1
|
McCarthy OM, Christensen MB, Tawfik S, Kristensen KB, Hartmann B, Holst JJ, Schmidt S, Nørgaard K, Bracken RM. Metabolic and Hormonal Responses to Isomaltulose Ingestion Before or During Sustained Submaximal Exercise in Adults with Type 1 Diabetes Using Automated Insulin Delivery Systems. Nutrients 2024; 16:4098. [PMID: 39683492 PMCID: PMC11643935 DOI: 10.3390/nu16234098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES This article compares metabolic, pancreatic, and gut-derived hormone responses to isomaltulose ingestion, before versus during submaximal sustained exercise, in adults with type 1 diabetes (T1D) using automated insulin delivery systems. METHODS In a randomized, cross-over trial, eight participants with T1D being treated with automated insulin pumps (five females, age: 47 ± 16 years, BMI: 27.5 ± 3.8 kg·m2, diabetes duration: 23 ± 11 years, HbA1c: 8.3 ± 0.9 [67.5 ± 9.5]% [mmol/mol]) attended the laboratory on two separate occasions and consumed an isocaloric amount of isomaltulose as either (1) a single serving (0.75g CHO·kg-1 BM) with a 25% reduction in bolus insulin 90 min before 45 min of cycling (PEC) or (2) three separate isocaloric servings (0.25g CHO·kg-1 BM each) without bolus insulin during exercise (DEC). Plasma glucose (PG), gut incretins (GLP-1 and GIP), pancreatic glucagon, exogenous insulin, and whole-body fuel oxidation rates were determined. Data were treated via a two-way repeated measures ANOVA, with p ≤ 0.05 accepted as significant. RESULTS PG concentrations throughout exercise were higher and less variable with DEC compared to PEC. The exercise-induced change in PG was directionally divergent between trials (PEC: ∆ - 3.2 ± 1.2 mmol/L vs. DEC: ∆ + 1.7 ± 1.5 mmol/L, p < 0.001), changing at a rate of -0.07 ± 0.03 mmol/L/min with PEC and +0.04 ± 0.03 mmol/L/min with DEC (p < 0.001 between conditions). Throughout the exercise period, GLP-1, GIP, glucagon, and total insulin concentrations were lower with DEC (all p ≤ 0.02). The oxidation rates of carbohydrates were lower (p = 0.009) and of lipids were greater (p = 0.014) with DEC compared to PEC. CONCLUSIONS The consumption of smaller servings of isomaltulose during, rather than as a single isocaloric serving before, submaximal sustained exercise provided (i) a better glycemic protective effect, (ii) a lesser push on pancreatic and gut-mediated glucoregulatory hormones, and (iii) a lower reliance on whole-body carbohydrate oxidation. Such information serves to remind us of the potential importance of nutrition for modulating the metabolic fate of an acute bout of exercise and may help inform best practice guidelines for exercise management in the T1D-sphere.
Collapse
Affiliation(s)
- Olivia M. McCarthy
- Steno Diabetes Center, Copenhagen University Hospital, Herlev, 832730 Copenhagen, Denmark; (M.B.C.); (S.T.); (K.B.K.); (S.S.); (K.N.)
- Applied Sport, Technology, Exercise and Medicine Research Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Merete Bechmann Christensen
- Steno Diabetes Center, Copenhagen University Hospital, Herlev, 832730 Copenhagen, Denmark; (M.B.C.); (S.T.); (K.B.K.); (S.S.); (K.N.)
| | - Sandra Tawfik
- Steno Diabetes Center, Copenhagen University Hospital, Herlev, 832730 Copenhagen, Denmark; (M.B.C.); (S.T.); (K.B.K.); (S.S.); (K.N.)
| | - Kasper Birch Kristensen
- Steno Diabetes Center, Copenhagen University Hospital, Herlev, 832730 Copenhagen, Denmark; (M.B.C.); (S.T.); (K.B.K.); (S.S.); (K.N.)
| | - Bolette Hartmann
- NovoNordisk Center for Basic Metabolic Research and Department of Biochemical Sciences, University of Copenhagen, 832730 Copenhagen, Denmark; (B.H.); (J.J.H.)
| | - Jens Juul Holst
- NovoNordisk Center for Basic Metabolic Research and Department of Biochemical Sciences, University of Copenhagen, 832730 Copenhagen, Denmark; (B.H.); (J.J.H.)
| | - Signe Schmidt
- Steno Diabetes Center, Copenhagen University Hospital, Herlev, 832730 Copenhagen, Denmark; (M.B.C.); (S.T.); (K.B.K.); (S.S.); (K.N.)
| | - Kirsten Nørgaard
- Steno Diabetes Center, Copenhagen University Hospital, Herlev, 832730 Copenhagen, Denmark; (M.B.C.); (S.T.); (K.B.K.); (S.S.); (K.N.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 832730 Copenhagen, Denmark
| | - Richard M. Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- Health Technology and Solutions Interdisciplinary Research Institute, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| |
Collapse
|
2
|
Palacin F, Poinsard L, Mattei J, Berthomier C, Billat V. Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1024. [PMID: 39200635 PMCID: PMC11353640 DOI: 10.3390/ijerph21081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024]
Abstract
The concept of the "central governor" in exercise physiology suggests the brain plays a key role in regulating exercise performance by continuously monitoring physiological and psychological factors. In this case report, we monitored, for the first time, a marathon runner using a metabolic portable system and an EEG wireless device during an entire marathon to understand the influence of brain activity on performance, particularly the phenomenon known as "hitting the wall". The results showed significant early modification in brain activity between the 10th and 15th kilometers, while the RPE remained low and cardiorespiratory responses were in a steady state. Thereafter, EEG responses decreased after kilometer 15, increased briefly between kilometers 20 and 25, then continued at a slower pace. After kilometer 30, both speed and respiration values dropped, along with the respiratory exchange ratio, indicating a shift from carbohydrate to fat metabolism, reflecting glycogen depletion. The runner concluded the race with a lower speed, higher RPE (above 15/20 on the Borg RPE scale), and reduced brain activity, suggesting mental exhaustion. The findings suggest that training strategies focused on recognizing and responding to brain signals could allow runners to optimize performance and pacing strategies, preventing premature exhaustion and improving overall race outcomes.
Collapse
Affiliation(s)
- Florent Palacin
- EA 4445—Movement, Balance, Performance, and Health Laboratory, Université de Pau et des Pays de l’Adour, 65000 Tarbes, France; (L.P.); (V.B.)
- Billatraining SAS, 91840 Soisy-sur-École, France
| | - Luc Poinsard
- EA 4445—Movement, Balance, Performance, and Health Laboratory, Université de Pau et des Pays de l’Adour, 65000 Tarbes, France; (L.P.); (V.B.)
- Billatraining SAS, 91840 Soisy-sur-École, France
| | - Julien Mattei
- Physip, 6 Rue Gobert, 75011 Paris, France; (J.M.); (C.B.)
| | | | - Véronique Billat
- EA 4445—Movement, Balance, Performance, and Health Laboratory, Université de Pau et des Pays de l’Adour, 65000 Tarbes, France; (L.P.); (V.B.)
- Faculty of Sport Science, Université Évry Paris-Saclay, 23 Bd François Mitterrand, 91000 Évry-Courcouronnes, France
| |
Collapse
|
3
|
Bird SP, Nienhuis M, Biagioli B, De Pauw K, Meeusen R. Supplementation Strategies for Strength and Power Athletes: Carbohydrate, Protein, and Amino Acid Ingestion. Nutrients 2024; 16:1886. [PMID: 38931241 PMCID: PMC11206787 DOI: 10.3390/nu16121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
It is a common belief amongst strength and power athletes that nutritional supplementation strategies aid recovery by shifting the anabolic/catabolic profile toward anabolism. Factors such as nutrient quantity, nutrient quality, and nutrient timing significantly impact upon the effectiveness of nutritional strategies in optimizing the acute responses to resistance exercise and the adaptive response to resistance training (i.e., muscle growth and strength expression). Specifically, the aim of this review is to address carbohydrates (CHOs), protein (PRO), and/or amino acids (AAs) supplementation strategies, as there is growing evidence suggesting a link between nutrient signaling and the initiation of protein synthesis, muscle glycogen resynthesis, and the attenuation of myofibrillar protein degradation following resistance exercise. Collectively, the current scientific literature indicates that nutritional supplementation strategies utilizing CHO, PRO, and/or AA represents an important approach aimed at enhancing muscular responses for strength and power athletes, primarily increased muscular hypertrophy and enhanced strength expression. There appears to be a critical interaction between resistance exercise and nutrient-cell signaling associated with the principle of nutrient timing (i.e., pre-exercise, during, and post-exercise). Recommendations for nutritional supplementation strategies to promote muscular responses for strength and athletes are provided.
Collapse
Affiliation(s)
- Stephen P. Bird
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, QLD 4305, Australia
| | - Mitch Nienhuis
- Movement Science, Grand Valley State University, Allendale, MI 49401, USA
| | - Brian Biagioli
- Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, FL 33146, USA
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group (MFYS), Vrije Universiteit Brussel, 1050 Brussel, Belgium
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group (MFYS), Vrije Universiteit Brussel, 1050 Brussel, Belgium
- Department of Sports, Recreation, Exercise and Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
4
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Ramos-Campo DJ, Clemente-Suárez VJ, Cupeiro R, Benítez-Muñoz JA, Andreu Caravaca L, Rubio-Arias JÁ. The ergogenic effects of acute carbohydrate feeding on endurance performance: a systematic review, meta-analysis and meta-regression. Crit Rev Food Sci Nutr 2023; 64:11196-11205. [PMID: 37449467 DOI: 10.1080/10408398.2023.2233633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A systematic review with meta-analysis was conducted to analyze the effect of carbohydrate (CHO) intake during exercise and some variables that could moderate this effect on endurance performance. We included 136 studies examining the effect of CHO ingestion during endurance exercise in the meta-analysis. The overall effect on performance showed a significant increase after CHO intake compared to the placebo/control groups. A larger effect of CHO consumption is observed in time to exhaustion than in time trials performance test. Moreover, the effectiveness of CHO supplementation was greater the longer the duration of the events. Also, there seems to be a higher effect of CHO intake in lower trained than in higher trained participants. In contrast, the magnitude of performance change of CHO intake is not affected by the dosage, ergometer used, the type of intake of the CHO ingestion and the type of CHO. In addition, a lower rate of perceived exertion and higher power and heart rate are significantly associated with the ingestion of CHO during endurance exercise. These results reinforce that acute CHO feeding is an effective strategy for improving endurance performance, especially, in less trained subjects participating in time to exhaustion tests of longer durations.
Collapse
Affiliation(s)
- Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Vicente J Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Grupo de Investigación en Cultura, Universidad de la Costa, Barranquilla, Colombia
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - José Antonio Benítez-Muñoz
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis Andreu Caravaca
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Jacobo Á Rubio-Arias
- Health Research Centre, Department of Education, Faculty of Educational Sciences, University of Almería, Almería, Spain
| |
Collapse
|
6
|
Pitt JP, Bracken RM, Scott SN, Fontana FY, Skroce K, McCarthy O. Nutritional intake when cycling under racing and training conditions in professional male cyclists with type 1 diabetes. J Sports Sci 2022; 40:1912-1918. [PMID: 36263443 DOI: 10.1080/02640414.2022.2118944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study sought to detail and compare the in-ride nutritional practices of a group of professional cyclists with type 1 diabetes (T1D) under training and racing conditions. We observed seven male professional road cyclists with T1D (Age: 28 ± 4 years, HbA1c: 6.4 ± 0.4% [46 ± 4 mmol.mol-1], VO2max: 73.9 ± 4.3 ml.kg -1.min-1) during pre-season training and during a Union Cycliste Internationale multi-stage road cycling race (Tour of Slovenia). In-ride nutritional, interstitial glucose, and performance variables were quantified and compared between the two events. The in-ride energy intake was similar between training and racing conditions (p = 0.909), with carbohydrates being the major source of fuel in both events during exercise at a rate of 41.9 ± 6.8 g.h-1 and 45.4 ± 15.5 g.h-1 (p = 0.548), respectively. Protein consumption was higher during training (2.6 ± 0.6 g.h-1) than race rides (1.9 ± 0.9 g.h-1; p = 0.051). A similar amount of time was spent within the euglycaemic range (≥70-≤180 mg.dL-1): training 77.1 ± 32.8% vs racing 73.4 ± 3.9%; p = 0.818. These data provide new information on the in-ride nutritional intake in professional cyclists with T1D during different stages of the competitive season.
Collapse
Affiliation(s)
- Jason P Pitt
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Swansea, UK
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Swansea, UK
| | - S N Scott
- Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Federico Y Fontana
- CeRiSM Research Centre for Sport, Mountain, and Health, University of Verona, Rovereto, Trento, Italy
| | - Kristina Skroce
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Olivia McCarthy
- Applied Sport, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Swansea, UK.,Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Copenhagan, Denmark
| |
Collapse
|
7
|
Increased exogenous but unaltered endogenous carbohydrate oxidation with combined fructose-maltodextrin ingested at 120 g h -1 versus 90 g h -1 at different ratios. Eur J Appl Physiol 2022; 122:2393-2401. [PMID: 35951130 PMCID: PMC9560939 DOI: 10.1007/s00421-022-05019-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Purpose This study aimed to investigate whether carbohydrate ingestion during 3 h long endurance exercise in highly trained cyclists at a rate of 120 g h−1 in 0.8:1 ratio between fructose and glucose-based carbohydrates would result in higher exogenous and lower endogenous carbohydrate oxidation rates as compared to ingestion of 90 g h−1 in 1:2 ratio, which is the currently recommended approach for exercise of this duration. Methods Eleven male participants (V̇O2peak 62.6 ± 7 mL kg−1 min−1, gas exchange threshold (GET) 270 ± 17 W and Respiratory compensation point 328 ± 32 W) completed the study involving 4 experimental visits consisting of 3 h cycling commencing after an overnight fast at an intensity equivalent to 95% GET. During the trials they received carbohydrates at an average rate of 120 or 90 g h−1 in 0.8:1 or 1:2 fructose-maltodextrin ratio, respectively. Carbohydrates were naturally high or low in 13C stable isotopes enabling subsequent calculations of exogenous and endogenous carbohydrate oxidation rates. Results Exogenous carbohydrate oxidation rates were higher in the 120 g h−1 condition (120–180 min: 1.51 ± 0.22 g min−1) as compared to the 90 g h−1 condition (1.29 ± 0.16 g min−1; p = 0.026). Endogenous carbohydrate oxidation rates did not differ between conditions (2.15 ± 0.30 and 2.20 ± 0.33 g min−1 for 120 and 90 g h−1 conditions, respectively; p = 0.786). Conclusions The results suggest that carbohydrate ingestion at 120 g h−1 in 0.8:1 fructose-maltodextrin ratio as compared with 90 g h−1 in 1:2 ratio offers higher exogenous carbohydrate oxidation rates but no additional sparing of endogenous carbohydrates. Further studies should investigate potential performance effects of such carbohydrate ingestion strategies.
Collapse
|
8
|
Hearris MA, Pugh JN, Langan-Evans C, Mann SJ, Burke L, Stellingwerff T, Gonzalez JT, Morton JP. 13C-glucose-fructose labeling reveals comparable exogenous CHO oxidation during exercise when consuming 120 g/h in fluid, gel, jelly chew, or coingestion. J Appl Physiol (1985) 2022; 132:1394-1406. [PMID: 35446596 DOI: 10.1152/japplphysiol.00091.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effects of carbohydrate (CHO) delivery form on exogenous CHO oxidation, gastrointestinal discomfort, and exercise capacity. In a randomized repeated-measures design [after 24 h of high CHO intake (8 g·kg-1) and preexercise meal (2 g·kg-1)], nine trained males ingested 120 g CHO·h-1 from fluid (DRINK), semisolid gel (GEL), solid jelly chew (CHEW), or a coingestion approach (MIX). Participants cycled for 180 min at 95% lactate threshold, followed by an exercise capacity test (150% lactate threshold). Peak rates of exogenous CHO oxidation (DRINK 1.56 ± 0.16, GEL 1.58 ± 0.13, CHEW 1.59 ± 0.08, MIX 1.66 ± 0.02 g·min-1) and oxidation efficiency (DRINK 72 ± 8%, GEL 72 ± 5%, CHEW 75 ± 5%, MIX, 75 ± 6%) were not different between trials (all P > 0.05). Despite ingesting 120 g·h-1, participants reported minimal symptoms of gastrointestinal distress across all trials. Exercise capacity was also not significantly different (all P > 0.05) between conditions (DRINK 446 ± 350, GEL 529 ± 396, CHEW 596 ± 416, MIX 469 ± 395 s). Data represent the first time that rates of exogenous CHO oxidation (via stable isotope methodology) have been simultaneously assessed with feeding strategies (i.e., preexercise CHO feeding and the different forms and combinations of CHO during exercise) commonly adopted by elite endurance athletes. We conclude that 120 g·h-1 CHO (in a 1:0.8 ratio of maltodextrin or glucose to fructose) is a practically tolerable strategy to promote high CHO availability and oxidation during exercise.NEW & NOTEWORTHY We demonstrate comparable rates of exogenous CHO oxidation from fluid, semisolid, solid, or a combination of sources. Considering the sustained high rates of total and exogenous CHO oxidation and relative lack of gastrointestinal symptoms, consuming 120 g CHO·h-1 appears to be a well-tolerated strategy to promote high CHO availability during exercise. Additionally, this is the first time that rates of exogenous CHO oxidation have been assessed with feeding strategies (e.g., coingestion of multiple CHO forms) typically reported by endurance athletes.
Collapse
Affiliation(s)
- Mark A Hearris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Louise Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Trent Stellingwerff
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada.,Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom.,Department for Health, University of Bath, Bath, United Kingdom
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
9
|
Hamada N, Wadazumi T, Hirata Y, Watanabe H, Hongu N, Arai N. Effects of Trehalose Solutions at Different Concentrations on High-Intensity Intermittent Exercise Performance. Nutrients 2022; 14:nu14091776. [PMID: 35565744 PMCID: PMC9101545 DOI: 10.3390/nu14091776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Trehalose solution ingested during exercise induces gradual increases in blood glucose levels and the insulin response compared with glucose solution. Trehalose solution aids in the maintenance of performance in the later stages of prolonged exercise. The purpose of this study was to identify the lowest concentration at which the properties of trehalose could be exploited. Groups of 12 healthy men (21.3 ± 1.3 years) and 10 healthy men (21.1 ± 0.7 years) with recreational training were included in experiments 1 and 2, respectively. Both experiments followed the same protocol. After fasting for 12 h, the participants performed a 60 min constant-load exercise at 40% V˙O2 peak using a bicycle ergometer and ingested 500 mL of a trial drink (experiment 1: water, 8% glucose, and 6 or 8% trehalose; experiment 2: 4 or 6% trehalose). They performed four sets of the Wingate test combined with a 30 min constant-load exercise at 40% V˙O2 peak. The experiment was conducted using a randomized cross-over design; trial drink experiments were conducted over intervals of 7 to 12 days. The exercise performance was evaluated based on mean power in the Wingate test. Blood was collected from the fingertip at 12 points during each experiment to measure blood glucose levels. During the high-intensity 5 h intermittent exercise, no differences were found between the groups in exercise performance in the later stages with concentrations of 8, 6, and 4% trehalose solution. The results suggest that trehalose could be useful for making a new type of mixed carbohydrate solution. Further studies to determine the trehalose response of individual athletes during endurance exercise are needed.
Collapse
Affiliation(s)
- Naomi Hamada
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
- Department of Applied Food Science, Higashiosaka Junior College, 3-1-1, Nishizutsumigakuen-cho, Higashiosaka 577-8567, Osaka, Japan
- Correspondence: ; Tel.: +81-6-6782-2824
| | - Tsuyoshi Wadazumi
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
| | - Yoko Hirata
- Graduate School of Health and Well-Being, Department of Health and Well-Being, Kansai University, 1-11-1, Kaorigaoka-cho, Sakai-ku, Sakai 590-8515, Osaka, Japan; (T.W.); (Y.H.)
- Department of Food and Nutritional Science, Kobe Women’s Junior College, 4-7-2, Nakamachi, Minatojima, Chuo-ku, Kobe 650-0046, Hyogo, Japan
| | - Hitoshi Watanabe
- Research Center for Urban Health and Sports, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku 558-8585, Osaka, Japan;
| | - Nobuko Hongu
- Graduate School of Human Life Science, Department of Food and Human Life Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku 558-8585, Osaka, Japan;
| | - Norie Arai
- Hayashibara, Co., Ltd., 675-1, Fujisaki, Naka-ku 702-8006, Okayama, Japan;
| |
Collapse
|
10
|
Ding T, Deng CM, Shen XF, Bai YW, Zhang XL, Liu JP, Yang LJ, Yu HT, Xie L, Chen H, Mu DL, Qu Y, Yang HX, Bao AR, Zhu SN, Wang DX. Effect of a carbohydrate-rich beverage on rate of cesarean delivery in primigravidae with epidural labor analgesia: a multicenter randomized trial. BMC Pregnancy Childbirth 2022; 22:339. [PMID: 35440017 PMCID: PMC9019984 DOI: 10.1186/s12884-022-04659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Labor represents a period of significant physical activity. Inefficient energy supply may delay labor process and even lead to cesarean delivery. Herein we investigated whether ingestion of a carbohydrate-rich beverage could reduce cesarean delivery in laboring women with epidural analgesia. METHODS This multicenter randomized trial was conducted in obstetrician-led maternity units of nine tertiary hospitals in China. Primigravidae with single term cephalic pregnancy who were preparing for vaginal birth under epidural analgesia were randomized to intake a carbohydrate-rich beverage or commercially available low-carbohydrate beverages during labor. The primary outcome was the rate of cesarean delivery. Secondary outcomes included maternal feeling of hunger, assessed with an 11-point scale where 0 indicated no hunger and 10 the most severe hunger, and maternal and neonatal blood glucose after childbirth. RESULTS Between 17 January 2018 and 20 July 2018, 2008 women were enrolled and randomized, 1953 were included in the intention-to-treat analysis. The rate of cesarean delivery did not differ between the two groups (11.3% [111/982] with carbohydrate-rich beverage vs. 10.9% [106/971] with low-carbohydrate beverages; relative risk 1.04, 95% CI 0.81 to 1.33; p = 0.79). Women in the carbohydrate-rich beverage group had lower subjective hunger score (median 3 [interquartile range 2 to 5] vs. 4 [2 to 6]; median difference - 1; 95% CI - 1 to 0; p < 0.01); their neonates had less hypoglycemia (1.0% [10/968] vs. 2.3% [22/956]; relative risk 0.45; 95% CI 0.21 to 0.94; p = 0.03) when compared with those in the low-carbohydrate beverage group. They also had higher rates of maternal hyperglycemia (6.9% [67/965] vs. 1.9% [18/953]; p < 0.01) and neonatal hyperglycemia (9.2% [89/968] vs. 5.8% [55/956]; p < 0.01), but none required special treatment. CONCLUSIONS For laboring primigravidae with epidural analgesia, ingestion of a carbohydrate-rich beverage compared with low-carbohydrate beverages did not reduce cesarean delivery, but relieved maternal hunger and reduced neonatal hypoglycemia at the expense of increased hyperglycemia of both mothers and neonates. Optimal rate of carbohydrate supplementation remains to be determined. TRIAL REGISTRATION www.chictr.org.cn ; identifier: ChiCTR-IOR-17011994 ; registered on 14 July 2017.
Collapse
Affiliation(s)
- Ting Ding
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Chun-Mei Deng
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Xiao-Feng Shen
- Department of Anesthesiology, Woman's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao-Wu Bai
- Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei, China
| | - Xiao-Lan Zhang
- Department of Anesthesiology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu, China
| | - Ji-Ping Liu
- Department of Anesthesiology, Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| | - Li-Juan Yang
- Department of Anesthesiology, Urumqi Women and Child Health Care Hospital, Urumqi, Xinjiang, China
| | - Hai-Tao Yu
- Department of Anesthesiology, Linyi people's hospital, Linyi, Shandong, China
| | - Lei Xie
- Department of Anesthesiology, Anhui Women and Child Health Care Hospital, Hefei, Anhui, China
| | - Hong Chen
- Department of Anesthesiology, Women's Hospital of Zhejiang University, Zhejiang, Hangzhou, China
| | - Dong-Liang Mu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Yuan Qu
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ai-Rong Bao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Sai-Nan Zhu
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Dong-Xin Wang
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, No.8 Xishiku street, Beijing, 100034, China. .,Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
11
|
Acute Ingestion of Ketone Monoesters and Precursors Do Not Enhance Endurance Exercise Performance: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2022; 32:214-225. [PMID: 35042186 DOI: 10.1123/ijsnem.2021-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022]
Abstract
There has been much consideration over whether exogenous ketone bodies have the capacity to enhance exercise performance through mechanisms such as altered substrate metabolism, accelerated recovery, or neurocognitive improvements. This systematic review aimed to determine the effects of both ketone precursors and monoesters on endurance exercise performance. A systematic search was conducted in PubMed, SPORTDiscus, and CINAHL for randomized controlled trials investigating endurance performance outcomes in response to ingestion of a ketone supplement compared to a nutritive or nonnutritive control in humans. A meta-analysis was performed to determine the standardized mean difference between interventions using a random-effects model. Hedge's g and 95% confidence intervals (CI) were reported. The search yielded 569 articles, of which eight were included in this review (80 participants; 77 men and three women). When comparing endurance performance among all studies, no significant differences were found between ketone and control trials (Hedges g = 0.136; 95% CI [-0.195, 0.467]; p = .419). Subanalyses based on type of endurance tests showed no significant differences in time to exhaustion (Hedge's g = -0.002; 95% CI [-0.312, 0.308]; p = .989) or time trial (Hedge's g = 0.057; 95% CI [-0.282, 0.395]; p = .744) values. Based on these findings, exogenous ketone precursors and monoesters do not exert significant improvements on endurance exercise performance. While all studies reported an increase in blood ketone concentrations after ingestion, ketone monoesters appear to be more effective at raising concentrations than precursors.
Collapse
|
12
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Rowe JT, King RFGJ, King AJ, Morrison DJ, Preston T, Wilson OJ, O'Hara JP. Glucose and Fructose Hydrogel Enhances Running Performance, Exogenous Carbohydrate Oxidation, and Gastrointestinal Tolerance. Med Sci Sports Exerc 2022; 54:129-140. [PMID: 34334720 DOI: 10.1249/mss.0000000000002764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Beneficial effects of carbohydrate (CHO) ingestion on exogenous CHO oxidation and endurance performance require a well-functioning gastrointestinal (GI) tract. However, GI complaints are common during endurance running. This study investigated the effect of a CHO solution-containing sodium alginate and pectin (hydrogel) on endurance running performance, exogenous and endogenous CHO oxidation, and GI symptoms. METHODS Eleven trained male runners, using a randomized, double-blind design, completed three 120-min steady-state runs at 68% V˙O2max, followed by a 5-km time-trial. Participants ingested 90 g·h-1 of 2:1 glucose-fructose (13C enriched) as a CHO hydrogel, a standard CHO solution (nonhydrogel), or a CHO-free placebo during the 120 min. Fat oxidation, total and exogenous CHO oxidation, plasma glucose oxidation, and endogenous glucose oxidation from liver and muscle glycogen were calculated using indirect calorimetry and isotope ratio mass spectrometry. GI symptoms were recorded throughout the trial. RESULTS Time-trial performance was 7.6% and 5.6% faster after hydrogel ([min:s] 19:29 ± 2:24, P < 0.001) and nonhydrogel (19:54 ± 2:23, P = 0.002), respectively, versus placebo (21:05 ± 2:34). Time-trial performance after hydrogel was 2.1% faster (P = 0.033) than nonhydrogel. Absolute and relative exogenous CHO oxidation was greater with hydrogel (68.6 ± 10.8 g, 31.9% ± 2.7%; P = 0.01) versus nonhydrogel (63.4 ± 8.1 g, 29.3% ± 2.0%; P = 0.003). Absolute and relative endogenous CHO oxidation was lower in both CHO conditions compared with placebo (P < 0.001), with no difference between CHO conditions. Absolute and relative liver glucose oxidation and muscle glycogen oxidation were not different between CHO conditions. Total GI symptoms were not different between hydrogel and placebo, but GI symptoms were higher in nonhydrogel compared with placebo and hydrogel (P < 0.001). CONCLUSION The ingestion of glucose and fructose in hydrogel form during running benefited endurance performance, exogenous CHO oxidation, and GI symptoms compared with a standard CHO solution.
Collapse
Affiliation(s)
| | | | - Andy J King
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UNITED KINGDOM
| | - Thomas Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UNITED KINGDOM
| | - Oliver J Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| |
Collapse
|
14
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
15
|
Bandegan A, Huang L, Longstaffe FJ, Lemon PW. Dose-Response Oxidation of Ingested Phytoglycogen during Exercise in Endurance-Trained Men. J Nutr 2021; 151:2942-2948. [PMID: 34255078 DOI: 10.1093/jn/nxab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/09/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Phytoglycogen (PHY; PhytoSpherix; Mirexus Biotechnologies), a highly branched polysaccharide extracted from sweet corn, has considerable potential for exercise oxidation due to its low viscosity in water, high water retention, and exceptional stability. OBJECTIVES Using gas chromatography-isotope ratio mass spectrometry, we investigated dose-response oxidation of ingested PHY during prolonged, moderate-intensity exercise. METHODS Thirteen men (≥1 y endurance-training experience, ≥6 d·wk-1, ∼1-1.5 h·d-1; age, 25.7 ± 5.5 y; mass, 79.3 ± 10.0 kg; V̇O2max, 59.9 ± 5.5 mL·kg-1·min-1; means ± SDs) cycled for 150 min (50% maximal watt output) while ingesting PHY concentrations of 0.0% (0.0 g·min-1), 3.6% (0.5 g·min-1), 7.2% (1.0 g·min-1), 10.8% (1.5 g·min-1), or 14.4% (2 g·min-1) in water (2100 mL) (n = 7-10/dose). Substrate oxidation was determined using stable-isotope methods and indirect calorimetry. RESULTS PHY oxidation plateaued between 60 and 150 min of exercise and increased (P < 0.001) from 0.49 to 0.72 g·min-1 with 0.5- and 1.0-g·min-1 doses without further increases (0.76 and 0.73 g·min-1; P > 0.05) with 1.5 or 2 g·min-1. Peak PHY oxidation (0.84 ± 0.04 g·min-1) occurred in the final 30 min of exercise with 2 g·min-1. Exercise blood glucose was greater (5.1 mmol·L-1) with 1.0-, 1.5-, and 2-g·min-1 doses compared with that of 0.5 (4.7 mmol·L-1) or 0.0 g·min-1 (4.2 mmol·L-1) (P < 0.0001). Gastrointestinal distress was minimal except with 2 g·min-1 (P < 0.001). CONCLUSIONS In male endurance athletes, PHY oxidation plateaued at 0.72-0.76 g·min-1 during 150 min of cycling at 50% Wmax (peak oxidation of 0.84 g·min-1 occurred during the final 30 min). This trial was registered at clinicaltrials.gov as NCT02909881.
Collapse
Affiliation(s)
- Arash Bandegan
- Exercise Nutrition Research Laboratory, University of Western Ontario, London, Ontario, Canada
| | - Li Huang
- Department of Earth Sciences, University of Western Ontario, London, Ontario, Canada
| | - Fred J Longstaffe
- Department of Earth Sciences, University of Western Ontario, London, Ontario, Canada
| | - Peter Wr Lemon
- Exercise Nutrition Research Laboratory, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Burke LM, Hall R, Heikura IA, Ross ML, Tee N, Kent GL, Whitfield J, Forbes SF, Sharma AP, Jones AM, Peeling P, Blackwell JR, Mujika I, Mackay K, Kozior M, Vallance B, McKay AKA. Neither Beetroot Juice Supplementation nor Increased Carbohydrate Oxidation Enhance Economy of Prolonged Exercise in Elite Race Walkers. Nutrients 2021; 13:nu13082767. [PMID: 34444928 PMCID: PMC8398364 DOI: 10.3390/nu13082767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes’ economy as well as the performance effects in elite groups.
Collapse
Affiliation(s)
- Louise M. Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Correspondence: ; Tel.: +61-422-635-869
| | - Rebecca Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Ida A. Heikura
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Megan L. Ross
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Nicolin Tee
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Georgina L. Kent
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
| | - Sara F. Forbes
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- UniSA Online, University of South Australia, Adelaide, SA 5000, Australia
| | - Avish P. Sharma
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- Triathlon Australia, Burleigh Heads, Gold Coast, QLD 4220, Australia
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| | - Jamie R. Blackwell
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK; (A.M.J.); (J.R.B.)
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Basque Country, Spain;
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Karen Mackay
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile;
- School of Exercise & Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Marta Kozior
- Department of Physical Education & Sport Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Brent Vallance
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (R.H.); (I.A.H.); (M.L.R.); (N.T.); (J.W.); (B.V.)
- Athletics Australia, South Melbourne, Melbourne, VIC 3205, Australia
| | - Alannah K. A. McKay
- Australian Institute of Sport, Bruce, Canberra, ACT 2616, Australia; (G.L.K.); (S.F.F.); (A.P.S.); (A.K.A.M.)
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- West Australian Institute of Sport, Mt Claremont, Nedlands, WA 6010, Australia
| |
Collapse
|
17
|
Rollo I, Gonzalez JT, Fuchs CJ, van Loon LJC, Williams C. Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise. Sports Med 2021; 50:1863-1871. [PMID: 32936440 PMCID: PMC8159838 DOI: 10.1007/s40279-020-01343-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this current opinion paper is to describe the journey of ingested carbohydrate from 'mouth to mitochondria' culminating in energy production in skeletal muscles during exercise. This journey is conveniently described as primary, secondary, and tertiary events. The primary stage is detection of ingested carbohydrate by receptors in the oral cavity and on the tongue that activate reward and other centers in the brain leading to insulin secretion. After digestion, the secondary stage is the transport of monosaccharides from the small intestine into the systemic circulation. The passage of these monosaccharides is facilitated by the presence of various transport proteins. The intestinal mucosa has carbohydrate sensors that stimulate the release of two 'incretin' hormones (GIP and GLP-1) whose actions range from the secretion of insulin to appetite regulation. Most of the ingested carbohydrate is taken up by the liver resulting in a transient inhibition of hepatic glucose release in a dose-dependent manner. Nonetheless, the subsequent increased hepatic glucose (and lactate) output can increase exogenous carbohydrate oxidation rates by 40-50%. The recognition and successful distribution of carbohydrate to the brain and skeletal muscles to maintain carbohydrate oxidation as well as prevent hypoglycaemia underpins the mechanisms to improve exercise performance.
Collapse
Affiliation(s)
- Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, UK. .,School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | | | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Clyde Williams
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
18
|
Mears SA, Boxer B, Sheldon D, Wardley H, Tarnowski CA, James LJ, Hulston CJ. Sports Drink Intake Pattern Affects Exogenous Carbohydrate Oxidation during Running. Med Sci Sports Exerc 2021; 52:1976-1982. [PMID: 32168107 DOI: 10.1249/mss.0000000000002334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine whether the pattern of carbohydrate sports drink ingestion during prolonged submaximal running affects exogenous carbohydrate oxidation rates and gastrointestinal (GI) comfort. METHODS Twelve well-trained male runners (27 ± 7 yr; 67.9 ± 6.7 kg; V˙O2peak, 68 ± 7 mL·kg·min) completed two exercise trials of 100 min steady-state running at 70%V˙O2peak. In each of the trials, 1 L of a 10% dextrose solution, enriched with [U-C] glucose, was consumed as either 200 mL every 20 min (CHO-20) or 50 mL every 5 min (CHO-5). Expired breath and venous blood samples were collected at rest and every 20 min during exercise. Subjective scales of GI comfort were recorded at regular intervals. RESULTS Average exogenous carbohydrate oxidation rates were 23% higher during exercise in CHO-20 (0.38 ± 0.11 vs 0.31 ± 0.11 g·min; P = 0.017). Peak exogenous carbohydrate oxidation was also higher in CHO-20 (0.68 ± 0.14 g·min vs 0.61 ± 0.14 g·min; P = 0.004). During exercise, total carbohydrate oxidation (CHO-20, 2.15 ± 0.47; CHO-5, 2.23 ± 0.45 g·min, P = 0.412) and endogenous carbohydrate oxidation (CHO-20, 1.78 ± 0.45; CHO-5, 1.92 ± 0.40 g·min; P = 0.148) were not different between trials. Average serum glucose (P = 0.952) and insulin (P = 0.373) concentrations were not different between trials. There were no differences in reported symptoms of GI comfort and stomach bloatedness (P > 0.05), with only 3% of reported scores classed as severe (≥5 out of 10). CONCLUSION Ingestion of a larger volume of carbohydrate solution at less frequent intervals during prolonged submaximal running increased exogenous carbohydrate oxidation rates. Neither drinking pattern resulted in increased markers of GI discomfort to a severe level.
Collapse
Affiliation(s)
- Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | | | | | | | | | | |
Collapse
|
19
|
Malone JJ, Hulton AT, MacLaren DPM. Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. Eur J Appl Physiol 2021; 121:1255-1269. [PMID: 33544230 PMCID: PMC8064975 DOI: 10.1007/s00421-021-04609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Carbohydrates (CHO) are one of the fundamental energy sources during prolonged steady state and intermittent exercise. The consumption of exogenous CHO during exercise is common place, with the aim to enhance sporting performance. Despite the popularity around exogenous CHO use, the process by which CHO is regulated from intake to its use in the working muscle is still not fully appreciated. Recent studies utilizing the hyperglycaemic glucose clamp technique have shed light on some of the potential barriers to CHO utilisation during exercise. The present review addresses the role of exogenous CHO utilisation during exercise, with a focus on potential mechanisms involved, from glucose uptake to glucose delivery and oxidation at the different stages of regulation. METHODS Narrative review. RESULTS A number of potential barriers were identified, including gastric emptying, intestinal absorption, blood flow (splanchnic and muscle), muscle uptake and oxidation. The relocation of glucose transporters plays a key role in the regulation of CHO, particularly in epithelial cells and subsequent transport into the blood. Limitations are also apparent when CHO is infused, particularly with regards to blood flow and uptake within the muscle. CONCLUSION We highlight a number of potential barriers involved with the regulation of both ingested and infused CHO during exercise. Future work on the influence of longitudinal training within the regulation processes (such as the gut) is warranted to further understand the optimal type, dose and method of CHO delivery to enhance sporting performance.
Collapse
Affiliation(s)
- James J Malone
- School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 9JD, UK.
| | - Andrew T Hulton
- Department of Nutritional Sciences, University of Surrey, Guildford, UK
| | - Don P M MacLaren
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
20
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
21
|
Narang BJ, Wallis GA, Gonzalez JT. The effect of calcium co-ingestion on exogenous glucose oxidation during endurance exercise in healthy men: A pilot study. Eur J Sport Sci 2020; 21:1156-1164. [DOI: 10.1080/17461391.2020.1813336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Gareth A. Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
22
|
Shafqat A, Tahir A, Mahmood A, Tabinda AB, Yasar A, Pugazhendhi A. A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101540] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Arent SM, Cintineo HP, McFadden BA, Chandler AJ, Arent MA. Nutrient Timing: A Garage Door of Opportunity? Nutrients 2020; 12:nu12071948. [PMID: 32629950 PMCID: PMC7400240 DOI: 10.3390/nu12071948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Nutrient timing involves manipulation of nutrient consumption at specific times in and around exercise bouts in an effort to improve performance, recovery, and adaptation. Its historical perspective centered on ingestion during exercise and grew to include pre- and post-training periods. As research continued, translational focus remained primarily on the impact and outcomes related to nutrient consumption during one specific time period to the exclusion of all others. Additionally, there seemed to be increasing emphasis on outcomes related to hypertrophy and strength at the expense of other potentially more impactful performance measures. As consumption of nutrients does not occur at only one time point in the day, the effect and impact of energy and macronutrient availability becomes an important consideration in determining timing of additional nutrients in and around training and competition. This further complicates the confining of the definition of “nutrient timing” to one very specific moment in time at the exclusion of all other time points. As such, this review suggests a new perspective built on evidence of the interconnectedness of nutrient impact and provides a pragmatic approach to help frame nutrient timing more inclusively. Using this approach, it is argued that the concept of nutrient timing is constrained by reliance on interpretation of an “anabolic window” and may be better viewed as a “garage door of opportunity” to positively impact performance, recovery, and athlete availability.
Collapse
Affiliation(s)
- Shawn M. Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
- Correspondence: ; Tel.: +1-803-576-8394
| | - Harry P. Cintineo
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Bridget A. McFadden
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Alexa J. Chandler
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA; (H.P.C.); (B.A.M.); (A.J.C.)
| | - Michelle A. Arent
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
24
|
Podlogar T, Wallis GA. Impact of Post-Exercise Fructose-Maltodextrin Ingestion on Subsequent Endurance Performance. Front Nutr 2020; 7:82. [PMID: 32582755 PMCID: PMC7289949 DOI: 10.3389/fnut.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Current sports nutrition guidelines recommend athletes ingest carbohydrates at 1.0–1.2 g·kg−1·h−1 to optimize repletion of muscle glycogen during short-term recovery from endurance exercise. However, they do not provide specific advice on monosaccharides (e.g., fructose or glucose) other than to ingest carbohydrates of moderate to high glycaemic index. Recent evidence suggests that combined ingestion of fructose and glucose in recovery leads to enhanced liver glycogen synthesis and that this translates into improvement of subsequent endurance capacity. Purpose: The purpose of the present study was to investigate whether consuming a combination of fructose and glucose as opposed to glucose alone during short-term recovery (i.e., 4 h) from exhaustive exercise would also improve subsequent pre-loaded cycle time trial (TT) performance. Methods: Eight participants (seven men, one woman; V∙O2peak: 56.8 ± 5.0 mLO2·min−1·kg−1; Wmax: 352 ± 41 W) participated in this randomized double-blind study. Each experimental session involved a glycogen reducing exercise bout in the morning, a 4-h recovery period and 1-h of steady state (SS) exercise at 50% Wmax followed by a ~40-min simulated TT. During recovery carbohydrates were ingested at a rate of 1.2 g·kg−1·h−1 in the form of fructose and maltodextrin (FRU + MD) or dextrose and maltodextrin (GLU + MD) (both in 1:1.5 ratio). Substrate oxidation rates, including ingested carbohydrate oxidation, were determined during the steady state (SS). Blood samples were collected during recovery, during the SS exercise and at the end of the TT for determination of glucose and lactate concentrations. Results: There were no differences in TT performance [37.41 ± 3.45 (GLU + MD); 37.96 ± 5.20 min (FRU + MD), p = 0.547]. During the first 45-min of SS oxidation of ingested carbohydrates was greater in FRU + MD (1.86 ± 0.41 g−1·min−1 and 1.51 ± 0.37 g−1·min−1 for FRU + MD and GLU + MD, respectively; time x condition interaction p = 0.003) and there was a trend toward higher overall carbohydrate oxidation rates in FRU + MD (2.50 ± 0.36 g−1·min−1 and 2.31 ± 0.37 g−1·min−1 for FRU + MD and GLU + MD, respectively; p = 0.08). However, at 60-min of SS, differences in substrate oxidation disappeared. Conclusion: Ingestion of combined fructose and glucose compared to glucose only during recovery from an exhaustive exercise bout increased the ingested carbohydrate oxidation rate during subsequent exercise. Under the conditions studied, subsequent TT performance was not improved with fructose-glucose.
Collapse
Affiliation(s)
- Tim Podlogar
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Frequent Carbohydrate Ingestion Reduces Muscle Glycogen Depletion and Postpones Fatigue Relative to a Single Bolus. Int J Sport Nutr Exerc Metab 2020; 30:203–209. [DOI: 10.1123/ijsnem.2019-0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 11/18/2022]
Abstract
The timing of carbohydrate ingestion and how this influences net muscle glycogen utilization and fatigue has only been investigated in prolonged cycling. Past findings may not translate to running because each exercise mode is distinct both in the metabolic response to carbohydrate ingestion and in the practicalities of carbohydrate ingestion. To this end, a randomized, cross-over design was employed to contrast ingestion of the same sucrose dose either at frequent intervals (15 × 5 g every 5 min) or at a late bolus (1 × 75 g after 75 min) during prolonged treadmill running to exhaustion in six well-trained runners ( 61 ± 4 ml·kg−1·min−1). The muscle glycogen utilization rate was lower in every participant over the first 75 min of running (Δ 0.51 mmol·kg dm−1·min−1; 95% confidence interval [−0.02, 1.04] mmol·kg dm−1·min−1) and, subsequently, all were able to run for longer when carbohydrate had been ingested frequently from the start of exercise compared with when carbohydrate was ingested as a single bolus toward the end of exercise (105.6 ± 3.0 vs. 96.4 ± 5.0 min, respectively; Δ 9.3 min, 95% confidence interval [2.8, 15.8] min). A moderate positive correlation was apparent between the magnitude of glycogen sparing over the first 75 min and the improvement in running capacity (r = .58), with no significant difference in muscle glycogen concentrations at the point of exhaustion. This study indicates that failure to ingest carbohydrates from the outset of prolonged running increases reliance on limited endogenous muscle glycogen stores—the ergolytic effects of which cannot be rectified by subsequent carbohydrate ingestion late in exercise.
Collapse
|
26
|
Pugh JN, Wagenmakers AJM, Doran DA, Fleming SC, Fielding BA, Morton JP, Close GL. Probiotic supplementation increases carbohydrate metabolism in trained male cyclists: a randomized, double-blind, placebo-controlled crossover trial. Am J Physiol Endocrinol Metab 2020; 318:E504-E513. [PMID: 32069071 DOI: 10.1152/ajpendo.00452.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We hypothesized that probiotic supplementation (PRO) increases the absorption and oxidation of orally ingested maltodextrin during 2 h endurance cycling, thereby sparing muscle glycogen for a subsequent time trial (simulating a road race). Measurements were made of lipid and carbohydrate oxidation, plasma metabolites and insulin, gastrointestinal (GI) permeability, and subjective symptoms of discomfort. Seven male cyclists were randomized to PRO (bacterial composition given in methods) or placebo for 4 wk, separated by a 14-day washout period. After each period, cyclists consumed a 10% maltodextrin solution (initial 8 mL/kg bolus and 2 mL/kg every 15 min) while exercising for 2 h at 55% maximal aerobic power output, followed by a 100-kJ time trial. PRO resulted in small increases in peak oxidation rates of the ingested maltodextrin (0.84 ± 0.10 vs. 0.77 ± 0.09 g/min; P = 0.016) and mean total carbohydrate oxidation (2.20 ± 0.25 vs. 1.87 ± 0.39 g/min; P = 0.038), whereas fat oxidation was reduced (0.40 ± 0.11 vs. 0.55 ± 0.10 g/min; P = 0.021). During PRO, small but significant increases were seen in glucose absorption, plasma glucose, and insulin concentration and decreases in nonesterified fatty acid and glycerol. Differences between markers of GI damage and permeability and time-trial performance were not significant (P > 0.05). In contrast to the hypothesis, PRO led to minimal increases in absorption and oxidation of the ingested maltodextrin and small reductions in fat oxidation, whereas having no effect on subsequent time-trial performance.
Collapse
Affiliation(s)
- Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dominic A Doran
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Barbara A Fielding
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
27
|
Li Y, Wu Z, Wan N, Wang X, Yang M. Extraction of high-amylose starch from Radix Puerariae using high-intensity low-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2019; 59:104710. [PMID: 31421611 DOI: 10.1016/j.ultsonch.2019.104710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
High-amylose starch is in great demand in the food industry due to its unique functional properties but has very limited source. In this study, high-amylose starch was successfully extracted from Radix Puerariae using ultrasound extraction. The effects of ultrasound intensity (15.29, 20.38, 22.93, 24.46 and 25.38 kW/m2) and frequency (20 and 45 kHz) on extraction kinetics, and chemical compositions, crystallinity, in vitro digestion behaviour and gelling properties of starches were investigated. It was shown that with the increasing intensity, the extraction rate and content of amylose increased, but for starch the extraction rate increased initially until reached a plateau at an intensity of 24.46 kW/m2. With the increasing low-frequency, the extraction rate and content of amylose increased, but the extraction rate of starch decreased. Based on statistical tests, the Logistic model was found to fit well to the extraction kinetics of amylose, and the Peleg model fit well to that of starch. The extraction yield of starch was not significantly affected by ultrasound conditions. The obtained starch has a high-purity with a content of more than 99% dry basis and an unchanged crystallinity. Moreover, the increased amylose content resulted in an increase of the content of slowly digestible starch, resistant starch, and gelling hardness. This study demonstrates that high-amylose starch can be obtained using ultrasound extraction from Radix Puerariae at high-intensity low-frequency.
Collapse
Affiliation(s)
- Yuanhui Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xuecheng Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
28
|
Effect of flaxseed oil on muscle protein loss and carbohydrate oxidation impairment in a pig model after lipopolysaccharide challenge. Br J Nutr 2019; 123:859-869. [PMID: 31524111 DOI: 10.1017/s0007114519002393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flaxseed oil is rich in α-linolenic acid (ALA), which is the metabolic precursor of EPA and DHA. The present study investigated the effect of flaxseed oil supplementation on lipopolysaccharide (LPS)-induced muscle atrophy and carbohydrate oxidation impairment in a piglet model. Twenty-four weaned pigs were used in a 2 × 2 factorial experiment including dietary treatment (5 % maize oil v. 5 % flaxseed oil) and LPS challenge (saline v. LPS). On day 21 of treatment, the pigs were injected intraperitoneally with 100 μg/kg body weight LPS or sterile saline. At 4 h after injection, blood, gastrocnemius muscle and longissimus dorsi muscle were collected. Flaxseed oil supplementation increased ALA, EPA, total n-3 PUFA contents, protein:DNA ratio and pyruvate dehydrogenase complex quantity in muscles (P < 0·05). In addition, flaxseed oil reduced mRNA expression of toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) 2 and their downstream signalling molecules in muscles and decreased plasma concentrations of TNF-α, IL-6 and IL-8, and mRNA expression of TNF-α, IL-1β and IL-6 (P < 0·05). Moreover, flaxseed oil inclusion increased the ratios of phosphorylated protein kinase B (Akt) 1:total Akt1 and phosphorylated Forkhead box O (FOXO) 1:total FOXO1 and reduced mRNA expression of FOXO1, muscle RING finger (MuRF) 1 and pyruvate dehydrogenase kinase 4 in muscles (P < 0·05). These results suggest that flaxseed oil might have a positive effect on alleviating muscle protein loss and carbohydrates oxidation impairment induced by LPS challenge through regulation of the TLR4/NOD and Akt/FOXO signalling pathways.
Collapse
|
29
|
Fuchs CJ, Gonzalez JT, van Loon LJC. Fructose co-ingestion to increase carbohydrate availability in athletes. J Physiol 2019; 597:3549-3560. [PMID: 31166604 PMCID: PMC6852172 DOI: 10.1113/jp277116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Carbohydrate availability is important to maximize endurance performance during prolonged bouts of moderate- to high-intensity exercise as well as for acute post-exercise recovery. The primary form of carbohydrates that are typically ingested during and after exercise are glucose (polymers). However, intestinal glucose absorption can be limited by the capacity of the intestinal glucose transport system (SGLT1). Intestinal fructose uptake is not regulated by the same transport system, as it largely depends on GLUT5 as opposed to SGLT1 transporters. Combining the intake of glucose plus fructose can further increase total exogenous carbohydrate availability and, as such, allow higher exogenous carbohydrate oxidation rates. Ingesting a mixture of both glucose and fructose can improve endurance exercise performance compared to equivalent amounts of glucose (polymers) only. Fructose co-ingestion can also accelerate post-exercise (liver) glycogen repletion rates, which may be relevant when rapid (<24 h) recovery is required. Furthermore, fructose co-ingestion can lower gastrointestinal distress when relatively large amounts of carbohydrate (>1.2 g/kg/h) are ingested during post-exercise recovery. In conclusion, combined ingestion of fructose with glucose may be preferred over the ingestion of glucose (polymers) only to help trained athletes maximize endurance performance during prolonged moderate- to high-intensity exercise sessions and accelerate post-exercise (liver) glycogen repletion.
Collapse
Affiliation(s)
- Cas J. Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ (MUMC+)MaastrichtThe Netherlands
| | | | - Luc J. C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+ (MUMC+)MaastrichtThe Netherlands
| |
Collapse
|
30
|
Scott BE, Laursen PB, James LJ, Boxer B, Chandler Z, Lam E, Gascoyne T, Messenger J, Mears SA. The effect of 1,3-butanediol and carbohydrate supplementation on running performance. J Sci Med Sport 2019; 22:702-706. [DOI: 10.1016/j.jsams.2018.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 11/27/2022]
|
31
|
Wadazumi T, Watanabe K, Watanabe H, Yokoyama H, Hongu N, Arai N. Effects of a Single Ingestion of Trehalose during Prolonged Exercise. Sports (Basel) 2019; 7:sports7050100. [PMID: 31035710 PMCID: PMC6572148 DOI: 10.3390/sports7050100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022] Open
Abstract
Trehalose (TRE), a disaccharide, is absorbed slowly and gradually increases the blood glucose (GLU) level along with reducing insulin secretion. The aim of this study was twofold. First, we examined exercise performance following ingestions of either GLU, TRE, or water (WAT). The second purpose was to investigate the effects of TRE energy metabolism during prolonged exercise. We examined exercise performance using the Wingate test, with 30-min constant load exercise at 40% VO2peak after exercising for 60 min at 40% VO2peak, by using an electromagnetic brake-type bicycle ergometer (Part 1). The power values, blood glucose and lactate, and respiratory exchange ratio (RER) were measured. In addition, we investigated the energy metabolism after a single ingestion of TRE, by measuring the RER and estimating the lipid oxidation for 60 min at 40% VO2peak (Part 2). Healthy college male students performed three trials—(1) placebo (WAT), (2) GLU, and (3) TRE. Repeated two-way analysis of variance (ANOVA) was used for a comparison of the data among the three trial groups. A multiple comparison test was performed using post hoc Bonferroni correction. The TRE ingestion significantly increased the average and maximum power values (p < 0.01). The TRE ingestion showed significantly higher lipid utilization than the GLU lipid oxidation values the in TRE, 12.5 ± 6.1 g/h; GLU, 9.3 ± 4.7 g/h; and WAT, 15.0 ± 4.4 g/h; (p < 0.01). In conclusion, we provide novel data that a single TRE ingestion was effective in improving prolonged exercise performance by effective use of glucose and lipids.
Collapse
Affiliation(s)
- Tsuyoshi Wadazumi
- Faculty of Health and Well-being, Kansai University, Sakai-shi 590-8515, Japan.
| | - Kanji Watanabe
- School of Health and Sports Sciences, Mukogawa Womes's University, Nishinomiya-shi 663-8558, Japan.
| | - Hitoshi Watanabe
- Research Center for Urban Health and Sports, Osaka City University, Osaka-shi 558-8585, Japan.
| | - Hisayo Yokoyama
- Research Center for Urban Health and Sports, Osaka City University, Osaka-shi 558-8585, Japan.
| | - Nobuko Hongu
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Norie Arai
- R&D Division, Hayashibara Co., Ltd., Okayama-shi 702-8006, Japan..
| |
Collapse
|
32
|
Orrù S, Imperlini E, Nigro E, Alfieri A, Cevenini A, Polito R, Daniele A, Buono P, Mancini A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018; 10:E1470. [PMID: 30308976 PMCID: PMC6213308 DOI: 10.3390/nu10101470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Functional beverages represent a palatable and efficient way to hydrate and reintegrate electrolytes, carbohydrates, and other nutrients employed and/or lost during physical training and/or competitions. Bodily hydration during sporting activity is one of the best indicators of health in athletes and can be a limiting factor for sport performance. Indeed, dehydration strongly decreases athletic performance until it is a risk to health. As for other nutrients, each of them is reported to support athletes' needs both during the physical activity and/or in the post-workout. In this study, we review the current knowledge of macronutrient-enriched functional beverages in sport taking into account the athletes' health, sports performance, and recovery.
Collapse
Affiliation(s)
- Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, via E. Gianturco 113, 80142 Napoli, Italy.
| | | | - Ersilia Nigro
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Medicina e di Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, 86100 Campobasso, Italy.
| | - Andreina Alfieri
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Armando Cevenini
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli "Federico II", via S. Pansini 5, 80131 Napoli, Italy.
| | - Rita Polito
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy.
| | - Aurora Daniele
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, via E. Gianturco 113, 80142 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
33
|
|
34
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
35
|
Effect of Glycemic Index of a Pre-exercise Meal on Endurance Exercise Performance: A Systematic Review and Meta-analysis. Sports Med 2018; 47:1087-1101. [PMID: 27677914 DOI: 10.1007/s40279-016-0632-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Low glycemic index (GI) pre-exercise meals may enhance endurance performance by maintaining euglycemia and altering fuel utilization. However, evidence for performance benefits is equivocal. OBJECTIVE To evaluate the effect of a low GI (LGI) versus a high GI (HGI) pre-exercise meal on endurance performance using meta-analyses. METHODS Data sources included MEDLINE, SPORTDiscus, AUSPORT, AusportMed, Web of Science, and Scopus. Eligibility criteria were randomized, crossover trials with an endurance exercise (≥60 min) component, e.g., time trial (TT), time to exhaustion (TTE) test, or submaximal bout followed by TT or TTE. Participants were healthy, active individuals aged ≥16 years. Interventions included a LGI (≤55) and HGI (≥70) meal ingested 30-240 min before exercise. Study quality was assessed using an adapted version of the validated Downs and Black tool. Effect size (ES) and 95 % confidence interval were calculated for each study and pooled according to performance test type and whether exogenous carbohydrate (CHO) was given during exercise. Potential effect modifiers including exercise duration, pre-exercise meal timing, glycemic load (GL), and fitness were assessed using meta-regression. RESULTS The search netted 3431 citations with 19 studies eligible for inclusion (totaling 188 participants; 91 % male; VO2max: >50 ml/kg/min). Meals with 0.18-2 g CHO/kg body mass, and a mean GI and glycemic load of 82 (GL: 72) and 35 (GL: 32) for HGI and LGI, respectively, were given between 30 and 210 min before exercise. All test types without CHO ingestion during exercise showed slightly improved performance with LGI, but no significant pooled effects were observed (ES: -0.17 to -0.36; p > 0.05). Studies where exogenous CHO was ingested during exercise showed conflicting results (ES: -0.67 to 0.11; p = 0.04 to 0.94). No significant relationship was observed with any of the effect modifiers (p > 0.05). No consistent metabolic responses (glucose, insulin, lactate, respiratory exchange ratio) during exercise were observed with either meal type. LIMITATIONS There were small numbers of studies within each exercise testing protocol and limited statistical power within studies. Pre-exercise meal timing, GL, meal composition and participant fitness varied across studies, limiting the capacity to assess the influence of these factors on study outcomes. CONCLUSION There was no clear benefit of consuming a LGI pre-exercise meal for endurance performance regardless of carbohydrate ingestion during exercise.
Collapse
|
36
|
Schleh MW, Dumke CL. Comparison of Sports Drink Versus Oral Rehydration Solution During Exercise in the Heat. Wilderness Environ Med 2018; 29:185-193. [PMID: 29548770 DOI: 10.1016/j.wem.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Michael W Schleh
- Department of Health and Human Performance, University of Montana, Missoula, MT
| | - Charles L Dumke
- Department of Health and Human Performance, University of Montana, Missoula, MT.
| |
Collapse
|
37
|
Abstract
The gastrointestinal (GI) tract plays a critical role in delivering carbohydrate and fluid during prolonged exercise and can therefore be a major determinant of performance. The incidence of GI problems in athletes participating in endurance events is high, indicating that GI function is not always optimal in those conditions. A substantial body of evidence suggests that the GI system is highly adaptable. Gastric emptying as well as stomach comfort can be “trained” and perceptions of fullness decreased; some studies have suggested that nutrient-specific increases in gastric emptying may occur. Evidence also shows that diet has an impact on the capacity of the intestine to absorb nutrients. Again, the adaptations that occur appear to be nutrient specific. For example, a high-carbohydrate diet will increase the density of sodium-dependent glucose-1 (SGLT1) transporters in the intestine as well as the activity of the transporter, allowing greater carbohydrate absorption and oxidation during exercise. It is also likely that, when such adaptations occur, the chances of developing GI distress are smaller. Future studies should include more human studies and focus on a number of areas, including the most effective methods to induce gut adaptations and the timeline of adaptations. To develop effective strategies, a better understanding of the exact mechanisms underlying these adaptations is important. It is clear that “nutritional training” can improve gastric emptying and absorption and likely reduce the chances and/or severity of GI problems, thereby improving endurance performance as well as providing a better experience for the athlete. The gut is an important organ for endurance athletes and should be trained for the conditions in which it will be required to function.
Collapse
|
38
|
Wolfe AS, Brandt SA, Krause IA, Mavison RW, Aponte JA, Ferguson-Stegall LM. Shorter Duration Time Trial Performance and Recovery Is Not Improved by Inclusion of Protein in a Multiple Carbohydrate Supplement. J Strength Cond Res 2018; 31:2509-2518. [PMID: 27930452 DOI: 10.1519/jsc.0000000000001733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wolfe, AS, Brandt, SA, Krause, IA, Mavison, RW, Aponte, JA, and Ferguson-Stegall, LM. Shorter duration time trial performance and recovery is not improved by inclusion of protein in a multiple carbohydrate supplement. J Strength Cond Res 31(9): 2509-2518, 2017-Ingesting multiple carbohydrate (CHO) types during exercise can improve endurance performance compared with single CHO only. Adding protein to a multiple CHO beverage has been shown to increase cycling time to exhaustion (TTE) compared with a single CHO beverage. However, it is unclear if improvements were due to multiple CHO or protein, and TTE protocols are not representative of typical race events. This study investigated whether adding protein to a multiple CHO beverage improved performance and recovery in 2 same-day cycling time trials (TTs) compared with isocaloric multiple CHO only. Ten cyclists (37.4 ± 8.9 years; V[Combining Dot Above]O2max 54.6 ± 6.5 ml·kg·min) performed a familiarization and 2 randomized, crossover, double-blinded experimental trials consisting of pretrial leg strength testing, 40-km TT, 30-min recovery, 10-km TT, and posttrial leg strength testing. Seven 275 ml doses of multiple CHO (MCO) or multiple CHO+protein (MCP) were ingested during the protocol. Blood glucose, lactate, heart rate (HR), and rating of perceived exertion (RPE) were also measured. Continuous variables were analyzed with paired t-tests, and repeated measures with repeated-measures analysis of variance. No differences existed between MCO and MCP in 40-km TT time (81.6 ± 2.8 vs. 81.9 ± 2.9 minutes, respectively, p = 0.94), or in 10-km time (24.0 ± 0.9 vs. 23.9 ± 1.0 minutes, p = 0.97). Blood glucose was higher before 10-km TT in MCO compared with MCP (3.78 ± 0.20 vs. 3.31 ± 0.19 mmol·L, p = 0.002). No treatment differences were found for lactate, HR, RPE, or strength recovery. When using a protocol and performance measures that replicate realistic, shorter duration events, adding protein to a multiple CHO beverage does not improve performance compared with multiple CHO only.
Collapse
Affiliation(s)
- Anthony S Wolfe
- 1Department of Biology, Integrative Physiology Laboratory, Hamline University, Saint Paul, Minnesota; and 2Department of Biology, North Hennepin Community College, Brooklyn Park, Minnesota
| | | | | | | | | | | |
Collapse
|
39
|
Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations. Nutrients 2018; 10:nu10030298. [PMID: 29498691 PMCID: PMC5872716 DOI: 10.3390/nu10030298] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Since the introduction of the muscle biopsy technique in the late 1960s, our understanding of the regulation of muscle glycogen storage and metabolism has advanced considerably. Muscle glycogenolysis and rates of carbohydrate (CHO) oxidation are affected by factors such as exercise intensity, duration, training status and substrate availability. Such changes to the global exercise stimulus exert regulatory effects on key enzymes and transport proteins via both hormonal control and local allosteric regulation. Given the well-documented effects of high CHO availability on promoting exercise performance, elite endurance athletes are typically advised to ensure high CHO availability before, during and after high-intensity training sessions or competition. Nonetheless, in recognition that the glycogen granule is more than a simple fuel store, it is now also accepted that glycogen is a potent regulator of the molecular cell signaling pathways that regulate the oxidative phenotype. Accordingly, the concept of deliberately training with low CHO availability has now gained increased popularity amongst athletic circles. In this review, we present an overview of the regulatory control of CHO metabolism during exercise (with a specific emphasis on muscle glycogen utilization) in order to discuss the effects of both high and low CHO availability on modulating exercise performance and training adaptations, respectively.
Collapse
|
40
|
Welch KC, Myrka AM, Ali RS, Dick MF. The Metabolic Flexibility of Hovering Vertebrate Nectarivores. Physiology (Bethesda) 2018; 33:127-137. [DOI: 10.1152/physiol.00001.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foraging hummingbirds and nectar bats oxidize both glucose and fructose from nectar at exceptionally high rates. Rapid sugar flux is made possible by adaptations to digestive, cardiovascular, and metabolic physiology affecting shared and distinct pathways for the processing of each sugar. Still, how these animals partition and regulate the metabolism of each sugar and whether this occurs differently between hummingbirds and bats remain unclear.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander M. Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raafay Syed Ali
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients 2018; 10:nu10020253. [PMID: 29473893 PMCID: PMC5852829 DOI: 10.3390/nu10020253] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
The importance of post-exercise recovery nutrition has been well described in recent years, leading to its incorporation as an integral part of training regimes in both athletes and active individuals. Muscle glycogen depletion during an initial prolonged exercise bout is a main factor in the onset of fatigue and so the replenishment of glycogen stores may be important for recovery of functional capacity. Nevertheless, nutritional considerations for optimal short-term (3–6 h) recovery remain incompletely elucidated, particularly surrounding the precise amount of specific types of nutrients required. Current nutritional guidelines to maximise muscle glycogen availability within limited recovery are provided under the assumption that similar fatigue mechanisms (i.e., muscle glycogen depletion) are involved during a repeated exercise bout. Indeed, recent data support the notion that muscle glycogen availability is a determinant of subsequent endurance capacity following limited recovery. Thus, carbohydrate ingestion can be utilised to influence the restoration of endurance capacity following exhaustive exercise. One strategy with the potential to accelerate muscle glycogen resynthesis and/or functional capacity beyond merely ingesting adequate carbohydrate is the co-ingestion of added protein. While numerous studies have been instigated, a consensus that is related to the influence of carbohydrate-protein ingestion in maximising muscle glycogen during short-term recovery and repeated exercise capacity has not been established. When considered collectively, carbohydrate intake during limited recovery appears to primarily determine muscle glycogen resynthesis and repeated exercise capacity. Thus, when the goal is to optimise repeated exercise capacity following short-term recovery, ingesting carbohydrate at an amount of ≥1.2 g kg body mass−1·h−1 can maximise muscle glycogen repletion. The addition of protein to carbohydrate during post-exercise recovery may be beneficial under circumstances when carbohydrate ingestion is sub-optimal (≤0.8 g kg body mass−1·h−1) for effective restoration of muscle glycogen and repeated exercise capacity.
Collapse
|
42
|
The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J Sci Med Sport 2017; 20:1123-1129. [DOI: 10.1016/j.jsams.2017.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/13/2017] [Accepted: 04/16/2017] [Indexed: 11/24/2022]
|
43
|
Papadopoulou SK, Xyla EE, Methenitis S, Feidantsis KG, Kotsis Y, Pagkalos IG, Hassapidou MN. Nutrition strategies before and during ultra-endurance event: A significant gap between science and practice. Scand J Med Sci Sports 2017; 28:881-892. [DOI: 10.1111/sms.13006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
Affiliation(s)
- S. K. Papadopoulou
- Department of Nutrition and Dietetics; Technological Institute of Thessaloniki; Thessaloniki Greece
| | - E. E. Xyla
- Department of Nutrition and Dietetics; Technological Institute of Thessaloniki; Thessaloniki Greece
| | - S. Methenitis
- Department of Nutrition and Dietetics; Technological Institute of Thessaloniki; Thessaloniki Greece
- Athletics Laboratory; School of Physical Education and Sport Science; National and Kapodistrian University of Athens; Athens Greece
| | - K. G. Feidantsis
- Department of Nutrition and Dietetics; Technological Institute of Thessaloniki; Thessaloniki Greece
- Department of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Y. Kotsis
- Department of Nutrition and Dietetics; Faculty of Health Sciences and Education; Harokopio University; Athens Greece
| | - I. G. Pagkalos
- Department of Nutrition and Dietetics; Technological Institute of Thessaloniki; Thessaloniki Greece
- Department of Electrical & Computer Engineering; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - M. N. Hassapidou
- Department of Nutrition and Dietetics; Technological Institute of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
44
|
Peng X, He X, Liu Q, Sun Y, Liu H, Zhang Q, Liang J, Peng Z, Liu Z, Zhang L. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx. Ecol Evol 2017; 7:8804-8811. [PMID: 29152179 PMCID: PMC5677482 DOI: 10.1002/ece3.3416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Excessive sugar consumption could lead to high blood glucose levels that are harmful to mammalian health and life. Despite consuming large amounts of sugar‐rich food, fruit bats have a longer lifespan, raising the question of how these bats overcome potential hyperglycemia. We investigated the change of blood glucose level in nectar‐feeding bats (Eonycteris spelaea) and fruit‐eating bats (Cynopterus sphinx) via adjusting their sugar intake and time of flight. We found that the maximum blood glucose level of C. sphinx was higher than 24 mmol/L that is considered to be pathological in other mammals. After C. sphinx bats spent approximately 75% of their time to fly, their blood glucose levels dropped markedly, and the blood glucose of E. spelaea fell to the fast levels after they spent 70% time of fly. Thus, the level of blood glucose elevated with the quantity of sugar intake but declined with the time of flight. Our results indicate that high‐intensive flight is a key regulator for blood glucose homeostasis during foraging. High‐intensive flight may confer benefits to the fruit bats in foraging success and behavioral interactions and increases the efficiency of pollen and seed disposal mediated by bats.
Collapse
Affiliation(s)
- Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Qi Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Yunxiao Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Hui Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China.,College of Biology and Environmental Sciences Jishou University Jishou China
| | - Qin Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Jie Liang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Zhen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| | - Zhixiao Liu
- College of Biology and Environmental Sciences Jishou University Jishou China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization Guangdong Public Laboratory of Wild Animal Conservation and Utilization Guangdong Institute of Applied Biological Resources Guangzhou China
| |
Collapse
|
45
|
Efficacy of Carbohydrate Ingestion on CrossFit Exercise Performance. Sports (Basel) 2017; 5:sports5030061. [PMID: 29910421 PMCID: PMC5968949 DOI: 10.3390/sports5030061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022] Open
Abstract
The efficacy of carbohydrate (CHO) ingestion during high-intensity strength and conditioning type exercise has yield mixed results. However, little is known about shorter duration high-intensity exercise such as CrossFit. The purpose of this study was to investigate the performance impact of CHO ingestion during high-intensity exercise sessions lasting approximately 30 min. Eight healthy males participated in a total of four trials; two familiarizations, a CHO trial, and a similarly flavored, non-caloric placebo (PLA) trial. CrossFit's "Fight Gone Bad Five" (FGBF) workout of the day was the exercise model which incorporated five rounds of maximal repetition exercises, wall throw, box jump, sumo deadlift high pull, push press, and rowing, followed by one minute of rest. Total repetitions and calories expended were summated from each round to quantify total work (FGBF score). No difference was found for the total work between CHO (321 ± 51) or PLA (314 ± 52) trials (p = 0.38). There were also no main effects (p > 0.05) for treatment comparing exercise performance across rounds. Based on the findings of this study, it does not appear that ingestion of CHO during short duration, high-intensity CrossFit exercise will provide a beneficial performance effect.
Collapse
|
46
|
Rosset R, Egli L, Lecoultre V. Glucose-fructose ingestion and exercise performance: The gastrointestinal tract and beyond. Eur J Sport Sci 2017; 17:874-884. [PMID: 28441908 DOI: 10.1080/17461391.2017.1317035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbohydrate ingestion can improve endurance exercise performance. In the past two decades, research has repeatedly reported the performance benefits of formulations comprising both glucose and fructose (GLUFRU) over those based on glucose (GLU). This has been usually related to additive effects of these two monosaccharides on the gastrointestinal tract whereby intestinal carbohydrate absorption is enhanced and discomfort limited. This is only a partial explanation, since glucose and fructose are also metabolized through different pathways after being absorbed from the gut. In contrast to glucose that is readily used by every body cell type, fructose is specifically targeted to the liver where it is mainly converted into glucose and lactate. The ingestion of GLUFRU may thereby profoundly alter hepatic function ultimately raising both glucose and lactate fluxes. During exercise, this particular profile of circulating carbohydrate may induce a spectrum of effects on muscle metabolism possibly resulting in an improved performance. Compared to GLU alone, GLUFRU ingestion could also induce several non-metabolic effects which are so far largely unexplored. Through its metabolite lactate, fructose may act on central fatigue and/or alter metabolic regulation. Future research could further define the effects of GLUFRU over other exercise modalities and different athletic populations, using several of the hypotheses discussed in this review.
Collapse
Affiliation(s)
- Robin Rosset
- a Department of Physiology , University of Lausanne , Lausanne , Switzerland
| | - Léonie Egli
- b Nestle Research Center Singapore , Singapore , Singapore
| | - Virgile Lecoultre
- c Centre for Metabolic Disease , Broye Intercantonal Hospital , Estavayer-le-Lac , Switzerland
| |
Collapse
|
47
|
Endurance Training with or without Glucose-Fructose Ingestion: Effects on Lactate Metabolism Assessed in a Randomized Clinical Trial on Sedentary Men. Nutrients 2017; 9:nu9040411. [PMID: 28425966 PMCID: PMC5409750 DOI: 10.3390/nu9040411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg−1·min−1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg−1·min−1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6 ± 1.0% and 17.5 ± 1.7% of lactate appearance at rest, and 86.3 ± 3.8% and 86.8 ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg−1·min−1; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise.
Collapse
|
48
|
Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts? Nutrients 2017; 9:E344. [PMID: 28358334 PMCID: PMC5409683 DOI: 10.3390/nu9040344] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023] Open
Abstract
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass-1·h-1 can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.
Collapse
Affiliation(s)
| | - Cas J Fuchs
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - James A Betts
- Department for Health, University of Bath, Bath BA2 7AY, UK.
| | - Luc J C van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
49
|
Abstract
The gastrointestinal (GI) tract plays a critical role in delivering carbohydrate and fluid during prolonged exercise and can therefore be a major determinant of performance. The incidence of GI problems in athletes participating in endurance events is high, indicating that GI function is not always optimal in those conditions. A substantial body of evidence suggests that the GI system is highly adaptable. Gastric emptying as well as stomach comfort can be "trained" and perceptions of fullness decreased; some studies have suggested that nutrient-specific increases in gastric emptying may occur. Evidence also shows that diet has an impact on the capacity of the intestine to absorb nutrients. Again, the adaptations that occur appear to be nutrient specific. For example, a high-carbohydrate diet will increase the density of sodium-dependent glucose-1 (SGLT1) transporters in the intestine as well as the activity of the transporter, allowing greater carbohydrate absorption and oxidation during exercise. It is also likely that, when such adaptations occur, the chances of developing GI distress are smaller. Future studies should include more human studies and focus on a number of areas, including the most effective methods to induce gut adaptations and the timeline of adaptations. To develop effective strategies, a better understanding of the exact mechanisms underlying these adaptations is important. It is clear that "nutritional training" can improve gastric emptying and absorption and likely reduce the chances and/or severity of GI problems, thereby improving endurance performance as well as providing a better experience for the athlete. The gut is an important organ for endurance athletes and should be trained for the conditions in which it will be required to function.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
50
|
Trommelen J, Fuchs CJ, Beelen M, Lenaerts K, Jeukendrup AE, Cermak NM, van Loon LJC. Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise. Nutrients 2017; 9:nu9020167. [PMID: 28230742 PMCID: PMC5331598 DOI: 10.3390/nu9020167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min-1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL∙kg-1∙min-1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g∙min-1 of glucose (GLU), 1.2 g∙min-1 glucose + 0.6 g∙min-1 fructose (GLU + FRU), 0.6 g∙min-1 glucose + 1.2 g∙min-1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g∙min-1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g∙min-1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g∙min-1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g∙min-1) with glucose (1.2 g∙min-1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists.
Collapse
Affiliation(s)
- Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Cas J Fuchs
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Milou Beelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Kaatje Lenaerts
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Asker E Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK.
| | - Naomi M Cermak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|