1
|
Yu Z, You G. Recent Advances on the Regulations of Organic Anion Transporters. Pharmaceutics 2024; 16:1355. [PMID: 39598479 PMCID: PMC11597148 DOI: 10.3390/pharmaceutics16111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The organic anion transporter (OAT) family of over 10 members within the solute carrier (SLC) superfamily of membrane proteins plays critical roles in facilitating the flux of negatively charged molecules in and out of cell membranes. These anionic molecules include various endogenous and exogenous compounds such as signaling molecules, nutrients, metabolites, toxins, and drugs. Therefore, OATs actively contribute to the systemic homeostasis and efficacy of therapeutics. This article provides a brief overview on recent advances in the understanding of the regulatory mechanisms that control the expression and activity of OATs in both health and diseases.
Collapse
Affiliation(s)
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
2
|
Snow Z, Seely K, Barrett S, Pecha J, Goldhardt R. Target in Sight: A Comprehensive Review of Hydroxychloroquine-Induced Bull's Eye Maculopathy. CURRENT OPHTHALMOLOGY REPORTS 2024; 12:38-48. [PMID: 39371107 PMCID: PMC11452169 DOI: 10.1007/s40135-024-00321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 10/08/2024]
Abstract
Purpose of Review We review the latest screening and diagnostic techniques, and the most recent recommendations on the management of hydroxychloroquine retinopathy. Recent Findings Hydroxychloroquine (HCQ) has been shown to cause retinal toxicity in a dose-dependent fashion. Early diagnosis is critical as the resultant retinopathy is not reversible. New imaging modalities, such as adaptive optics (AO), microperimetry, and retro-mode imaging, may show promise in the timely diagnosis of HCQ retinopathy. Summary Automated visual fields and spectral-domain optical coherence tomography (SD-OCT) are the primary tests used in routine screening for HCQ retinopathy, but fundus autofluorescence (FAF) and multifocal electroretinogram (mfERG) have also been shown to be useful. A baseline ophthalmologic examination is recommended in all patients beginning long-term hydroxychloroquine therapy within the first year of starting therapy. Automated visual fields and SD-OCT should be included during this baseline exam in patients with pre-existing macular conditions. Afterwards, annual screening can be deferred for the first 5 years of HCQ treatment unless the patient has a major risk factor.
Collapse
Affiliation(s)
- Zachary Snow
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Kai Seely
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Spencer Barrett
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Joseph Pecha
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| | - Raquel Goldhardt
- University of Miami Miler School of Medicine - Bascom Palmer Eye Institute
| |
Collapse
|
3
|
Alotaibi BS, Kaukab I, Shah SNH, Kharaba Z, Naeem AR, Yasin H, Umar MI, Murtaza G. Effect of chloroquine pre-treatment on the metoclopramide's pharmacokinetics after their co-administration. Expert Opin Drug Saf 2024. [PMID: 39086080 DOI: 10.1080/14740338.2024.2387312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND This study evaluated the pharmacokinetic interactions of orally administered chloroquine and metoclopramide. METHODS The study employed a randomized and two-phase cross-over design with four weeks washout plan. Twelve healthy male volunteers were shortlisted according to the set criteria and were administered with metoclopramide 10 mg PO, and chloroquine (a total of 1500 mg) at different intervals which were (500 mg at 0, 6, and 24 h). The concentration of chloroquine and metoclopramide in the blood samples was estimated using a validated HPLC-UV technique to affirm the maximum concentration (Cmax), time to reach Cmax (Tmax), and area under the curve (AUC). RESULTS Cmax, T1/2, and AUC of metoclopramide were increased up to 20, 10, and 47.8% respectively by the concomitantly administering Chloroquine. Chloroquine-treated phase showed increased values of Cmax (ng/ml), AUC (ng.h/ml), and T½ (h), i.e. 41.35 ± 1.61, 504.12 ± 66.25 and 5.72 ± 2.63, as compared to that Reference phase i.e. 34.52 ± 4.92, 341.14 ± 112.8, and 5.19 ± 1.14, respectively. CONCLUSIONS Chloroquine was found to attenuate CYP2D6 activity in healthy Pakistani male volunteers. Hence, patients that are prescribed with metoclopramide or other CYP2D6-substrate drugs require a dose adjustment when administered with chloroquine.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Iram Kaukab
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Syed Nisar Hussain Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Rafay Naeem
- Department of Dentistry, Multan Medical and Dental College, Multan, Pakistan
| | - Haya Yasin
- Department of Pharmacy, Ajman University, Ajman, United Arab Emirates
| | | | - Ghulam Murtaza
- Department of Pharmacy, COMSATS Institute of Information Technology, Lahore, Pakistan
| |
Collapse
|
4
|
Gebrie H, Yimer M, Ayehu A, Mohammed H, Hailgiorgis H, Wuletaw Y, Hailu M, Tolera G, Tasew G, Kassa M, Gidey B. Efficacy and safety of chloroquine plus primaquine for the treatment of Plasmodium vivax malaria in Hamusit site, Northwestern Ethiopia. Malar J 2024; 23:202. [PMID: 38971786 PMCID: PMC11227712 DOI: 10.1186/s12936-024-05031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Plasmodium vivax malaria is still an important public health problem in Ethiopia. Unlike Plasmodium falciparum, P. vivax has a dormant liver stage (hypnozoite) that can be a risk of recurrent vivax malaria unless treated by radical cure with primaquine. Drug resistance to chloroquine is threatening malaria control and elimination efforts. This study assessed the therapeutic efficacy and safety of chloroquine plus 14 days of primaquine on P. vivax infection based on parasitological, clinical, and haematological parameters. METHODS A single-arm in vivo prospective therapeutic efficacy study was conducted to assess the clinical and parasitological response to the first-line treatment of P. vivax in Ethiopia, chloroquine plus 14 days low dose of (0.25 mg/kg/day) primaquine between December 2022 and March 2023 at Hamusit Health Centre using the standard World Health Organization (WHO) protocol. A total of 100 study participants with P. vivax mono-infection who were over 6 months old were enrolled and monitored for adequate clinical and parasitological responses for 42 days. The WHO double-entry Excel sheet and SPSS v.25 software were used for Kaplan-Meier survival analysis, and a paired t-test was used for analysis of haemoglobin improvements between follow up days. RESULTS A total of 100 patients were enrolled among those, 96% cases were rural residents, 93% had previous malaria exposure, and predominant age group was 5-15 years (61%). 92.6% (95% CI 85.1-96.4%) of enrolled patients were adequate clinical and parasitological response, and 7.4% (95% CI 3.6-14.9%) recurrences were observed among treated patients. The fever and parasite clearance rate on day 3 were 98% and 94%, respectively. The baseline haemoglobin levels improved significantly compared to those days 14 and 42 (p < 0.001). No serious adverse event was observed during the study period. CONCLUSIONS In this study, co-administration of chloroquine with primaquine was efficacious and well-tolerated with fast resolution of fever and high parasites clearance rate. However, the 7.4% failure is reported is alarming that warrant further monitoring of the therapeutic efficacy study of P. vivax.
Collapse
Affiliation(s)
- Habtamu Gebrie
- Department of Medical Laboratory Science College of Medicine and Health Science, Dilla University, Dilla, Ethiopia.
| | - Mulat Yimer
- Department of Medical Laboratory Science College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Animen Ayehu
- Department of Medical Laboratory Science College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | | | | | - Yonas Wuletaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mesay Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mogess Kassa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | |
Collapse
|
5
|
Peng-Cheng L, Meng-Na L, Jian-Bin L, Shu-Jiao Y, Wu R. Advancements on the impact of hydroxychloroquine in systemic lupus erythematosus. Heliyon 2024; 10:e30393. [PMID: 38711668 PMCID: PMC11070867 DOI: 10.1016/j.heliyon.2024.e30393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Hydroxychloroquine (HCQ) has gained significant attention as a therapeutic option for systemic lupus erythematosus (SLE) because of its multifaceted mechanism of action. It is a lipophilic, lysosomotropic drug, that easily traverses cell membranes and accumulates in lysosomes. Once accumulated, HCQ alkalizes lysosomes within the cytoplasm, thereby disrupting their function and interfering with processes like antigen presentation. Additionally, HCQ has shown potential in modulating T-cell responses, inhibiting cytokine production, and influencing Toll-like receptor signaling. Its immunomodulatory effects have generated interest in its application for autoimmune disorders. Despite its established efficacy, uncertainties persist regarding the optimal therapeutic concentrations and their correlation with adverse effects such as retinal toxicity. Therefore, standardized dosing and monitoring guidelines are crucial. In this study, we provide a comprehensive review of the mechanisms, efficacy, dosing variations, and retinal toxicity profiles of HCQ, which are essential to optimize SLE treatment protocols and ensure patient safety.
Collapse
Affiliation(s)
- Liu Peng-Cheng
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lv Meng-Na
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Li Jian-Bin
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Shu-Jiao
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Viana Dos Santos MB, Costa Gontijo D, Alves do Nascimento MF, de Paula RC, Bezerra Bellei JC, Raimundo FO, Gorza Scopel KK, de Oliveira AB, Veras Mourão RH. In Vitro and in Vivo Antimalarial Activity, Cytotoxicity and Phytochemical HRMS 2 Profile of Plants from the Western Pará State, Brazilian Amazonia. Chem Biodivers 2024; 21:e202301082. [PMID: 38012088 DOI: 10.1002/cbdv.202301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Ethnopharmacology and botanical taxonomy are valid criteria used to selecting plants for antimalarial bioprospection purposes. Based on these two criteria, ethanol extracts of 11 plants from Santarém City vicinities, Western Pará State, Brazilian Amazonia, had their in vitro antiplasmodial activity against chloroquine-resistant Plasmodium falciparum (W2 clone) assessed by the PfLDH method, whereas their cytotoxicity to HepG2-A16 cells was assessed through MTT assay. Acmella oleracea, Siparuna krukovii and Trema micrantha extracts disclosed the highest rate of parasite growth inhibition (90 %) in screening tests. In vivo antimalarial assays were conducted with these extracts against Plasmodium berghei (NK 65 strain) infected mice. Inhibition rate of parasite multiplication ranged from 41.4 % to 60.9 % at the lowest extract dose (25 mg/kg). HPLC-ESI-HRMS2 analyses allowed the putative identification of alkylamides, fatty acids, flavonoid glycosides and alkaloids in ethanol extracts deriving from these three plant species. Results pointed towards A. oleracea flowers ethanol extract as the most promising potential candidate to preclinical studies aiming the development of antimalarial phytomedicine.
Collapse
Affiliation(s)
- Maria Beatriz Viana Dos Santos
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Douglas Costa Gontijo
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
- Divisão de Química Orgânica, Instituto de Química, Universidade de Brasília, s/n, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Maria Fernanda Alves do Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Renata Cristina de Paula
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Jessica Correia Bezerra Bellei
- Department of Parasitology, Microbiology and Immunology and Programa de Pós-Graduação em Ciências Biológicas, Research Centre of Parasitology, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900, Juiz de Fora, MG, Brazil
| | - Felipe Oliveira Raimundo
- Department of Parasitology, Microbiology and Immunology and Programa de Pós-Graduação em Ciências Biológicas, Research Centre of Parasitology, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900, Juiz de Fora, MG, Brazil
| | - Kézia Katiani Gorza Scopel
- Department of Parasitology, Microbiology and Immunology and Programa de Pós-Graduação em Ciências Biológicas, Research Centre of Parasitology, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900, Juiz de Fora, MG, Brazil
| | - Alaíde Braga de Oliveira
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil
- Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
7
|
Blumenfeld Z, Bera K, Castrén E, Lester HA. Antidepressants enter cells, organelles, and membranes. Neuropsychopharmacology 2024; 49:246-261. [PMID: 37783840 PMCID: PMC10700606 DOI: 10.1038/s41386-023-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
We begin by summarizing several examples of antidepressants whose therapeutic actions begin when they encounter their targets in the cytoplasm or in the lumen of an organelle. These actions contrast with the prevailing view that most neuropharmacological actions begin when drugs engage their therapeutic targets at extracellular binding sites of plasma membrane targets-ion channels, receptors, and transporters. We review the chemical, pharmacokinetic, and pharmacodynamic principles underlying the movements of drugs into subcellular compartments. We note the relationship between protonation-deprotonation events and membrane permeation of antidepressant drugs. The key properties relate to charge and hydrophobicity/lipid solubility, summarized by the parameters LogP, pKa, and LogDpH7.4. The classical metric, volume of distribution (Vd), is unusually large for some antidepressants and has both supracellular and subcellular components. A table gathers structures, LogP, PKa, LogDpH7.4, and Vd data and/or calculations for most antidepressants and antidepressant candidates. The subcellular components, which can now be measured in some cases, are dominated by membrane binding and by trapping in the lumen of acidic organelles. For common antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin/norepinephrine reuptake inhibitors (SNRIs), the target is assumed to be the eponymous reuptake transporter(s), although in fact the compartment of target engagement is unknown. We review special aspects of the pharmacokinetics of ketamine, ketamine metabolites, and other rapidly acting antidepressants (RAADs) including methoxetamine and scopolamine, psychedelics, and neurosteroids. Therefore, the reader can assess properties that markedly affect a drug's ability to enter or cross membranes-and therefore, to interact with target sites that face the cytoplasm, the lumen of organelles, or a membrane. In the current literature, mechanisms involving intracellular targets are termed "location-biased actions" or "inside-out pharmacology". Hopefully, these general terms will eventually acquire additional mechanistic details.
Collapse
Affiliation(s)
- Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kallol Bera
- Department of Neurosciences and Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA, USA
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Bosquetti B, Santana AA, Gregório PC, da Cunha RS, Miniskiskosky G, Budag J, Franco CRC, Ramos EADS, Barreto FC, Stinghen AEM. The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment. Toxins (Basel) 2023; 15:700. [PMID: 38133204 PMCID: PMC10748128 DOI: 10.3390/toxins15120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Podocyte dysfunction plays a crucial role in renal injury and is identified as a key contributor to proteinuria in Fabry disease (FD), primarily impacting glomerular filtration function (GFF). The α3β1 integrins are important for podocyte adhesion to the glomerular basement membrane, and disturbances in these integrins can lead to podocyte injury. Therefore, this study aimed to assess the effects of chloroquine (CQ) on podocytes, as this drug can be used to obtain an in vitro condition analogous to the FD. Murine podocytes were employed in our experiments. The results revealed a dose-dependent reduction in cell viability. CQ at a sub-lethal concentration (1.0 µg/mL) induced lysosomal accumulation significantly (p < 0.0001). Morphological changes were evident through scanning electron microscopy and immunofluorescence, highlighting alterations in F-actin and nucleus morphology. No significant changes were observed in the gene expression of α3β1 integrins via RT-qPCR. Protein expression of α3 integrin was evaluated with Western Blotting and immunofluorescence, demonstrating its lower detection in podocytes exposed to CQ. Our findings propose a novel in vitro model for exploring secondary Fabry nephropathy, indicating a modulation of α3β1 integrin and morphological alterations in podocytes under the influence of CQ.
Collapse
Affiliation(s)
- Bruna Bosquetti
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Aline Aparecida Santana
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Paulo Cézar Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Guilherme Miniskiskosky
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Julia Budag
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Célia Regina Cavichiolo Franco
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Edneia Amancio de Souza Ramos
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Fellype Carvalho Barreto
- Internal Medicine Department, Division of Nephrology, Universidade Federal do Paraná, Curitiba 80060-900, Brazil;
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| |
Collapse
|
9
|
Sung Y, Hong ST, Jang M, Kim ES, Kim C, Jung Y, Youn I, Chan Kwon I, Cho SW, Ryu JH. Predicting response to anti-EGFR antibody, cetuximab, therapy by monitoring receptor internalization and degradation. Biomaterials 2023; 303:122382. [PMID: 37977005 DOI: 10.1016/j.biomaterials.2023.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, therapy has significantly improved the clinical outcomes of patients with colorectal cancer, but the response to cetuximab can vary widely among individuals. We thus need strategies for predicting the response to this therapy. However, the current methods are unsatisfactory in their predictive power. Cetuximab can promote the internalization and degradation of EGFR, and its therapeutic efficacy is significantly correlated with the degree of EGFR degradation. Here, we present a new approach to predict the response to anti-EGFR therapy, cetuximab by evaluating the degree of EGFR internalization and degradation of colorectal cancer cells in vitro and in vivo. Our newly developed fluorogenic cetuximab-conjugated probe (Cetux-probe) was confirmed to undergo EGFR binding, internalization, and lysosomal degradation to yield fluorescence activation; it thus shares the action mechanism by which cetuximab exerts its anti-tumor effects. Cetux-probe-activated fluorescence could be used to gauge EGFR degradation and showed a strong linear correlation with the cytotoxicity of cetuximab in colorectal cancer cells and tumor-bearing mice. The predictive ability of Cetux-probe-activated fluorescence was much higher than those of EGFR expression or KRAS mutation status. The Cetux-probes may become useful tools for predicting the response to cetuximab therapy by assessing EGFR degradation.
Collapse
Affiliation(s)
- Yejin Sung
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Taek Hong
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Biohealthcare, Department of Echo-Applied Chemistry, Daejin University, 1007 Hoguk-ro, Pocheon-si, Gyeonggi-do, 11159, Republic of Korea
| | - Mihue Jang
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, 20841, Republic of Korea
| | - Chansoo Kim
- AI/R Lab., Computational Science Centre & ASSIST, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Inchan Youn
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ick Chan Kwon
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Woo Cho
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
| | - Ju Hee Ryu
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
10
|
Lin DSH, Tzeng SC, Cha TL, Hung CM, Lin WC, Yang CM, Lu HY, Chang JY, Huang SW. Inhalable chitosan-based hydrogel as a mucosal adjuvant for hydroxychloroquine in the treatment for SARS-CoV-2 infection in a hamster model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:951-960. [PMID: 37620239 DOI: 10.1016/j.jmii.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Effective therapy for COVID-19 remains limited. Hydroxychloroquine (HCQ) has been considered, but safety and efficacy concerns remain. Chitosan exhibits antiviral and immunomodulatory effects, yet how the combination of HCQ and chitosan performs in treating COVID-19 is unknown. METHODS Male Syrian hamsters were inoculated intranasally with standardized stocks of the SARS-CoV-2 virus. Hamsters were allocated to saline (PBS), chitosan oligosaccharide (COS), HCQ, or COS + HCQ groups and received corresponding drugs. On days 1, 7, and 14 post-infection, two animals from each group were euthanized for sample collection. Viral loads were measured in lung homogenates. Biochemistry markers, cytokines, and immunoglobulins were analyzed from hamster sera. HCQ concentrations were compared between the blood, bronchoalveolar lavage, and lung tissues. All groups underwent histopathology exams of the lungs. Additional hamsters were treated with the same drugs to assess for toxicities to the heart and liver. RESULTS Among all groups, viral loads in the COS + HCQ group were the lowest by day 8. The COS + HCQ group produced the highest interleukin (IL)-6 levels on day 4, and the highest IL-10, IgA and IgG levels on day 8. HCQ concentrations were higher in the COS + HCQ group's lungs than the HCQ group, despite having received half the dose of HCQ. Histopathology demonstrated earlier inflammation resolution and swifter viral clearance in the COS + HCQ group. There was no evidence of cardiac or hepatic injury in hamsters that received HCQ. CONCLUSION In hamsters infected with the SARS-CoV-2 virus, the combination of intranasal COS and HCQ was associated with increased HCQ absorption in the lungs, more effective immune responses, without increasing the risk of hepatic or cardiac injuries.
Collapse
Affiliation(s)
- Donna Shu-Han Lin
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shian Chiuan Tzeng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tai-Lung Cha
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Mao Hung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chin Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsuan-Ying Lu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Yu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Liang Z, You G. Chloroquine and Hydroxychloroquine, as Proteasome Inhibitors, Upregulate the Expression and Activity of Organic Anion Transporter 3. Pharmaceutics 2023; 15:1725. [PMID: 37376173 DOI: 10.3390/pharmaceutics15061725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Organic anion transporter 3 (OAT3), at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous widely used drugs. Earlier investigation from our laboratory revealed that ubiquitin conjugation to OAT3 leads to OAT3 internalization from the cell surface, followed by degradation in the proteasome. In the current study, we examined the roles of chloroquine (CQ) and hydroxychloroquine (HCQ), two well-known anti-malarial drugs, in their action as proteasome inhibitors and their effects on OAT3 ubiquitination, expression, and function. We showed that in cells treated with CQ and HCQ, the ubiquitinated OAT3 was considerably enhanced, which correlated well with a decrease in 20S proteasome activity. Furthermore, in CQ- and HCQ-treated cells, OAT3 expression and OAT3-mediated transport of estrone sulfate, a prototypical substrate, were significantly increased. Such increases in OAT3 expression and transport activity were accompanied by an increase in the maximum transport velocity and a decrease in the degradation rate of the transporter. In conclusion, this study unveiled a novel role of CQ and HCQ in enhancing OAT3 expression and transport activity by preventing the degradation of ubiquitinated OAT3 in proteasomes.
Collapse
Affiliation(s)
- Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Yusuf IH, Charbel Issa P, Ahn SJ. Hydroxychloroquine-induced Retinal Toxicity. Front Pharmacol 2023; 14:1196783. [PMID: 37324471 PMCID: PMC10267834 DOI: 10.3389/fphar.2023.1196783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Long-term use of hydroxychloroquine can cause retinopathy, which may result in severe and progressive visual loss. In the past decade, hydroxychloroquine use has markedly increased and modern retinal imaging techniques have enabled the detection of early, pre-symptomatic disease. As a consequence, the prevalence of retinal toxicity in long-term hydroxychloroquine users is known to be higher than was previously estimated. The pathophysiology of the retinopathy is incompletely characterised, although significant advances have been made in understanding the disease from clinical imaging studies. Hydroxychloroquine retinopathy elicits sufficient public health concern to justify the implementation of retinopathy screening programs for patients at risk. Here, we describe the historical background of hydroxychloroquine retinopathy and summarize its current understanding. We review the utility and limitations of each of the mainstream diagnostic tests used to detect hydroxychloroquine retinopathy. The key considerations towards a consensus on the definition of hydroxychloroquine retinopathy are outlined in the context of what is known of the natural history of the disease. We compare the current screening recommendations for hydroxychloroquine retinopathy, identifying where additional evidence is required, and the management of proven cases of toxicity. Finally, we highlight the areas for further investigation, which may further reduce the risk of visual loss in hydroxychloroquine users.
Collapse
Affiliation(s)
- Imran H. Yusuf
- Oxford Eye Hospital and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Charbel Issa
- Oxford Eye Hospital and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Seong Joon Ahn
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
14
|
Jacobs CM, Wagmann L, Frankenfeld F, Meyer MR. Clinical Toxicological Follow-Up Analysis of a Suicide Attempt Using Chloroquine. J Anal Toxicol 2023; 46:e296-e299. [PMID: 36074343 DOI: 10.1093/jat/bkac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/18/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Chloroquine, a drug approved for the treatment of malaria, is frequently used to commit suicide. We report about a suicide attempt by ingesting a high dose of chloroquine in combination with other drugs. Findings of the emergency toxicology screening of blood and urine and those of the follow-up analyses in blood are discussed. Systematic toxicological analysis approaches revealed the presence of chloroquine, butylscopolamine, cafedrine, diazepam, lorazepam, metoclopramide, nordazepam, norephedrine and 11-nor-9-carboxy-∆9-tetrahydroxycannabinol in blood and/or urine of the subject. Suicide due to a combination of chloroquine and benzodiazepines is known as the so-called "Kusch method" in German-speaking countries. The initial chloroquine plasma concentration was determined to be 9.6 mg/L after precipitation and analysis by liquid chromatography-high-resolution tandem mass spectrometry. The analytical procedure was developed ad hoc and validated in accordance with international recommendations. Clinical toxicological follow-up analyses in blood were performed over a period of 3 weeks. The chloroquine concentration remained above the therapeutic range (up to 0.5 mg/L) for 2 weeks and dropped to 0.3 mg/L after 3 weeks. Furthermore, monodesethylchloroquine (MDCQ) and bisdesethylchloroquine (BDCQ) were determined to be the most abundant metabolites in plasma. Within 3 weeks, the area ratios of MDCQ and chloroquine increased 4-fold (from 0.090 to 0.350), and those of BDCQ and chloroquine increased 100-fold (from 0.002 to 0.218). This information may help to estimate the chloroquine excretion progress in the future.
Collapse
Affiliation(s)
- Cathy M Jacobs
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg 66424, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg 66424, Germany
| | - Fabian Frankenfeld
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg 66424, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg 66424, Germany
| |
Collapse
|
15
|
Therapeutic efficacy of Chloroquine for the treatment of uncomplicated Plasmodium vivax infection in Shewa Robit, Northeast Ethiopia. PLoS One 2023; 18:e0277362. [PMID: 36634046 PMCID: PMC9836259 DOI: 10.1371/journal.pone.0277362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/25/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The development of drug resistance to chloroquine is posing a challenge in the prevention and control efforts of malaria globally. Chloroquine is the first-line treatment for uncomplicated P.vivax in Ethiopia. Regular monitoring of anti-malarial drugs is recommended to help early detection of drug-resistant strains of malaria parasites before widely distributed. The emergence of P.vivax resistance to chloroquine in the country endangers the efficacy of P.vivax treatment. This study aimed to assess the therapeutic efficacy of chloroquine among uncomplicated P.vivax infections at Shewa Robit Health Center, northeast Ethiopia. METHODS One-arm in vivo prospective chloroquine efficacy study was conducted from November 2020 to March 2021. Ninety participants aged between 16 months to 60 years confirmed with P.vivax mono-infection microscopically were selected and treated with a 25 mg/kg standard dose of chloroquine over three days. Thick and thin blood smears were prepared and examined. Clinical examination was performed over 28 follow-up days. Hemoglobin concentration level was measured on days 0, 14, and 28. RESULT Of the 90 enrolled participants, 86 (96%) completed their 28 days follow-up period. The overall cure rate of the drug was 98.8% (95% CI: 95.3-100%). All asexual stages and gametocytes were cleared within 48 hours with rapid clearance of fever. Hemoglobin concentration had significantly recovered between days 0 and 14, 0 and 28, and 14 and 28 days (P = 0.032, P<0.001, and P = 0.005), respectively. Fast resolution of clinical signs and symptoms was also observed. Severe adverse events were not recorded. CONCLUSION The present study revealed that chloroquine remains an efficacious and safe drug in the study setting for treating uncomplicated P.vivax in the study area. Large-scale continuous surveillance is needed to monitor the development of resistance in due time.
Collapse
|
16
|
Effect of Binding Linkers on the Efficiency and Metabolite Profile of Biomimetic Reactions Catalyzed by Immobilized Metalloporphyrin. Metabolites 2022; 12:metabo12121269. [PMID: 36557309 PMCID: PMC9783926 DOI: 10.3390/metabo12121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The investigation of liver-related metabolic stability of a drug candidate is a widely used key strategy in early-stage drug discovery. Metalloporphyrin-based biomimetic catalysts are good and well-described models of the function of CyP450 in hepatocytes. In this research, the immobilization of an iron porphyrin was performed on nanoporous silica particles via ionic interactions. The effect of the metalloporphyrin binding linkers was investigated on the catalytic efficiency and the metabolic profile of chloroquine as a model drug. The length of the amino-substituted linkers affects the chloroquine conversion as well as the ratio of human major and minor metabolites. While testing the immobilized catalysts in the continuous-flow reactor, results showed that the presented biomimetic system could be a promising alternative for the early-stage investigation of drug metabolites regarding analytical or synthetic goals as well.
Collapse
|
17
|
Niemann B, Puleo A, Stout C, Markel J, Boone BA. Biologic Functions of Hydroxychloroquine in Disease: From COVID-19 to Cancer. Pharmaceutics 2022; 14:pharmaceutics14122551. [PMID: 36559044 PMCID: PMC9787624 DOI: 10.3390/pharmaceutics14122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ), initially utilized in the treatment of malaria, have now developed a long list of applications. Despite their clinical relevance, their mechanisms of action are not clearly defined. Major pathways by which these agents are proposed to function include alkalinization of lysosomes and endosomes, downregulation of C-X-C chemokine receptor type 4 (CXCR4) expression, high-mobility group box 1 protein (HMGB1) inhibition, alteration of intracellular calcium, and prevention of thrombus formation. However, there is conflicting data present in the literature. This is likely the result of the complex overlapping pathways between these mechanisms of action that have not previously been highlighted. In fact, prior research has focused on very specific portions of particular pathways without describing these in the context of the extensive CQ/HCQ literature. This review summarizes the detailed data regarding CQ/HCQ's mechanisms of action while also providing insight into the overarching themes. Furthermore, this review provides clinical context to the application of these diverse drugs including their role in malaria, autoimmune disorders, cardiovascular disease, thrombus formation, malignancies, and viral infections.
Collapse
Affiliation(s)
- Britney Niemann
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-1254
| | - Amanda Puleo
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
| | - Conley Stout
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
| | - Justin Markel
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
| | - Brian A. Boone
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
18
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
19
|
Melo MM, Costa MR, Filho FS, Brito-Sousa JD, Almeida AC, Monteiro WM, Melo GC, Vieira JLF, Alecrim MDGC. Pharmacokinetics of chloroquine in patients with malaria by P. vivax from the Western Brazilian Amazon basin. Biomed Pharmacother 2022; 149:112874. [DOI: 10.1016/j.biopha.2022.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
|
20
|
Liu JT, Pham PH, Lumsden JS. Autophagy modulation in rainbow trout Oncorhynchus mykiss L. and resistance to experimental infection with Flavobacterium psychrophilum. JOURNAL OF FISH DISEASES 2022; 45:535-545. [PMID: 34990023 DOI: 10.1111/jfd.13578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Previously, rainbow trout fed deoxynivalenol (DON) or partially fed (pair-fed) for 4 weeks before and during experimental infection with Flavobacterium psychrophilum had significantly decreased mortality rates. Similar results were obtained in the present study after 12 days, but not after 6 days, feeding 5 ppm DON or pair-fed before infection. Furthermore, feeding 250 ppm chloroquine (CQ) also reduced mortality (p = .052) compared with controls and may have promise for treatment of some fish disease. Parallel groups of fish were maintained on the respective treatments for 15 days, with an additional group that was fasted, but were not infected to monitor autophagy. Fish that were fasted or fed DON had significantly increased LC3II in the liver and fasted fish had significantly decreased LC3II in muscle compared with controls using western blot. There was no difference in LC3II signal in the spleen of any treatment group. Fish that were fasted or pair-fed had significant up-regulation of the Atg genes atg4, atg7, lc3, gabarap and atg12 in muscle using quantitative PCR. Less alteration of Atg expression was seen in liver. Fish treated with CQ had significantly increased expression of atg4, becn1, lc3 and atg12 in the liver. Fish fed DON for 15 days had few alterations of Atg genes in either the liver or muscle. It is still not clear if autophagy is responsible for the resistance of rainbow trout fed DON, CQ or pair-fed before F. psychrophilum infection.
Collapse
Affiliation(s)
- Juan-Ting Liu
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Phuc H Pham
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - John S Lumsden
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Dima A, Jurcut C, Chasset F, Felten R, Arnaud L. Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. Ther Adv Musculoskelet Dis 2022; 14:1759720X211073001. [PMID: 35186126 PMCID: PMC8848057 DOI: 10.1177/1759720x211073001] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
The antimalarial hydroxychloroquine (HCQ) has demonstrated several crucial properties for the treatment of systemic lupus erythematosus (SLE). Herein, we reviewed the main HCQ pharmacologic features, detailed its mechanism of action, and summarized the existing guidelines and recommendations for HCQ use in rheumatology with a systematic literature search for the randomized controlled trials focused on lupus. HCQ has been shown to decrease SLE activity, especially in mild and moderate disease, to prevent disease flare and to lower the long-term glucocorticoid need. The numerous benefits of HCQ are extended to pregnancy and breastfeeding period. Based on cohort studies, antithrombotic and metabolic HCQ’s effects were shown, including lipid-lowering properties, which might contribute to an improved cardiovascular risk. Moreover, early HCQ use in antinuclear antibodies positive individuals might delay the progression to SLE. Finally, HCQ has a significant favorable impact on long-term outcomes such as damage accrual and mortality in SLE. Based on these multiple benefits, HCQ is now the mainstay long-term treatment in SLE, recommended by current guidelines in all patients unless contraindications or side effects. The daily dose associated with the best compromise between efficacy and safety is matter of debate. The concern regarding retinal toxicity rather than proper efficacy data is the one that dictated the daily dosage of ⩽5 mg/kg/day actual body weight currently agreed upon.
Collapse
Affiliation(s)
- Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - François Chasset
- Department of Dermatology and Allergology, Hôpital Tenon, Paris, France; Faculté de Médecine, Sorbonne Université, Paris, France
| | - Renaud Felten
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
- Department of Rheumatology, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Arnaud
- National Reference Center for Rare Auto-immune and Systemic Diseases Est Sud-Est (RESO), Strasbourg, France
- Department of Rheumatology, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, Inserm UMR-S 1109, Strasbourg, France
- Service de Rhumatologie, Hôpital de Hautepierre, 1, avenue Molière BP 83049, 67098 Strasbourg Cedex, France
| |
Collapse
|
22
|
Kucharski DJ, Jaszczak MK, Boratyński PJ. A Review of Modifications of Quinoline Antimalarials: Mefloquine and (hydroxy)Chloroquine. Molecules 2022; 27:1003. [PMID: 35164267 PMCID: PMC8838516 DOI: 10.3390/molecules27031003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Late-stage modification of drug molecules is a fast method to introduce diversity into the already biologically active scaffold. A notable number of analogs of mefloquine, chloroquine, and hydroxychloroquine have been synthesized, starting from the readily available active pharmaceutical ingredient (API). In the current review, all the modifications sites and reactivity types are summarized and provide insight into the chemistry of these molecules. The approaches include the introduction of simple groups and functionalities. Coupling to other drugs, polymers, or carriers afforded hybrid compounds or conjugates with either easily hydrolyzable or more chemically inert bonds. The utility of some of the compounds was tested in antiprotozoal, antibacterial, and antiproliferative assays, as well as in enantiodifferentiation experiments.
Collapse
Affiliation(s)
| | | | - Przemysław J. Boratyński
- Department of Organic and Medicinal Chemistry, Wrocław University of Technology, Wyspiańskiego 27, 50-370 Wrocław, Poland; (D.J.K.); (M.K.J.)
| |
Collapse
|
23
|
Thomet U, Amuzescu B, Knott T, Mann SA, Mubagwa K, Radu BM. Assessment of proarrhythmogenic risk for chloroquine and hydroxychloroquine using the CiPA concept. Eur J Pharmacol 2021; 913:174632. [PMID: 34785211 PMCID: PMC8590616 DOI: 10.1016/j.ejphar.2021.174632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of μM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the β-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.
Collapse
Affiliation(s)
- Urs Thomet
- Anaxon A.G., Brünnenstrasse 90, 3018, Bern, Switzerland
| | - Bogdan Amuzescu
- Dept. Anatomy, Animal Physiology & Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX, 78229, USA
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829, Cologne, Germany
| | - Kanigula Mubagwa
- Dept. Cardiovascular Sciences, Faculty of Medicine, K U Leuven, B-3000, Leuven, Belgium; Dept. Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo
| | - Beatrice Mihaela Radu
- Dept. Anatomy, Animal Physiology & Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| |
Collapse
|
24
|
Albornoz LL, Soroka VD, Silva MCA. Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: Review. ENVIRONMENTAL ADVANCES 2021; 6:100140. [PMID: 34845441 PMCID: PMC8603826 DOI: 10.1016/j.envadv.2021.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic is proving to be one of the most challenging health and social crises ever faced by humanity. Several drugs have been proposed as potential antiviral agents for the treatment of COVID-19 since the beginning of the health crisis. Among them are chloroquine (CQ), hydroxychloroquine (HCQ), ivermectin (IVM), and the combination of QC or HCQ and azithromycin (AZI). The use of these and several other drugs has grown sharply, even if there is proof of ineffectiveness in the early treatment or mild cases of COVID-19. Thus, there is great concern about the potential environmental impacts of the effluents released with the presence of these drugs. Therefore, this work aimed to carry out a literature review on wastewater treatment processes, focusing on removing these substances through advanced oxidation process. As the conventional effluent treatment processes do not have high efficiency for removal, it was concentrated in the literature that had as scope advanced and photo-mediated techniques to remove CQ, HCQ, IVM, and AZI. It is expected, with this work, to highlight the importance of conducting research that contributes to the control of pollution and contamination.
Collapse
Affiliation(s)
- L L Albornoz
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - V D Soroka
- Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - M C A Silva
- UFRGS, Instituto de Pesquisas Hidráulicas (IPH), Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Van Eaton KM, Gustafson DL. Pharmacokinetic and Pharmacodynamic Assessment of Hydroxychloroquine in Breast Cancer. J Pharmacol Exp Ther 2021; 379:331-342. [PMID: 34503992 PMCID: PMC9351720 DOI: 10.1124/jpet.121.000730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Hydroxychloroquine (HCQ) is being tested in a number of human clinical trials to determine the role of autophagy in response to standard anticancer therapies. However, HCQ pharmacodynamic (PD) responses are difficult to assess in patients, and preclinical studies in mouse models are equivocal with regard to HCQ exposure and inhibition of autophagy. Here, pharmacokinetic (PK) assessment of HCQ in non-tumor-bearing mice after intraperitoneal dosing established 60 mg/kg as the human equivalent dose of HCQ in mice. Autophagy inhibition, cell proliferation, and cell death were assessed in two-dimensional (2D) cell culture and three-dimensional tumor organoids in breast cancer. Mice challenged with breast cancer xenografts were then treated with 60 mg/kg HCQ via intraperitoneal dosing, and subsequent PK and PD responses were assessed. Although autophagic flux was significantly inhibited in cells irrespective of autophagy-dependence status, autophagy-dependent tumors had decreased cell proliferation and increased cell death at earlier time points compared with autophagy-independent tumors. Overall, this study shows that 2D cell culture, three-dimensional tumor organoids, and in vivo studies produce similar results, and in vitro studies can be used as surrogates to recapitulate in vivo antitumor responses of HCQ. SIGNIFICANCE STATEMENT: Autophagy-dependent tumors but not autophagy-independent tumors have decreased cell proliferation and increased cell death after single-agent hydroxychloroquine treatment. However, hydroxychloroquine causes decreased autophagic flux regardless of autophagy status, suggesting its clinical efficacy in the context of autophagy inhibition.
Collapse
Affiliation(s)
- Kristen M Van Eaton
- School of Biomedical Engineering (K.M.V.E., D.L.G.), Department of Clinical Sciences (D.L.G.), and Flint Animal Cancer Center (D.L.G.), Colorado State University, Fort Collins, Colorado; and Developmental Therapeutics Program; University of Colorado Cancer Center, Aurora, Colorado (D.L.G.)
| | - Daniel L Gustafson
- School of Biomedical Engineering (K.M.V.E., D.L.G.), Department of Clinical Sciences (D.L.G.), and Flint Animal Cancer Center (D.L.G.), Colorado State University, Fort Collins, Colorado; and Developmental Therapeutics Program; University of Colorado Cancer Center, Aurora, Colorado (D.L.G.)
| |
Collapse
|
26
|
Machado TR, Ribeiro MMJ, Sodero ACR, Domingos TFS, Rapozo R, de Paula DC, Domingos AS, Rodrigues CR, Cabral LM, de Souza AMT, Abrahim-Vieira BDA. Evaluation of chloroquine and hydroxychloroquine as ACE-2 Inhibitors By In Silico Approaches: Cardiac Arrhythmia Cause? J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
de Jesus JPA, Assis LC, de Castro AA, da Cunha EFF, Nepovimova E, Kuca K, de Castro Ramalho T, de Almeida La Porta F. Effect of drug metabolism in the treatment of SARS-CoV-2 from an entirely computational perspective. Sci Rep 2021; 11:19998. [PMID: 34620963 PMCID: PMC8497625 DOI: 10.1038/s41598-021-99451-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.
Collapse
Affiliation(s)
- João Paulo Almirão de Jesus
- Laboratory of Nanotechnology and Computational Chemistry, Federal Technological University of Paraná, Avenida dos Pioneiros 3131, Londrina, Paraná, CEP 86036-370, Brazil
| | - Letícia Cristina Assis
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
| | | | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic.
| | - Teodorico de Castro Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Felipe de Almeida La Porta
- Laboratory of Nanotechnology and Computational Chemistry, Federal Technological University of Paraná, Avenida dos Pioneiros 3131, Londrina, Paraná, CEP 86036-370, Brazil.
| |
Collapse
|
28
|
Aminoquinolines as Translational Models for Drug Repurposing: Anticancer Adjuvant Properties and Toxicokinetic-Related Features. JOURNAL OF ONCOLOGY 2021; 2021:3569349. [PMID: 34527050 PMCID: PMC8437624 DOI: 10.1155/2021/3569349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
The indiscriminate consumption of antimalarials against coronavirus disease-2019 emphasizes the longstanding clinical weapons of medicines. In this work, we conducted a review on the antitumor mechanisms of aminoquinolines, focusing on the responses and differences of tumor histological tissues and toxicity related to pharmacokinetics. This well-defined analysis shows similar mechanistic forms triggered by aminoquinolines in different histological tumor tissues and under coexposure conditions, although different pharmacological potencies also occur. These molecules are lysosomotropic amines that increase the antiproliferative action of chemotherapeutic agents, mainly by cell cycle arrest, histone acetylation, physiological changes in tyrosine kinase metabolism, inhibition of PI3K/Akt/mTOR pathways, cyclin D1, E2F1, angiogenesis, ribosome biogenesis, triggering of ATM-ATR/p53/p21 signaling, apoptosis, and presentation of tumor peptides. Their chemo/radiotherapy sensitization effects may be an adjuvant option against solid tumors, since 4-aminoquinolines induce lysosomal-mediated programmed cytotoxicity of cancer cells and accumulation of key markers, predominantly, LAMP1, p62/SQSTM1, LC3 members, GAPDH, beclin-1/Atg6, α-synuclein, and granules of lipofuscin. Adverse effects are dose-dependent, though most common with chloroquine, hydroxychloroquine, amodiaquine, and other aminoquinolines are gastrointestinal changes, blurred vision ventricular arrhythmias, cardiac arrest, QTc prolongation, severe hypoglycemia with loss of consciousness, and retinopathy, and they are more common with chloroquine than with hydroxychloroquine and amodiaquine due to pharmacokinetic features. Additionally, psychological/neurological effects were also detected during acute or chronic use, but aminoquinolines do not cross the placenta easily and low quantity is found in breast milk despite their long mean residence times, which depends on the coexistence of hepatic diseases (cancer-related or not), first pass metabolism, and comedications. The low cost and availability on the world market have converted aminoquinolines into “star drugs” for pharmaceutical repurposing, but a continuous pharmacovigilance is necessary because these antimalarials have multiple modes of action/unwanted targets, relatively narrow therapeutic windows, recurrent adverse effects, and related poisoning self-treatment. Therefore, their use must obey strict rules, ethical and medical prescriptions, and clinical and laboratory monitoring.
Collapse
|
29
|
Bilgin ZD, Evcil I, Yazgi D, Binay G, Okuyucu Genc C, Gulsen B, Huseynova A, Ozdemir AZ, Ozmen E, Usta Y, Ustun S, Caglar Andac S. Liquid Chromatographic Methods for COVID-19 Drugs, Hydroxychloroquine and Chloroquine. J Chromatogr Sci 2021; 59:748-757. [PMID: 33336246 PMCID: PMC7799265 DOI: 10.1093/chromsci/bmaa110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 01/25/2023]
Abstract
COVID-19 has been a threat throughout the world since December 2019. In attempts to discover an urgent treatment regime for COVID-19, hydroxychloroquine (HCQ) and chloroquine (CQ) have been on solidarity clinical trial. However, many countries have pulled HCQ and CQ from their COVID-19 treatment regimens recently, some countries still continue using them for patients who have previously started HCQ and CQ and they may complete their course under the supervision of a doctor. HCQ and CQ are 4-aminoquinoline drugs and it is safe to use them for autoimmune diseases, rheumatoid arthritis, systemic lupus erythematosus and malaria as well. Determination of CQ, HCQ and their metabolites in biologic fluids and in pharmaceuticals has great importance, especially for pharmacokinetics, pharmacodynamics and epidemiological studies. In this review, liquid chromatographic methods developed in the last 10 years were summarized focusing on sample preparation and detection methods for HCQ and CQ determination in biological fluids and pharmaceutical preparations. It is hoped that this article could be helpful to facilitate the use of these drugs in clinical trials or drug research studies as it provides comprehensive information on the reported analytical methods.
Collapse
Affiliation(s)
- Zeynep Derya Bilgin
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Isil Evcil
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Didem Yazgi
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Gokce Binay
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Ceren Okuyucu Genc
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Busra Gulsen
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Aytaj Huseynova
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Ayse Zehra Ozdemir
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Emel Ozmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Yakup Usta
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Suade Ustun
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| | - Sena Caglar Andac
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Suleymaniye, 7-1, 34116 Fatih/Istanbul, Turkey
| |
Collapse
|
30
|
Suhail M. The Target Determination and the Mechanism of Action of Chiral-Antimalarial Drugs: A Docking Approach. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Due to an undecided target and the prescription of chiral-aminoquinolines (chloroquine, primaquine and quinacrine) in the racemic form, the mechanism of action as well as the reason of causing side effects become unclear. Based on computationally evaluated literature data, the things determined theoretically were (i) the target of aminoquinolines during antimalarial activity, (ii) the mechanism of action of chiral-aminoquinolines and (iii) biologically active enantiomers of aminoquinolines. For the presented study, the enantiomeric binding affinities of aminoquinolines with all the targets claimed by other scientists were calculated, and then used in interpretation with the help of many investigations done/observed by others. The results were very interesting based on which, a new and acceptable mechanism of action of chiral-aminoquinolines during malaria curing step, is given for the first time. The current docking study not only resolves the questionable point about a definite target of aminoquinolines but also makes the mechanism of action understandable.
Collapse
Affiliation(s)
- Mohd. Suhail
- Department of Chemistry, Jamia Millia Islamia (A Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
31
|
Askarian F, Firoozi Z, Ebadollahi-Natanzi A, Bahrami S, Rahimi HR. A review on the pharmacokinetic properties and toxicity considerations for chloroquine and hydroxychloroquine to potentially treat coronavirus patients. Toxicol Res 2021; 38:137-148. [PMID: 34306523 PMCID: PMC8286988 DOI: 10.1007/s43188-021-00101-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus, caused a novel emerged coronavirus disease, is growing rapidly worldwide. Few studies have evaluated the efficacy and safety of Chloroquine (CQ), an old antimalarial drug, and Hydroxychloroquine (HCQ) in the treatment of COVID-19 infection. HCQ is derived from CQ by adding a hydroxyl group into it and is a less toxic derivative of CQ for the treatment of COVID-19 infection because it is more soluble. This article summarizes pharmacokinetic properties and toxicity considerations for CQ and HCQ, drug interactions, and their potential efficacy against COVID-19. The authors also look at the biochemistry changes and clinical uses of CQ and HCQ, and supportive treatments following toxicity occurs. It was believed that CQ and HCQ may provide few benefits to COVID-19 patients. A number of factors should be considered to keep the drug safe, such as dose, in vivo animal toxicological findings, and gathering of metabolites in plasma and/or tissues. The main conclusion of this review is that CQ and HCQ with considered to their ADMET properties has major shortcomings and fully irresponsible.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Firoozi
- Department of Medical Genetics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Ebadollahi-Natanzi
- Medicinal Plants Department, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Solmaz Bahrami
- Department of Institutional Research, Westcliff University, Irvine, CA 92614 USA
| | - Hamid-Reza Rahimi
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Kumari M, Kumar A. Can pharmaceutical drugs used to treat Covid-19 infection leads to human health risk? A hypothetical study to identify potential risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146303. [PMID: 34030377 PMCID: PMC7942154 DOI: 10.1016/j.scitotenv.2021.146303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 05/21/2023]
Abstract
This is the first study to assess human health risks due to the exposure of 'repurposed' pharmaceutical drugs used to treat Covid-19 infection. The study used a six-step approach to determine health risk estimates. For this, consumption of pharmaceuticals under normal circumstances and in Covid-19 infection was compiled to calculate the predicted environmental concentrations (PECs) in river water and in fishes. Risk estimates of pharmaceutical drugs were evaluated for adults as they are most affected by Covid-19 pandemic. Acceptable daily intakes (ADIs) are estimated using the no-observed-adverse-effect-level (NOAEL) or no observable effect level (NOEL) values in rats. The estimated ADI values are then used to calculate predicted no-effect concentrations (PNECs) for three different exposure routes (i) through the accidental ingestion of contaminated surface water during recreational activities only, (ii) through fish consumption only, and (iii) through combined accidental ingestion of contaminated surface water during recreational activities and fish consumption. Higher risk values (hazard quotient, HQ: 337.68, maximum; 11.83, minimum) were obtained for the combined ingestion of contaminated water during recreational activities and fish consumption exposure under the assumptions used in this study indicating possible effects to human health. Amongst the pharmaceutical drugs, ritonavir emerged as main drug, and is expected to pose adverse effects on r human health through fish consumption. Mixture toxicity analysis showed major risk effects of exposure of pharmaceutical drugs (interaction-based hazard index, HIint: from 295.42 (for lopinavir + ritonavir) to 1.20 for chloroquine + rapamycin) demonstrating possible risks due to the co-existence of pharmaceutical in water. The presence of background contaminants in contaminated water does not show any influence on the observed risk estimates as indicated by low HQadd values (<1). Regular monitoring of pharmaceutical drugs in aquatic environment needs to be carried out to reduce the adverse effects of pharmaceutical drugs on human health.
Collapse
Affiliation(s)
- Minashree Kumari
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India.
| |
Collapse
|
33
|
Kuroda K, Li C, Dhangar K, Kumar M. Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145740. [PMID: 33647647 PMCID: PMC7883697 DOI: 10.1016/j.scitotenv.2021.145740] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/18/2023]
Abstract
Antiviral drugs have been used to treat the ever-growing number of coronavirus disease, 2019 (COVID-19) patients. Consequently, unprecedented amounts of such drug residues discharging into ambient waters raise concerns on the potential ecotoxicological effects to aquatic lives, as well as development of antiviral drug-resistance in wildlife. Here, we estimated the occurrence, fate and ecotoxicological risk of 11 therapeutic agents suggested as drugs for COVID-19 treatment and their 13 metabolites in wastewater and environmental waters, based on drug consumption, physical-chemical property, and ecotoxicological and pharmacological data for the drugs, with the aid of quantitative structure-activity relationship (QSAR) modelling. Our results suggest that the removal efficiencies at conventional wastewater treatment plants will remain low (<20%) for half of the substances, and consequently, high drug residues (e.g. 7402 ng/L ribavirin, 4231 ng/L favipiravir, 730 ng/L lopinavir, 319 ng/L remdesivir; each combined for both unchanged forms and metabolites; and when each drug is administered to 100 patients out of 100,000 populations on a day) can be present in secondary effluents and persist in the environmental waters. Ecotoxicological risk in receiving river waters can be high (risk quotient >1) by a use of favipiravir, lopinavir, umifenovir and ritonavir, and medium (risk quotient >0.1) by a use of chloroquine, hydroxychloroquine, remdesivir, and ribavirin, while the risk will remain low (risk quotient <0.1) for dexamethasone and oseltamivir. The potential of wild animals acquiring antiviral drug resistance was estimated to be low. Our prediction suggests a pressing need for proper usage and waste management of antiviral drugs as well as for improving removal efficiencies of drug residues in wastewater.
Collapse
Affiliation(s)
- Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 939 0398, Japan.
| | - Cong Li
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 939 0398, Japan
| | - Kiran Dhangar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| |
Collapse
|
34
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
35
|
Ferreira Vieira MVD, Vieira JLF. Exposure to chloroquine in male adults and children aged 9-11 years with malaria due to Plasmodium vivax. Trans R Soc Trop Med Hyg 2021; 115:38-42. [PMID: 32838422 DOI: 10.1093/trstmh/traa079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/21/2020] [Accepted: 08/06/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chloroquine is effective against the asexual blood stage of Plasmodium vivax. A high proportion of children are underdosed with the drug, but there are no studies comparing chloroquine exposure in adults and children aged 8-11 years old. The present study intends to compare these populations using the area under the curve (AUC) derived from the plasma concentration-time profile in patients with P. vivax. METHODS A prospective study of cases was performed on male children (aged 9-11 years) and adults with vivax malaria. Blood samples were collected after several days of treatment. Chloroquine was measured by high-performance liquid chromatography. A non-compartmental pharmacokinetic model was used to calculate the pharmacokinetic parameters of the drug. RESULTS A total of 20 children and 25 adults were included in the study. Plasma concentrations of chloroquine in older children ranged from 67 to 1112 ng/ml, and in adults the value ranged from 74 to 1147 ng/ml. The AUC to the last measurable concentration and to infinite was significantly lower in children than in adults, indicating a lower exposure to the drug. CONCLUSION These data demonstrate lower exposure to chloroquine in children, which corroborates the importance of optimising the doses of chloroquine in the study age band to ensure adequate exposure to the drug.
Collapse
|
36
|
Gorshkov K, Chen CZ, Bostwick R, Rasmussen L, Tran BN, Cheng YS, Xu M, Pradhan M, Henderson M, Zhu W, Oh E, Susumu K, Wolak M, Shamim K, Huang W, Hu X, Shen M, Klumpp-Thomas C, Itkin Z, Shinn P, Carlos de la Torre J, Simeonov A, Michael SG, Hall MD, Lo DC, Zheng W. The SARS-CoV-2 Cytopathic Effect Is Blocked by Lysosome Alkalizing Small Molecules. ACS Infect Dis 2021; 7:1389-1408. [PMID: 33346633 PMCID: PMC7771250 DOI: 10.1021/acsinfecdis.0c00349] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Understanding the SARS-CoV-2 virus’
pathways of infection,
virus–host–protein interactions, and mechanisms of virus-induced
cytopathic effects will greatly aid in the discovery and design of
new therapeutics to treat COVID-19. Chloroquine and hydroxychloroquine,
extensively explored as clinical agents for COVID-19, have multiple
cellular effects including alkalizing lysosomes and blocking autophagy
as well as exhibiting dose-limiting toxicities in patients. Therefore,
we evaluated additional lysosomotropic compounds to identify an alternative
lysosome-based drug repurposing opportunity. We found that six of
these compounds blocked the cytopathic effect of SARS-CoV-2 in Vero
E6 cells with half-maximal effective concentration (EC50) values ranging from 2.0 to 13 μM and selectivity indices
(SIs; SI = CC50/EC50) ranging from 1.5- to >10-fold.
The compounds (1) blocked lysosome functioning and autophagy, (2)
prevented pseudotyped particle entry, (3) increased lysosomal pH,
and (4) reduced (ROC-325) viral titers in the EpiAirway 3D tissue
model. Consistent with these findings, the siRNA knockdown of ATP6V0D1
blocked the HCoV-NL63 cytopathic effect in LLC-MK2 cells. Moreover,
an analysis of SARS-CoV-2 infected Vero E6 cell lysate revealed significant
dysregulation of autophagy and lysosomal function, suggesting a contribution
of the lysosome to the life cycle of SARS-CoV-2. Our findings suggest
the lysosome as a potential host cell target to combat SARS-CoV-2
infections and inhibitors of lysosomal function could become an important
component of drug combination therapies aimed at improving treatment
and outcomes for COVID-19.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Robert Bostwick
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Lynn Rasmussen
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Miao Xu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Mark Henderson
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zhu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, Naval Research Laboratory, Washington, D.C. 20375, United States
- Jacobs Corporation, Hanover, Maryland 21076, United States
| | - Mason Wolak
- Optical Sciences Division, Code 5600, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Khalida Shamim
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Zina Itkin
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, IMM6, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Sam G. Michael
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Donald C. Lo
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
37
|
Das S, Ramachandran AK, Birangal SR, Akbar S, Ahmed B, Joseph A. The controversial therapeutic journey of chloroquine and hydroxychloroquine in the battle against SARS-CoV-2: A comprehensive review. MEDICINE IN DRUG DISCOVERY 2021; 10:100085. [PMID: 33846702 PMCID: PMC8026171 DOI: 10.1016/j.medidd.2021.100085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, the pandemic outbreak of a novel coronavirus, officially termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), indicated by a pulmonary infection in humans, has become one of the most significant challenges for public health. In the current fight against coronavirus disease-2019, the medical and health authorities across the world focused on quick diagnosis and isolation of patients; meanwhile, researchers worldwide are exploring the possibility of developing vaccines and novel therapeutic options to combat this deadly disease. Recently, based on various small clinical observations, uncontrolled case studies and previously reported antiviral activity against SARS-CoV-1 chloroquine (CQ) and hydroxychloroquine (HCQ) have attracted exceptional consideration as possible therapeutic agents against SARS-CoV-2. However, there are reports on little to no effect of CQ or HCQ against SARS-CoV-2, and many reports have raised concerns about their cardiac toxicity. Here, in this review, we examine the chemistry, molecular mechanism, and pharmacology, including the current scenario and future prospects of CQ or HCQ in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
38
|
Martins YA, Gonçalves TM, Lopez RFV. HPLC methods for choloroquine determination in biological samples and pharmaceutical products. Daru 2021; 29:223-239. [PMID: 33738722 PMCID: PMC8149527 DOI: 10.1007/s40199-021-00391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/09/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Review and assess pharmaceutical and clinical characteristics of chloroquine including high-performance liquid chromatography (HPLC)-based methods used to quantify the drug in pharmaceutical products and biological samples. EVIDENCE ACQUISITION A literature review was undertaken on the PubMed, Science Direct, and Scielo databases using the following keywords related to the investigated subject: 'chloroquine', 'analytical methods', and 'HPLC'. RESULTS For more than seven decades, chloroquine has been used to treat malaria and some autoimmune diseases, such as lupus erythematosus and rheumatoid arthritis. There is growing interest in chloroquine as a therapeutic alternative in the treatment of HIV, Q fever, Whipple's disease, fungal, Zika, Chikungunya infections, Sjogren's syndrome, porphyria, chronic ulcerative stomatitis, polymorphic light eruption, and different types of cancer. HPLC coupled to UV detectors is the most employed method to quantify chloroquine in pharmaceutical products and biological samples. The main chromatographic conditions used to identify and quantify chloroquine from tablets and injections, degradation products, and metabolites are presented and discussed. CONCLUSION Research findings reported in this article may facilitate the repositioning, quality control, and biological monitoring of chloroquine in modern pharmaceutical dosage forms and treatments.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (FCFRP-USP), Avenida do Café, s/n, Ribeirao Preto, São Paulo, 14040-903, Brazil
| | - Talita Mota Gonçalves
- School of Pharmaceutical Sciences, Universidade Federal do Vale do São Francisco, Avenida José de Sá Maniçoba, s/n, Petrolina, Pernambuco, 56304-917, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (FCFRP-USP), Avenida do Café, s/n, Ribeirao Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
39
|
Yao X, Yan X, Wang X, Cai T, Zhang S, Cui C, Wang X, Hou Z, Liu Q, Li H, Lin J, Xiong Z, Liu D. Population-based meta-analysis of chloroquine: informing chloroquine pharmacokinetics in COVID-19 patients. Eur J Clin Pharmacol 2021; 77:583-593. [PMID: 33188451 PMCID: PMC7665884 DOI: 10.1007/s00228-020-03032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022]
Abstract
AIMS Chloroquine (CQ) has been repurposed to treat coronavirus disease 2019 (COVID-19). Understanding the pharmacokinetics (PK) in COVID-19 patients is essential to study its exposure-efficacy/safety relationship and provide a basis for a possible dosing regimen optimization. SUBJECT AND METHODS In this study, we used a population-based meta-analysis approach to develop a population PK model to characterize the CQ PK in COVID-19 patients. An open-label, single-center study (ethical review approval number: PJ-NBEY-KY-2020-063-01) was conducted to assess the safety, efficacy, and pharmacokinetics of CQ in patients with COVID-19. The sparse PK data from 50 COVID-19 patients, receiving 500 mg CQ phosphate twice daily for 7 days, were combined with additional CQ PK data from 18 publications. RESULTS A two-compartment model with first-order oral absorption and first-order elimination and an absorption lag best described the data. Absorption rate (ka) was estimated to be 0.559 h-1, and a lag time of absorption (ALAG) was estimated to be 0.149 h. Apparent clearance (CL/F) and apparent central volume of distribution (V2/F) was 33.3 l/h and 3630 l. Apparent distribution clearance (Q/F) and volume of distribution of peripheral compartment (Q3/F) were 58.7 l/h and 5120 l. The simulated CQ concentration under five dosing regimens of CQ phosphate were within the safety margin (400 ng/ml). CONCLUSION Model-based simulation using PK parameters from the COVID-19 patients shows that the concentrations under the currently recommended dosing regimen are below the safety margin for side-effects, which suggests that these dosing regimens are generally safe. The derived population PK model should allow for the assessment of pharmacokinetics-pharmacodynamics (PK-PD) relationships for CQ when given alone or in combination with other agents to treat COVID-19.
Collapse
Affiliation(s)
- Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, 999077, China
| | - Xiaohan Wang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ting Cai
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, 315010, China
| | - Shun Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, 315010, China
| | - Cheng Cui
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoxu Wang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhe Hou
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qi Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Haiyan Li
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Lin
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, 315010, China
| | - Zi Xiong
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, 315010, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
40
|
Guan J, Spry C, Tjhin ET, Yang P, Kittikool T, Howieson VM, Ling H, Starrs L, Duncan D, Burgio G, Saliba KJ, Auclair K. Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. J Med Chem 2021; 64:4478-4497. [PMID: 33792339 DOI: 10.1021/acs.jmedchem.0c01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malaria-causing Plasmodium parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring. Several of these analogues display nanomolar antiplasmodial activity against Plasmodium falciparum and/or Plasmodium knowlesi, and are stable in the presence of pantetheinase. Both a known triazole and a novel isoxazole derivative were further characterized and found to possess high selectivity indices, medium or high Caco-2 permeability, and medium or low microsomal clearance in vitro. Although they fail to suppress Plasmodium berghei proliferation in vivo, the pharmacokinetic and contact time data presented provide a benchmark for the compound profile likely required to achieve antiplasmodial activity in mice and should facilitate lead optimization.
Collapse
Affiliation(s)
- Jinming Guan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Christina Spry
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Erick T Tjhin
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Penghui Yang
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.,College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Tanakorn Kittikool
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Vanessa M Howieson
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Harriet Ling
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Lora Starrs
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Dustin Duncan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Gaetan Burgio
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Medical School, The Australian National University, Acton, ACT 2601, Australia
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
41
|
Baburaj G, Thomas L, Rao M. Potential Drug Interactions of Repurposed COVID-19 Drugs with Lung Cancer Pharmacotherapies. Arch Med Res 2021; 52:261-269. [PMID: 33257051 PMCID: PMC7670900 DOI: 10.1016/j.arcmed.2020.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer patients are at heightened risk for developing COVID-19 infection as well as complications due to multiple risk factors such as underlying malignancy, anti-cancer treatment induced immunosuppression, additional comorbidities and history of smoking. Recent literatures have reported a significant proportion of lung cancer patients coinfected with COVID-19. Chloroquine, hydroxychloroquine, lopinavir/ritonavir, ribavirin, oseltamivir, remdesivir, favipiravir, and umifenovir represent the major repurposed drugs used as potential experimental agents for COVID-19 whereas azithromycin, dexamethasone, tocilizumab, sarilumab, famotidine and ceftriaxone are some of the supporting agents that are under investigation for COVID-19 management. The rationale of this review is to identify potential drug-drug interactions (DDIs) occurring in lung cancer patients receiving lung cancer medications and repurposed COVID-19 drugs using Micromedex and additional literatures. This review has identified several potential DDIs that could occur with the concomitant treatments of COVID-19 repurposed drugs and lung cancer medications. This information may be utilized by the healthcare professionals for screening and identifying potential DDIs with adverse outcomes, based on their severity and documentation levels and consequently design prophylactic and management strategies for their prevention. Identification, reporting and management of DDIs and dissemination of related information should be a major consideration in the delivery of lung cancer care during this ongoing COVID-19 pandemic for better patient outcomes and updating guidelines for safer prescribing practices in this coinfected condition.
Collapse
Affiliation(s)
- Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
42
|
Eh-Haj BM. Metabolic N-Dealkylation and N-Oxidation as Elucidators of the Role of Alkylamino Moieties in Drugs Acting at Various Receptors. Molecules 2021; 26:1917. [PMID: 33805491 PMCID: PMC8036657 DOI: 10.3390/molecules26071917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic reactions that occur at alkylamino moieties may provide insight into the roles of these moieties when they are parts of drug molecules that act at different receptors. N-dealkylation of N,N-dialkylamino moieties has been associated with retaining, attenuation or loss of pharmacologic activities of metabolites compared to their parent drugs. Further, N-dealkylation has resulted in clinically used drugs, activation of prodrugs, change of receptor selectivity, and providing potential for developing fully-fledged drugs. While both secondary and tertiary alkylamino moieties (open chain aliphatic or heterocyclic) are metabolized by CYP450 isozymes oxidative N-dealkylation, only tertiary alkylamino moieties are subject to metabolic N-oxidation by Flavin-containing monooxygenase (FMO) to give N-oxide products. In this review, two aspects will be examined after surveying the metabolism of representative alkylamino-moieties-containing drugs that act at various receptors (i) the pharmacologic activities and relevant physicochemical properties (basicity and polarity) of the metabolites with respect to their parent drugs and (ii) the role of alkylamino moieties on the molecular docking of drugs in receptors. Such information is illuminative in structure-based drug design considering that fully-fledged metabolite drugs and metabolite prodrugs have been, respectively, developed from N-desalkyl and N-oxide metabolites.
Collapse
Affiliation(s)
- Babiker M Eh-Haj
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, University of Science and Technology of Fujairah, Emirate of Fujairah, Fujairah 2022, United Arab Emirates
| |
Collapse
|
43
|
Choi BJ, Koo Y, Kim TY, Chung WY, Jung YJ, Park JE, Lim HS, Park B, Yoon D. Risk of QT prolongation through drug interactions between hydroxychloroquine and concomitant drugs prescribed in real world practice. Sci Rep 2021; 11:6918. [PMID: 33767276 PMCID: PMC7994840 DOI: 10.1038/s41598-021-86321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Hydroxychloroquine has recently received attention as a treatment for COVID-19. However, it may prolong the QTc interval. Furthermore, when hydroxychloroquine is administered concomitantly with other drugs, it can exacerbate the risk of QT prolongation. Nevertheless, the risk of QT prolongation due to drug-drug interactions (DDIs) between hydroxychloroquine and concomitant medications has not yet been identified. To evaluate the risk of QT prolongation due to DDIs between hydroxychloroquine and 118 concurrent drugs frequently used in real-world practice, we analyzed the electrocardiogram results obtained for 447,632 patients and their relevant electronic health records in a tertiary teaching hospital in Korea from 1996 to 2018. We repeated the case–control analysis for each drug. In each analysis, we performed multiple logistic regression and calculated the odds ratio (OR) for each target drug, hydroxychloroquine, and the interaction terms between those two drugs. The DDIs were observed in 12 drugs (trimebutine, tacrolimus, tramadol, rosuvastatin, cyclosporin, sulfasalazine, rofecoxib, diltiazem, piperacillin/tazobactam, isoniazid, clarithromycin, and furosemide), all with a p value of < 0.05 (OR 1.70–17.85). In conclusion, we found 12 drugs that showed DDIs with hydroxychloroquine in the direction of increasing QT prolongation.
Collapse
Affiliation(s)
- Byung Jin Choi
- Department of Biomedical Informatics, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Yeryung Koo
- Department of Biomedical Informatics, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Tae Young Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
| | - Wou Young Chung
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yun Jung Jung
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Ji Eun Park
- Department of Pulmonology and Critical Care Medicine, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hong-Seok Lim
- Department of Cardiology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Gyeonggi-do, Republic of Korea.
| | - Dukyong Yoon
- Department of Biomedical Informatics, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
44
|
Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, Engelke H, Daali Y, Bein T, Bourquin C. Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS NANO 2021; 15:4450-4466. [PMID: 33648336 DOI: 10.1021/acsnano.0c08384] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based delivery systems for cancer immunotherapies aim to improve the safety and efficacy of these treatments through local delivery to specialized antigen-presenting cells (APCs). Multifunctional mesoporous silica nanoparticles (MSNs), with their large surface areas, their tunable particle and pore sizes, and their spatially controlled functionalization, represent a safe and versatile carrier system. In this study, we demonstrate the potential of MSNs as a pH-responsive drug carrier system for the anticancer immune-stimulant R848 (resiquimod), a synthetic Toll-like receptor 7 and 8 agonist. Equipped with a biotin-avidin cap, the tailor-made nanoparticles showed efficient stimuli-responsive release of their R848 cargo in an environmental pH of 5.5 or below. We showed that the MSNs loaded with R848 were rapidly taken up by APCs into the acidic environment of the lysosome and that they potently activated the immune cells. Upon subcutaneous injection into mice, the particles accumulated in migratory dendritic cells (DCs) in the draining lymph nodes, where they strongly enhanced the activation of the DCs. Furthermore, simultaneous delivery of the model antigen OVA and the adjuvant R848 by MSNs resulted in an augmented antigen-specific T-cell response. The MSNs significantly improved the pharmacokinetic profile of R848 in mice, as the half-life of the drug was increased 6-fold, and at the same time, the systemic exposure was reduced. In summary, we demonstrate that MSNs represent a promising tool for targeted delivery of the immune modulator R848 to APCs and hold considerable potential as a carrier for cancer vaccines.
Collapse
Affiliation(s)
- Julia Wagner
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Gößl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Natasha Ustyanovska
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Mengyao Xiong
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Hauser
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland
| | - Olga Zhuzhgova
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sandra Hočevar
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Betül Taskoparan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Laura Poller
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Stefan Datz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Youssef Daali
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
45
|
Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Rep 2021; 35:108959. [PMID: 33811811 PMCID: PMC7985926 DOI: 10.1016/j.celrep.2021.108959] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need for antivirals to treat the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To identify new candidates, we screen a repurposing library of ∼3,000 drugs. Screening in Vero cells finds few antivirals, while screening in human Huh7.5 cells validates 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we find that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we find nine drugs are antiviral in respiratory cells, seven of which have been used in humans, and three are US Food and Drug Administration (FDA) approved, including cyclosporine. We find that the antiviral activity of cyclosporine is targeting Cyclophilin rather than calcineurin, revealing essential host targets that have the potential for rapid clinical implementation.
Collapse
|
46
|
Leowattana W. COVID-19: Potential Repurposing Drugs. Infect Disord Drug Targets 2021; 22:e110122191924. [PMID: 33645490 DOI: 10.2174/1871526521666210301143441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the most infectious diseases and caused coronavirus disease in 2019 (COVID-19). It has been widely spread worldwide and infected more than 28 million peoples in 215 countries, and more than 920,000 have now died from COVID-19. To date, no effective antiviral drugs or specific vaccines have been discovered yet. In this bewilderment, the potential therapeutic antiviral drug targets for the COVID-19 are repurposing to speed up the discovery of effective treatment. The most potential drug targets are continuously published, especially Favipiravir, Chloroquine, Hydroxychloroquine, and Remdesivir. Moreover, the antiviral target proteins and anti-host target proteins were reported continuously. This review summarized the current research studies of potential therapeutic drug targets being tested against the SARS-CoV-2. It will provide information relative to potential repurposing drugs to overcome the COVID-19.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavithi road, Rachatawee, Bangkok 10400. Thailand
| |
Collapse
|
47
|
Lin M, Dong HY, Xie HZ, Li YM, Jia L. Why do we lack a specific magic anti-COVID-19 drug? Analyses and solutions. Drug Discov Today 2021; 26:631-636. [PMID: 33385574 PMCID: PMC7771376 DOI: 10.1016/j.drudis.2020.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The Coronavirus 2019 (COVID-19) pandemic represents the greatest worldwide public health crisis of recent times. The lack of proven effective therapies means that COVID-19 rages relatively unchecked. Current anti-COVID-19 pharmacotherapies are drugs originally designed for other diseases, and administered orally or intravascularly. Thus, they can have various adverse effects. A specific anti-Coronavirus drug should not only target the virus per se, but also treat the related respiratory and cardiovascular symptoms. Here, we examine the advantages and disadvantages of current anti-COVID-19 pharmacotherapies, and analyze the reasons why in the era of big data we have not yet established specific coronavirus therapies and related technical bottlenecks. Finally, we present our design of a novel nebulized S-nitrosocaptopril that is under development for targeting both coronaviruses and their related symptoms.
Collapse
Affiliation(s)
- Min Lin
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Hai-Yan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Huan-Zhang Xie
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yu-Mei Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China; Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
48
|
Imanova Yaghji N, Kan EK, Akcan S, Colak R, Atmaca A. Hydroxychloroquine Sulfate Related Hypoglycemia In A Non-Diabetic COVİD-19 Patient: A Case Report and Literature Review. Postgrad Med 2021; 133:548-551. [PMID: 33583332 DOI: 10.1080/00325481.2021.1889820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: Hypoglycemia is a serious adverse effect of hydroxychloroquine (HCQ) which is very rare in non-diabetic patients. This case report describes a non-diabetic patient without any other chronic diseases, who experienced mild hypoglycemia related to HCQ used for COVID-19 treatment.Methods: All etiologies causing hypoglycemia were investigated and a 72-hour fast test was performed.Results: A 34-year-old male patient was admitted to our hospital with a high fever, cough, and chest pain. The result of his COVID-19 PCR test was positive. He received HCQ for 10 days for the treatment of COVID-19 infection. He experienced fatigue, dizziness, severe headache, weakness and feeling of hunger after discontinuation of HCQ during his isolation at home. Before COVID-19 infection, he never experienced hypoglycemia symptoms. He did not have a history of chronic diseases, drug use, alcohol consumption, or smoking. A 72-hour fasting test was performed. He complained about headache and weakness during the 72-hour test period. The PG level was determined as 49 mg/dl during these symptoms. Concurrent insulin and C-peptide levels were <2 mU/mL and 0.553 ng/mL, respectively. ACTH, cortisol, growth hormones, liver and kidney function tests were normal. HbA1c level was 4.7% (28 mmol/mol) (Normal Range %4,5-5,7).Conclusion: Hypoglycemia may be observed as an adverse effect of HCQ used for COVID-19 infection even in patients without chronic diseases and comorbidities. We must be careful while using HCQ for these patients and must warn them about this effect. The warning about hypoglycemia effect of HCQ must be added to COVID-19 treatment guidelines.
Collapse
Affiliation(s)
- Narimana Imanova Yaghji
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Ondokuz Mayıs University, Samsun, Turkey
| | - Elif Kilic Kan
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Ondokuz Mayıs University, Samsun, Turkey
| | - Songul Akcan
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Ondokuz Mayıs University, Samsun, Turkey
| | - Ramis Colak
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Ondokuz Mayıs University, Samsun, Turkey
| | - Aysegul Atmaca
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
49
|
Blaess M, Kaiser L, Sommerfeld O, Csuk R, Deigner HP. Drugs, Metabolites, and Lung Accumulating Small Lysosomotropic Molecules: Multiple Targeting Impedes SARS-CoV-2 Infection and Progress to COVID-19. Int J Mol Sci 2021; 22:ijms22041797. [PMID: 33670304 PMCID: PMC7918659 DOI: 10.3390/ijms22041797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; (M.B.); (L.K.)
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7720-307-4232
| |
Collapse
|
50
|
Varshneya M, Irurzun-Arana I, Campana C, Dariolli R, Gutierrez A, Pullinger TK, Sobie EA. Investigational Treatments for COVID-19 may Increase Ventricular Arrhythmia Risk Through Drug Interactions. CPT Pharmacometrics Syst Pharmacol 2021; 10:100-107. [PMID: 33205613 PMCID: PMC7753424 DOI: 10.1002/psp4.12573] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
Many drugs that have been proposed for treatment of coronavirus disease 2019 (COVID-19) are reported to cause cardiac adverse events, including ventricular arrhythmias. In order to properly weigh risks against potential benefits, particularly when decisions must be made quickly, mathematical modeling of both drug disposition and drug action can be useful for predicting patient response and making informed decisions. Here, we explored the potential effects on cardiac electrophysiology of four drugs proposed to treat COVID-19: lopinavir, ritonavir, chloroquine, and azithromycin, as well as combination therapy involving these drugs. Our study combined simulations of pharmacokinetics (PKs) with quantitative systems pharmacology (QSP) modeling of ventricular myocytes to predict potential cardiac adverse events caused by these treatments. Simulation results predicted that drug combinations can lead to greater cellular action potential prolongation, analogous to QT prolongation, compared with drugs given in isolation. The combination effect can result from both PK and pharmacodynamic drug interactions. Importantly, simulations of different patient groups predicted that women with pre-existing heart disease are especially susceptible to drug-induced arrhythmias, compared with diseased men or healthy individuals of either sex. Statistical analysis of population simulations revealed the molecular factors that make certain women with heart failure especially susceptible to arrhythmias. Overall, the results illustrate how PK and QSP modeling may be combined to more precisely predict cardiac risks of COVID-19 therapies.
Collapse
Affiliation(s)
- Meera Varshneya
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Itziar Irurzun-Arana
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiara Campana
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Rafael Dariolli
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Amy Gutierrez
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Taylor K. Pullinger
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eric A. Sobie
- Department of Pharmacological Sciences and Graduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|