1
|
Abdel-Hafez SM, Gallei M, Wagner S, Schneider M. Inhalable nano-structured microparticles for extracellular matrix modulation as a potential delivery system for lung cancer. Eur J Pharm Biopharm 2024; 204:114512. [PMID: 39332746 DOI: 10.1016/j.ejpb.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
The use of inhalable nanoparticulate-based systems in the treatment of lung cancer allows for efficient localized delivery to the lungs with less undesirable systemic exposure. For this to be attained, the inhaled particles should have optimum properties for deposition and at the same time avoid pulmonary clearance mechanisms. Drug delivery to solid tumors is furthermore challenging, due to dense extracellular matrix (ECM) formation, which hinders the penetration and diffusion of therapeutic agents. To this end, the aim of the current work is to develop an ECM-modulating nano-structured microparticulate carrier, that not only enables the delivery of therapeutic nanoparticles (NPs) to the lungs, but also enhances their intratumoral penetration. The system is composed of acetalated maltodextrin (AcMD) NPs embedded into a water-soluble trehalose/leucine matrix, in which collagenase was loaded with different mass concentrations (10 %, 30 % and 50 %). The collagenase-containing AcMD nano-structured microparticles (MPs) exhibited suitable median volume diameters (2.58 ± 1.35 to 3.01 ± 0.68 µm), hollow corrugated morphology, sufficient redispersibility, low residual moisture content (2.71 ± 0.17 % to 3.10 ± 0.20 %), and favorable aerodynamic properties (Mass median aerodynamic diameter (MMAD): 1.93 ± 0.06 to 2.80 ± 0.10 µm and fine particle fraction (FPF): 68.02 ± 6.86 % to 69.62 ± 2.01 %). Importantly, collagenase retained as high as 89.5 ± 6.7 % of its enzymatic activity after spray drying. MPs containing 10 % mass content of collagenase did not show signs of cytotoxicity on either human lung adenocarcinoma A549 cells or lung MRC-5 fibroblasts. The nanoparticle penetration was tested using adenocarcinoma A549/MRC-5 co-culture spheroid model, where the inclusion of collagenase resulted in deeper penetration depth of AcMD-NPs.
Collapse
Affiliation(s)
- Salma M Abdel-Hafez
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123 Saarbrücken, Germany; Saarene, Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Sylvia Wagner
- Department Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
2
|
Sadafi H, De Backer W, Krestin G, De Backer J. Rapid deposition analysis of inhaled aerosols in human airways. Sci Rep 2024; 14:24965. [PMID: 39443597 PMCID: PMC11499711 DOI: 10.1038/s41598-024-75578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
A rapid data-driven method for determining regional deposition of inhaled medication aerosols in human airways is presented, which is patient specific. Inhalation patterns, device characteristics, and aerodynamic particle size distribution of medications are considered. The method is developed using dimensional analysis and Buckingham Pi theorem, and provides total, regional, and lobar distributions of aerosol deposition. 34 dimensionless quantities are selected, of which 22 encode features of the airway trees and segmented lobes, 14 pertain to the device and the drug formulation, and 13 the inhalation profile of the subject. The dimensionless correlations are obtained using a large database of computational fluid dynamics results on patient specific airways. The intraclass correlation coefficient between the current method and its training dataset is 0.92. The difference between the predicted average lobar deposition in the six asthma patients and the in-vivo data is 1.3%. The model has the potential to offer insights into the effectiveness of personalized drug delivery in clinical settings and can aid in drug development cycles.
Collapse
Affiliation(s)
- Hosein Sadafi
- Fluidda N.V., Groeningenlei 132, 2550, Kontich, Belgium.
| | - Wilfried De Backer
- Department of Respiratory Medicine, University of Antwerp, 2610, Antwerpen, Belgium
| | - Gabriel Krestin
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015, Rotterdam, The Netherlands
- Fluidda Inc., 228 E 45th St 9E, New York, NY, 10017, USA
| | - Jan De Backer
- Fluidda Inc., 228 E 45th St 9E, New York, NY, 10017, USA
| |
Collapse
|
3
|
Sutar AD, Verma RK, Shukla R. Quality by Design in Pulmonary Drug Delivery: A Review on Dry Powder Inhaler Development, Nanotherapy Approaches, and Regulatory Considerations. AAPS PharmSciTech 2024; 25:178. [PMID: 39095623 DOI: 10.1208/s12249-024-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.
Collapse
Affiliation(s)
- Ashish Dilip Sutar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
4
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
5
|
Feng Z, Han Z, Wang Y, Guo H, Liu J. Comparison of the Application of Vibrating Mesh Nebulizer and Jet Nebulizer in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Int J Chron Obstruct Pulmon Dis 2024; 19:829-839. [PMID: 38562440 PMCID: PMC10984201 DOI: 10.2147/copd.s452191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To comparison of the application of Vibrating Mesh Nebulizer and Jet Nebulizer in chronic obstructive pulmonary disease (COPD). Research Methods This systematic review and meta-analysis was conducted following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) statements. The primary outcome measures analyzed included: The amount of inhaler in the urine sample at 30 minutes after inhalation therapy (USAL0.5), The total amount of inhaler in urine sample within 24 hours (USAL24), Aerosol emitted, Forced expiratory volume in 1 second (FEV1), Forced vital capacity (FVC). Results Ten studies were included with a total of 314 study participants, including 157 subjects in the VMN group and 157 subjects in the JN group. The data analysis results of USAL0.5, MD (1.88 [95% CI, 0.95 to 2.81], P = 0.000), showed a statistically significant difference. USAL24, MD (1.61 [95% CI, 1.14 to 2.09], P = 0.000), showed a statistically significant difference. The results of aerosol emitted showed a statistically significant difference in MD (3.44 [95% CI, 2.84 to 4.04], P = 0.000). The results of FEV1 showed MD (0.05 [95% CI, -0.24 to 0.35], P=0.716), the results were not statistically significant. The results of FVC showed MD (0.11 [95% CI, -0.18 to 0.41], P=0.459), the results were not statistically significant. It suggests that VMN is better than JN and provides higher aerosols, but there is no difference in improving lung function between them. Conclusion VMN is significantly better than JN in terms of drug delivery and utilization in the treatment of patients with COPD. However, in the future use of nebulizers, it is important to select a matching nebulizer based on a combination of factors such as mechanism of action of the nebulizer, disease type and comorbidities, ventilation strategies and modes, drug formulations, as well as cost-effectiveness, in order to achieve the ideal treatment of COPD.
Collapse
Affiliation(s)
- Zhouzhou Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Zhengcai Han
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Yaqin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Hong Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
- Gansu Maternal and Child Health Hospital/Gansu Central Hospital, Lanzhou City, People’s Republic of China
| |
Collapse
|
6
|
Huang Y, Chang Z, Gao Y, Ren C, Lin Y, Zhang X, Wu C, Pan X, Huang Z. Overcoming the Low-Stability Bottleneck in the Clinical Translation of Liposomal Pressurized Metered-Dose Inhalers: A Shell Stabilization Strategy Inspired by Biomineralization. Int J Mol Sci 2024; 25:3261. [PMID: 38542235 PMCID: PMC10970625 DOI: 10.3390/ijms25063261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.
Collapse
Affiliation(s)
- Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Yuxin Lin
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| |
Collapse
|
7
|
Lari SM, Mohamadpour AH, Attaran D, Jafari M, Arasteh O, Emadzadeh M, Mozdourian M, Attaran S, Javidarabshahi Z. Evaluation of oral nano-curcumin efficacy on respiratory function and quality of life in patients with bronchial non-atopic asthma: A randomized controlled trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:229-241. [PMID: 38966624 PMCID: PMC11221763 DOI: 10.22038/ajp.2023.22826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 07/06/2024]
Abstract
Objective Asthma is a common disease and curcumin has modest effect in inflammatory disorders. This study investigated the efficacy of nano-curcumin on asthma. Materials and Methods In this double-blinded randomized clinical trial, 60 patients with non-atopic bronchial asthma were randomly stratified in two groups of intervention (N=30) and control (N=30) groups. Apart from their standard treatment, the intervention group received 40 mg nano-curcumin (soft gel) three times daily while the control group received placebo. During the 60-day study, patients were assessed using spirometry to measure Forced expiratory volume in first second (FEV1). Asthma control test (ACT) was completed every 30 days and asthma quality of life questionnaire (AQLQ) was completed at the first and end of the study. Results Totally, 31 patients (51.7%) were male and the mean age was 51.45±12.58 years. FEV1 was improved but there was no significant difference between intervention and control groups. ACT and AQLQ domains scores significantly improved. However, it was not statistically different between control and intervention groups. Conclusion Nano-curcumin at administered dosage had no additive effect on the standard treatment in asthmatic patients.
Collapse
Affiliation(s)
| | - Amir Hooshang Mohamadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Attaran
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Mozdourian
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Attaran
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Javidarabshahi
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
9
|
Focosi D, Maggi F. Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccin Immunother 2023; 19:2260040. [PMID: 37799070 PMCID: PMC10561570 DOI: 10.1080/21645515.2023.2260040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Convalescent plasma has been extensively tested during the COVID-19 pandemic as a transfusion product. Similarly, monoclonal antibodies have been largely administered either intravenously or intramuscularly. Nevertheless, when used against a respiratory pathogen, respiratory delivery is preferable to maximize the amount of antibody that reaches the entry door in order to prevent sustained viral multiplication. In this narrative review, we review the different types of inhalation device and summarize evidence from animal models and early clinical trials supporting the respiratory delivery (for either prophylactic or therapeutic purposes) of convalescent plasma or monoclonal antibodies (either full antibodies, single-chain variable fragments, or camelid-derived monoclonal heavy-chain only antibodies). Preliminary evidences from animal models suggest similar safety and noninferior efficacy, but efficacy evaluation from clinical trials is still limited.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani IRCCS”, Rome, Italy
| |
Collapse
|
10
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
11
|
Yildiz Türkyilmaz G, Özdokur KV, Alparslan L, Karasulu E. Sodium hyaluronate dry powder inhalation in combination with sodium cromoglycate prepared using optimized spray drying conditions. Pharm Dev Technol 2023; 28:240-247. [PMID: 36730066 DOI: 10.1080/10837450.2023.2176517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sodium hyaluronate (SHA) is an anti-inflammatory and protective agent against bronchoconstriction, and sodium cromoglicate (SCG) prevents exercise-induced bronchoconstriction and inflammation. Based on the pharmacological properties of both substances, this study aimed to develop a dry powder inhaler (DPI) of SHA alone and in combination with SCG. The target of the study was to develop flowable formulations without any surfactants by using the spray drying method. To obtain respirable SHA and SCG:SHA particles, variables of the spray dryer, such as inlet temperature, atomized air flow, and feed solution, were changed. The particles 1-8 μm in size were produced with high yield by spray drying and increasing the ethanol percentage of the feed solution (60%), which is the most remarkable parameter. After that, physicochemical characterizations were performed. The aerosol performance of DPI formulations prepared using lactose was evaluated using Handihaler® DPI. The fine particle fraction (FPF) was 36% for the SHA formulation, whereas it was 52 and 53% for SCG and SHA, respectively, in the SCG:SHA formulation. Consequently, both particles were produced reproducibly by spray drying, and inhaled SHA and SCG:SHA dry powder formulations were developed due to their high FPF and flowability with lactose.
Collapse
Affiliation(s)
- Gülbeyaz Yildiz Türkyilmaz
- Center For Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, İzmir, Türkiye.,Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Kemal Volkan Özdokur
- Department of Chemistry, Faculty of Science and Letter, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Levent Alparslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| | - Ercüment Karasulu
- Center For Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, İzmir, Türkiye.,Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| |
Collapse
|
12
|
Valladales-Restrepo LF, Saavedra-Navia JC, Montezuma-Casanova CA, Montañez-Díaz V, González-Ospina JA, Caballero-Martínez LM, Gaviria-Mendoza A, Machado-Duque ME, Machado-Alba JE. Satisfaction with and Use of Inhalation Devices in Patients with Bronchial Asthma. J Aerosol Med Pulm Drug Deliv 2022; 35:313-320. [PMID: 36318820 DOI: 10.1089/jamp.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Greater patient satisfaction with his or her inhalation device is associated with better adherence to pharmacological therapy and better clinical outcomes, such as improved quality of life, greater asthma control, and fewer exacerbations. The objective of this study was to determine the satisfaction level of a group of patients diagnosed with bronchial asthma concerning their devices for inhalation of bronchodilators and glucocorticoids. Methods: This was a cross-sectional study of patients treated in the Colombian health system. Satisfaction with inhalation devices was evaluated with the Feeling of Satisfaction with Inhaler (FSI)-10 questionnaire. A score of ≥44 points indicated high satisfaction. Results: In total, 362 patients from 59 cities were identified, their median age was 55 years, and 74.6% were women. The FSI-10 average score was 44.6; 68.5% of patients showed high satisfaction, especially with pressurized metered-dose inhalers (pMDIs), and 63.4% did not use them with an inhalation chamber. Users of pMDIs (odds ratio [OR]: 1.80; 95% confidence interval [CI]: 1.05-3.10) and those who received training by medical specialists (OR: 2.29; 95% CI: 1.33-3.97) had high satisfaction, while patients who were older (40-64 vs. <40 years: OR: 0.38; 95% CI: 0.19-0.78 and ≥65 vs. <40 years: OR: 0.35; 95% CI: 0.15-0.81), resided in the Caribbean region (OR: 0.48; 95% CI: 0.29-0.81), and had a university education (OR: 0.54; 95% CI: 0.32-0.90) had lower satisfaction. Conclusions: The majority of patients with asthma used pMDIs without an inhalation chamber, and their overall satisfaction was higher than that of patients using other inhalation devices. Patients who received special training from medical specialists showed better satisfaction.
Collapse
Affiliation(s)
- Luis Fernando Valladales-Restrepo
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia.,Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Juan Camilo Saavedra-Navia
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia
| | - Carlos Andrés Montezuma-Casanova
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia
| | - Valentina Montañez-Díaz
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia
| | - Jairo Andrés González-Ospina
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia
| | - Laura Manuela Caballero-Martínez
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia
| | - Andrés Gaviria-Mendoza
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia.,Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Manuel Enrique Machado-Duque
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia.,Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Jorge Enrique Machado-Alba
- Grupo de Investigación en Farmacoepidemiología y Farmacovigilancia, Universidad Tecnológica de Pereira-Audifarma S.A, Pereira, Risaralda, Colombia
| |
Collapse
|
13
|
Khaled Z, Dahmash EZ, Koner J, Ani RA, Alyami H, Naser AY. Assessment of Vaping Devices as an Alternative Respiratory Drug Delivery System. Drug Dev Ind Pharm 2022; 48:446-456. [DOI: 10.1080/03639045.2022.2123926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zaid Khaled
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan.
| | - Eman Zmaily Dahmash
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan.
| | | | - Raad Al Ani
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan.
| | - Hamad Alyami
- Department of Pharmaceutics, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdallah, Y. Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan.
| |
Collapse
|
14
|
Chen TF, Song L, Gao YH, Li H, Li JL, Hou HP, Peng B, Wang HY, Cheng WH, Ye ZG, Li YF, Zhang GP. Pharmacokinetics of baicalin and oroxyloside in plasma and different tissues of rats after transnasal aerosol inhalation and intravenous injection of Tanreqing. Front Pharmacol 2022; 13:951613. [PMID: 36071852 PMCID: PMC9442038 DOI: 10.3389/fphar.2022.951613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
To avoid adverse drug reactions associated with injection, off-label nebulization of Tanreqing (TRQ) injection is often used in China to treat respiratory diseases. However, the aerodynamic properties and lung availability of TRQ aerosols remain largely uninvestigated. This study aimed to investigate the size distribution of TRQ aerosols and to compare the pharmacokinetics and tissue distribution of two compounds from TRQ (baicalin and oroxyloside) after transnasal aerosol inhalation and intravenous administration. Furthermore, this study aimed to evaluate the efficacy of TRQ against lipopolysaccharide-induced lung inflammation. The Dv(50) and transmission of TRQ aerosols were 2.512 μm and 74.867%, respectively. The Cmax of baicalin and oroxyloside in rat plasma after inhalation was lower than that after intravenous injection. After inhalation, the area under the curve (AUC) of baicalin and oroxyloside in tissues (lung, bronchoalveolar lavage fluid, and trachea) was 7.9–115.3 and 9.5–16.0 times that observed after intravenous administration, respectively. Baicalin and oroxyloside maintained high concentrations 4 h after inhalation, but only 1 h after intravenous injection. The mean lung-to-plasma concentration ratios of baicalin and oroxyloside were 287.6 and 49.9 times higher than with intravenous administration. Inhaled TRQ achieved the same effect against lipopolysaccharide-induced lung inflammation in mice at doses of only 1/16–1/8 of those administered intravenously. The results indicate that TRQ inhalation is a promising alternative to intravenous injections for the treatment of respiratory infection.
Collapse
Affiliation(s)
- Teng-Fei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Yun-Hang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Jian-Liang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Hong-Ping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Hui-Ying Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Wen-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zu-Guang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Guang-Ping Zhang, ; Ying-Fei Li, ; Zu-Guang Ye,
| | - Ying-Fei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Guang-Ping Zhang, ; Ying-Fei Li, ; Zu-Guang Ye,
| | - Guang-Ping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Guang-Ping Zhang, ; Ying-Fei Li, ; Zu-Guang Ye,
| |
Collapse
|
15
|
Mahler DA, Demirel S, Hollander R, Gopalan G, Shaikh A, Mahle CD, Elder J, Morrison C. High Prevalence of Suboptimal Peak Inspiratory Flow in Hospitalized Patients With COPD: A Real-world Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:427-438. [PMID: 35788259 PMCID: PMC9448011 DOI: 10.15326/jcopdf.2022.0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
For optimal drug delivery, dry powder inhalers (DPIs) depend on the patient's peak inspiratory flow (PIF) and the internal resistance of the device to create turbulent energy and disaggregate the powder. A suboptimal PIF may lead to ineffective drug inhalation into the lungs. Our objective was to report the prevalence of suboptimal PIF in patients with COPD hospitalized for any reason using 1 or more DPIs. In this real-world, observational, single‑site, retrospective study, PIF was measured for each DPI using the In-Check™ DIAL set to match the resistance of the DPI used by each patient. PIFs <60 and <30L/min were considered suboptimal for low to medium-high- and high-resistance DPIs, respectively. At initial hospitalization, the prevalence of suboptimal PIF was 44.6% in 829 patients (mean age, 71.7 years; 56.8% female); 21.2% were measured during admission for a COPD exacerbation. Suboptimal PIF percentages were 61.0% (38.1±9.5L/min [mean±standard deviation (SD)]) across low to medium-high-resistance DPIs and 17.2% (20.7±4.2L/min) for high-resistance DPIs. Overall, 190/829 patients had 1 or more 30-day all-cause readmission with 253 corresponding PIF measurements. For readmissions, suboptimal PIFs were observed in 49.5% (94/190) of patients. Suboptimal PIF percentages were 65.4% (38.4±9.2L/min) for low to medium-high-resistance DPIs and 19.8% (22.4±3.3L/min) for high-resistance DPIs. As the overall prevalence of suboptimal PIFs in hospitalized patients with COPD varied according to the specific internal resistance of the DPI, these findings may have clinical implications for inhaler selection.
Collapse
Affiliation(s)
- Donald A. Mahler
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Valley Regional Hospital, Claremont, New Hampshire, United States
| | - Shaban Demirel
- Legacy Research Institute, Portland, Oregon, United States
| | - Ramon Hollander
- Legacy Salmon Creek Medical Center, Vancouver, Washington, Unites States
| | - Gokul Gopalan
- Boehringer Ingelheim Pharmaceuticals, Incorporated, Ridgefield, Connecticut, United States
| | - Asif Shaikh
- Boehringer Ingelheim Pharmaceuticals, Incorporated, Ridgefield, Connecticut, United States
| | - Cathy D. Mahle
- Boehringer Ingelheim Pharmaceuticals, Incorporated, Ridgefield, Connecticut, United States
| | - Jessica Elder
- Boehringer Ingelheim Pharmaceuticals, Incorporated, Ridgefield, Connecticut, United States
| | - Curtis Morrison
- Legacy Salmon Creek Medical Center, Vancouver, Washington, Unites States
| |
Collapse
|
16
|
Ruan X, Yu J, Miao H, Li R, Tong Z. Remdesivir Powders Manufactured by Jet Milling for Potential Pulmonary Treatment of COVID-19. Pharm Dev Technol 2022; 27:635-645. [PMID: 35787731 DOI: 10.1080/10837450.2022.2098975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Remdesivir is one of the effective drugs proposed for the treatment of coronavirus disease 2019 (COVID-19). However, the study on inhalable regimen is currently limited though COVID-19 is respiratory diseases and infects lung area. This work aims to prepare inhalable remdesivir formulations and verify their effectiveness through in vitro evaluations.Formulations containing different ratios of jet-milled inhalable remdesivir (5%, 10%, 20%,40%,70%) with excipients were produced and characterized in terms of the particle size distribution, particle morphology, flowability, water content, crystallinity, the water sorption and desorption capabilities and the aerodynamic performance.Results indicating that drug loading is a vital factor in facilitating the dispersion of remdesivir dry powder, and the ternary excipient plays a negligible role in improving aerosol performance. Besides, the 70% remdesivir with lactose carrier (70%RD-Lac) was physically stable and retain high aerosol performance after conditioned at 40 °C and 75% RH for a month. Therefore, formulation 70% RD-Lac might be recommended as a candidate product for the potential treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoying Ruan
- Southeast University - Sipailou Campus, School of Energy and Environment, Nanjing, 210096 China
| | - Jiaqi Yu
- Institute for Process Modelling and Optimization, suzhou, China
| | - Hao Miao
- Monash University, Clayton, 3800 Australia
| | - Renjie Li
- Monash University, Clayton, 3800 Australia
| | - Zhenbo Tong
- Southeast University, School of Energy and Environment, Nanjing, 210096 China
| |
Collapse
|
17
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
18
|
The history, current state and perspectives of aerosol therapy. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:225-243. [PMID: 36651510 DOI: 10.2478/acph-2022-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 01/20/2023]
Abstract
Nebulization is a very effective method of drug administration. This technique has been popular since ancient times when inhalation of plants rich in tropane alkaloids with spasmolytic and analgesic effects was widely used. Undoubtedly, the invention of anasthesia in the 19th century had an influence on the development of this technique. It resulted in the search for devices that facilitated anasthesia such as pulveriser or hydronium. From the second half of the 21st century, when the first DPI and MDI inhalers were launched, the constant development of aerosol therapy has been noticed. This is due to the fact that nebulization, compared with other means of medicinal substance application (such as oral and intravenous routes of administration), is safer and it exhibits a positive dose/efficacy ratio connected to the reduction of the dose. It enables drugs administration through the lung and possesses very fast onset action. Therefore, various drugs prescribed in respiratory diseases (such as corticosteroids, β-agonists, anticholinergics) are present on the market in a form of an aerosol.
Collapse
|
19
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
20
|
Naidu H, Kahraman O, Feng H. Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices. ULTRASONICS SONOCHEMISTRY 2022; 86:105984. [PMID: 35395443 PMCID: PMC8991379 DOI: 10.1016/j.ultsonch.2022.105984] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Liquid atomization as a fluid disintegration method has been used in many industrial applications such as spray drying, coating, incineration, preparation of emulsions, medical devices, etc. The usage of ultrasonic energy for atomizing liquid is gaining interest as a green and energy-efficient alternative to traditional mechanical atomizers. In the past two decades, efforts have been made to explore new applications of ultrasonic misting for downstream separation of chemicals, e.g., bioethanol, from their aqueous solutions. Downstream separation of a chemical from its aqueous solutions is known to be an energy-intensive process. Conventional distillation is featured by low energy efficiency and inability to separate azeotropic mixtures, and thus novel alternatives, such as ultrasonic separation have been explored to advance the separation technology. Ultrasonic misting has been reported to generate mist and vapor mixture in a gaseous phase that is enriched in solute (e.g., ethanol), under non-thermal, non-equilibrium, and phase change free conditions. This review article takes an in-depth look into the recent advancements in ultrasound-mediated separation of organic molecules, especially bioethanol, from their aqueous solutions. An effort was made to analyze and compare the experimental setups used, mist collection methods, droplet size distribution, and separation mechanism. In addition, the applications of ultrasonic atomization in the production of pharmaceuticals and medical devices are discussed.
Collapse
Affiliation(s)
- Haripriya Naidu
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA.
| | - Ozan Kahraman
- Applied Food Sciences, 2500 Crosspark Road, Coralville, IA 52241, USA.
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA; Department of Agricultural and Biological Engineering, University of Illinois Urbana Champaign, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Wang H, Ordoubadi M, Connaughton P, Lachacz K, Carrigy N, Tavernini S, Martin AR, Finlay WH, Lechuga-Ballesteros D, Vehring R. Spray Dried Rugose Lipid Particle Platform for Respiratory Drug Delivery. Pharm Res 2022; 39:805-823. [PMID: 35364777 DOI: 10.1007/s11095-022-03242-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To develop a new lipid-based particle formulation platform for respiratory drug delivery applications. To find processing conditions for high surface rugosity and manufacturability. To assess the applicability of the new formulation method to different lipids. METHODS A new spray drying method with a simplified aqueous suspension feedstock preparation process was developed for the manufacture of rugose lipid particles of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). A study covering a wide range of feedstock temperatures and outlet temperatures was conducted to optimize the processing conditions. Aerosol performance was characterized in vitro and in silico to assess the feasibility of their use in respiratory drug delivery applications. The applicability of the new spray drying method to longer-chain phospholipids with adjusted spray drying temperatures was also evaluated. RESULTS Highly rugose DSPC lipid particles were produced via spray drying with good manufacturability. A feedstock temperature close to, and an outlet temperature lower than, the main phase transition were identified as critical in producing particles with highly rugose surface features. High emitted dose and total lung dose showed promising aerosol performance of the produced particles for use as a drug loading platform for respiratory drug delivery. Two types of longer-chain lipid particles with higher main phase transition temperatures, 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) and 1,2-dibehenoyl-sn-glycero-3-phosphocholine (22:0 PC), yielded similar rugose morphologies when spray dried at correspondingly higher processing temperatures. CONCLUSIONS Rugose lipid particles produced via spray drying from an aqueous suspension feedstock are promising as a formulation platform for respiratory drug delivery applications. The new technique can potentially produce rugose particles using various other lipids.
Collapse
Affiliation(s)
- Hui Wang
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Patrick Connaughton
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Kellisa Lachacz
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Nicholas Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, CA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Alberta, Canada.
| |
Collapse
|
22
|
Wang X, Xie Z, Zhao J, Zhu Z, Yang C, Liu Y. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections. Front Cell Infect Microbiol 2021; 11:758392. [PMID: 34938668 PMCID: PMC8685529 DOI: 10.3389/fcimb.2021.758392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
With respiratory infections accounting for significant morbidity and mortality, the issue of antibiotic resistance has added to the gravity of the situation. Treatment of pulmonary infections (bacterial pneumonia, cystic fibrosis-associated bacterial infections, tuberculosis) is more challenging with the involvement of multi-drug resistant bacterial strains, which act as etiological agents. Furthermore, with the dearth of new antibiotics available and old antibiotics losing efficacy, it is prudent to switch to non-antibiotic approaches to fight this battle. Phage therapy represents one such approach that has proven effective against a range of bacterial pathogens including drug resistant strains. Inhaled phage therapy encompasses the use of stable phage preparations given via aerosol delivery. This therapy can be used as an adjunct treatment option in both prophylactic and therapeutic modes. In the present review, we first highlight the role and action of phages against pulmonary pathogens, followed by delineating the different methods of delivery of inhaled phage therapy with evidence of success. The review aims to focus on recent advances and developments in improving the final success and outcome of pulmonary phage therapy. It details the use of electrospray for targeted delivery, advances in nebulization techniques, individualized controlled inhalation with software control, and liposome-encapsulated nebulized phages to take pulmonary phage delivery to the next level. The review expands knowledge on the pulmonary delivery of phages and the advances that have been made for improved outcomes in the treatment of respiratory infections.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zuozhou Xie
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Jinhong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Zhenghua Zhu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Chen Yang
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, The Second People's Hospital of Kunming, Kunming, China
| |
Collapse
|
23
|
Peché R, Attar-Zadeh D, Scullion J, Kocks J. Matching the Inhaler to the Patient in COPD. J Clin Med 2021; 10:5683. [PMID: 34884385 PMCID: PMC8658339 DOI: 10.3390/jcm10235683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Selecting the most appropriate inhalation device from the wide range available is essential for the successful management of patients with chronic obstructive pulmonary disease. Although choice is good for healthcare professionals, knowing which inhaler to prescribe is a complex consideration. Among the key factors to consider are quality of disease control, inhaler technique, inhaler resistance and inspiratory flow, inhaler design and mechanisms of drug delivery, insurance and reimbursement restrictions, and environmental impact. In this article, we offer a simple, practical tool that brings together all these factors and includes hyperlinks to other published resources from the United Kingdom, Belgium, and The Netherlands.
Collapse
Affiliation(s)
- Rudi Peché
- Department of Pneumology, Centre Hospitalier Universitaire de Charleroi, 6042 Charleroi, Belgium
| | - Darush Attar-Zadeh
- North Central London Clinical Commissioning Group (CCG), London N11 1GN, UK;
| | - Jane Scullion
- Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK;
| | - Janwillem Kocks
- General Practitioners Research Institute, 9713 GH Groningen, The Netherlands;
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
- Observational and Pragmatic Research Institute, Singapore 409051, Singapore
| |
Collapse
|
24
|
Sivadasan S, Krishnan A, Dhayalan SV, Aiyalu R. A Systematic Review on KAP of Nebulization Therapy at Home. J Pharm Technol 2021; 37:254-259. [PMID: 34752576 DOI: 10.1177/87551225211031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Inhalation is the preferred method of delivering medication for respiratory conditions such as asthma, chronic obstructive pulmonary disease, and other respiratory disease. A nebulizer converts a medication in liquid form to mist, so that the medication can be inhaled into the lungs. The aim of the study is to systematically review the knowledge, attitude, and practice of patients using nebulization therapy at home. The objective of the study is to review the procedure of nebulizer technique and to interpret the outcome of the studies. Method: Scopus, PubMed, BMJ, and other database from 2000 to 2020 were searched using Boolean operators. Title and abstract were screened for nebulizer technology and for inclusion and exclusion criteria. After full text screening 16 articles were included in the study. Result: Use of nebulizer at home was a challenge at all stages including setting up and operating nebulizer, filling up of medication, inhalation technique, end point dismantling, and maintenance. The main challenge experienced by the participants was with cleaning and disinfecting of nebulizer. There were studies that reported with 71.6% pathogen contamination due to inappropriate cleaning and disinfecting. Conclusion: Patients with respiratory disease using nebulizers at home find difficulty in appropriate and rational use of the device. Apart from the nebulizer user guidelines from the manufactures, it is suggested that a short audio visual demonstrating the appropriate and effective use of nebulizers and also its maintenance in their colloquial language with handout infographics would highly facilitate the effective use of nebulizers.
Collapse
|
25
|
Castillo Aleman YM, Villegas Valverde CA, Ventura Carmenate Y, Abdel Hadi L, Rivero Jimenez RA, Rezgui R, Alagha SH, Shamat S, Bencomo Hernandez AA. Viability assessment of human peripheral blood-derived stem cells after three methods of nebulization. AMERICAN JOURNAL OF STEM CELLS 2021; 10:68-78. [PMID: 34849303 PMCID: PMC8610807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Drug delivery by nebulization has become a crucial strategy for treating different respiratory and lung diseases. Emerging evidence implicates stem cell therapy as a promising tool in treating such conditions, not only by alleviating the related symptoms but by improving the prognosis. However, delivery of human peripheral blood-derived stem cells (hPBSCs) to the respiratory airways remains an innovative approach yet to be realized. This study is an analytic, translational, and in vitro research to assess the viability and morphological changes of identified cell populations in hPBSCs cocktail derived from COVID-19 patients. METHODS AND RESULTS Peripheral blood (PB) samples were obtained from patients enrolled in the SENTAD-COVID Study (ClinicalTrials.gov Reference: NCT04473170). hPBSCs cocktails (n=15) were provided by the Cells Processing Laboratory of Abu Dhabi Stem Cells Center, and were nebulized by three different methods of nebulization: compressor (jet), ultrasonic, and mesh. Our results reported that nucleated CD45dim cell count was significantly lower after the three nebulization methods, but nucleated CD45- cells show a significant decrease only after mesh nebulization. Mesh-nebulized samples had a significant reduction in viability of both CD45dim and CD45- cells. CONCLUSIONS This study provides evidence that stem cells derived from PB of COVID-19 patients can be nebulized without substantial loss of cell viability, cell count, and morphological changes using the compressor nebulization. Therefore, we recommend compressor nebulizers as the preferable procedure for hPBSCs delivery to the respiratory airways in further clinical settings.
Collapse
Affiliation(s)
| | | | | | - Loubna Abdel Hadi
- Abu Dhabi Stem Cells Center (ADSCC)Abu Dhabi, United Arab Emirates (UAE)
| | | | - Rachid Rezgui
- New York UniversityAbu Dhabi, United Arab Emirates (UAE)
| | - Shahd Hani Alagha
- Abu Dhabi Stem Cells Center (ADSCC)Abu Dhabi, United Arab Emirates (UAE)
| | - Shadi Shamat
- Abu Dhabi Stem Cells Center (ADSCC)Abu Dhabi, United Arab Emirates (UAE)
| | | |
Collapse
|
26
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
27
|
Xiroudaki S, Schoubben A, Giovagnoli S, Rekkas DM. Dry Powder Inhalers in the Digitalization Era: Current Status and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13091455. [PMID: 34575530 PMCID: PMC8467565 DOI: 10.3390/pharmaceutics13091455] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
During the last decades, the term "drug delivery systems" (DDSs) has almost fully replaced previously used terms, such as "dosage forms", in an attempt to emphasize the importance of the drug carrier in ensuring the claimed safety and effectiveness of the product. However, particularly in the case of delivery devices, the term "system", which by definition implies a profound knowledge of each single part and their interactions, is not always fully justified when using the DDS term. Within this context, dry powder inhalers (DPIs), as systems to deliver drugs via inhalation to the lungs, require a deep understanding of the complex formulation-device-patient interplay. As of now and despite the progress made in particle engineering and devices design, DPIs' clinical performance is limited by variable patients' breathing patterns. To circumvent this pitfall, next-generation DPIs should ideally adapt to the different respiratory capacity of individuals across age, health conditions, and other related factors. In this context, the recent wave of digitalization in the health care and industrial sectors may drive DPI technology towards addressing a personalized device-formulation-patient liaison. In this review, evolving technologies are explored and analyzed to outline the progress made as well as the gaps to fill to align novel DPIs technologies with the systems theory approach.
Collapse
Affiliation(s)
- Styliani Xiroudaki
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.X.); (A.S.)
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.X.); (A.S.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.X.); (A.S.)
- Correspondence: (S.G.); (D.M.R.); Tel.: +39-075-5855162 (S.G.); +30-210-7274023 (D.M.R.)
| | - Dimitrios M. Rekkas
- Section of Pharmaceutical Technology, Department of Pharmacy, National & Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (S.G.); (D.M.R.); Tel.: +39-075-5855162 (S.G.); +30-210-7274023 (D.M.R.)
| |
Collapse
|
28
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
29
|
Al-Obaidi H, Granger A, Hibbard T, Opesanwo S. Pulmonary Drug Delivery of Antimicrobials and Anticancer Drugs Using Solid Dispersions. Pharmaceutics 2021; 13:1056. [PMID: 34371747 PMCID: PMC8309119 DOI: 10.3390/pharmaceutics13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
It is well established that currently available inhaled drug formulations are associated with extremely low lung deposition. Currently available technologies alleviate this low deposition problem via mixing the drug with inert larger particles, such as lactose monohydrate. Those inert particles are retained in the inhalation device or impacted in the throat and swallowed, allowing the smaller drug particles to continue their journey towards the lungs. While this seems like a practical approach, in some formulations, the ratio between the carrier to drug particles can be as much as 30 to 1. This limitation becomes more critical when treating lung conditions that inherently require large doses of the drug, such as antibiotics and antivirals that treat lung infections and anticancer drugs. The focus of this review article is to review the recent advancements in carrier free technologies that are based on coamorphous solid dispersions and cocrystals that can improve flow properties, and help with delivering larger doses of the drug to the lungs.
Collapse
Affiliation(s)
- Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading RG6 6AD, UK; (A.G.); (T.H.); (S.O.)
| | | | | | | |
Collapse
|
30
|
Houdkova M, Chaure A, Doskocil I, Havlik J, Kokoska L. New Broth Macrodilution Volatilization Method for Antibacterial Susceptibility Testing of Volatile Agents and Evaluation of Their Toxicity Using Modified MTT Assay In Vitro. Molecules 2021; 26:molecules26144179. [PMID: 34299454 PMCID: PMC8305236 DOI: 10.3390/molecules26144179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a new broth macrodilution volatilization method for the simple and rapid determination of the antibacterial effect of volatile agents simultaneously in the liquid and vapor phase was designed with the aim to assess their therapeutic potential for the development of new inhalation preparations. The antibacterial activity of plant volatiles (β-thujaplicin, thymohydroquinone, thymoquinone) was evaluated against bacteria associated with respiratory infections (Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes) and their cytotoxicity was determined using a modified thiazolyl blue tetrazolium bromide assay against normal lung fibroblasts. Thymohydroquinone and thymoquinone possessed the highest antibacterial activity against H. influenzae, with minimum inhibitory concentrations of 4 and 8 µg/mL in the liquid and vapor phases, respectively. Although all compounds exhibited cytotoxic effects on lung cells, therapeutic indices (TIs) suggested their potential use in the treatment of respiratory infections, which was especially evident for thymohydroquinone (TI > 34.13). The results demonstrate the applicability of the broth macrodilution volatilization assay, which combines the principles of broth microdilution volatilization and standard broth macrodilution methods. This assay enables rapid, simple, cost- and labor-effective screening of volatile compounds and overcomes the limitations of assays currently used for screening of antimicrobial activity in the vapor phase.
Collapse
Affiliation(s)
- Marketa Houdkova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.H.); (A.C.)
| | - Aishwarya Chaure
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.H.); (A.C.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic;
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (M.H.); (A.C.)
- Correspondence: ; Tel.: +420-224382180
| |
Collapse
|
31
|
Chen SY, Huang CK, Peng HC, Tsai HC, Huang SY, Yu CJ, Chien JY. Peak-Inspiratory-Flow-Rate Guided Inhalation Therapy Reduce Severe Exacerbation of COPD. Front Pharmacol 2021; 12:704316. [PMID: 34267665 PMCID: PMC8277232 DOI: 10.3389/fphar.2021.704316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
Optimal peak inspiratory flow rate (PIFR) is crucial for inhalation therapy in patients with chronic obstructive pulmonary disease (COPD). However, little is known about the impact of PIFR-guided inhalation therapy on the clinical outcomes among patients with varying severities of COPD. A PIFR-guided inhalation therapy, including PIFR assessment and PIFR-guided inhaler education, was introduced in a pay-for-performance COPD management program in National Taiwan University Hospital. Among 383 COPD patients, there was significant reduction in incidence of severe acute exacerbation in the PIFR-guided inhalation therapy (PIFR group) than conventional inhaler education (control group) (11.9 vs. 21.1%, p = 0.019) during one-year follow-up. A multivariable Cox's proportional-hazards analysis revealed that the PIFR-guided inhalation therapy was a significant, independent factor associated with the reduced risk of severe exacerbation (adjusted hazard ratio = 0.49, 95% confidence interval, 0.28-0.84, p = 0.011). Subgroup analysis found PIFR-guided inhalation therapy was more beneficial to patients with older age, short body stature, COPD stage 1&2, group C&D (frequent exacerbation phenotype), and using multiple inhalers. This study showed the PIFR-guided inhalation therapy significantly reduced the incidence of severe acute exacerbation than conventional inhaler education in patients with COPD. Careful PIFR-assessment and education would be crucial in the management of COPD.
Collapse
Affiliation(s)
- Shih-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chun-Kai Huang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Chuan Peng
- Department of Nursing, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Ying Huang
- Department of Pharmacy, Taipei City Hospital Songde Branch, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
32
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
33
|
Stability and In Vitro Aerodynamic Studies of Inhalation Powders Containing Ciprofloxacin Hydrochloride Applying Different DPI Capsule Types. Pharmaceutics 2021; 13:pharmaceutics13050689. [PMID: 34064698 PMCID: PMC8151261 DOI: 10.3390/pharmaceutics13050689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
In the case of capsule-based dry powder inhalation systems (DPIs), the selection of the appropriate capsule is important. The use of gelatin, gelatin-PEG, and HPMC capsules has become widespread in marketed capsule-based DPIs. We aimed to perform a stability test according to the ICH guideline in the above-mentioned three capsule types. The results of the novel combined formulated microcomposite were more favorable than those of the carrier-free formulation for all capsule types. The use of HPMC capsules results in the greatest stability and thus the best in vitro aerodynamic results for both DPI powders after six months. This can be explained by the fact that the residual solvent content (RSC) of the capsules differs. Under the applied conditions the RSC of the HPMC capsule decreased the least and remained within the optimal range, thus becoming less fragmented, which was reflected in the RSC, structure and morphology of the particles, as well as in the in vitro aerodynamic results (there was a difference of approximately 10% in the lung deposition results). During pharmaceutical dosage form developments, emphasis should be placed in the case of DPIs on determining which capsule type will be used for specific formulations.
Collapse
|
34
|
Debnath SK, Srivastava R, Debnath M, Omri A. Status of inhalable antimicrobial agents for lung infection: progress and prospects. Expert Rev Respir Med 2021; 15:1251-1270. [PMID: 33866900 DOI: 10.1080/17476348.2021.1919514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Available parenteral and oral administration of antimicrobial agents (AMAs) in respiratory infections often show less penetration into the lung parenchyma. Due to inappropriate dose availability, the rate of antibiotic resistance is increasing gradually. Inhaled antibiotics intensely improve the availability of drugs at the site of respiratory infections. This targeted delivery minimizes systemic exposure and associated toxicity.Area covers: This review was performed by searching in the scientific database like PubMed and several trusted government sites like fda.gov, cdc.gov, ClinicalTrials.gov, etc. For better understanding, AMAs are classified in different stages of approval. Mechanism and characterization of pulmonary drug deposition section helps to understand the effective delivery of AMAs to the respiratory tract. There is a need for proper adoption of delivery devices for inhalable AMAs. Thus, delivery devices are extensively explained. Inspiratory flow has a remarkable impact on the delivery device that has been explained in detail.Expert opinion: Pulmonary delivery restricts the bulk administration of drugs in comparison with other routes. Therefore, novel AMAs with higher bactericidal activity at lower concentrations need to be synthesized. Extensive research is indeed in developing innovative delivery devices that would able to deliver higher doses of AMAs through the pulmonary route.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Monalisha Debnath
- School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, India
| | - Abdelwahab Omri
- Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
35
|
La Zara D, Sun F, Zhang F, Franek F, Balogh Sivars K, Horndahl J, Bates S, Brännström M, Ewing P, Quayle MJ, Petersson G, Folestad S, van Ommen JR. Controlled Pulmonary Delivery of Carrier-Free Budesonide Dry Powder by Atomic Layer Deposition. ACS NANO 2021; 15:6684-6698. [PMID: 33769805 PMCID: PMC8155342 DOI: 10.1021/acsnano.0c10040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.
Collapse
Affiliation(s)
- Damiano La Zara
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Feilong Sun
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Fuweng Zhang
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Frans Franek
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Clinical
Testing and Precision Medicine, Global Procurement, Operations, AstraZeneca, Gothenburg, Sweden
| | - Jenny Horndahl
- Bioscience
COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Bates
- Functional
and Mechanistic Safety, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge U.K.
| | - Marie Brännström
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Pär Ewing
- Drug
Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Michael J. Quayle
- New Modalities
and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Gunilla Petersson
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Folestad
- Innovation
Strategy and External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - J. Ruud van Ommen
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| |
Collapse
|
36
|
Vieira-Marques P, Almeida R, Teixeira JF, Valente J, Jácome C, Cachim A, Guedes R, Pereira A, Jacinto T, Fonseca JA. InspirerMundi-Remote Monitoring of Inhaled Medication Adherence through Objective Verification Based on Combined Image Processing Techniques. Methods Inf Med 2021; 60:e9-e19. [PMID: 33906260 PMCID: PMC8294936 DOI: 10.1055/s-0041-1726277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background
The adherence to inhaled controller medications is of critical importance for achieving good clinical results in patients with chronic respiratory diseases. Self-management strategies can result in improved health outcomes and reduce unscheduled care and improve disease control. However, adherence assessment suffers from difficulties on attaining a high grade of trustworthiness given that patient self-reports of high-adherence rates are known to be unreliable.
Objective
Aiming to increase patient adherence to medication and allow for remote monitoring by health professionals, a mobile gamified application was developed where a therapeutic plan provides insight for creating a patient-oriented self-management system. To allow a reliable adherence measurement, the application includes a novel approach for objective verification of inhaler usage based on real-time video capture of the inhaler's dosage counters.
Methods
This approach uses template matching image processing techniques, an off-the-shelf machine learning framework, and was developed to be reusable within other applications. The proposed approach was validated by 24 participants with a set of 12 inhalers models.
Results
Performed tests resulted in the correct value identification for the dosage counter in 79% of the registration events with all inhalers and over 90% for the three most widely used inhalers in Portugal. These results show the potential of exploring mobile-embedded capabilities for acquiring additional evidence regarding inhaler adherence.
Conclusion
This system helps to bridge the gap between the patient and the health professional. By empowering the first with a tool for disease self-management and medication adherence and providing the later with additional relevant data, it paves the way to a better-informed disease management decision.
Collapse
Affiliation(s)
- Pedro Vieira-Marques
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rute Almeida
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Community Medicine, MEDCIDS, Health Information and Decision, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - José Valente
- MEDIDA-Serviços em Medicina, EDucação, Investigação, Desenvolvimento e Avaliação, LDA, Porto, Portugal
| | - Cristina Jácome
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Community Medicine, MEDCIDS, Health Information and Decision, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Afonso Cachim
- Department of Community Medicine, MEDCIDS, Health Information and Decision, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Guedes
- Department of Community Medicine, MEDCIDS, Health Information and Decision, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Pereira
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Community Medicine, MEDCIDS, Health Information and Decision, Faculty of Medicine, University of Porto, Porto, Portugal.,Allergy Unit, Instituto and Hospital CUF, Porto, Portugal
| | - Tiago Jacinto
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,MEDIDA-Serviços em Medicina, EDucação, Investigação, Desenvolvimento e Avaliação, LDA, Porto, Portugal.,Department of Cardiovascular and Respiratory Sciences, Porto Health School, Polytechnic Institute of Porto, Porto, Portugal
| | - João A Fonseca
- CINTESIS-Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Community Medicine, MEDCIDS, Health Information and Decision, Faculty of Medicine, University of Porto, Porto, Portugal.,MEDIDA-Serviços em Medicina, EDucação, Investigação, Desenvolvimento e Avaliação, LDA, Porto, Portugal.,Allergy Unit, Instituto and Hospital CUF, Porto, Portugal
| |
Collapse
|
37
|
Boc S, Momin MAM, Farkas DR, Longest W, Hindle M. Development and Characterization of Excipient Enhanced Growth (EEG) Surfactant Powder Formulations for Treating Neonatal Respiratory Distress Syndrome. AAPS PharmSciTech 2021; 22:136. [PMID: 33860409 DOI: 10.1208/s12249-021-02001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to develop and characterize a spray-dried powder aerosol formulation of a commercially available surfactant formulation, Survanta® intratracheal suspension, using the excipient enhanced growth (EEG) approach. Survanta EEG powders were prepared by spray drying of the feed dispersions containing Survanta® (beractant) intratracheal suspension, hygroscopic excipients (mannitol and sodium chloride), and a dispersion enhancer (l-leucine or trileucine) in 5 or 20% v/v ethanol in water using the Buchi Nano Spray Dryer B-90 HP. Powders were characterized for primary particle size, morphology, phospholipid content, moisture content, thermal properties, moisture sorption, and surface activity. The aerosol performance of the powders was assessed using a novel low-volume dry powder inhaler (LV-DPI) device operated with 3-mL volume of dispersion air. At both ethanol concentrations, in comparison to trileucine, l-leucine significantly reduced the primary particle size and span and increased the fraction of submicrometer particles of the Survanta EEG powders. The l-leucine-containing Survanta EEG powders exhibited good aerosolization performance with ≥ 88% of the mass emitted (% nominal) after 3 actuations from the modified LV-DPI device. In addition, l-leucine-containing powders had a low moisture content (< 3% w/w) with transition temperatures close to the commercial surfactant formulation and retained their surface tension reducing activity after formulation processing. A Survanta EEG powder containing l-leucine was developed which showed efficient aerosol delivery from the modified LV-DPI device using a low dispersion air volume.
Collapse
|
38
|
Boc S, Momin MAM, Farkas DR, Longest W, Hindle M. Performance of Low Air Volume Dry Powder Inhalers (LV-DPI) when Aerosolizing Excipient Enhanced Growth (EEG) Surfactant Powder Formulations. AAPS PharmSciTech 2021; 22:135. [PMID: 33860378 DOI: 10.1208/s12249-021-01998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Efficient delivery of dry powder aerosols dispersed with low volumes of air is challenging. This study aims to develop an efficient dry powder inhaler (DPI) capable of delivering spray-dried Survanta-EEG powders (3-10 mg) with a low volume (3 mL) of dispersion air. A series of iterative design modifications were made to a base low air volume actuated DPI. The modifications included the replacement of the original capsule chamber with an integral dose containment chamber, alteration of the entrainment air flow path through the device (from single-sided (SS) to straight through (ST)), change in the number of air inlet holes (from one to three), varying the outlet delivery tube length (45, 55, and 90 mm) and internal diameter (0.60, 0.89, and 1.17 mm). The modified devices were evaluated by determining the influence of the modifications and powder fill mass on aerosol performance of spray-dried Survanta-EEG powders. The optimal DPI was also evaluated for its ability to aerosolize a micronized powder. The optimized dose containment unit DPI had a 0.21 mL powder chamber, ST airflow path, three-0.60 mm air inlet holes, and 90 mm outlet delivery tube with 0.89 mm internal diameter. The powder dispersion characteristics of the optimal device were independent of fill mass with good powder emptying in one 3 mL actuation. At 10 mg fill mass, this device had an emitted mass of 5.3 mg with an aerosol Dv50 of 2.7 μm. After three 3 mL actuations, >85% of the spray-dried powder was emitted from the device. The emitted mass of the optimal device with micronized albuterol sulfate was >72% of the nominal fill mass of 10 mg in one 3 mL actuation. Design optimization produced a DPI capable of efficient performance with a dispersion air volume of 3 mL to aerosolize Survanta-EEG powders.
Collapse
|
39
|
Petite SE, Hess MW, Wachtel H. The Role of the Pharmacist in Inhaler Selection and Education in Chronic Obstructive Pulmonary Disease. J Pharm Technol 2021; 37:95-106. [PMID: 34752567 PMCID: PMC7953076 DOI: 10.1177/8755122520937649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To review the role of pharmacists in educating and monitoring patients with chronic obstructive pulmonary disease (COPD) on inhalation technique. Data Sources: A PubMed search (January 2000 to May 2020) was performed using the following keywords and associated medical subject headings: adherence, chronic obstructive pulmonary disease/COPD, education, inhaler, pharmacist, and technique. Study Selection and Data Extraction: The search was conducted to identify English language articles highlighting the importance of correct inhaler technique in COPD management and benefits of pharmacist inhaler training such as improved adherence, quality of life (QoL), and disease control. Randomized controlled trials, retrospective studies, observational studies, systematic reviews, and meta-analysis reporting pharmacist training were included. Data Synthesis: This review summarizes that incorrect inhaler use negatively affects treatment outcomes, prognosis, and QoL. Pharmacists are in a unique position to educate and monitor patients with COPD on optimal inhaler technique and an individualized, multifactorial approach to COPD management involving pharmacists could provide cost-effective patient care and improve adherence and minimize inhaler misuse. Several strategies used by pharmacists can optimize patient inhaler use, such as face-to-face technique demonstrations, the "teach-back" method, telemonitoring, instructional videos, or informational leaflets. An individualized action plan involving education and regular monitoring of inhaler use further enhances optimal adherence and disease management. Conclusions: As pharmacists are easily accessible to both patients and health care providers, they are ideally placed to play an important role in the enhancement of education on, and continuous assessment of, optimal inhaler technique, thereby improving adherence, disease control, and QoL.
Collapse
Affiliation(s)
| | - Michael W. Hess
- WMed Health, Western Michigan University, Kalamazoo, MI, USA
| | - Herbert Wachtel
- Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim am Rhein, Germany
| |
Collapse
|
40
|
Yong YV, Mahamad Dom SH, Ahmad Sa'ad N, Lajis R, Md Yusof FA, Abdul Rahaman JA. Development and Practical Application of a Multiple-Criteria Decision Analysis Framework on Respiratory Inhalers: Is It Always Useful in the MOH Malaysia Medicines Formulary Listing Context? MDM Policy Pract 2021; 6:2381468321994063. [PMID: 33855190 PMCID: PMC8013673 DOI: 10.1177/2381468321994063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives. The current health technology assessment used to evaluate respiratory inhalers is associated with limitations that have necessitated the development of an explicit formulary decision-making framework to ensure balance between the accessibility, value, and affordability of medicines. This study aimed to develop a multiple-criteria decision analysis (MCDA) framework, apply the framework to potential and currently listed respiratory inhalers in the Ministry of Health Medicines Formulary (MOHMF), and analyze the impacts of applying the outputs, from the perspective of listing and delisting medicines in the formulary. Methods. The overall methodology of the framework development adhered to the recommendations of the ISPOR MCDA Emerging Good Practices Task Force. The MCDA framework was developed using Microsoft Excel 2010 and involved all relevant stakeholders. The framework was then applied to 27 medicines, based on data gathered from the highest levels of available published evidence, pharmaceutical companies, and professional opinions. The performance scores were analyzed using the additive model. The end values were then deliberated by an expert committee. Results. A total of eight main criteria and seven subcriteria were determined by the stakeholders. The economic criterion was weighted at 30%. Among the noneconomic criteria, "patient suitability" was weighted the highest. Based on the MCDA outputs, the expert committee recommended one potential medicine (out of three; 33%) be added to the MOHMF and one existing medicine (out of 24; 4%) be removed/delisted from the MOHMF. The other existing medicines remained unchanged. Conclusions. Although this framework was useful for deciding to add new medicines to the formulary, it appears to be less functional and impactful for the removal/delisting existing medicines from the MOHMF. The generalizability of this conclusion to other formulations remains to be confirmed.
Collapse
Affiliation(s)
- Yee Vern Yong
- Pharmacy Practice & Development Division, Ministry of Health Malaysia
| | | | | | - Rosliza Lajis
- National Pharmaceutical Regulatory Agency, Ministry of Health Malaysia
| | | | - Jamalul Azizi Abdul Rahaman
- Former Head of Therapeutic Drug Working Committee (TDWC) Respiratory (2014-2020), Serdang Hospital, Ministry of Health Malaysia
| |
Collapse
|
41
|
Almurshedi AS, Aljunaidel HA, Alquadeib B, Aldosari BN, Alfagih IM, Almarshidy SS, Eltahir EKD, Mohamoud AZ. Development of Inhalable Nanostructured Lipid Carriers for Ciprofloxacin for Noncystic Fibrosis Bronchiectasis Treatment. Int J Nanomedicine 2021; 16:2405-2417. [PMID: 33814907 PMCID: PMC8012696 DOI: 10.2147/ijn.s286896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 μm. CONCLUSION Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Bushra Alquadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram K D Eltahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amany Z Mohamoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Carranza Valencia A, Hirt R, Kampner D, Hiebl A, Tichy A, Rüthemann P, Pagitz M. Comparison of pulmonary deposition of nebulized 99m technetium-diethylenetriamine-pentaacetic acid through 3 inhalation devices in healthy dogs. J Vet Intern Med 2021; 35:1080-1087. [PMID: 33624851 PMCID: PMC7995371 DOI: 10.1111/jvim.16064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background Inhalation treatment frequently is used in dogs and cats with chronic respiratory disease. Little is known however about the performance of delivery devices and the distribution of aerosolized drugs in the lower airways. Objective To assess the performance of 3 delivery devices and the impact of variable durations of inhalation on the pulmonary and extrapulmonary deposition of nebulized 99mtechnetium‐diethylenetriamine‐pentaacetic acid (99mTc‐DTPA). Animals Ten university‐owned healthy Beagle dogs. Methods Prospective crossover study. Dogs inhaled the radiopharmaceutical for 5 minutes either through the Aerodawg spacer with a custom‐made nose‐muzzle mask, the Aerochamber spacer with the same mask, or the Aerodawg spacer with its original nose mask. In addition, dogs inhaled for 1 and 3 minutes through the second device. Images were obtained by 2‐dimensional planar scintigraphy. Radiopharmaceutical uptake was calculated as an absolute value and as a fraction of the registered dose in the whole body. Results Mean (±SD) lung deposition for the 3 devices was 9.2% (±5.0), 11.4% (±4.9), and 9.3% (±4.6), respectively. Differences were not statistically significant. Uptake in pulmonary and extrapulmonary tissues was significantly lower after 1‐minute nebulization, but the mean pulmonary/extrapulmonary deposition ratio (0.38 ± 0.27) was significantly higher than after 5‐minute nebulization (0.16 ± 0.1; P = .03). No significant differences were detected after 3‐ and 5‐minute nebulization. Conclusion and Clinical Importance The performance of a pediatric spacer with a custom‐made mask is comparable to that of a veterinary device. One‐minute nebulization provides lower pulmonary uptake but achieves a better pulmonary/extrapulmonary deposition ratio than does 5‐minute nebulization.
Collapse
Affiliation(s)
- Alejandra Carranza Valencia
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Hirt
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Doris Kampner
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Andreas Hiebl
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Peter Rüthemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Maximilian Pagitz
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
43
|
Validation of Qualitative Broth Volatilization Checkerboard Method for Testing of Essential Oils: Dual-Column GC–FID/MS Analysis and In Vitro Combinatory Antimicrobial Effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in Liquid and Vapor Phases. PLANTS 2021; 10:plants10020393. [PMID: 33670756 PMCID: PMC7922886 DOI: 10.3390/plants10020393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Combinatory action of antimicrobial agents such as essential oils (EOs) show to be an effective strategy to overcome the problem with increasing antibiotic resistance of microorganisms, including Staphylococcus aureus. The objective of this study was to evaluate in vitro antimicrobial interactions between Origanum vulgare and Thymus vulgaris EOs against various S.aureus strains in both liquid and vapor phases using the broth volatilization checkerboard method. Fractional inhibitory concentrations (FICs) were determined for both liquid and vapor phases, and the composition of EOs was analyzed by gas chromatography-mass spectrometry using dual-column/dual-detector gas chromatograph. Results of oregano and thyme EOs combination showed additive effects against all S. aureus strains in both phases. In several cases, sums of FICs were lower than 0.6, which can be considered a strong additive interaction. The lowest FICs obtained were 0.53 in the liquid phase and 0.59 in the gaseous phase. Chemical analysis showed that both EOs were composed of many compounds, including carvacrol, thymol, γ-terpinene, and p-cymene. This is the first report on oregano and thyme EOs interactions against S. aureus in the vapor phase. It also confirms the accuracy of the broth volatilization checkerboard method for the evaluation of combinatory antimicrobial effects of EOs in the vapor phase.
Collapse
|
44
|
Zheng Z, Leung SSY, Gupta R. Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications. Pharmaceutics 2021; 13:189. [PMID: 33535512 PMCID: PMC7912775 DOI: 10.3390/pharmaceutics13020189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients' inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.
Collapse
Affiliation(s)
- Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong;
| | - Raghvendra Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India;
| |
Collapse
|
45
|
Plaunt AJ, Islam S, Macaluso T, Gauani H, Baker T, Chun D, Viramontes V, Chang C, Corboz MR, Chapman RW, Li Z, Cipolla DC, Perkins WR, Malinin VS. Development and Characterization of Treprostinil Palmitil Inhalation Aerosol for the Investigational Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:E548. [PMID: 33430435 PMCID: PMC7828008 DOI: 10.3390/ijms22020548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Treprostinil palmitil (TP) is a prodrug of treprostinil (TRE), a pulmonary vasodilator that has been previously formulated for inhaled administration via a nebulizer. TP demonstrates a sustained presence in the lungs with reduced systemic exposure and prolonged inhibition of hypoxia-induced pulmonary vasoconstriction in vivo. Here, we report on re-formulation efforts to develop a more convenient solution-based metered-dose inhaler (MDI) formulation of TP, a treprostinil palmitil inhalation aerosol (TPIA) that matches the pharmacokinetic (PK) and efficacy profile of a nebulized TP formulation, treprostinil palmitil inhalation suspension (TPIS). MDI canisters were manufactured using a two-stage filling method. Aerosol performance, formulation solubility, and chemical stability assays were utilized for in vitro evaluation. For in vivo studies, TPIA formulations were delivered to rodents using an inhalation tower modified for MDI delivery. Using an iterative process involving evaluation of formulation performance in vitro (TP and excipient solubility, chemical stability, physical stability, and aerosol properties) and confirmatory testing in vivo (rat PK and efficacy, guinea pig cough), a promising formulation was identified. The optimized formulation, TPIA-W, demonstrates uniform in vitro drug delivery, a PK profile suitable for a once-daily administration, efficacy lasting at least 12 h in a hypoxic challenge model, and a significantly higher cough threshold than the parent drug treprostinil.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vladimir S. Malinin
- Insmed Incorporated, Bridgewater, NJ 08807, USA; (A.J.P.); (S.I.); (T.M.); (H.G.); (T.B.); (D.C.); (V.V.); (C.C.); (M.R.C.); (R.W.C.); (Z.L.); (D.C.C.); (W.R.P.)
| |
Collapse
|
46
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
47
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
48
|
Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases. Drug Deliv Transl Res 2020; 10:339-353. [PMID: 31872342 DOI: 10.1007/s13346-019-00690-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Delivering drugs through inhalation for systemic and local applications has been in practice since several decades to treat various diseases. In recent times, inhalation drug delivery is becoming one of the highly focused areas of research in the pharmaceutical industry. It is being considered as one of the major portals for delivering drugs because of its wide range of advantages like requirement of low concentrations of drug to reach therapeutic efficacy, surpassing first pass metabolism and a very low incidence of side effects as compared to conventional delivery of drugs. Owing to these favorable characteristics of pulmonary drug delivery, diverse pharmaceutical formulations like liposomes, nanoparticles, and microparticles are developed through consistent efforts for delivery drugs to lungs in suitable form. However, drug-loaded microparticles have displayed various advantages over the other pharmaceutical dosage forms which give a cutting edge over other inhalational drug delivery systems. Assuring results with respect to sustained release through inhalational delivery of drug-loaded microparticles from pre-clinical studies are anticipative of similar benefits in the clinical settings. This review centralizes partly on the advantages of inhalational microparticles over other inhalational dosage forms and largely on the therapeutic applications and future perspectives of inhalable microparticle drug delivery systems.
Collapse
|
49
|
Pulmonary route of administration is instrumental in developing therapeutic interventions against respiratory diseases. Saudi Pharm J 2020; 28:1655-1665. [PMID: 33424258 PMCID: PMC7783104 DOI: 10.1016/j.jsps.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary route of drug delivery has drawn significant attention due to the limitations associated with conventional routes and available treatment options. Drugs administered through pulmonary route has been an important research area that focuses on to developing effective therapeutic interventions for asthma, chronic obstructive pulmonary disease, tuberculosis, lung cancer etc. The intravenous route has been a natural route of delivery of proteins and peptides but associated with several issues including high cost, needle-phobia, pain, sterility issues etc. These issues might be addressed by the pulmonary administration of macromolecules to achieving an effective delivery and efficacious therapeutic impact. Efforts have been made to develop novel drug delivery systems (NDDS) such as nanoparticles, microparticles, liposomes and their engineered versions, polymerosomes, micelles etc to achieving targeted and sustained delivery of drug(s) through pulmonary route. Further, novel approaches such as polymer-drug conjugates, mucoadhesive particles and mucus penetrating particles have attracted significant attention due to their unique features for an effective delivery of drugs. Also, use of semi flourinated alkanes is in use for improvising the pulmonary delivery of lipophilic drugs. Present review focuses on to unravel the mechanism of pulmonary absorption of drugs for major pulmonary diseases. It summarizes the development of interventional approaches using various particulate and vesicular drug delivery systems. In essence, the orchestrated attempt presents an inflammatory narrative on the advancements in the field of pulmonary drug delivery.
Collapse
|
50
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|