1
|
Yue L, Li Y, Luo Y, Alarfaj AA, Shi Y. Pelargonidin inhibits cell growth and promotes oxidative stress-mediated apoptosis in lung cancer A549 cells. Biotechnol Appl Biochem 2024; 71:1195-1203. [PMID: 38853344 DOI: 10.1002/bab.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer has the worst prognosis with an average 5-year survival rate of only 10%-20%. Lung cancer has the highest prevalence rate and a second most common cause of cancer-associated mortalities worldwide. The present study was planned to explore the anticancer effects of pelargonidin against the lung cancer A549 cells via analyzing oxidative stress-mediated apoptosis. The viability of both control and pelargonidin-treated A549 cells was analyzed using the MTT cytotoxicity assay at different time periods. The levels of endogenous ROS generation, mitochondrial membrane potential (Δψm), and apoptosis were assessed using corresponding fluorescent staining assays. The levels of oxidative stress biomarkers, including TBARS, SOD, CAT, and GSH, in the cell lysates of control and pelargonidin-treated A549 cells were examined using the assay kits. The pelargonidin treatment substantially suppressed the A549 cell growth. Further, pelargonidin promoted the ROS production and depleted the Δψm levels in the A549 cells. The fluorescent staining assays witnessed the occurrence of increased apoptosis in the pelargonidin-treated A549 cells. The pelargonidin also boosted the TBARS and reduced the antioxidant levels thereby promoted the oxidative stress-regulated apoptosis in the A549 cells. In summary, the findings' results of the current study demonstrated an anticancer activity of pelargonidin on A549 cells. The pelargonidin treatment substantially decreased the growth and encouraged the oxidative stress-regulated apoptosis in A549 cells. Therefore, it was evident that the pelargonidin could be employed as an effective anticancer candidate to treat the lung cancer.
Collapse
Affiliation(s)
- Liwei Yue
- Department of Pneumology, Shandong Provincial Third Hospital, Jinan, China
| | - Ying Li
- Department of Pneumology, Shandong Provincial Third Hospital, Jinan, China
| | - Yuting Luo
- Department of Pneumology, Jinan Third People's Hospital, Jinan, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yubo Shi
- Department of Cardiothoracic Surgery, Yantaishan Hospital, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Ningning Y, Ying X, Xiang L, Yue S, Zhongda W, Ruoyu J, Hanwen S, Weiwei T, Yafeng Z, Junjie M, Xiaolan C. Danggui-Shaoyao San alleviates cognitive impairment via enhancing HIF-1α/EPO axis in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118306. [PMID: 38723920 DOI: 10.1016/j.jep.2024.118306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Invigorating blood circulation to remove blood stasis is a primary strategy in TCM for treating vascular dementia (VaD). Danggui-Shaoyao San (DSS), as a traditional prescription for neuroprotective activity, has been proved to be effective in VaD treatment. However, its precise molecular mechanisms remain incompletely understood. AIM OF THE STUDY The specific mechanism underlying the therapeutic effects of DSS on VaD was explored by employing network pharmacology as well as in vivo and in viro experiment validation. MATERIALS AND METHODS We downloaded components of DSS from the BATMAN-TCM database for target prediction. The intersection between the components of DSS and targets, PPI network, as well as GO and KEGG enrichment analysis were then performed. Subsequently, the potential mechanism of DSS predicted by network pharmacology was assessed and validated through VaD rat model induced by 2VO operation and CoCl2-treated PC12 cells. Briefly, the DSS extract were first quantified by HPLC. Secondly, the effect of DSS on VaD was studied using MWM test, HE staining and TUNEL assay. Finally, the molecular mechanism of DSS against VaD was validated by Western blot and RT-QPCR experiments. RESULTS Through network analysis, 137 active ingredients were obtained from DSS, and 67 potential targets associated with DSS and VaD were identified. GO and KEGG analysis indicated that the action of DSS on VaD primarily involves hypoxic terms and HIF-1 pathway. In vivo validation, cognitive impairment and neuron mortality were markedly ameliorated by DSS. Additionally, DSS significantly reduced the expression of proteins related to synaptic plasticity and neuron apoptosis including PSD-95, SYP, Caspase-3 and BCL-2. Mechanistically, we confirmed DSS positively modulated the expression of HIF-1α and its downstream proteins including EPO, p-EPOR, STAT5, EPOR, and AKT1 in the hippocampus of VaD rats as well as CoCl2-induced PC12 cells. HIF-1 inhibitor YC-1 significantly diminished the protection of DSS on CoCl2-induced PC12 cell damage, with decreased HIF-1α, EPO, EPOR expression. CONCLUSION Our results initially demonstrated DSS could exert neuroprotective effects in VaD. The pharmacological mechanism of DSS may be related to its positive regulation on HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Yuan Ningning
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Ying
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Xiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Su Yue
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wang Zhongda
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Ruoyu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi Hanwen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Weiwei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang Yafeng
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Ma Junjie
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Xiaolan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
4
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Krętowski R, Szynaka B, Jabłońska-Trypuć A, Kiełtyka-Dadasiewicz A, Cechowska-Pasko M. The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:5436. [PMID: 38791473 PMCID: PMC11121306 DOI: 10.3390/ijms25105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| |
Collapse
|
6
|
Uzdrowska K, Knap N, Gulczynski J, Kuban-Jankowska A, Struck-Lewicka W, Markuszewski MJ, Bączek T, Izycka-Swieszewska E, Gorska-Ponikowska M. Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap? Int J Nanomedicine 2024; 19:3973-3989. [PMID: 38711615 PMCID: PMC11073537 DOI: 10.2147/ijn.s447397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.
Collapse
Affiliation(s)
- Katarzyna Uzdrowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Narcyz Knap
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Jacek Gulczynski
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | | | | | | - Tomasz Bączek
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, 80-416, Poland
| | - Ewa Izycka-Swieszewska
- Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | |
Collapse
|
7
|
Kashani Khatib Z, Maleki A, Pourfatollah AA, Hamidieh AA, Ferdowsi S. Antileukemia Activity of Human Natural Killer Cell-Derived Nanomagic Bullets against Acute Myeloid Leukemia (AML). Int J Hematol Oncol Stem Cell Res 2024; 18:123-139. [PMID: 38868808 PMCID: PMC11166499 DOI: 10.18502/ijhoscr.v18i2.15368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2024] Open
Abstract
Background: Cancer is among the serious health problems of the medical world, for treatment of which severe treatments are used. However, the prognosis of cancer patients is still poor. The application of NK cell-derived exosomes (NK-Exo) is a new method for cancer immunotherapy. These nanoparticles with a size range of 30-120 nm are a small model of mother cells. In this study, the anti-tumor activity of NK-Exo and LAK-Exo (activated NK cell-derived exosome) against acute myeloid leukemia (AML) is investigated in vitro. Materials and Methods: The MACS method was performed for the separation of NK cells from the buffy coats of healthy donors, and an EXOCIBE kit was used for the isolation of NK-Exo. After treating the KG-1 cell line with different doses of NK-Exo, MTT assay, and annexin V-PE were done to evaluate cell proliferation and apoptosis, respectively, and for confirmation of involved proteins, Real-Time PCR and western blotting were performed. Results: Anti-tumor activity of NK-Exo and LAK-Exo was dose- and time-dependent. Their highest activities were observed following 48 hours of incubation with 50 µg/ml exosome (p<0.0001). However, this cytotoxic activity was also seen over a short period of time with low concentrations of NK-Exo (p<0.05) and LAK-Exo (p<0.001).The cytotoxic effect of LAK-Exo on target cells was significantly higher than NK-EXO. The induction of apoptosis by different pathways was time-point dependent. Total apoptosis was 34.56% and 51.6% after 48 hours of tumor cell coculture with 50µg/ml NK-Exo and LAK-Exo, respectively. Significant expression of CASPASE3, P38, and CYTOCHROME C genes was observed in the cells treated with 50 µg/ml NK-Exo and LAK-Exo. Conclusion: Our study confirmed the antileukemia activity of NK-Exo against AML tumor cells in vitro. Therefore, NK-Exo can be considered as a promising and effective treatment for leukemia therapy.
Collapse
Affiliation(s)
- Zahra Kashani Khatib
- Department of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Maleki
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfatollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amir Ali Hamidieh
- Department of Pediatric Stem Cell Transplantation, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Ferdowsi
- High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization, Tehran, Iran
| |
Collapse
|
8
|
Gunes BA, Kirlangic OF, Kilic M, Sunguroglu A, Ozgurtas T, Sezginer EK, Boyacioglu B, Unver H, Yildiz M. Palladium Metal Nanocomposites Based on PEI-Functionalized Nitrogen-Doped Graphene Quantum Dots: Synthesis, Characterization, Density Functional Theory Modeling, and Cell Cycle Arrest Effects on Human Ovarian Cancer Cells. ACS OMEGA 2024; 9:13342-13358. [PMID: 38524449 PMCID: PMC10956410 DOI: 10.1021/acsomega.3c10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
In this study, the synthesis, characterization, density functional theory calculations (DFT), and effect of polyethylenimine (PEI)-functionalized nitrogen-doped graphene quantum dots (PEI N-GQDs) and their palladium metal nanoparticles nanocomposites (PdNPs/PEI N-GQDs) on cancer cells were extensively investigated. The focus also includes investigating their cytotoxic and apoptotic effects on ovarian cancer cells, which pose a serious risk to women's health and have high death rates from delayed diagnosis, inadequate response to treatment, and decreased survival. Graphene quantum dots and their palladium nanocomposites were differentially effective against ovarian cancer cell lines. In particular, the smaller particle size and morphology of PdNPs/PEI N-GQDs nanocomposites compared with PEI N-GQDs probably enhance their activity through highly improved uptake by cells. These findings emphasize the importance of particle size in composite drugs for efficient cancer treatment. DFT results revealed that the Pd-containing nanocomposite, with a smaller highest occupied molecular orbital-lowest unoccupied molecular orbital gap, exhibited higher reactivity and anticancer effects in human ovarian cancer cell line, OVCAR-3. Significantly, the application of nanocomposites to ovarian cancer cells initiated apoptosis, offering valuable insights into the intricate interplay between nanomaterials and cancer biology.
Collapse
Affiliation(s)
- Buket Altinok Gunes
- Vocational
School of Health Services, Ankara University, Ankara 06290, Turkiye
| | | | - Murat Kilic
- Vocational
School of Health Services, Ankara University, Ankara 06290, Turkiye
| | - Asuman Sunguroglu
- Department
of Medical Biology, School of Medicine, Ankara University, Ankara 06620, Turkiye
| | - Taner Ozgurtas
- Department
of Medical Biochemistry, Gulhane School of Medicine, University of Health Sciencies, Ankara 06018, Turkiye
| | - Ecem Kaya Sezginer
- Department
of Biochemistry, Faculty of Pharmacy, Ankara
University, Ankara 06100, Turkiye
| | - Bahadir Boyacioglu
- Vocational
School of Health Services, Ankara University, Ankara 06290, Turkiye
| | - Huseyin Unver
- Department
of Physics, Faculty of Science, Ankara University, Ankara 06100, Turkiye
| | - Mustafa Yildiz
- Department
of Chemistry, Faculty of Sciences, Canakkale
Onsekiz Mart University, Canakkale 17100, Turkiye
| |
Collapse
|
9
|
Liu G, Zhou W, Zhang X, Zhu J, Xu X, Li Y, Zhang J, Wen C, Liang L, Liu X, Xu X. Toxicity and oxidative stress of HepG2 and HL-7702 cells induced by PAH4 using oil as a carrier. Food Res Int 2024; 178:113988. [PMID: 38309887 DOI: 10.1016/j.foodres.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), a widespread class of food pollutants, are commonly exposed to humans along with edible oil. The dietary exposure pattern of PAH4 was simulated to study the toxicity and oxidative stress of oil-based PAH4 on hepatocytes. The findings demonstrated that oil-based PAH4 induced cell viability and mitochondrial membrane potential decreased and promoted apoptosis and oxidative stress in a concentration-dependent manner. Benzo[a]pyrene had the strongest toxicity and HL-7702 cells were more sensitive to toxicity than HepG2 cells, due to differences in induced CYP1A enzyme activity. Oil-based PAH4 had greater cytotoxicity than PAH4, attributed to the synergistic effect of oil and PAH4. Furthermore, oil-based PAH4 induced oxidative stress in HepG2 and HL-7702 cells through the same AHR-Nrf2-KEAP1 pathway, which was elucidated by detecting genes and proteins expression. This study lays the foundation for elucidating the harm of dietary exposure to PAHs and reminds us that food composition may increase the harm of PAHs.
Collapse
Affiliation(s)
- Guoyan Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wanli Zhou
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xu Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jie Zhu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xiaowei Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
10
|
Afiat BC, Zhao D, Wong VHY, Perera ND, Turner BJ, Nguyen CTO, Bui BV. Age-related deficits in retinal autophagy following intraocular pressure elevation in autophagy reporter mouse model. Neurobiol Aging 2023; 131:74-87. [PMID: 37586253 DOI: 10.1016/j.neurobiolaging.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
This study quantified age-related changes to retinal autophagy using the CAG-RFP-EGFP-LC3 autophagy reporter mice and considered how aging impacts autophagic responses to acute intraocular pressure (IOP) stress. IOP was elevated to 50 mm Hg for 30 minutes in 3-month-old and 12-month-old CAG-RFP-EGFP-LC3 (n = 7 per age group) and Thy1-YFPh transgenic mice (n = 3 per age group). Compared with younger eyes, older eyes showed diminished basal autophagy in the outer retina, while the inner retina was unaffected. Autophagic flux (red:yellow puncta ratio) was elevated in the inner plexiform layer. Three days following IOP elevation, older eyes showed poorer functional recovery, most notably in ganglion cell responses compared to younger eyes (12 months old: -33.4 ± 5.3% vs. 3 months mice: -13.4 ± 4.5%). This paralleled a reduced capacity to upregulate autophagic puncta volume in the inner retina in older eyes, a response that was seen in younger eyes. Age-related decline in basal and stress-induced autophagy in the retina is associated with greater retinal ganglion cells' susceptibility to IOP elevation.
Collapse
Affiliation(s)
- Brianna C Afiat
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
11
|
Hao Z, Lu Q, Zhou Y, Liang Y, Gao Y, Ma H, Xu Y, Wang H. Molecular characterization of MyD88 as a potential biomarker for pesticide-induced stress in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105610. [PMID: 37945249 DOI: 10.1016/j.pestbp.2023.105610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/12/2023]
Abstract
The widespread use of pesticides hampers the immune system of non-target organisms, however, there is a lack of common biomarkers to detect such effects. Myeloid differentiation primary response factor 88 (MyD88) is a crucial junction protein in the Toll-like receptor signaling pathway, which plays an important role in the inflammatory response. In this study, we investigated MyD88 as a potential biomarker for pesticide-induced stress. Phylogenetic analysis revealed that MyD88 was a conserved protein in the evolution of vertebrates and invertebrates. MyD88s usually have death domain (DD) and Toll/interleukin-1 receptor (TIR) domain. Bombyx mori (B. mori) is an important economic insect that is sensitive to toxic substances. We found microbial pesticides enhanced the expression level of MyD88 in B. mori. Transcriptome analysis demonstrated that MyD88 expression level was increased in the fatbody after dinotefuran exposure, a third-generation neonicotinoid pesticide. Moreover, the expression of MyD88 was upregulated in fatbody and midgut by imidacloprid, a first-generation neonicotinoid pesticide. Additionally, insect growth regulator (IGR) pesticides, such as methoprene and fenoxycarb, could induce MyD88 expression in the fatbody of B. mori. These results indicated that MyD88 is a potential biomarker for pesticide-induced stress in B. mori. This study provides novel insights into screening common biomarkers for multiple pesticide stresses and important implications for the development of more sustainable pest management strategies.
Collapse
Affiliation(s)
- Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huanyan Ma
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
13
|
Siqueira PR, Souza JP, Venturini FP, Carmo TLL, Azevedo VC, Estevão BM, Bonomo MM, Santos FA, Zucolotto V, Fernandes MN. rGO outperforms GO in generating oxidative stress and DNA strand breaks in zebrafish liver cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106640. [PMID: 37595501 DOI: 10.1016/j.aquatox.2023.106640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/20/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) are both widely applicable and there is a massive production throughout the world which imply in inevitable contamination in the aquatic environment by their wastes. Nevertheless, information about their interaction at the cellular level in fish is still scarce. We investigated the metabolic activity, reactive oxygen species (ROS) production, responses of antioxidant defenses, and total antioxidant capacity (TAC) as well as oxidative stress and DNA integrity in zebrafish liver cells (ZFL) exposed to (0.001, 0.01, 0.1 and 1 µg mL-1) of GO and rGO after two exposure period (24 and 72 h). Higher ROS production and no significant changes in the antioxidant defenses resulted in lipid peroxidation in cells exposed to rGO. Cells exposed to GO increased the activity of antioxidant defenses sustaining the TAC and avoiding lipid peroxidation. Comet assay showed that both, GO and rGO, caused DNA strand breaks after 24 h of exposure; however, only rGO caused DNA damage after 72 h of exposure. The exposure to rGO was significantly more harmful to ZFL cells than GO, even at very low concentrations. The cells showed a high capacity to neutralize ROS induced by GO preventing genotoxic effects and metabolic activity, thus sustaining cell viability. The time of exposure had different impacts for both nanomaterials, GO caused more changes in 24 h showing recovery after 72 h, while cells exposed to rGO were jeopardized at both exposure times. These results indicate that the reduction of GO by removal of the oxygen functional groups (rGO) increased toxicity leading to adverse effects in the cells, even at very low concentrations.
Collapse
Affiliation(s)
- Priscila Rodrigues Siqueira
- Postgraduate Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil.
| | - Jaqueline Pérola Souza
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Francine Perri Venturini
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | | | | | - Bianca Martins Estevão
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Marina Marques Bonomo
- Postgraduate Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Fabrício Aparecido Santos
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Valtencir Zucolotto
- Institute of Physics of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970, São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Postgraduate Program in Ecology and Natural Resources, Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
14
|
Uzhviyuk SV, Khramtsov PV, Raev MB, Timganova VP, Bochkova MS, Khaziakhmatova OG, Malashchenko VV, Litvinova LS, Zamorina SA. Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System. Bull Exp Biol Med 2023:10.1007/s10517-023-05830-1. [PMID: 37338769 DOI: 10.1007/s10517-023-05830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 06/21/2023]
Abstract
The interaction of graphene oxide nanoparticles with human peripheral blood mononuclear cells was studied using the Cell-IQ continuous monitoring system for living cells. We used graphene oxide nanoparticles of various sizes coated with linear or branched polyethylene glycol (PEG) in concentrations of 5 and 25 μg/ml. After 24-h incubation with graphene oxide nanoparticles, the increase in the number of peripheral blood mononuclear cells at visualization points decreased; nanoparticles coated with branched PEG more markedly suppressed cell growth in culture. In the presence of graphene oxide nanoparticles, peripheral blood mononuclear cells retained high viability in culture after daily monitoring in the Cell-IQ system. The studied nanoparticles were engulfed by monocytes and the type of PEGylation had no effect on this process. Thus, graphene oxide nanoparticles reduced the increase in peripheral blood mononuclear cell mass during dynamic observation in the Cell-IQ system without reducing their viability.
Collapse
Affiliation(s)
- S V Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M B Raev
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - V P Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - O G Khaziakhmatova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | | | - L S Litvinova
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | - S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
15
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
16
|
Žilienė E, Inčiūra A, Ugenskienė R, Juozaitytė E. Pathomorphological Manifestations and the Course of the Cervical Cancer Disease Determined by Variations in the TLR4 Gene. Diagnostics (Basel) 2023; 13:1999. [PMID: 37370894 DOI: 10.3390/diagnostics13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Cervical cancer (CC) is often associated with human papillomavirus (HPV). Chronic inflammation has been described as one of the triggers of cancer. The immune system fights diseases, including cancer. The genetic polymorphism of pathogen recognition receptors potentially influences the infectious process, development, and disease progression. Many candidate genes SNPs have been contradictory demonstrated to be associated with cervical cancer by association studies, GWAS. TLR4 gene activation can promote antitumor immunity. It can also result in immunosuppression and tumor growth. Our study aimed to investigate eight selected polymorphisms of the TLR4 gene (rs10759932, rs1927906, rs11536898, rs11536865, rs10983755, rs4986790, rs4986791, rs11536897) and to determine the impact of polymorphisms in genotypes and alleles on the pathomorphological characteristics and progression in a group of 172 cervical cancer subjects with stage I-IV. Genotyping was performed by RT-PCR assay. We detected that the CA genotype and A allele of rs11536898 were significantly more frequent in patients with metastases (p = 0.026; p = 0.008). The multivariate logistic regression analysis confirmed this link to be significant. The effect of rs10759932 and rs11536898 on progression-free survival (PFS) and overall survival (OS) has been identified as important. In univariate and multivariate Cox analyses, AA genotype of rs11536898 was a negative prognostic factor for PFS (p = 0.024; p = 0.057, respectively) and OS (p = 0.008; p = 0.042, respectively). Rs11536898 C allele predisposed for longer PFS (univariate and multivariate: p = 0.025; p = 0.048, respectively) and for better OS (univariate and multivariate: p = 0.010; p = 0.043). The worse prognostic factor of rs10759932 in a univariate and multivariate Cox analysis for survival was CC genotype: shorter PFS (p = 0.032) and increased risk of death (p = 0.048; p = 0.015, respectively). The T allele of rs10759932 increased longer PFS (univariate and multivariate: p = 0.048; p = 0.019, respectively) and longer OS (univariate and multivariate: p = 0.037; p = 0.009, respectively). Our study suggests that SNPs rs10759932 and rs11536898 may have the potential to be markers contributing to the assessment of the cervical cancer prognosis. Further studies, preferably with larger groups of different ethnic backgrounds, are needed to confirm the results of the current study.
Collapse
Affiliation(s)
- Eglė Žilienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Arturas Inčiūra
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Rasa Ugenskienė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Elona Juozaitytė
- Institute of Oncology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
17
|
Wang K, Lu H, Wang X, Liu Q, Hu J, Liu Y, Jin M, Kong D. Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC. Front Pharmacol 2023; 14:1200538. [PMID: 37284309 PMCID: PMC10239820 DOI: 10.3389/fphar.2023.1200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Metabolic reprogramming is a hallmark of human cancer. Cancer cells exhibit enhanced glycolysis, which allows glycolytic intermediates to be diverted into several other biosynthetic pathways, such as serine synthesis. Here, we explored the anti-cancer effects of the pyruvate kinase (PK) M2 inhibitor PKM2-IN-1 alone or in combination with the phosphoglycerate dehydrogenase (PHGDH) inhibitor NCT-503 in human NSCLC A549 cells in vitro and in vivo. PKM2-IN-1 inhibited proliferation and induced cell cycle arrest and apoptosis, with increased glycolytic intermediate 3-phosphoglycerate (3-PG) level and PHGDH expression. The combination of PKM2-IN-1 and NCT-503 further suppressed cancer cell proliferation and induced G2/M phase arrest, accompanied by the reduction of ATP, activation of AMPK and inhibition of its downstream mTOR and p70S6K, upregulation of p53 and p21, as well as downregulation of cyclin B1 and cdc2. In addition, combined treatment triggered ROS-dependent apoptosis by affecting the intrinsic Bcl-2/caspase-3/PARP pathway. Moreover, the combination suppressed glucose transporter type 1 (GLUT1) expression. In vivo, co-administration of PKM2-IN-1 and NCT-503 significantly inhibited A549 tumor growth. Taken together, PKM2-IN-1 in combination with NCT-503 exhibited remarkable anti-cancer effects through induction of G2/M cell cycle arrest and apoptosis, in which the metabolic stress induced ATP reduction and ROS augmented DNA damage might be involved. These results suggest that the combination of PKM2-IN-1 and NCT-503 might be a potential strategy for the therapy of lung cancer.
Collapse
Affiliation(s)
- Kaixuan Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hao Lu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xinmiao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Qingxia Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinxia Hu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin, China
- Institute of Otolaryngology of Tianjin, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Zheng Z, Halifu A, Ma J, Liu L, Fu Q, Yi B, Du E, Tian D, Xu Y, Zhang Z, Zhu J. Low-dose graphene oxide promotes tumor cells proliferation by activating PI3K-AKT-mTOR signaling via cellular membrane protein integrin αV. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121817. [PMID: 37182579 DOI: 10.1016/j.envpol.2023.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Along with the increasing production and application of graphene oxide (GO), its environmental health and safety (EHS) risks have become a global concern. Numerous studies have investigated the biosafety and toxicity mechanisms associated with GO, however, the majority of previous studies were based on its direct toxic dose, which could not reflect the realistic state of environmental exposure of GO with an indirect toxic dose (low dose). Meanwhile, the effects of low-dose GO on the progression of tumors are still unclearly. Herein, we found that GO can promote multiple types of tumor cell proliferation under its low-dose treatment. Moreover, the lateral size of GO has no obvious distinction on its promoting effect on tumor proliferation. The mechanistic investigation revealed that low-dose GO treatment increased the expression level of integrin αV protein, a cell membrane receptor, and further lead to the constitutively activated PI3K/AKT/mTOR signaling pathway and promoted mitotic progression. Collectively, these findings increased our understanding of the detrimental effects of GO in promoting tumor proliferation, as well as improved our biosafety assessment at its realistic exposure doses.
Collapse
Affiliation(s)
- Zhiwen Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Abuduliaizezi Halifu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Leyi Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qingfeng Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bocun Yi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - E Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dawei Tian
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
19
|
Jiang H, Guo Z, Zeng K, Tang H, Tan H, Min R, Huang C. IL-1β knockdown inhibits cigarette smoke extract-induced inflammation and apoptosis in vascular smooth muscle cells. PLoS One 2023; 18:e0277719. [PMID: 36791122 PMCID: PMC9931126 DOI: 10.1371/journal.pone.0277719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE This study was aimed to investigate the role of interleukin-1β (IL-1β) in cigarette smoke extract (CSE)-induced apoptosis in vascular smooth muscle cells and the underlying mechanism in a rat derived cell line. METHODS Rat thoracic aortic smooth muscle cells (A7r5) were divided into six groups including control, CSE (model), CSE+ overexpression empty vector (OvExp-EV), CSE+IL-1β knockdown (KD), and CSE+ IL-1β knockdown empty vector (KD-EV). The mRNA expression levels of IL-1β and pregnancy-associated plasma protein A (PAPP-A) were detected by quantitative polymerase chain reaction (qPCR). The apoptosis of A7r5 cells was detected by flow cytometry. The expression levels of inflammatory mediators (TNFα, IL-6 and IL-8) and apoptotic proteins (Bax and Bcl-2) were determined by western blot. RESULTS CSE induced significant apoptosis in vascular smooth muscle cells (P < 0.01) and elevated the mRNA levels of IL-1β and PAPP-A (P < 0.01). CSE administration increased protein expression of Bax, TNF-α, IL-6, and IL-8, with significantly reduced Bcl-2 expression (P < 0.01). IL-1β knockdown significantly decreased cell apoptosis via regulating the expression of these proteins (P < 0.05 or P < 0.01). CONCLUSION IL-1β is involved in CSE-induced PAPP-A expression and apoptosis in vascular smooth muscle cells, which might be considered as a target for preventing of cardiovascular diseases caused by cigarette smoking.
Collapse
Affiliation(s)
- Hongfeng Jiang
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Zhangqiang Guo
- Department of Emergency Medicine, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zeng
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Tang
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hanxuan Tan
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Rui Min
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Caihua Huang
- Department of Geriatrics, Wuhan Fourth Hospital, Affiliated Puai Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Liang Z, Zhang N, Wang X, Zhang J, Li K, Lei T. Epothilone B inactivation of Sirtuin1 promotes mitochondrial reactive oxygen species to induce dysfunction and ferroptosis of Schwann cells. Eur J Pharm Sci 2023; 181:106350. [PMID: 36496165 DOI: 10.1016/j.ejps.2022.106350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Epothilone B (EpoB) is an FDA-approved anti-neoplastic agent used to treat metastatic breast cancer; However, its usage is limited due to its severe peripheral neurotoxicity. Ferroptosis is a type of programmed cell death triggered by iron accumulation, and it is induced by lipid peroxidation. Ferroptosis has been linked to multiple diseases, including cancer, type 2 diabetes, and neurodegenerative disorders. Here, we assessed the role of ferroptosis in EpoB-induced neural dysfunction. Our results revealed that EpoB induced ferroptosis, which was significantly reduced by the ferroptosis inhibitor Fer-1. In addition, EpoB decreased the mitochondrial membrane potential and the cytochrome c levels in Schwann cells (SCs). The antioxidant MitoTEMPO, which targets the mitochondria, reduced ferroptosis brought on by EpoB. Moreover, we demonstrated that in vivo EpoB-induced myelin degradation and neuronal dysfunction were mitigated by SRT1720, a Sirtuin1 (SIRT1) activator, and by SRT1720 and mitoquinone mesylate (mitoQ). Our results suggest that ferroptosis elicited by EpoB is caused by mitochondrial damage mediated by SIRT1 inactivation and that ferroptosis causes neural dysfunction following EpoB.
Collapse
Affiliation(s)
- Zhuowen Liang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Na Zhang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xuankang Wang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiawei Zhang
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kun Li
- Xijing Orthopaedics Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Tao Lei
- Department of Biomedical Engineering, School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
21
|
Wei Y, Ke W, Lu Z, Ren Y. PI3K δ inhibitor PI-3065 induces apoptosis in hepatocellular carcinoma cells by targeting survivin. Chem Biol Interact 2023; 371:110343. [PMID: 36623716 DOI: 10.1016/j.cbi.2023.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and its clinical treatment remains challenging. The development of new treatment regimens is important for effective HCC treatment. Phosphoinositide 3-kinase (PI3K) is a lipid kinase that plays an important role in cell growth and metabolism and is overexpressed in nearly 50% of patients with HCC. Studies have shown that PI-3065, a small-molecule inhibitor of phosphatidylinositol 3-kinase delta, significantly inhibits solid breast cancer. However, its antitumor effects against HCC and the underlying mechanisms remain unclear. In the present study, we found that PI-3065 dose- and time-dependently reduced HCC cell viability and induced apoptosis while posing no obvious apoptotic toxicity in normal liver cells. Further mechanistic analysis showed that PI-3065 induced apoptosis mainly by inhibiting survivin protein expression, decreasing mitochondrial membrane potential, and promoting cytochrome C release. Simultaneously, PI-3065 markedly suppressed the colony formation, migration, and epithelial-mesenchymal transition abilities of HCC cells. Furthermore, transplantation of nude mice with HCC tumors showed that PI-3065 inhibits HCC tumor growth in vivo by targeting survivin. In summary, PI-3065 specifically inhibited survivin expression and exerted anti-HCC activity in vivo and in vitro, suggesting that it may serve as an effective antitumor drug for HCC treatment, which warrants further study.
Collapse
Affiliation(s)
- Yuze Wei
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Weiwei Ke
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
22
|
Zamorina S, Timganova V, Bochkova M, Shardina K, Uzhviyuk S, Khramtsov P, Usanina D, Rayev M. The Effect of PEGylated Graphene Oxide Nanoparticles on the Th17-Polarization of Activated T Helpers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:877. [PMID: 36676614 PMCID: PMC9865146 DOI: 10.3390/ma16020877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
We investigated the direct effect of PEGylated graphene oxide (P-GO) nanoparticles on the differentiation, viability, and cytokine profile of activated T helper type 17 (Th17) in vitro. The subject of the study were cultures of "naive" T-helpers (CD4+) isolated by immunomagnetic separation and polarized into the Th17 phenotype with a TCR activator and cytokines. It was found that P-GO at low concentrations (5 µg/mL) had no effect on the parameters studied. The presence of high concentrations of P-GO in T-helper cultures (25 μg/mL) did not affect the number and viability of these cells. However, the percentage of proliferating T-helpers in these cultures was reduced. GO nanoparticles modified with linear polyethylene glycol (PEG) significantly increased the percentage of Th17/22 cells in cultures of Th17-polarized T helpers and the production of IFN-γ, whereas those modified with branched PEG suppressed the synthesis of IL-17. Thus, a low concentration of PEGylated GO nanoparticles (5 μg/mL), in contrast to a concentration of 25 μg/mL, has no effect on the Th17-polarization of T helpers, allowing their further use for in-depth studies of the functions of T lymphocytes and other immune cells. Overall, we have studied for the first time the direct effect of P-GO nanoparticles on the conversion of T helper cells to the Th17 phenotype.
Collapse
Affiliation(s)
- Svetlana Zamorina
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Valeria Timganova
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
| | - Maria Bochkova
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Kseniya Shardina
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
| | - Sofya Uzhviyuk
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
| | - Pavel Khramtsov
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Darya Usanina
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Mikhail Rayev
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| |
Collapse
|
23
|
Dou T, Chen J, Wang R, Pu X, Wu H, Zhao Y. Complementary protective effects of autophagy and oxidative response against graphene oxide toxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114289. [PMID: 36379072 DOI: 10.1016/j.ecoenv.2022.114289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) exposure may cause damage to C. elegans. However, the role of autophagy and its interactive effect with oxidative response in GO toxicity still remain largely unclear. In the present study, we investigated the protective role of autophagy against GO and its association with oxidative response using C. elegans as an in vivo system. Results indicated that GO exposure induced autophagy in a dose dependent manner in C. elegans. Autophagy inhibitor 3-methyladenine (3-MA) and silencing autophagy genes lgg-1, bec-1 and unc-51 exacerbated the toxicity of GO whereas autophagy activator rapamycin alleviated it. In addition, the antioxidant N-Acetyl-L-cysteine (NAC) effectively suppressed the toxicity of GO with increased resistance to oxidative stress. Worms with RNAi-induced antioxidative genes sod-1, sod-2, sod-3 and sod-4 knockdown were more sensitive to GO. 3-MA increased the expression of superoxide dismutase SOD-3 under GO exposure conditions and exacerbated the toxicity of GO under the anti-oxidation inaction condition by sod-3 RNAi. In contrast, NAC reduced autophagy levels in GO exposed nematodes and increased tolerance to GO in autophagy-defective worms. These results suggested that autophagy and antioxidative response provide complementary protection against GO in C. elegans.
Collapse
Affiliation(s)
- Tingting Dou
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China.
| | - Yunli Zhao
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China; Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
24
|
Tang Y, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. PHARMACEUTICAL BIOLOGY 2022; 60:479-490. [PMID: 35180016 PMCID: PMC8865097 DOI: 10.1080/13880209.2022.2039723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Acute pancreatitis (AP) is an acute abdominal inflammatory disease with episodes ranging from mild to fulminant symptoms which could include necrosis, systemic inflammation and multiple organ dysfunction. Increasing experimental evidence demonstrates that specific bioactive ingredients from natural plants have a favourable therapeutic effect on AP. OBJECTIVE The objective of this review is to summarize the protective effects and potential mechanisms of action of phytochemicals on the attenuation of AP. METHODS Experimental studies in vivo or in vitro between January 2016 and June 2021 were sought in PubMed and Web of Science using the following search terms: ('phytochemicals' OR 'medicinal plant' OR 'traditional medicine') AND ('pancreatitis' OR 'pancreatic damage' OR 'pancreatic injury'). Data concerning the basic characteristics of phytochemicals, therapeutic dose and potential molecular mechanisms related to AP were extracted in this study. RESULTS A total of 30 phytochemicals with potential therapeutic effects were reviewed and summarized systematically. According to their molecular pathways in AP, the underlying mechanisms of the phytochemicals were illustrated in detail. DISCUSSION AND CONCLUSIONS The phytochemicals with anti-inflammatory and antioxidant abilities may be efficient candidate drugs for AP treatment. Importantly, more preclinical investigations are needed to illustrate the efficacy of future phytochemicals.
Collapse
Affiliation(s)
- Yao Tang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- CONTACT Zhenning Liu Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, China
| |
Collapse
|
25
|
Farhangfar SD, Fesahat F, Zare-Zardini H, Dehghan-Manshadi M, Zare F, Miresmaeili SM, Vajihinejad M, Soltaninejad H. In vivo study of anticancer activity of ginsenoside Rh2-containing arginine-reduced graphene in a mouse model of breast cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1442-1451. [PMID: 36544523 PMCID: PMC9742569 DOI: 10.22038/ijbms.2022.66065.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
Abstract
Objectives This study aims to evaluate the in vivo anticancer activity of arginine-reduced graphene (Gr-Arg) and ginsenoside Rh2-containing arginine-reduced graphene (Gr-Arg-Rh2). Materials and Methods Thirty-two mice with breast cancer were divided into four groups and treated every three days for 32 days: Group 1, PBS, Group 2, Rh2, Group 3, Gr-Arg, and Group 4, Gr-Arg-Rh2. The tumor size and weight, gene expression (IL10, INF-γ, TGFβ, and FOXP3), and pathological properties of the tumor and normal tissues were assessed. Results Results showed a significant decrease in TGFβ expression for all drug treatment groups compared with the controls (P=0.04). There was no significant difference among the groups regarding IL10 and FOXP3 gene expression profiles (P>0.05). Gr-Arg-Rh2 significantly inhibited tumor growth (size and weight) compared with Rh2 and control groups. The highest survival rate and the highest percentage of tumor necrosis (87.5%) belonged to the Gr-Arg-Rh2 group. Lungs showed metastasis in the control group. No metastasis was observed in the Gr-Arg-Rh2 group. Gr-Arg-Rh2 showed partial degeneration of hepatocytes and acute cell infiltration in the portal spaces and around the central vein. The Gr-Arg group experienced a moderate infiltration of acute cells into the port spaces and around the central vein. The Rh2 group also showed a mild infiltration of acute and chronic cells in portal spaces. Conclusion Based on the results, Gr-Arg-Rh2 can reduce tumor size, weight, and growth, TGF-β gene expression, and increase tumor necrosis and survival time in mice with cancer.
Collapse
Affiliation(s)
- Shervin Dokht Farhangfar
- Department of Biology, Science and Arts University, Yazd, Iran, Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran,These authors contributed eqully to this work
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran,These authors contributed eqully to this work
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Department of Biomedical Engineering, Meybod University, Meybod, Iran,Corresponding author: Hadi Zare-Zardini. Hematology, and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Tel: +98-3531834231;
| | - Mahdi Dehghan-Manshadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Maryam Vajihinejad
- Department of Pathology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
27
|
Khan MUA, Al-Arjan WS, Ashammakhi N, Haider S, Amin R, Hasan A. Multifunctional Bioactive Scaffolds from ARX- g-(Zn@rGO)-HAp for Bone Tissue Engineering: In Vitro Antibacterial, Antitumor, and Biocompatibility Evaluations. ACS APPLIED BIO MATERIALS 2022; 5:5445-5456. [PMID: 36215135 DOI: 10.1021/acsabm.2c00777] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Advanced biomaterials are required with enhanced antibacterial and anticancer activities to obtain desirable biocompatibility during and after scaffold implantation in tissue engineering. Here, we report the development of a nanosystem by the hydrothermal method using different zinc (Zn) amounts and reduced graphene oxide (GO). Arabinoxylan, the nanosystem (Zn@rGO), and nanohydroxyapatite polymeric nanocomposites ARX-g-(Zn@rGO)/HAp were prepared by the free radical polymerization method, and porous bioactive scaffolds were fabricated via the freeze-drying technique. The structural, morphological, and elemental analyses of the bioactive scaffolds were conducted using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis. The wetting behavior was studied by a water contact meter and swelling in aqueous and phosphate-buffered saline solutions at 37 °C. The degradation was also studied in the phosphate-buffered saline solution at 37 °C. The increase in Zn content increased the pore size, and hydrophobic behavior shifted to hydrophilic (AGZ-1 = 131.40° at 0 s and 120.60° at 10 s to AGZ-1 = 81.30° at 0 s and 69.20° at 10 s) with the increase in contact time. Maximum swelling was observed in deionized water (AGZ-1 = 52.87%, AGZ-4 = 90.20%), followed by phosphate-buffered saline (PBS; AGZ-1 = 44.80%, AGZ-4 = 67.90%) and electrolyte (AGZ-1 = 32.40%, AGZ-4 = 63.47%), and biodegradation in PBS media increased (AGZ-1 = 36.80%, AGZ-4 = 55.92%). Antimicrobial activities against severe infection-causing pathogens and antitumor activity against U87 cell lines showed exceptional results. Cell viability and cell proliferation studies were conducted against preosteoblast cell lines, and increased cell viability and proliferation were observed from AGZ-1 to AGZ-4. Antimicrobial and anticancer activities were enhanced with the increase of Zn content in the Zn@rGO system. The bioactive scaffolds with different formulations could be potential biomaterials to treat and regenerate defected bone tissue.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, Doha2713, Qatar.,Department of Mechanical and Industrial Engineering, Qatar University, Doha2713, Qatar
| | - Wafa Shamsan Al-Arjan
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa31982, Saudi Arabia
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan48824, United States
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh11421, Saudi Arabia
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin39524, Saudi Arabia
| | - Anwarul Hasan
- Biomedical Research Center, Qatar University, Doha2713, Qatar.,Department of Mechanical and Industrial Engineering, Qatar University, Doha2713, Qatar
| |
Collapse
|
28
|
Chen J, Yao Y, Wang Y, Wang X, Peng X, Li T, Liu Y, Du J. Autophagy triggered by the ROS/ERK signaling pathway protects mouse embryonic palatal cells from apoptosis induced by nicotine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81909-81922. [PMID: 35739442 DOI: 10.1007/s11356-022-21496-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Maternal cigarette smoking during pregnancy is a known high-risk factor for having a child with a cleft lip and/or palate (CLP), a common congenital malformation. Nicotine is the major teratogen component of cigarettes and e-cigarettes, and nicotine plays an important role in the development of CLP. However, the mechanism underlying nicotine's effect on CLP remains unclear. Here, we aimed to determine the role and molecular mechanisms of nicotine-induced autophagy, an important process involved in regulating the cellular stress response in mouse embryonic palatal cells (MEPCs). First, we found that nicotine promoted MEPCs proliferation and inhibited their apoptosis from 0 to 12 h. After 12 h, the proliferation was inhibited, and apoptosis was promoted. The migration of MEPCs was also inhibited by nicotine. Simultaneously, long-term nicotine stimulation inhibited the osteogenic differentiation of MEPCs. We then found that nicotine significantly increased autophagy flux in MEPCs at 12 h by increasing the expression of microtubule-associated protein light chain 3 (LC3) and reducing P62 expression levels. After nicotine exposure, intracellular reactive oxygen species (ROS) and extracellular signal-regulated kinase-1/2 (ERK1/2) expression significantly increased, and the expression of ERK1/2 was reversed by the ROS scavenging agent N-acetylcysteine (NAC). Moreover, the autophagy induced by nicotine was reversed by SCH772984, a specific inhibitor of ERK1/2, and the autophagy inhibitor chloroquine (CQ). These results suggest that in the early stage of nicotine exposure, MEPCs may trigger autophagy through the ROS/ERK1/2 signaling pathway to avoid cell damage caused by nicotine.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yaxia Yao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Tianli Li
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Ying Liu
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
29
|
Yang J, Sun Q, Ma Q, Yu Q, Liu X, Liu Y, Han Y, Yang Y, Rong R. Mahuang Xixin Fuzi decoction ameliorates apoptosis via the mitochondrial-mediated signaling pathway in MCM cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115538. [PMID: 35843410 DOI: 10.1016/j.jep.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the symptoms of fever, nasal congestion and headache in elderly people for almost a thousand years. AIM OF THE STUDY The purpose of this study was to evaluate the effects and possible mechanisms of MXF on thermal stimulation-induced mouse cardiac myocytes (MCM) cell apoptosis. MATERIALS AND METHODS The apoptosis of the MCM cell model was induced by a PCR-calculated temperature control system with a gradual heating pattern at 43 °C for 1 h. The cytotoxic effects were determined using real-time cell analyzer (RTCA) technology. Annexin V-FITC/7-AAD staining, and JC-1 fluorescence were used to assess apoptosis. Specific substrates, enzyme-linked immunosorbent assays (ELISAs), and Western blotting were used to identify proteins in the mitochondrial-mediated pathway. The identification of chemical components in the mouse heart was performed by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry analysis. RESULTS MXF inhibited apoptosis through the mitochondrial-mediated signaling pathway, including ameliorating ∆Ψm reduction, blocking mitochondrial Cyt C release, reducing Bax levels and increasing Bcl-2 levels, suppressing caspase-9 and caspase-3 activation in cytoplasmic fractions. Moreover, the components of MXF that act on the heart are mainly ephedra alkaloids and aconitine alkaloids. CONCLUSIONS The findings demonstrated that MXF treatment markedly reduced MCM cell apoptosis induced by thermal stimulation, which may be ascribed to the mitochondrial-mediated signaling pathway.
Collapse
Affiliation(s)
- Jia Yang
- Shandong University of Traditional Chinese Medicine, PR China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, PR China
| | - Qingyun Ma
- Shandong University of Traditional Chinese Medicine, PR China
| | - Qinhui Yu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Xiaoyun Liu
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Yanliang Liu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yuxiu Han
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yong Yang
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
30
|
Elderdery AY, Alzahrani B, Alabdulsalam AA, Hamza SMA, Elkhalifa AME, Alhamidi AH, Alanazi F, Mohamedain A, Subbiah SK, Ling Mok P. Structural, Optical, Antibacterial, and Anticancer Properties of Cerium Oxide Nanoparticles Prepared by Green Synthesis Using Morinda citrifolia Leaves Extract. Bioinorg Chem Appl 2022; 2022:6835625. [PMID: 36212986 PMCID: PMC9534709 DOI: 10.1155/2022/6835625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase-3, -8, and -9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.
Collapse
Affiliation(s)
- Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Siddiqa M. A. Hamza
- College of Medicine, Department of Pathology, Umm Al-Qura University Algunfuda, Mecca, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Abdulaziz H. Alhamidi
- Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Al-qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - A. Mohamedain
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
31
|
Yuan Y, Yucai L, Lu L, Hui L, Yong P, Haiyang Y. Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett 2022; 368:24-32. [PMID: 35963425 DOI: 10.1016/j.toxlet.2022.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Acrylamide (AA) is a heat-induced food contaminant, mainly metabolized by the liver. Increasing evidences have proved that ferroptosis is linked to the pathogenesis of liver disease. In the current study, the underlying mechanism of AA-induced rat hepatic stellate (HSC-T6) cells ferroptosis was investigated by detecting changes in iron levels, expressions of ferroptosis-related proteins and indicators of mitochondrial dysfunction. The results showed that AA treatment led to iron levels increased and expressions of long-chain acyl-CoA synthase 4 (ACSL4), cyclooxygenase 2 (COX2) and ferritin heavy chain 1 (FTH1) proteins in HSC-T6 cells were all altered. Treatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) markedly reversed the impact of AA, suggesting that AA induced ferroptosis in HSC-T6 cells. Mechanistically, AA induced the onset of ferroptosis by affecting XCT-GSH-GPX4 antioxidant signaling. Moreover, AA created a peroxidative environment for ferroptosis by inducing oxidative stress in HSC-T6 cells through mitochondrial dysfunction, as evidenced by increased mitochondrial ROS (mtROS) release, mitochondrial membrane potential (MMP) depolarization, and decreased mitochondrial ATP. Our results indicated that AA resulted in mitochondrial dysfunction and ferroptosis, and dysregulation of XCT-GSH-GPX4 antioxidant signaling was a key factor in AA-induced ferroptosis.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Yucai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Liu Hui
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
32
|
Krętowski R, Cechowska-Pasko M. The Reduced Graphene Oxide (rGO) Induces Apoptosis, Autophagy and Cell Cycle Arrest in Breast Cancer Cells. Int J Mol Sci 2022; 23:9285. [PMID: 36012549 PMCID: PMC9409172 DOI: 10.3390/ijms23169285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced graphene oxide (rGO) has already been reported as a potential cytostatic agent in various cancers. However, the mechanisms underlying rGO's cytotoxicity are still insufficiently understood. Thus, the aim of the study was to investigate the molecular and cellular effects of rGO in breast cancer. Given this, two cell lines, MDA-MB-231 and ZR-75-1, were analyzed using MTT test, flow cytometry and Western blot assay. Incubation with rGO resulted in a multitude of effects, including the stimulation of autophagy, cell cycle arrest and, finally, the apoptotic death of cancer cells. Notably, rGO had minimal effect on normal human fibroblasts. Apoptosis in cancer cells was accompanied by decreased mitochondrial membrane potential, the deregulated expression of mitochondrial proteins and the activation of caspase 9 and caspase 3, suggesting that rGO predominantly induced apoptosis via intrinsic pathway. The analysis of LC3 protein expression revealed that rGO also caused autophagy in breast cancer cells. Moreover, rGO treatment resulted in cell cycle arrest, which was accompanied by deregulated p21 expression. Altogether, rGO seems to have multidirectional cytostatic and cytotoxic effects in breast cancer cells, making it a promising agent worthy of further investigation.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222 Białystok, Poland
| | | |
Collapse
|
33
|
Li H, Gao J, Liu L, Zhang S. LINC00958: A promising long non-coding RNA related to cancer. Biomed Pharmacother 2022; 151:113087. [PMID: 35569349 DOI: 10.1016/j.biopha.2022.113087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a class of RNA transcripts longer than 200 nucleotides, do not encode proteins; however, they encode small peptides and micropeptides that act as bioactive peptides with notable effects in regulating the progression of malignant tumors, such as lung and colorectal cancers, and affecting patient prognosis. lncRNAs are important intracellular regulators, particularly in tumorigenesis and tumor progression. Long intergenic non-protein coding RNA958 (LINC00958), which has received increasing attention in recent years, is highly expressed in various malignancies, including head and neck squamous cell carcinoma (HNSC), non-small-cell lung cancer (NSCLC), gastric cancer, hepatocellular carcinoma (HCC), colorectal cancer, bladder cancer, and breast cancer. Here, we reviewed the recent studies on LINC00958 as well as its closely related clinical features and functional regulation in cancers. We systematically expounded the molecular mechanisms underlying the biological functions of LINC00958 in inhibiting cell apoptosis and enhancing the chemoradiotherapy resistance of tumor cells. The upregulation of LINC00958 enhances the resistance of tumor cells to radiotherapy and chemotherapy and induces lymphangiogenesis. Moreover, it is involved in tumor glycolytic metabolism, which plays a crucial role in facilitating the proliferation, invasion, and migration of tumor cells. Additionally, analysis of various studies revealed that LINC00958 acts as an endogenous competitive RNA (ceRNA) and regulates the malignant behavior of tumor cells through the miRNA-mRNA axis. Collectively, the use of LINC00958 as a novel biomarker and therapeutic target for the clinical diagnosis and treatment of different cancers has bright prospects in the future.
Collapse
Affiliation(s)
- Hongxu Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|
34
|
Siqueira PR, Souza JP, Estevão BM, Altei WF, Carmo TLL, Santos FA, Araújo HSS, Zucolotto V, Fernandes MN. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106199. [PMID: 35613511 DOI: 10.1016/j.aquatox.2022.106199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) are carbon-based nanomaterials that have a wide range of applicability. Therefore, it is expected that their residual traces reach the aquatic environment, accumulate, and interact with its different compartments and the biota living in them. The concentration- and time-dependency response to GO and rGO in aquatic organisms are still poorly known. In the present study, the effects of GO and rGO on zebrafish hepatocytes were investigated using in vitro assays performed with established liver cell lines from zebrafish (ZFL). GO and rGO nanosheets were applied on ZFL cells at a concentration range of 1-100 µg mL-1 for 24 and 72 h. The internalization of GO and rGO nanosheets, reactive oxygen species (ROS) production, cell viability, and cell death were evaluated. The internalization of GO increased as the concentrations of GO increased. The rGO nanosheets were smaller than GO nanosheets, and their hydrophobic characteristic favors their interaction with the cell membrane. However, the rGO nanosheets were not observed in the uptake assay. Exposure for 72 h was found to cause harmful effects in ZFL cells, causing higher ROS production in cells exposed to rGO and stopping cell replication. Nevertheless, GO did not stop cell replication, but exposed cells had higher levels of apoptosis and necrosis. After 72 h, both GO and rGO were toxic, but with different mechanisms of toxicity.
Collapse
Affiliation(s)
- Priscila Rodrigues Siqueira
- Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905 São Carlos, São Paulo, Brazil; Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Jaqueline Pérola Souza
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Bianca Martins Estevão
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Wanessa Fernanda Altei
- Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil; Radiation Oncology Department, Barretos Cancer Hospital, SP, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, SP, Brazil
| | - Talita Laurie Lustosa Carmo
- Departamento de Ciências Fisiológicas, Universidade Federal do Amazonas, Av. Gen. Rodrigo Octávio, 6200, Campus Universitário, 69080-900 Manaus, Amazonas, Brazil
| | - Fabrício Aparecido Santos
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Heloísa Sobreiro Selistre Araújo
- Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Valtecir Zucolotto
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905 São Carlos, São Paulo, Brazil; Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
35
|
Gu G, Jiang M, Hu H, Qiao W, Jin H, Hou T, Tao K. Neochamaejasmin B extracted from Stellera chamaejasme L. induces apoptosis through caspase-10-dependent way in insect neuronal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21892. [PMID: 35478464 DOI: 10.1002/arch.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.
Collapse
Affiliation(s)
- Guirong Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hanying Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Weijie Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
36
|
Kalın ŞN, Altay A, Budak H. Diffractaic acid, a novel TrxR1 inhibitor, induces cytotoxicity, apoptosis, and antimigration in human breast cancer cells. Chem Biol Interact 2022; 361:109984. [DOI: 10.1016/j.cbi.2022.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
37
|
Stefàno E, Muscella A, Benedetti M, De Castro F, Fanizzi FP, Marsigliante S. Antitumor and antimigration effects of a new Pt compound on neuroblastoma cells. Biochem Pharmacol 2022; 202:115124. [PMID: 35688179 DOI: 10.1016/j.bcp.2022.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Among the new Pt complexes with anticancer properties, phenanthroline derivatives have aroused great interest due to their different mode of action compared to cisplatin. We previously examined cytotoxic effects of a new Pt(II)-complex containing 1,10-phenantroline (phen), [Pt(η1-C2H4OMe)(DMSO)(phen)]Cl, in a panel of eight human cancer cell lines, and showed that it exerted the greatest cytotoxic effect in the neuroblastoma SH-SY5Y cell line. In this study, the antiproliferative and antimetastatic potential of [Pt(η1-C2H4OMe)(DMSO)(phen)]+ (in short Pt-EtOMeSOphen) was investigated in neuroblastoma SH-SY5Y, SK-N-SH and SK-N-BE(2) cells. Pt-EtOMeSOphen provoked the early signs of apoptosis induction (cleavage of PARP and activation of caspases-9 and -7); it also increased the level of proapoptotic Bax protein whereas it decreased the level of the antiapoptotic Bcl-2 protein. The effects of Pt-EtOMeSOphen on migration and invasion processes were also evaluated. A decrease of cell migration/invasion by Pt-EtOMeSOphen was observed through 2D and 3D in vitro assays. Pt-EtOMeSOphen was found to exert its actions by decreasing MMP-9 and MMP-2 expressions and activities. Pt-EtOMeSOphen provoked the phosphorylation of both ERK1/2 and p38 MAPKs. All the effects of Pt-EtOMeSOphen on SH-SY5Y cell vitality, migration and metalloproteases activities described here were due to the activation of p38 MAPK since pharmacological p38 MAPK inhibition or small interfering RNAs to p38 MAPK mRNA blocked such effects. Results suggest that Pt-EtOMeSOphen inhibits neuroblastoma cancer cells survival, motility, and invasion. This could lead to the reduction of neuroblastoma metastatic potential.
Collapse
Affiliation(s)
- Erika Stefàno
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy.
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy.
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | - Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
38
|
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153629. [PMID: 35131247 DOI: 10.1016/j.scitotenv.2022.153629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Lasocka I, Jastrzębska E, Zuchowska A, Skibniewska E, Skibniewski M, Szulc-Dąbrowska L, Pasternak I, Sitek J, Hubalek Kalbacova M. Graphene 2D platform is safe and cytocompatibile for HaCaT cells growing under static and dynamic conditions. Nanotoxicology 2022; 16:610-628. [PMID: 36170236 DOI: 10.1080/17435390.2022.2127128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The study concerns the influence of graphene monolayer, as a 2 D platform, on cell viability, cytoskeleton, adhesions sites andmorphology of mitochondria of keratinocytes (HaCaT) under static conditions. Based on quantitative and immunofluorescent analysis, it could be stated that graphene substrate does not cause any damage to membrane or disruption of other monitored parameters. Spindle poles and cytokinesis bridges indicating proliferation of cells on this graphene substrate were detected. Moreover, the keratinocyte migration rate on the graphene substrate was comparable to control glass substrate when the created wound was completely closed after 38 hours. HaCaT morphology and viability were also assessed under dynamic conditions (lab on a chip - micro scale). For this purpose, microfluidic graphene system was designed and constructed. No differences as well as no anomalies were observed during cultivation of these cells on the graphene or glass substrates in relation to cultivation conditions: static (macro scale) and dynamic (micro scale). Only natural percentage of dead cells was determined using different methods, which proved that the graphene as the 2 D platform is cytocompatible with keratinocytes. The obtained results encourage the use of the designed lab on a chip system in toxicity testing of graphene also on other cells and further research on the use of graphene monolayers to produce bio-bandages for skin wounds in animal tests.
Collapse
Affiliation(s)
- Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Elzbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Zuchowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Skibniewska
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - M Skibniewski
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Pasternak
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Jakub Sitek
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.,Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
40
|
Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev 2022; 187:114360. [PMID: 35636568 DOI: 10.1016/j.addr.2022.114360] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022]
Abstract
The development of two-dimensional (2D) nanomaterials for cancer therapy has attracted increasing attention due to their high specific surface area, unique ultrathin structure, electronic and photonic properties. For biomedical applications, investigations into the family of 2D materials have been sparked by graphene and its derivatives. Many 2D nanomaterials, including layered double hydroxides, transition metal dichalcogenides, nitrides and carbonitrides, black phosphorus nanosheets, and metal-organic framework nanosheets, are extensively explored as cancer theranostic platforms. In addition to the high drug loading, 2D nanomaterials are featured with improved physiological properties of drugs, prolonged blood circulation, and increased tumor accumulation and bioavailability. As a consequence, 2D nanomaterials have been widely examined in pre-clinical tumor therapy, particularly through the tumor microenvironment (TME) modulation. This review summarizes recent progresses in developing 2D nanomaterials for TME modulating-based cancer diagnosis and therapy. It is anticipated that this review will benefit researchers to obtain a deeper understanding of interactions between 2D nanomaterials and TME components and develop rational and reliable 2D nanomedicines for pre/clinical cancer theranostics.
Collapse
|
41
|
Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Sci Rep 2022; 12:7664. [PMID: 35538131 PMCID: PMC9088729 DOI: 10.1038/s41598-022-11840-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Graphene and its derivative materials are manufactured by numerous companies and research laboratories, during which processes they can come into contact with their handlers' physiological barriers—for instance, their respiratory system. Despite their potential toxicity, these materials have even been used in face masks to prevent COVID-19 transmission. The increasingly widespread use of these materials requires the design and implementation of appropriate, versatile, and accurate toxicological screening methods to guarantee their safety. Murine models are adequate, though limited when exploring different doses and lengths of exposure—as this increases the number of animals required, contrary to the Three R's principle in animal experimentation. This article proposes an in vitro model using primary, non-transformed normal human bronchial epithelial (NHBE) cells as an alternative to the most widely used model to date, the human lung tumor cell line A549. The model has been tested with three graphene derivatives—graphene oxide (GO), few-layer graphene (FLG), and small FLG (sFLG). We observed a cytotoxic effect (necrosis and apoptosis) at early (6- and 24-h) exposures, which intensified after seven days of contact between cells and the graphene-related materials (GRMs)—with cell death reaching 90% after a 5 µg/mL dose. A549 cells are more resistant to necrosis and apoptosis, yielding values less than half of NHBE cells at low concentrations of GRMs (between 0.05 and 5 µg/mL). Indeed, GRM-induced cell death in NHBE cells is comparable to that induced by toxic compounds such as diesel exhaust particles on the same cell line. We propose NHBE as a suitable model to test GRM-induced toxicity, allowing refinement of the dose concentrations and exposure timings for better-designed in vivo mouse assays.
Collapse
|
42
|
Pang Y, Yao Y, Yang M, Wu D, Ma Y, Zhang Y, Zhang T. TFEB-lysosome pathway activation is associated with different cell death responses to carbon quantum dots in Kupffer cells and hepatocytes. Part Fibre Toxicol 2022; 19:31. [PMID: 35477523 PMCID: PMC9047349 DOI: 10.1186/s12989-022-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. Methods and results Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. Conclusion Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.,Yangzhou Center for Disease Prevention and Control, Yangzhou, 225200, Jiangsu, China
| | - Mengran Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Khan MUA, Razak SIA, Hassan A, Qureshi S, Stojanović GM, Ihsan-Ul-Haq. Multifunctional Arabinoxylan-functionalized-Graphene Oxide Based Composite Hydrogel for Skin Tissue Engineering. Front Bioeng Biotechnol 2022; 10:865059. [PMID: 35573248 PMCID: PMC9093069 DOI: 10.3389/fbioe.2022.865059] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Wound healing is an important physiological process involving a series of cellular and molecular developments. A multifunctional hydrogel that prevents infection and promotes wound healing has great significance for wound healing applications in biomedical engineering. We have functionalized arabinoxylan and graphene oxide (GO) using the hydrothermal method, through cross-linking GO-arabinoxylan and polyvinyl alcohol (PVA) with tetraethyl orthosilicate (TEOS) to get multifunctional composite hydrogels. These composite hydrogels were characterized by FTIR, SEM, water contact angle, and mechanical testing to determine structural, morphological, wetting, and mechanical behavior, respectively. Swelling and biodegradation were also conducted in different media. The enhanced antibacterial activities were observed against different bacterial strains (E. coli, S. aureus, and P. aeruginosa); anticancer activities and biocompatibility assays were found effective against U-87 and MC3T3-E1 cell lines due to the synergic effect of hydrogels. In vivo activities were conducted using a mouse full-thickness skin model, and accelerated wound healing was found without any major inflammation within 7 days with improved vascularization. From the results, these composite hydrogels might be potential wound dressing materials for biomedical applications.
Collapse
|
44
|
Peng L, Qiu J, Liu L, Li X, Liu X, Zhang Y. Preparation of PEG/ZIF-8@HF drug delivery system for melanoma treatment via oral administration. Drug Deliv 2022; 29:1075-1085. [PMID: 35373691 PMCID: PMC8986218 DOI: 10.1080/10717544.2022.2058649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Melanoma is one of the highly malignant tumors whose incidence and fatality rates have been increased year by year. However, in addition to early surgical resection, there still lacks specific targeted drugs and treatment strategies. In this study, it was discovered that hinokiflavone (HF) encapsulated in zeolitic imidazolate framework-8 (ZIF-8) exhibited a superior anti-melanoma effect in vitro and in vivo. HF was encapsulated in ZIF-8 through a one-step synthesis method, and polyethylene glycol (PEG-2000) was used to optimize the size and dispersion of the drug-loaded complex (PEG/ZIF-8@HF). The results show that the prepared PEG/ZIF-8@HF has a high encapsulation efficiency (92.12%) and can achieve selective drug release in an acidic microenvironment. The results of in vitro anti-melanoma experiments indicate that PEG/ZIF-8@HF shows up-regulation of reactive oxygen species (ROS) levels and can restrain the migration and invasion of B16F10 cells. Moreover, in vivo animal experiments further confirm that PEG/ZIF-8@HF shows anti-tumor effect by up-regulating the pro-apoptotic proteins caspase-3 and caspase-8, and down-regulating the migration-promoting invasion protein MMP-9. This study developed a safe and effective oral administration of HF based on the high-efficiency delivery ZIF-8 system, which provides an effective treatment strategy for melanoma.
Collapse
Affiliation(s)
- Luxi Peng
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China.,The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Jiajun Qiu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Lidan Liu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuanyong Liu
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
45
|
Khan MUA, Razaq SIA, Hasan A, Mannan HA, Haider S, Hussain J. F-GO/sodium alginate composite hydrogels for tissue regeneration and antitumor applications. Int J Biol Macromol 2022; 208:475-485. [PMID: 35318081 DOI: 10.1016/j.ijbiomac.2022.03.091] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
Biopolymers have attracted tremendous attention for wound applications. Since sodium alginate is a biopolymer, they offer excellent therapeutic options with long-term drug release and low side effects. To prepare multifunctional composite hydrogels with anticancer and tissue regeneration capabilities, sodium alginate (SA) and graphene oxide (GO) were covalently linked and crosslinked with tetraethyl orthosilicate (TEOS) by the solvothermal method. The structural and morphological results show that the hydrogels exhibit the desired functionality and porosity. The swelling of hydrogels in an aqueous and PBS medium was investigated. SGT-4 had the highest swelling in both aqueous and PBS media. Swelling and biodegradation of the hydrogel were inversely related. The drug release of SGT-4 was determined in different pH media (pH 6.4, 7.4, and 8.4) and the kinetics of drug release was determined according to the Higuchi model (R2 = 0.93587). Antibacterial activities were evaluated against severe infectious agents. Uppsala (U87) and osteoblast (MC3T3-E1) cell lines were used to determine the anticancer and biocompatibility of the composite hydrogels, respectively. These results suggest that the composite hydrogels could be used as wound dressings.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; National Center for Physics, Quaid-i-Azam University, Islamabad Campus, Islamabad 44000, Pakistan.
| | - Saiful Izwan Abd Razaq
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Hafiz Abdul Mannan
- Institute of Polymer and Textile Engineering, University of Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Javed Hussain
- National Center for Physics, Quaid-i-Azam University, Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
46
|
Li Y, Zhang Y, Feng R, Zheng P, Huang H, Zhou S, Ji W, Huang F, Liu H, Zhang G. Cadmium induces testosterone synthesis disorder by testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to reduced sexual behavior in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113345. [PMID: 35219259 DOI: 10.1016/j.ecoenv.2022.113345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a highly toxic metal pollutant that can endanger the life and health of animals. Toll-like receptor 4 (TLR4) can result in testicular cell damage by positively regulating mitogen-activated protein kinase (MAPK)/nuclear factor-kappaB (NF-κB) signaling pathway. Meanwhile, Testosterone (T) synthesis disorder can affect sexual behavior. However, the harmful influence of Cd on animal sexual behavior during its growth and development and the role of TLR4/MAPK/NF-κB signaling pathway in testicular cell damage and testosterone production remained poorly understood. Forty-two-day-old male piglets were fed with diets that contained CdCl2 (20 mg Cd/kg) for 40 days to explore the toxic effects of Cd on sexual behavior. The results showed that Cd activated TLR4, promoted MAPK (p-ERK, p-JNK, and p-p38)/NF-κB expression, induced apoptosis (Caspase-3, Cleaved Caspase3, Bax, Cyt-c, and Caspase-9 expression increased, but Bcl-2 expression decreased) and necroptosis (MLKL, RIPK1, and RIPK3 expression increased) in piglet testis. In addition, Cd exposure decreased mRNA expression of STAR, CYP11A1, 3β-HSD, CYP17A1, and 17β-HSD of testis and the concentrations of T and thyroid-stimulating hormone (TSH). Both the mRNA and protein expression levels of the major genes in TLR4/MAPK/NF-κB signaling pathway, apoptosis signaling pathway, and necroptosis signaling pathway increased significantly and the expression levels of testosterone decreased gradually in pig Leydig cells cultured in vitro after being treated with different concentrations of Cd. Moreover, Cd reduced sexual behavior (the parameters of sniffing, chin resting, and mounting decreased) in piglets. In conclusion, Cd induced testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to testosterone synthesis disorder and sexual behavior reduction in piglets.
Collapse
Affiliation(s)
- Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China.
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
47
|
Guo J, Zhang S, Wang J, Zhang P, Lu T, Zhang L. Hinokiflavone Inhibits Growth of Esophageal Squamous Cancer By Inducing Apoptosis via Regulation of the PI3K/AKT/mTOR Signaling Pathway. Front Oncol 2022; 12:833719. [PMID: 35178352 PMCID: PMC8844566 DOI: 10.3389/fonc.2022.833719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background Globally, esophageal cancer ranks as the seventh most common cancer. Esophageal squamous cell carcinoma (ESCC) is one of its major histological types. ESCC accounts for the vast majority of cases in China, and the mortality rate is high. Cisplatin, the standard adjuvant chemotherapy drug for ESCC, has a modest response rate due to the development of drug resistance. Hinokiflavone (HF) is a natural biflavonoid compound with anti-melanoma activity. However, its anti-tumor effect on ESCC and the underlying mechanisms remain largely unknown. Methods The ESCC cell lines KYSE150 and TE14 were used. The cell counting kit-8 assay and flow cytometry analysis, along with colony formation, EdU, wound healing, and Transwell migration assays, were performed to assess cell characteristics (viability, migration, invasion, and apoptosis) following treatment with HF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), western blotting, and molecular docking were used to investigate the pathways potentially modulated by HF. In vivo anti-tumor effects of HF were also investigated using a mouse xenograft model. Results Our findings revealed that HF inhibited ESCC cell proliferation. Hoechst 33342 staining, annexin V-FITC/PI staining, and western blotting confirmed that HF causes caspase-dependent apoptosis. KEGG pathway enrichment analysis and western blotting indicated that the PI3K/AKT/mTOR pathway played an important role in the process of HF-induced apoptosis. Furthermore, HF effectively impaired the migration and invasion abilities of KYSE150 cells and downregulated the expression of the matrix metalloproteinases (MMP) MMP2 and MMP9. HF inhibited tumor growth and exhibited minimal toxicity in the organs of the KYSE150 xenograft model. Conclusion This is the first study to demonstrate the inhibition of ESCC growth and progression by HF. The underlying mechanism is through blocking the PI3K/AKT/mTOR signaling pathway, thereby inhibiting cell proliferation and inducing apoptosis. HF can be used as a complementary/alternative agent for ESCC therapy.
Collapse
Affiliation(s)
- Jida Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Shengqiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Excessive hydrogen sulfide causes lung and brain tissue damage by promoting PARP1/Bax and C9 and inhibiting LAMB1. Apoptosis 2022; 27:149-160. [PMID: 35119561 DOI: 10.1007/s10495-021-01705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
Excessive hydrogen sulfide (H2S) causes serious damage to human organs and tissues. In this study, we aimed to explore the role and underlying mechanism of excessive H2S in brain and lung tissues. A H2S concentration of 100-800 pm promotes apoptosis and inflammation of brain and lung cells in ICR mice. Mechanistically, a H2S concentration of 100-800 pm upregulates PARP1 and Bax expression in a dose-dependent manner in vivo and in vitro, and functional gain-and-loss experiments verified that an excessive amount of H2S plays a pro-apoptotic role in HT22 and MML1 cells via regulation of PARP1 and Bax in vitro. By combining animal and cell experiments, we clarified that excess H2S promotes the inflammatory response of mouse brain and lung cells by promoting the expression of C9. In addition, the downregulation of LAMB1 by an excessive H2S concentration was confirmed using mass spectrometry and western blotting in vivo and in vitro. Combined with in vitro experiments, we found that an excessive H2S concentration promotes the expression of STAT1 and EGFR in HT22 and MML1 cells by inhibiting the expression of LAMB1. In summary, 100-800 pm H2S causes the brain and lung tissue damage in ICR mice, the underlying mechanisms include H2S induced apoptosis and inflammation of mouse brain and lung cells by upregulation of PARP1/Bax and C9, respectively, and H2S might induce fibrosis of mouse brain and lung cells by downregulation of LAMB1.
Collapse
|
49
|
Zhao W, Song Y, Wang QQ, Han S, Li XX, Cui Y, Gao H, Yuan R, Yang S. Cryptotanshinone Induces Necroptosis through Ca2+ Release and ROS Production in vitro and in vivo. Curr Mol Pharmacol 2022; 15:1009-1023. [PMID: 35086466 DOI: 10.2174/1874467215666220127112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p-RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) was used to determine the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Wentong Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yuanbo Song
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
50
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|