promising anticancer activities against MCF7 and Mg63 cancerous cell line, where IC50 was 69.8 and 47.9 μg/mL, respectively. In conclusion, Se NPs were successfully biosynthesized using PPE for the first time; these Se NPs had promising antimicrobial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Omar M Ali
- Department of Chemistry, Turabah Branch, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Fathy M Elkady
- Microbiologu and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
16
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
17
|
El-Behery RR, El-Sayed ESR, El-Sayyad GS. Gamma rays-assisted bacterial synthesis of bimetallic silver-selenium nanoparticles: powerful antimicrobial, antibiofilm, antioxidant, and photocatalytic activities. BMC Microbiol 2023; 23:224. [PMID: 37587432 PMCID: PMC10428608 DOI: 10.1186/s12866-023-02971-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Bimetallic nanoparticles (BNPs) has drawn a lot of attention especially during the last couple of decades. A bimetallic nanoparticle stands for a combination of two different metals that exhibit several new and improved physicochemical properties. Therefore, the green synthesis and design of bimetallic nanoparticles is a field worth exploring. METHODS In this study, we present a green synthesis of silver nanoparticles (Ag NPs), selenium (Se) NPs, and bimetallic Ag-Se NPs using Gamma irradiation and utilizing a bacterial filtrate of Bacillus paramycoides. Different Techniques such as UV-Vis., XRD, DLS, SEM, EDX, and HR-TEM, were employed for identifying the synthesized NPs. The antimicrobial and antibiofilm activities of both the Ag/Se monometallic and bimetallic Ag-Se NPs were evaluated against some standard microbial strains including, Aspergillus brasiliensis ATCC16404, Candida albicans ATCC10231, Alternaria alternate EUM108, Fusarium oxysporum EUM37, Escherichia coli ATCC11229, Bacillus cereus ATCC15442, Klebsiella pneumoniae ATCC13883, Bacillus subtilis ATCC15442, and Pseudomonas aeruginosa ATCC6538 as a model tested pathogenic microbes. The individual free radical scavenging potentials of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs were determined using the DPPH radical scavenging assay. The degradation of methylene blue (MB) dye in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was used to assess their photocatalytic behavior. RESULTS According to the UV-Vis. spectrophotometer, the dose of 20.0 kGy that results in Ag NPs with the highest O.D. = 3.19 at 390 nm is the most effective dose. In a similar vein, the optimal dose for the synthesis of Se NPs was 15.0 kGy dose with O.D. = 1.74 at 460 nm. With a high O.D. of 2.79 at 395 nm, the most potent dose for the formation of bimetallic Ag-Se NPs is 15.0 kGy. The recorded MIC-values for Ag-Se NPs were 62.5 µg mL- 1, and the data clearly demonstrated that C. albicans was the organism that was most susceptible to the three types of NPs. The MIC value was 125 µg mL- 1 for both Ag NPs and Se NPs. In antibiofilm assay, 5 µg mL- 1 Ag-Se NPs inhibited C. albicans with a percentage of 90.88%, E. coli with a percentage of 90.70%, and S. aureus with a percentage of 90.62%. The synthesized NPs can be arranged as follows in decreasing order of antioxidant capacity as an antioxidant result: Ag-Se NPs > Se NPs > Ag NPs. The MB dye degradation in the presence of the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs was confirmed by the decrease in the measured absorbance (at 664 nm) after 20 min of exposure to sunlight. CONCLUSION Our study provides insight towards the synthesis of bimetallic NPs through green methodologies, to develop synergistic combinatorial antimicrobials with possible applications in the treatment of infectious diseases caused by clinically and industrial relevant drug-resistant strains.
Collapse
Affiliation(s)
- Reham R El-Behery
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
18
|
Zarharan H, Bagherian M, Shah Rokhi A, Ramezani Bajgiran R, Yousefi E, Heravian P, Niazi Khazrabig M, Es-haghi A, Taghavizadeh Yazdi ME. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
19
|
Shi M, Deng J, Min J, Zheng H, Guo M, Fan X, Cheng S, Zhang S, Ma X. Synthesis, characterization, and cytotoxicity analysis of selenium nanoparticles stabilized by Morchella sextelata polysaccharide. Int J Biol Macromol 2023:125143. [PMID: 37247714 DOI: 10.1016/j.ijbiomac.2023.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Natural bioactive molecules have been widely used as stabilizers in the functional improvement of selenium nanoparticles (SeNPs) in recent years. In this study, Morchella sextelata polysaccharide (MSP) was introduced as a novel stabilizer for the synthesis of SeNPs based on the redox system of sodium selenite and ascorbic acid. The size, morphology, stability, and anti-cancer cell activities were respectively analyzed by various methods. The results showed that the synthesized SeNPs with MSP were 72.07 ± 0.53 nm in size, red in color, spherical in shape, and amorphous in nature. MSP-SeNPs showed high scavenging activity against DPPH and ABTS radicals. And, these MSP-SeNPs exhibited a significant anti-proliferation effect on human liver (HepG2) and cervical cancer (Hela) cells in vitro, while no significant cytotoxicity against normal human kidney cells (HK-2) was observed. Moreover, the mitochondria-dependent apoptosis pathway triggered by MSP-SeNPs in HepG2 cell was identified. The expression levels of p53, Bax, cytochrome c, caspase-3 and caspase-9 were all up-regulated in HepG2 cells after MSP-SeNPs treatment, while Bcl-2 expression was down-regulated. These results suggest that MSP-SeNPs have strong potential as the food supplement for application in cancer chemoprevention.
Collapse
Affiliation(s)
- Menghua Shi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Deng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinying Min
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanyu Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengpei Guo
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China
| | - Xiaolin Fan
- Wuhan HuaYuXinMei Mycology Industry Co., Ltd., Wuhan 430070, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaopeng Zhang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiaolong Ma
- Institute of Vegetable, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China.
| |
Collapse
|
20
|
Hosseini M, Behehsti F, Marefati N, Anaeigoudari A. Nano-selenium relieved hepatic and renal oxidative damage in hypothyroid rats. Physiol Rep 2023; 11:e15682. [PMID: 37144592 PMCID: PMC10161204 DOI: 10.14814/phy2.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
Hypothyroidism can induce oxidative stress. Nano-selenium (Nano Sel) has antioxidant effects. The current research explored Nano Sel effects on hepatic and renal oxidative damage induced by hypothyroidism in rats. Animals were grouped into (1) Control; (2) Propylthiouracil (PTU) group which received water mixed with 0.05% of PTU; (3) PTU-Nano Sel 50; (4) PTU-Nano Sel 100; and (5) PTU-Nano Sel 150. Besides PTU, the PTU-Nano Sel groups were treated with 50, 100, or 150 μg/kg of Nano Sel intraperitoneally. Treatments were done for 6 weeks. The serum level of T4, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), albumin, total protein, creatinine, and blood urea nitrogen (BUN) was evaluated. Malondialdehyde (MDA) and total thiol concentration and the activity of catalase (CAT) and superoxide dismutase (SOD) in hepatic and renal tissues also were checked. Hypothyroidism induced by PTU significantly increased AST, ALT, ALP, creatinine, BUN, and MDA concentration and noticeably reduced albumin, total protein, total thiol level, and SOD and CAT activity. Administration of Nano Sel ameliorated the adverse effects of hypothyroidism on liver and kidney function. Nano Sel applied protective effects against hepatic and renal damage resulting from hypothyroidism via ameliorating the oxidative stress status. More cellular and molecular experiments need to be done to understand the exact mechanisms.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Behehsti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Iran
| | - Narges Marefati
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
21
|
Abdelhamid AE, Ahmed EH, Awad HM, Ayoub MMH. Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
AbstractNew system compromising of chitosan nanoparticles encapsulated pre-synthesized selenium nanoparticles in the presence of 5-fluorouracil was successfully prepared and used for cancer antiproliferation. Selenium nanoparticles were synthesized using ascorbic acid as reducing agent under mild condition. Chitosan nanoparticles were prepared via ionic gelation technique using sodium tri-polyphosphate. Characterization of the prepared nanoparticles was carried out using FTIR, TEM, XRD, TGA and dynamic light scattering (DLS). The results displayed the formation of selenium nanoparticles with an average size 20 nm and chitosan nanoparticles with an average size 207 and 250 nm for neat nano-chitosan and chitosan incorporated 5-fluorouracil/selenium nanoparticles, respectively. The encapsulated nanocomposites were tested for treatment of cancer cell of human colorectal carcinoma (HCT-116), human liver carcinoma (HepG-2), and human breast adenocarcinoma MCF-7. The results indicated the potent cytotoxic activities of all nanocomposite toward the tested cells with enhanced anticancer activity rather than the single drug or neat selenium nanoparticle. All composites were tested against non-tumor fibroblast-derived cell line (BJ) and demonstrated very low cytotoxicity.
Collapse
|
22
|
El-Batal AI, Ismail MA, Amin MA, El-Sayyad GS, Osman MS. Selenium nanoparticles induce growth and physiological tolerance of wastewater‑stressed carrot plants. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
AbstractClimate changes have a direct impact on agricultural lands through their impact on the rate of water levels in the oceans and seas, which leads to a decrease in the amount of water used in agriculture, and therefore the use of alternative sources of irrigation such as wastewater and overcoming its harmful effect on plants was one of the solutions to face this problem. In the present study, the impacts of the synthesized selenium nanoparticles (Se NPs) alone or in combination with glycine betaine and proline treatments on the growth, physiological, and yield attributes of wastewater irrigated carrot plants are investigated. Furthermore, to evaluate heavy metals uptake and accumulation in edible plant parts. The usage of wastewater to carrot plants significantly increased free proline contents, total phenols, superoxide dismutase, catalase, peroxidase, polyphenol oxidase, Malondialdehyde (MDA), and hydrogen peroxide (H2O2) throughout the two growth stages. While total soluble carbohydrate and soluble protein content in carrot shoots and roots were significantly reduced. Moreover, the concentrations of nickel (Ni), cadmium (Cd), lead (Pb), and cobalt (Co) in carrot plants were considerably higher than the recommended limits set by international organizations. Application of selenium nanoparticles alone or in combination with glycine betaine and proline reduced the contents of Ni, Cd, Pb, and Co; free proline; total phenols; superoxide dismutase; catalase; peroxidase; polyphenol oxidase; Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) in carrot plants. However, morphological aspects, photosynthetic pigments, soluble carbohydrates, soluble protein, total phenol, and β-Carotene were enhanced in response to Se NPs application. As an outcome, this research revealed that Se NPs combined with glycine betaine and proline can be used as a strategy to minimize heavy metal stress caused by wastewater irrigation in carrot plants, consequently enhancing crop productivity and growth.
Collapse
|
23
|
Osteogenic and anti-inflammatory effects of SLA titanium substrates doped with chitosan-stabilized selenium nanoparticles via a covalent coupling strategy. Colloids Surf B Biointerfaces 2023; 224:113217. [PMID: 36868181 DOI: 10.1016/j.colsurfb.2023.113217] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Osseointegration is a prerequisite for the function of dental implants, and macrophage-dominated immune responses triggered by implantation determine the outcome of ultimate bone healing mediated by osteogenic cells. The present study aimed to develop a modified titanium (Ti) surface by covalently immobilizing chitosan-stabilized selenium nanoparticles (CS-SeNPs) to sandblasted, large grit, and acid-etched (SLA) Ti substrates and further explore its surface characteristics as well as osteogenic and anti-inflammatory activities in vitro. CS-SeNPs were successfully prepared by chemical synthesis and characterized their morphology, elemental composition, particle size, and Zeta potential. Subsequently, three different concentrations of CS-SeNPs were loaded to SLA Ti substrates (Ti-Se1, Ti-Se5, and Ti-Se10) using a covalent coupling strategy, and the SLA Ti surface (Ti-SLA) was used as a control. Scanning electron microscopy images revealed different amounts of CS-SeNPs, and the roughness and wettability of Ti surfaces were less susceptible to Ti substrate pretreatment and CS-SeNP immobilization. Besides, X-ray photoelectron spectroscopy analysis showed that CS-SeNPs were successfully anchored to Ti surfaces. The results of in vitro study showed that the four as-prepared Ti surfaces exhibited good biocompatibility, with Ti-Se1 and Ti-Se5 groups showing enhanced adhesion and differentiation of MC3T3-E1 cells compared with the Ti-SLA group. In addition, Ti-Se1, Ti-Se5, and Ti-Se10 surfaces modulated the secretion of pro-/anti-inflammatory cytokines by inhibiting the nuclear factor kappa B pathway in Raw 264.7 cells. In conclusion, doping SLA Ti substrates with a modest amount of CS-SeNPs (1-5 mM) may be a promising strategy to improve the osteogenic and anti-inflammatory activities of Ti implants.
Collapse
|
24
|
Abadi B, Khazaeli P, Forootanfar H, Ranjbar M, Ahmadi-Zeidabadi M, Nokhodchi A, Ameri A, Adeli-Sardou M, Amirinejad M. Chitosan-sialic acid nanoparticles of selenium: Statistical optimization of production, characterization, and assessment of cytotoxic effects against two human glioblastoma cell lines. Int J Pharm 2023; 637:122884. [PMID: 36966981 DOI: 10.1016/j.ijpharm.2023.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
According to the favorable antitumor properties of selenium, this study aimed to design a novel form of selenium nanoparticles (Se NPs) functionalized with chitosan (Cs) and sialic acid to assess their antitumor effects on the human glioblastoma cell lines (T98 and A172). Se NPs were synthesized in the presence of chitosan and ascorbic acid (Vc) and the synthesis conditions were optimized using response surface methodology. Se NPs@Cs were obtained with a monoclinic structure with an average diameter of 23 nm under the optimum conditions (reaction time = 30 min, chitosan concentration = 1 % w/v, Vc/Se molar ratio = 5). To modify Se NP@Cs for glioblastoma treatment, sialic acid was used to cover the surface of the NPs. Sialic acid was successfully attached to the surface of Se NPs@Cs, and Se NPs@Cs-sialic acid were formed in the size range of 15-28 nm. Se NPs@Cs-sialic acid were stable for approximately 60 days at 4 ℃. The as-synthesized NPs exerted inhibitory effects on T98 greater than 3 T3 > A172 cells in a dose- and time-dependent manner. Additionally, sialic acid ameliorated the blood biocompatibility of Se NPs@Cs. Taken together, sialic acid improved both the stability and biological activity of Se NPs@Cs.
Collapse
Affiliation(s)
- Banafshe Abadi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Kerman, Iran
| | - Payam Khazaeli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, Coral Springs, FL, USA; Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Amirinejad
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Au A, Mojadadi A, Shao JY, Ahmad G, Witting PK. Physiological Benefits of Novel Selenium Delivery via Nanoparticles. Int J Mol Sci 2023; 24:ijms24076068. [PMID: 37047040 PMCID: PMC10094732 DOI: 10.3390/ijms24076068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Dietary selenium (Se) intake within the physiological range is critical to maintain various biological functions, including antioxidant defence, redox homeostasis, growth, reproduction, immunity, and thyroid hormone production. Chemical forms of dietary Se are diverse, including organic Se (selenomethionine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se (selenate and selenite). Previous studies have largely investigated and compared the health impacts of dietary Se on agricultural stock and humans, where dietary Se has shown various benefits, including enhanced growth performance, immune functions, and nutritional quality of meats, with reduced oxidative stress and inflammation, and finally enhanced thyroid health and fertility in humans. The emergence of nanoparticles presents a novel and innovative technology. Notably, Se in the form of nanoparticles (SeNPs) has lower toxicity, higher bioavailability, lower excretion in animals, and is linked to more powerful and superior biological activities (at a comparable Se dose) than traditional chemical forms of dietary Se. As a result, the development of tailored SeNPs for their use in intensive agriculture and as candidate for therapeutic drugs for human pathologies is now being actively explored. This review highlights the biological impacts of SeNPs on growth and reproductive performances, their role in modulating heat and oxidative stress and inflammation and the varying modes of synthesis of SeNPs.
Collapse
Affiliation(s)
- Alice Au
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Albaraa Mojadadi
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jia-Ying Shao
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gulfam Ahmad
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Andrology Department, Royal Women's and Children's Pathology, Carlton, VIC 3053, Australia
| | - Paul K Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Mostafa HY, El-Sayyad GS, Nada HG, Ellethy RA, Zaki EG. Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Arch Biochem Biophys 2023; 736:109539. [PMID: 36746259 DOI: 10.1016/j.abb.2023.109539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In this research, Orobanche aegyptiaca extract was utilized as an eco-friendly, and cost-effective green route for the construction of bimetallic silver-selenium nanoparticles (Ag-Se NPs). Bimetallic Ag-Se NPs were characterized by XRD, EDX, FTIR, HR-TEM, DLS, SEM/mapping and EDX studies. Antimicrobial, and antibiofilm potentials were tested against some selected pathogenic bacteria and unicellular fungi by ZOI, MIC, effect of UV exposure, and inhibition %. Reaction mechanism was assessed through membrane leakage assay and SEM imaging. HRTEM analysis confirmed the spherical nature and was ranged from 18.1 nm to 72.0 nm, and the avarage particle size is determined to be 30.58 nm. SEM imaging prove that bimetallic Ag-Se NPs presents as a bright particles, and both Ag and Se were distributed equally across O. aegyptiaca extract and Guar gum stabilizers. ZOI results showed that, bimetallic Ag-Se NPs have antimicrobial activity against S. aureus (20.0 nm), E. coli (18.5 nm), P. aeruginosa (12.6 nm), and C. albicans (18.2 nm). In addition, bimetallic Ag-Se NPs were able to inhibit the biofilm formation for S. aureus by 79.48%, for E. coli by 78.79%, for P. aeruginosa by 77.50%, and for C. albicans by 73.73%. Bimetallic Ag-Se NPs are an excellent disinfectant once it had excited by UV light. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of bimetallic Ag-Se NPs and found to be 244.21 μg/mL after the treatment with 1 mg/mL, which proves the antibacterial characteristics, and explains the creation of holes in the cell membrane of S. aureus producing in the oozing out of the proteins from the S. aureus cytoplasm. Based on the promising properties, they showed superior antimicrobial potential at low concentration (to avoid toxicity) and continued-phase durability, they may use in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Hamida Y Mostafa
- Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt; Chemical Engineering Department, Military Technical Collage (MTC), Egyptian Armed Forces, Cairo, Egypt.
| | - Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rania A Ellethy
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - E G Zaki
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|
27
|
Ni J, Ren L, Ma Y, Xiong H, Jian W. Selenium nanoparticles coated with polysaccharide-protein complexes from abalone viscera improve growth and enhance resistance to diseases and hypoxic stress in juvenile Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108624. [PMID: 36809842 DOI: 10.1016/j.fsi.2023.108624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The use of selenium nanoparticles (SeNPs) in aquaculture has been increasing gradually over the past few years. SeNPs enhance immunity, are highly effective against pathogens, and have low toxicity. In this study, SeNPs were prepared using polysaccharide-protein complexes (PSP) from abalone viscera. The acute toxicity of PSP-SeNPs to juvenile Nile tilapia and their effect on growth performance, intestinal tissue structure, antioxidation capacity, hypoxic stress, and Streptococcus agalactiae infection were investigated. The results showed that the spherical PSP-SeNPs were stable and safe, with an LC50 of 13.645 mg/L against tilapia, which was about 13-fold higher than that of sodium selenite (Na2SeO3). A basal diet supplemented with 0.1-1.5 mg/kg PSP-SeNPs improved the growth performance of tilapia juveniles to a certain extent, increased the intestinal villus length, and significantly enhanced the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT). PSP-SeNPs also enhanced the resistance of tilapia to hypoxic stress and Streptococcus agalactiae infection, with supplementation at 0.1-0.3 mg/kg exerting more obvious effects than 1.5 mg/kg. However, PSP-SeNPs at a concentration of 4.5 mg/kg and Na2SeO3 at 0.3 mg/kg negatively affected the growth, gut health, and the activity of the antioxidant enzymes of tilapia. Quadric polynomial regression analysis revealed that 0.1-1.2 mg/kg was the optimal PSP-SeNP supplementation concentration for tilapia feeds. The findings of this study lay a foundation for the application of PSP-SeNPs in aquaculture.
Collapse
Affiliation(s)
- Jing Ni
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, China
| | - Lirong Ren
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, China
| | - Ying Ma
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, China.
| | - Hejian Xiong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Wenjie Jian
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
28
|
Stabilization of Antioxidant and Anti-Inflammatory Activities of Nano-Selenium Using Anoectochilus burmannicus Extract as a Potential Novel Functional Ingredient. Nutrients 2023; 15:nu15041018. [PMID: 36839375 PMCID: PMC9962956 DOI: 10.3390/nu15041018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Anoectochilus burmannicus is an orchid that contains phenolic compounds and exhibits antioxidant and anti-inflammation properties. This study aimed to investigate whether its ethanolic extract (ABE) can be used as a reducing agent and/or a stabilizer of nano-selenium (SeNP) synthesis. SeNPs exhibited higher antioxidant activity than ABE-SeNPs. In contrast, ABE-SeNP (4 µM Se) had greater anti-inflammatory activity in LPS-induced macrophages than SeNPs. Interestingly, ABE acted as a stabilizer for SeNPs by preventing particle aggregation and preserving its antioxidant activity after long-term storage (90 days). Moreover, after the freeze-drying process, ABE-SeNPs could be completely reconstituted to suspension with significantly stable antioxidant and anti-inflammatory activities compared to freshly prepared particles, suggesting the cryoprotectant and/or lyoprotectant role of ABE. The present study shows the potential of ABE as an effective stabilizer for nanoparticles and provides evidence for the development of ABE-SeNPs as a food supplement or novel functional ingredient for health benefits.
Collapse
|
29
|
Almuqrin A, Kaur IP, Walsh LJ, Seneviratne CJ, Zafar S. Amelioration Strategies for Silver Diamine Fluoride: Moving from Black to White. Antibiotics (Basel) 2023; 12:298. [PMID: 36830209 PMCID: PMC9951939 DOI: 10.3390/antibiotics12020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Topical cariostatic agents have become a reasonable alternative for managing dental caries in young children. Silver diamine fluoride (SDF) is a practical topical approach to arrest caries and avoid extensive and risky dental treatment. However, the literature demonstrates a parental hesitation towards accepting SDF because of black unaesthetic tooth discolouration following application. The rapid oxidation of ionic silver darkens demineralised tooth structure permanently. In this regard, nano-metallic antimicrobials could augment or substitute for silver, and thereby enhance SDF aesthetic performance. Recently, biomedical research has drawn attention to selenium nanoparticles (SeNPs) due to their antimicrobial, antioxidant, and antiviral potencies. Various in vitro studies have examined the effect of SeNPs on the virulence of bacteria. This narrative review explores practical issues when using SDF and suggests future directions to develop it, focusing on antimicrobial metals. Several methods are described that could be followed to reduce the discolouration concern, including the use of nanoparticles of silver, of silver fluoride, or of selenium or other metals with antimicrobial actions. There could also be value in using remineralising agents other than fluoride, such as NPs of hydroxyapatite. There could be variations made to formulations in order to lower the levels of silver and fluoride in the SDF or even to replace one or both of the silver and fluoride components completely. Moreover, since oxidation processes appear central to the chemistry of the staining, adding SeNPs which have antioxidant actions could have an anti-staining benefit; SeNPs could be used for their antimicrobial actions as well. Future research should address the topic of selenium chemistry to optimise how SeNPs would be used with or in place of ionic silver. Incorporating other antimicrobial metals as nanoparticles should also be explored, taking into account the optimal physicochemical parameters for each of these.
Collapse
Affiliation(s)
| | | | - Laurence J. Walsh
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | | | | |
Collapse
|
30
|
Sprayed microcapsules of minerals for fortified food. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
31
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
32
|
Abozaid OAR, El-Sonbaty SM, Hamam NMA, Farrag MA, Kodous AS. Chitosan-Encapsulated Nano-selenium Targeting TCF7L2, PPARγ, and CAPN10 Genes in Diabetic Rats. Biol Trace Elem Res 2023; 201:306-323. [PMID: 35237941 PMCID: PMC9823051 DOI: 10.1007/s12011-022-03140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 01/11/2023]
Abstract
This study investigates the antidiabetic and antioxidant potential of chitosan-encapsulated selenium nanoparticles in streptozotocin-induced diabetic model. Glibenclamide was used as a reference antidiabetic drug. Forty-eight adult male Wistar rats were used along the study and divided equally into 6 groups of (I) normal control, (II) chitosan-encapsulated selenium nanoparticles (CTS-SeNPs), (III) glibenclamide, (IV) streptozotocin (STZ), (V) STZ + CTS-SeNPs, and (VI) STZ + Glib. The animals were sacrificed on the 35th day of the experiment. Serum glucose, insulin, IGF-1, ALT, AST, CK-MB, oxidative stress, lipid profile, and inflammatory parameters were subsequently assessed. Also, the expression level of TCF7L2, CAPN10, and PPAR-γ genes were evaluated using qPCR. In addition, histopathological studies on pancreatic tissue were carried out. The results revealed that STZ induced both diabetes and oxidative stress in normal rats, manifested by the significant changes in the studied parameters and in the physical structure of pancreatic tissue. Oral administration of CTS-SeNPs or Glib results in a significant amelioration of the levels of serum fasting blood glucose, insulin, IGF-1, AST, ATL, and CK-MB as compared with STZ-induced diabetic rats. CTS-SeNPs and Glib diminished the level of lipid peroxidation, increased total antioxidant capacity level, as well as possessed strong inhibition against serum α-amylase and α-glucosidase activities. Diabetic animals received CTS-SeNPs, or Glib demonstrated a significant (p < 0.05) decrease in the expression level of TCF7L2 and CAPN10 genes with a significant increase in the expression level of PPAR-γ gene, compared to STZ group. The above findings clarify the promising antidiabetic and antioxidant effect of CTS-SeNPs, recommending its inclusion in the currently used protocols for the treatment of diabetes and in the prevention of its related complications.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Clinical Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Neama M. A. Hamam
- Clinical Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Moustafa A. Farrag
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmad S. Kodous
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
33
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
34
|
Sentkowska A, Pyrzynska K. Does the Type Matter? Verification of Different Tea Types' Potential in the Synthesis of SeNPs. Antioxidants (Basel) 2022; 11:antiox11122489. [PMID: 36552697 PMCID: PMC9774132 DOI: 10.3390/antiox11122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium nanoparticles (SeNPs) are gaining popularity due to their potential biomedical applications. This work describes their green synthesis using various types of tea. Black, green, red and white tea infusions were tested for the content of polyphenolic compounds and antioxidant properties and then used in the synthesis of SeNPs. In each of the syntheses, nanoparticles with dimensions ranging from 3.9 to 12.5 nm, differing in shape and properties, were obtained. All of them were characterized by a very high ability to neutralize hydroxyl radicals, which was about three-times higher than for the tea infusions from which they were obtained. The main inconvenience in obtaining SeNPs was the difficulties with their purification, which should be a further stage in the described research.
Collapse
Affiliation(s)
- Aleksandra Sentkowska
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Correspondence:
| | - Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
35
|
Effect of Phytosynthesized Selenium and Cerium Oxide Nanoparticles on Wheat ( Triticum aestivum L.) against Stripe Rust Disease. Molecules 2022; 27:molecules27238149. [PMID: 36500240 PMCID: PMC9736662 DOI: 10.3390/molecules27238149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.
Collapse
|
36
|
Evaluation of the antioxidant activities of green synthesized selenium nanoparticles and their conjugated polyethylene glycol (PEG) form in vivo. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Menon S, Jayakodi S, Yadav KK, Somu P, Isaq M, Shanmugam VK, Chaitanyakumar A, Basavegowda N. Preparation of Paclitaxel-Encapsulated Bio-Functionalized Selenium Nanoparticles and Evaluation of Their Efficacy against Cervical Cancer. Molecules 2022; 27:7290. [PMID: 36364115 PMCID: PMC9655580 DOI: 10.3390/molecules27217290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 10/21/2024] Open
Abstract
The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a pH of 7.4 and 5.5, and further characterized using FTIR, DLS, zeta potential, and TEM to confirm their morphology, and the encapsulation of the drug was carried out using UPLC analysis. Quantitative evaluation of anti-cancer properties was performed via MTT analysis, apoptosis, gene expression analysis, cell cycle arrest, and over-production of ROS. The unique combination of phytochemicals from the seed extract, chitosan, paclitaxel, and selenium nanoparticles can be effectively utilized to combat cancerous cells. The production of the nanosystem has been demonstrated to be cost-effective and have unique characteristics, and can be utilized for improving future diagnostic approaches.
Collapse
Affiliation(s)
- Soumya Menon
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Kanti Kusum Yadav
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore 641114, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai 602105, India
| | - Mona Isaq
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga 577451, India
| | - Venkat Kumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500085, India
| | | |
Collapse
|
38
|
Elakraa AA, Salem SS, El-Sayyad GS, Attia MS. Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Adv 2022; 12:26603-26619. [PMID: 36275140 PMCID: PMC9486975 DOI: 10.1039/d2ra04717a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022] Open
Abstract
In this research, we reported for the first time the simple incorporation of antibiotic cefotaxime (CFM) with the synthesized Ag NPs, Se NPs, and bimetallic Ag-Se NPs by gamma rays, as a promising cost-effective, and eco-friendly method. The synthesized nanocomposites were characterized by UV-Vis. spectroscopy, XRD, EDX, HR-TEM, SEM/mapping, and EDX studies. The antimicrobial synergistic potential was investigated after CFM drug incorporation. Antibiofilm activity, growth curve assay, and effect of UV illumination were examined against some pathogenic microbes. The antibacterial reaction mechanism was evaluated by protein leakage assay and SEM imaging. HRTEM imaging confirmed the spherical shape and an average diameter of 10.95, 20.54, and 12.69 nm for Ag NPs, Se NPs, and Ag-Se NPs, respectively. Ag NPs-CFM, Se NPs-CFM, and Ag-Se NPs-CFM possessed antimicrobial activity against Staphylococcus aureus (40, 42, and 43 mm ZOI, respectively), Escherichia coli (33, 35, and 34 mm ZOI, respectively) and Candida albicans (25, 22, and 23 mm ZOI, respectively). CFM-incorporated Ag-Se NPs were able to inhibit biofilm formation of S. aureus (96.09%), E. coli (98.32%), and C. albicans (95.93%). Based on the promising results, the synthesized nanocomposites showed superior antimicrobial potential at low concentrations and continued-phase durability; they may find use in pharmaceutical, and biomedical applications.
Collapse
Affiliation(s)
- Abdelrahman A Elakraa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
- Chemical Industries Department Industrial Control Authority Cairo Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University New Galala City, Suez Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
39
|
Yang Q, Yang J, Sun S, Zhao J, Liang S, Feng Y, Liu M, Zhang J. Rhodojaponin III-Loaded Chitosan Derivatives-Modified Solid Lipid Nanoparticles for Multimodal Antinociceptive Effects in vivo. Int J Nanomedicine 2022; 17:3633-3653. [PMID: 35996527 PMCID: PMC9392492 DOI: 10.2147/ijn.s362443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 12/28/2022] Open
Abstract
Background Rhodojaponin III (RJ-III) is a bioactive diterpenoid, which is mainly found in Rhododendron molle G. Don (Ericaceae), a potent analgesia in traditional Chinese medicine with several years of clinical applications in the country. However, its clinical use is limited by its acute toxicity and poor pharmacokinetic profiles. To reduce such limitations, the current study incorporated RJ-III into the colloidal drug delivery system of hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified solid lipid nanoparticles (SLNs) to improve its sustained release and antinociceptive effects in vivo for oral delivery. Results The optimized RJ-III@HACC-SLNs were close to spherical, approximately 134 nm in size, and with a positive zeta potential. In vitro experiments showed that RJ-III@HACC-SLNs were stable in the simulated gastric fluid and had a prolonged release in PBS (pH = 6.8). Pharmacokinetic results showed that after intragastric administration in mice, the relative bioavailability of RJ-III@HACC-SLNs was 87.9%. Further, it was evident that the peak time, half-time, and mean retention time of RJ-III@HACC-SLNs were improved than RJ-III after the administration. In addition, pharmacodynamic studies revealed that RJ-III@HACC-SLNs markedly reduced the acetic acid, hot, and formalin-induced nociceptive responses in mice (P < 0.001), and notably increased the analgesic time (P < 0.01). Moreover, RJ-III@HACC-SLNs not only showed good biocompatibility with Caco-2 cells in vitro but its LD50 value was also increased by 1.8-fold as compared with that of RJ-III in vivo. Conclusion These results demonstrated that RJ-III@HACC-SLNs improved the pharmacokinetic characteristics of the RJ-III, thereby exhibiting toxicity-attenuating potential and antinociceptive enhancing properties. Consequently, HACC-SLNs loaded with RJ-III could become a promising oral formulation for pain management that deserves further investigation in the future.
Collapse
Affiliation(s)
- Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuigen Sun
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
40
|
Hou L, Qiu H, Zhu L, Gao S, Chen F. Selenide Chitosan Sulfate Improved the Hepatocyte Activity, Growth Performance, and Anti-oxidation Capacity by Activating the Thioredoxin Reductase of Chickens In Vitro and In Vivo. Biol Trace Elem Res 2022; 200:3798-3807. [PMID: 34757520 DOI: 10.1007/s12011-021-02962-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/04/2021] [Indexed: 01/16/2023]
Abstract
Chicken hepatocytes were cultured in vitro and 240 specific pathogen-free (SPF) white leghorns chickens (7 days old) were obtained. The hepatocytes and chickens were randomly allocated to one of six treatment groups: control group; chitosan (COS) group; sodium selenite (Na2SeO3) group; selenide chitosan (COS-Se) group; chitosan sulfate (LS-COS) group; and selenide chitosan sulfate (LS-COS-Se) group. Our results showed that LS-COS-Se increased (P < 0.05) the activities of thioredoxin reductase (TXNRD), anti-superoxide anion radical (antiO2-), and superoxide dismutase (SOD), the mRNA levels of thioredoxin reductase 1 (TXNRD1) and thioredoxin reductase 3 (TXNRD3), and the chicken body weight, but reduced (P < 0.05) the malondialdehyde (MDA) content and the lactate dehydrogenase (LDH) activity. Compared with COS and LS-COS, the LS-COS-Se treatment increased (P < 0.05) the activities of TXNRD, SOD, catalase (CAT), and the mRNA levels of TXNRD1 and TXNRD3, but reduced (P < 0.05) the MDA content in vitro, whereas, in vivo, it increased (P < 0.05) body weight on day 28; the activities of TXNRD, antiO2-, and SOD; and the mRNA levels of TXNRD1 and TXNRD3. Compared with Na2SeO3 and COS-Se, the LS-COS-Se treatment increased (P < 0.05) the TXNRD and SOD activities, the mRNA levels of TXNRD1 and TXNRD3 in vitro, increased (P < 0.05) the chicken body weight on day 28, and the TXNRD, antiO2-, and SOD activities, but reduced (P < 0.05) the MDA content. These results indicated that LS-COS-Se was a useful antioxidant that improved hepatocyte activity, growth performance, and anti-oxidation capacity in hepatocytes (in vitro) and SPF chicken (in vivo) by activating the TXNRD system.
Collapse
Affiliation(s)
- Lele Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiling Qiu
- Haidu College, Qingdao Agricultural University, Laiyang, 265200, China
| | - Lianqin Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shansong Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
41
|
Shang H, Zhang H, Zhao R, Yu M, Ma Y, Sun Z, Wu X, Xu Y. Selenium nanoparticles are effective in penetrating pine and causing high oxidative damage to Bursaphelenchus xylophilus in pine wilt disease control. PEST MANAGEMENT SCIENCE 2022; 78:3704-3716. [PMID: 35643940 DOI: 10.1002/ps.7013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Research on selenium nanoparticles (SeNPs) in chemical defense and chemotherapy of plants has developed rapidly owing to their high microbial toxicity, environmental safety, and degradability. Pine wilt disease (PWD) threatens pine forests worldwide; however, it is difficult to kill the nematodes (Bursaphelenchus xylophilus) inside the tree that cause PWD using traditional pesticide formulations. SeNPs could be the key to controlling PWD. RESULTS In this study, approximately 50 nm SeNPs were prepared using a simple and green method, and chitosan was used to increase their biocompatibility and stability. The preparation and characterization results showed that the prepared SeNPs coated with chitosan (SeNPs@CS) were spherical and evenly dispersed. The bioassay results showed that SeNPs@CS had an LC50 of 15.627 mg L-1 against B. xylophilus. In addition, the killing mechanism of SeNPs@CS against B. xylophilus was studied. Confocal microscopy and transmission electron microscopy demonstrated that B. xylophilus were killed by reactive oxygen species, and the penetration of nano-form materials to B. xylophilus was higher than that of non-nano-form materials. To verify the effective penetration of SeNPs in pine tissues, Cy5-labeled SeNPs@CS was observed inside pine needles and branches using frozen sections and confocal microscopy. In addition, the cytotoxicity of SeO2 and SeNPs@CS was tested, and the results showed that the cytotoxicity of SeNPs@CS to MC3T3-E1 cells was reduced. CONCLUSION These results show that SeNPs are expected to be used as a new strategy for the control of PWD with oxidative damage and high penetration to B. xylophilus and effective target penetration and biosafety. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyi Shang
- College of Science, China Agricultural University, Beijing, China
| | - Hongyan Zhang
- College of Science, China Agricultural University, Beijing, China
| | - Rui Zhao
- College of Science, China Agricultural University, Beijing, China
| | - Meng Yu
- College of Science, China Agricultural University, Beijing, China
| | - Yingjian Ma
- College of Science, China Agricultural University, Beijing, China
| | - Zhe Sun
- College of Science, China Agricultural University, Beijing, China
| | - Xuemin Wu
- College of Science, China Agricultural University, Beijing, China
| | - Yong Xu
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Ndwandwe BK, Malinga SP, Kayitesi E, Dlamini BC. Selenium nanoparticles enhanced potato starch film for active food packaging application. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bongekile K. Ndwandwe
- Department of Biotechnology and Food Technology University of Johannesburg Doornfontein South Africa
| | - Soraya P. Malinga
- Department of Chemical Sciences University of Johannesburg Doornfontein South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Sciences University of Pretoria Hatfield South Africa
| | - Bhekisisa C. Dlamini
- Department of Biotechnology and Food Technology University of Johannesburg Doornfontein South Africa
| |
Collapse
|
43
|
Gharbavi M, Mousavi M, Pour-Karim M, Tavakolizadeh M, Sharafi A. Biogenic and facile synthesis of selenium nanoparticles using Vaccinium arctostaphylos L. fruit extract and anticancer activity against in vitro model of breast cancer. Cell Biol Int 2022; 46:1612-1624. [PMID: 35819083 DOI: 10.1002/cbin.11852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
Biogenic synthesis of selenium nanoparticles (SeNPs) using plant extracts has emerged as a promising alternative approach to traditional chemical synthesis. The current study aims to introduce a safe, low-cost, and green synthesis of SeNPs using fresh fruit extract of Vaccinium arctostaphylos L. The biogenic synthesis of SeNPs was confirmed by different analyses including ultraviolet-visible spectrophotometry, Fourier transform infrared, and energy-dispersive X-ray. Also, the crystalline nature, size, and morphology of the obtained SeNPs were characterized by X-ray diffraction, dynamic light scattering, field emission scanning electron microscopy, and transmission electron microscopy techniques. The SeNPs were successfully synthesized with fruit extract of V. arctostaphylos L. in a regular spherical form and narrow size distribution with suitable zeta-potential values and exhibited appropriate biocompatibility. It revealed that the synthesized SeNPs can significantly inhibit the growth of 4T1 breast cancer cells with an IC50 of ∼84.19 ± 25.96 µg/ml after 72 h treatment. Overall, it can be concluded that the green synthesized SeNPs can be attractive, nontoxic, and eco-friendly candidates for drug delivery or medicinal applications.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mousa Mousavi
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahsa Pour-Karim
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Tavakolizadeh
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
44
|
Bano I, Skalickova S, Arbab S, Urbankova L, Horky P. Toxicological effects of nanoselenium in animals. J Anim Sci Biotechnol 2022; 13:72. [PMID: 35710460 PMCID: PMC9204874 DOI: 10.1186/s40104-022-00722-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/14/2022] [Indexed: 01/28/2023] Open
Abstract
The productivity and sustainability of livestock production systems are heavily influenced by animal nutrition. To maintain homeostatic balance in the body of the animal at different phases of life, the percentage of organically active minerals in livestock feed must be optimized. Selenium (Se) is a crucial trace mineral that is required for the maintenance of many functions of the body. Se nanoparticles (SeNPs) attracted considerable interest from researchers for a variety of applications a decade ago, owing to their extraordinary properties. SeNPs offer significant advantages over larger-sized materials, by having a comparatively wider surface area, increased surface energy, and high volume. Despite its benefits, SeNP also has toxic effects, therefore safety concerns must be taken for a successful application. The toxicological effects of SeNPs in animals are characterized by weight loss, and increased mortality rate. A safe-by-strategy to certify animal, human and environmental safety will contribute to an early diagnosis of all risks associated with SeNPs. This review is aimed at describing the beneficial uses and potential toxicity of SeNPs in various animals. It will also serve as a summary of different levels of SeNPs which should be added in the feed of animals for better performance.
Collapse
Affiliation(s)
- Iqra Bano
- Department of Physiology and Biochemistry, Faculty of Bioscience, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, 67210, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lenka Urbankova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
45
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Ge X, Cao Z, Chu L. The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11040791. [PMID: 35453476 PMCID: PMC9030860 DOI: 10.3390/antiox11040791] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Inorganic nanoparticles, such as CeO3, TiO2 and Fe3O4 could be served as a platform for their excellent performance in antioxidant effect. They may offer the feasibility to be further developed for their smaller and controllable sizes, flexibility to be modified, relative low toxicity as well as ease of preparation. In this work, the recent progress of these nanoparticles were illustrated, and the antioxidant mechanism of the inorganic nanoparticles were introduced, which mainly included antioxidant enzyme-mimetic activity and antioxidant ROS/RNS scavenging activity. The antioxidant effects and the applications of several nanoparticles, such as CeO3, Fe3O4, TiO2 and Se, are summarized in this paper. The potential toxicity of these nanoparticles both in vitro and in vivo was well studied for the further applications. Future directions of how to utilize these inorganic nanoparticles to be further applied in some fields, such as medicine, cosmetic and functional food additives were also investigated in this paper.
Collapse
|
47
|
Aboud HM, Hussein AK, Zayan AZ, Makram TS, Sarhan MO, El-Sharawy DM. Tailoring of Selenium-Plated Novasomes for Fine-Tuning Pharmacokinetic and Tumor Uptake of Quercetin: In Vitro Optimization and In Vivo Radiobiodistribution Assessment in Ehrlich Tumor-Bearing Mice. Pharmaceutics 2022; 14:pharmaceutics14040875. [PMID: 35456709 PMCID: PMC9032182 DOI: 10.3390/pharmaceutics14040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin (QRC) is a bioflavonoid with anti-inflammatory, antioxidant, and anticancer activities, yet QRC poor bioavailability has hampered its clinical implementation. The aim of the current work was to harness novasomes (NOVs), free fatty acid enriched vesicles, as a novel nano-cargo for felicitous QRC delivery with subsequent functionalization with selenium (SeNOVs), to extend the systemic bio-fate of NOVs and potentiate QRC anticancer efficacy through the synergy with selenium. QRC-NOVs were primed embedding oleic acid, Brij 35, and cholesterol adopting thin-film hydration technique according to Box–Behnken design. Employing Design-Expert® software, the impact of formulation variables on NOVs physicochemical characteristics besides the optimum formulation election were explored. Based on the optimal NOVs formulation, QRC-SeNOVs were assembled via electrostatic complexation/in situ reduction method. The MTT cytotoxicity assay of the uncoated, and coated nanovectors versus crude QRC was investigated in human rhabdomyosarcoma (RD) cells. The in vivo pharmacokinetic and biodistribution studies after intravenous administrations of technetium-99m (99mTc)-labeled QRC-NOVs, QRC-SeNOVs, and QRC-solution were scrutinized in Ehrlich tumor-bearing mice. QRC-NOVs and QRC-SeNOVs disclosed entrapment efficiency of 67.21 and 70.85%, vesicle size of 107.29 and 129.16 nm, ζ potential of −34.71 and −43.25 mV, and accumulatively released 43.26 and 31.30% QRC within 24 h, respectively. Additionally, QRC-SeNOVs manifested a far lower IC50 of 5.56 μg/mL on RD cells than that of QRC-NOVs (17.63 μg/mL) and crude QRC (38.71 μg/mL). Moreover, the biodistribution study elicited higher preferential uptake of 99mTc-QRC-SeNOVs within the tumorous tissues by 1.73- and 5.67-fold as compared to 99mTc-QRC-NOVs and 99mTc-QRC-solution, respectively. Furthermore, the relative uptake efficiency of 99mTc-QRC-SeNOVs was 5.78, the concentration efficiency was 4.74 and the drug-targeting efficiency was 3.21. Hence, the engineered QRC-SeNOVs could confer an auspicious hybrid nanoparadigm for QRC delivery with fine-tuned pharmacokinetics, and synergized antitumor traits.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: ; Tel.: +20-822162135
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Abdallah Z. Zayan
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tarek Saad Makram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Mona O. Sarhan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
| | - Dina M. El-Sharawy
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
- Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt
| |
Collapse
|
48
|
Selmani A, Seibert E, Tetyczka C, Kuehnelt D, Vidakovic I, Kornmueller K, Absenger-Novak M, Radatović B, Vinković Vrček I, Leitinger G, Fröhlich E, Bernkop-Schnürch A, Roblegg E, Prassl R. Thiolated Chitosan Conjugated Liposomes for Oral Delivery of Selenium Nanoparticles. Pharmaceutics 2022; 14:803. [PMID: 35456640 PMCID: PMC9032237 DOI: 10.3390/pharmaceutics14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to design a hybrid oral liposomal delivery system for selenium nanoparticles (Lip-SeNPs) to improve the bioavailability of selenium. Thiolated chitosan, a multifunctional polymer with mucoadhesive properties, was used for surface functionalization of Lip-SeNPs. Selenium nanoparticle (SeNP)-loaded liposomes were manufactured by a single step microfluidics-assisted chemical reduction and assembling process. Subsequently, chitosan-N-acetylcysteine was covalently conjugated to the preformed Lip-SeNPs. The Lip-SeNPs were characterized in terms of composition, morphology, size, zeta potential, lipid organization, loading efficiency and radical scavenging activity. A co-culture system (Caco-2:HT29-MTX) that integrates mucus secreting and enterocyte-like cell types was used as a model of the human intestinal epithelium to determine adsorption, mucus penetration, release and transport properties of Lip-SeNPs in vitro. Thiolated Lip-SeNPs were positively charged with an average size of about 250 nm. Thiolated Lip-SeNPs tightly adhered to the mucus layer without penetrating the enterocytes. This finding was consistent with ex vivo adsorption studies using freshly excised porcine small intestinal tissues. Due to the improved mucoadhesion and retention in a simulated microenvironment of the small intestine, thiolated Lip-SeNPs might be a promising tool for oral selenium delivery.
Collapse
Affiliation(s)
- Atiđa Selmani
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (A.S.); (C.T.); (E.R.)
| | - Elisabeth Seibert
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (A.S.); (C.T.); (E.R.)
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria;
| | - Ivan Vidakovic
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| | - Karin Kornmueller
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| | - Markus Absenger-Novak
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; (M.A.-N.); (E.F.)
| | - Borna Radatović
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, 10000 Zagreb, Croatia;
| | | | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria;
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; (M.A.-N.); (E.F.)
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry and Biomedicine, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (A.S.); (C.T.); (E.R.)
| | - Ruth Prassl
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria; (E.S.); (I.V.); (K.K.)
| |
Collapse
|
49
|
Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb Pathog 2022; 167:105544. [DOI: 10.1016/j.micpath.2022.105544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
50
|
Effects of Selenium Nanoparticles on Preventing Patulin-Induced Liver, Kidney and Gastrointestinal Damage. Foods 2022; 11:foods11050749. [PMID: 35267382 PMCID: PMC8909330 DOI: 10.3390/foods11050749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Patulin (PAT) is a toxic fungal metabolite, and oxidative damage was proved to be its important toxicity mechanism. Selenium nanoparticles (SeNPs) were prepared by reducing sodium selenite with chitosan as a stabilizer and used for preventing PAT-induced liver, kidney and gastrointestinal damage. SeNPs have good dispersibility, in vitro antioxidant activity, and are much less cytotoxic than sodium selenite. Cell culture studies indicated that SeNPs can effectively alleviate PAT-induced excessive production of intracellular ROS, the decline of glutathione peroxidase activity, and the suppression of cell viability. Evaluation of serum biochemical parameters, histopathology, oxidative stress biomarkers and activities of antioxidant enzymes in a mouse model showed that pre-treatment with SeNPs (2 mg Se/kg body weight) could ameliorate PAT-induced oxidative damage to the liver and kidneys of mice, but PAT-induced gastrointestinal oxidative damage and barrier dysfunction were not recovered by SeNPs, possibly because the toxin doses suffered by the gastrointestinal as the first exposed tissues exceeded the regulatory capacity of SeNPs. These results suggested that a combination of other strategies may be required to completely block PAT toxicity.
Collapse
|