1
|
Zhang K, Han Y, Gao YX, Gu FM, Cai T, Hu R, Gu ZX, Liang JY, Zhao JY, Gao M, Li B, Cui D. Association between Red Blood Cell Distribution Width and In-Hospital Mortality among Congestive Heart Failure Patients with Diabetes among Patients in the Intensive Care Unit: A Retrospective Cohort Study. Crit Care Res Pract 2024; 2024:9562200. [PMID: 39104663 PMCID: PMC11300080 DOI: 10.1155/2024/9562200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Background Elevated red blood cell distribution width (RDW) levels are strongly associated with an increased risk of mortality in patients with congestive heart failure (CHF). Additionally, heart failure has been closely linked to diabetes. Nevertheless, the relationship between RDW and in-hospital mortality in the intensive care unit (ICU) among patients with both congestive heart failure (CHF) and diabetes mellitus (DM) remains uncertain. Methods This retrospective study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, a comprehensive critical care repository. RDW was assessed as both continuous and categorical variables. The primary outcome of the study was in-hospital mortality at the time of hospital discharge. We examined the association between RDW on ICU admission and in-hospital mortality using multivariable logistic regression models, restricted cubic spline analysis, and subgroup analysis. Results The cohort consisted of 7,063 patients with both DM and CHF (3,135 females and 3,928 males). After adjusting for potential confounders, we found an association between a 9% increase in mortality rate and a 1 g/L increase in RDW level (OR = 1.09; 95% CI, 1.05∼1.13), which was associated with 11 and 58% increases in mortality rates in Q2 (OR = 1.11, 95% CI: 0.87∼1.43) and Q3 (OR = 1.58, 95% CI: 1.22∼2.04), respectively, compared with that in Q1. Moreover, we observed a significant linear association between RDW and in-hospital mortality, along with strong stratified analyses to support the findings. Conclusions Our findings establish a positive association between RDW and in-hospital mortality in patients with DM and CHF.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Yu Han
- Department of OphthalmologyFirst Hospital of Jilin University, Changchun, China
| | - Yu Xuan Gao
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Fang Ming Gu
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Tianyi Cai
- Department of OphthalmologySecond Hospital of Jilin University, Changchun, China
| | - Rui Hu
- Department of OphthalmologySecond Hospital of Jilin University, Changchun, China
| | - Zhao Xuan Gu
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Jia Ying Liang
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Jia Yu Zhao
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Min Gao
- Department of Cancer CenterThe First Hospital of Jilin University, Changchun, China
| | - Bo Li
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| | - Dan Cui
- Cardiovascular Surgery DepartmentSecond Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Metallinou C, Staneloudi C, Nikolettos K, Asimakopoulos B. NGF, EPO, and IGF-1 in the Male Reproductive System. J Clin Med 2024; 13:2918. [PMID: 38792459 PMCID: PMC11122040 DOI: 10.3390/jcm13102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Several studies have demonstrated interesting results considering the implication of three growth factors (GFs), namely nerve growth factor (NGF), erythropoietin (EPO), and the insulin-like growth factor-I (IGF-1) in the physiology of male reproductive functions. This review provides insights into the effects of NGF, EPO, and IGF-1 on the male reproductive system, emphasizing mainly their effects on sperm motility and vitality. In the male reproductive system, the expression pattern of the NGF system varies according to the species and testicular development, playing a crucial role in morphogenesis and spermatogenesis. In humans, it seems that NGF positively affects sperm motility parameters and NGF supplementation in cryopreservation media improves post-thaw sperm motility. In animals, EPO is found in various male reproductive tissues, and in humans, the protein is present in seminal plasma and testicular germ cells. EPO receptors have been discovered in the plasma membrane of human spermatozoa, suggesting potential roles in sperm motility and vitality. In humans, IGF-1 is expressed mainly in Sertoli cells and is present in seminal plasma, contributing to cell development and the maturation of spermatozoa. IGF-1 seems to modulate sperm motility, and treatment with IGF-1 has a positive effect on sperm motility and vitality. Furthermore, lower levels of NGF or IGF-1 in seminal plasma are associated with infertility. Understanding the mechanisms of actions of these GFs in the male reproductive system may improve the outcome of sperm processing techniques.
Collapse
Affiliation(s)
- Chryssa Metallinou
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Chrysovalanto Staneloudi
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Nikolettos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| | - Byron Asimakopoulos
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Democritus University of Thrace, 69100 Alexandroupolis, Greece; (C.M.); (K.N.)
| |
Collapse
|
3
|
Papadopoulos KI, Papadopoulou A, Aw TC. Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the "Uncontrolled" in SARS-CoV-2. Hum Cell 2024; 37:582-592. [PMID: 38472734 DOI: 10.1007/s13577-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
AXL is the gene that encodes the Anexelekto (AXL) receptor tyrosine kinase that demonstrates significant roles in various cellular processes, including cell growth, survival, and migration. Anexelekto is a Greek word meaning excessive and uncontrolled, semantically implying the crucial involvement of AXL in cancer and immune biology, and in promoting cancer metastasis. AXL overexpression appears to drive epithelial to mesenchymal transition, tumor angiogenesis, decreased antitumor immune response, and resistance to therapeutic agents. Recently, AXL has been reported to play important roles in several viral infections, including SARS-CoV-2. We have previously outlined the importance of microRNAs (miRNAs, miRs) and especially miR-155 in SARS-CoV-2 pathophysiology through regulation of the Renin-Angiotensin Aldosterone System (RAAS) and influence on several aspects of host innate immunity. MiRNAs are negative regulators of gene expression, decreasing the stability of target RNAs or limiting their translation and, enthrallingly, miR-155 is also involved in AXL homeostasis-both endogenously and pharmaceutically using repurposed drugs (e.g., metformin)-highlighting thrifty evolutionary host innate immunity mechanisms that successfully can thwart viral entry and replication. Cancer, infections, and immune system disturbances will increasingly involve miRNA diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- K I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd, Wangthonglang, Bangkok, 10310, Thailand.
| | - A Papadopoulou
- Feelgood Lund, Occupational and Environmental Health Services, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
4
|
Shang KM, Kato H, Gonzalez N, Kandeel F, Tai YC, Komatsu H. A novel approach to determine the critical survival threshold of cellular oxygen within spheroids via integrating live/dead cell imaging with oxygen modeling. Am J Physiol Cell Physiol 2024; 326:C1262-C1271. [PMID: 38497111 PMCID: PMC11193515 DOI: 10.1152/ajpcell.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Defining the oxygen level that induces cell death within 3-D tissues is vital for understanding tissue hypoxia; however, obtaining accurate measurements has been technically challenging. In this study, we introduce a noninvasive, high-throughput methodology to quantify critical survival partial oxygen pressure (pO2) with high spatial resolution within spheroids by using a combination of controlled hypoxic conditions, semiautomated live/dead cell imaging, and computational oxygen modeling. The oxygen-permeable, micropyramid patterned culture plates created a precisely controlled oxygen condition around the individual spheroid. Live/dead cell imaging provided the geometric information of the live/dead boundary within spheroids. Finally, computational oxygen modeling calculated the pO2 at the live/dead boundary within spheroids. As proof of concept, we determined the critical survival pO2 in two types of spheroids: isolated primary pancreatic islets and tumor-derived pseudoislets (2.43 ± 0.08 vs. 0.84 ± 0.04 mmHg), indicating higher hypoxia tolerance in pseudoislets due to their tumorigenic origin. We also applied this method for evaluating graft survival in cell transplantations for diabetes therapy, where hypoxia is a critical barrier to successful transplantation outcomes; thus, designing oxygenation strategies is required. Based on the elucidated critical survival pO2, 100% viability could be maintained in a typically sized primary islet under the tissue pO2 above 14.5 mmHg. This work presents a valuable tool that is potentially instrumental for fundamental hypoxia research. It offers insights into physiological responses to hypoxia among different cell types and may refine translational research in cell therapies.NEW & NOTEWORTHY Our study introduces an innovative combinatory approach for noninvasively determining the critical survival oxygen level of cells within small cell spheroids, which replicates a 3-D tissue environment, by seamlessly integrating three pivotal techniques: cell death induction under controlled oxygen conditions, semiautomated imaging that precisely identifies live/dead cells, and computational modeling of oxygen distribution. Notably, our method ensures high-throughput analysis applicable to various cell types, offering a versatile solution for researchers in diverse fields.
Collapse
Affiliation(s)
- Kuang-Ming Shang
- Department of Medical Engineering, California Institute of Technology, Pasadena, California, United States
| | - Hiroyuki Kato
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, California, United States
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, California, United States
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, California, United States
| | - Yu-Chong Tai
- Department of Medical Engineering, California Institute of Technology, Pasadena, California, United States
| | - Hirotake Komatsu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, Duarte, California, United States
| |
Collapse
|
5
|
Ren Y, Xi Q, He Z, Sun H, Li S. Expression and Variations in EPO Associated with Oxygen Metabolism in Tibetan Sheep. Animals (Basel) 2024; 14:535. [PMID: 38396503 PMCID: PMC10886301 DOI: 10.3390/ani14040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
After a long period of adaptive evolution, Tibetan sheep have adapted to the plateau environment in terms of genetics, physiology and biochemistry, but the mechanism of hypoxia adaptation has not been fully elucidated, and the functional genes and molecular mechanisms regulating the hypoxia adaptation of Tibetan sheep need to be further studied. In this study, Tibetan sheep were selected as the research object, and the mRNA expression levels of the hypoxa-related gene EPO in heart, lung, kidney, liver, spleen and longissimus dorsi muscle of Hu sheep (100 m) and Tibetan sheep at different altitudes (2500 m, 3500 m, 4500 m) were assessed by RT-qPCR. The SNPs loci were detected by sequencing and Kompetitive Allele-Specific PCR (KASP) technology, then the correlation between genetic polymorphism and blood gas was analyzed. The results show that the expression of the EPO gene was the highest in the kidney, indicating that the expression of EPO gene had tissue differences. The expression levels of the EPO gene in the heart, lung and liver of Tibetan sheep at a 4500 m altitude were significantly higher than those in Hu sheep (p < 0.05), and the levels in the hearts of Tibetan sheep increased with the increase in altitude. Three mutations were identified in the EPO gene, the SNPs (g.855 A > C) in exon 1 and the SNPs (g.1985 T > G and g.2115 G > C) in exon 4, which were named EPO-SNP1, EPO-SNP2 and EPO-SNP3, respectively, and all three SNPs showed three genotypes. Correlation analysis showed that g.2115 G > C sites were significantly correlated with pO2 (p < 0.05), and haplotype combinations were significantly correlated with pO2 (p < 0.05). Thesee results suggest that the expression of the EPO gene is altitude-differentiated and organ-differentiated, and the EPO gene variants have significant effects on pO2, which may be beneficial to the adaptation of Tibetan sheep to hypoxia stress.
Collapse
Affiliation(s)
- Yue Ren
- Institute of Livestock Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Qiming Xi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaohua He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongxian Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Roy M, Saroha S, Sarma U, Sarathy H, Kumar R. Quantitative systems pharmacology model of erythropoiesis to simulate therapies targeting anemia due to chronic kidney disease. Front Pharmacol 2023; 14:1274490. [PMID: 38125882 PMCID: PMC10731587 DOI: 10.3389/fphar.2023.1274490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Anemia induced by chronic kidney disease (CKD) has multiple underlying mechanistic causes and generally worsens as CKD progresses. Erythropoietin (EPO) is a key endogenous protein which increases the number of erythrocyte progenitors that mature into red blood cells that carry hemoglobin (Hb). Recombinant human erythropoietin (rHuEPO) in its native and re-engineered forms is used as a therapeutic to alleviate CKD-induced anemia by stimulating erythropoiesis. However, due to safety risks associated with erythropoiesis-stimulating agents (ESAs), a new class of drugs, prolyl hydroxylase inhibitors (PHIs), has been developed. Instead of administering exogenous EPO, PHIs facilitate the accumulation of HIF-α, which results in the increased production of endogenous EPO. Clinical trials for ESAs and PHIs generally involve balancing decisions related to safety and efficacy by carefully evaluating the criteria for patient selection and adaptive trial design. To enable such decisions, we developed a quantitative systems pharmacology (QSP) model of erythropoiesis which captures key aspects of physiology and its disruption in CKD. Furthermore, CKD virtual populations of varying severities were developed, calibrated, and validated against public data. Such a model can be used to simulate alternative trial protocols while designing phase 3 clinical trials, as well as an asset for reverse translation in understanding emerging clinical data.
Collapse
Affiliation(s)
| | | | | | - Harini Sarathy
- Division of Nephrology, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | | |
Collapse
|
7
|
Requena-Tutusaus L, Anselmo I, Alechaga É, Bergés R, Ventura R. Achieving routine application of dried blood spots for erythropoietin receptor agonist analysis in doping control: low-volume single-spot detection at minimum required performance level. Bioanalysis 2023; 15:1235-1246. [PMID: 37676639 DOI: 10.4155/bio-2023-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Background: Erythropoietin receptor agonists (ERAs) are substances prohibited in sports and currently monitored in urine and blood. There is a great interest in new matrices like dried blood spots (DBSs). Method: A direct method for the detection of ERAs in DBSs using one single spot of 25 μl has been optimized and validated. Results: Limits of detection close or equal to those required by the World Anti-Doping Agency for serum/plasma samples were achieved, using a volume 20-times lower. All analytes were stable for at least 90 days at room temperature. Conclusion: Method performance was comparable to the requirements established for blood samples and, thus, monitoring of ERAs is reliable in DBSs in the context of doping control.
Collapse
Affiliation(s)
- Lídia Requena-Tutusaus
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Experimental & Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Indira Anselmo
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Experimental & Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rosa Bergés
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Fundació IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
8
|
Buliga-Finis ON, Ouatu A, Tanase DM, Gosav EM, Seritean Isac PN, Richter P, Rezus C. Managing Anemia: Point of Convergence for Heart Failure and Chronic Kidney Disease? Life (Basel) 2023; 13:1311. [PMID: 37374094 DOI: 10.3390/life13061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The pathologic triangle formed by chronic heart failure (HF), chronic kidney disease (CKD), and anemia carries high morbidity and mortality rates and decreases quality of life. Anemia represents a common condition in patients with advanced HF and CKD, with a total prevalence in cardiorenal syndrome (CRS) ranging from 5% to 55%. Searching for a pragmatic approach for these patients with guided and disease-specific recommendations beyond just targeted hemoglobin therapeutic behavior represents the core of research for ongoing clinical trials. It is well known that the prevalence of anemia increases with the advancement of CKD and HF. The physiopathological mechanisms of anemia, such as the reduction of endogenous erythropoietin and the decrease in oxygen transport, are leading to tissue hypoxia, peripheral vasodilation, stimulating neurohormonal activity, and maintenance of the progressive renal and cardiac dysfunction. Given the challenges with the treatment options for patients with cardiorenal anemia syndrome (CRSA), new therapeutic agents such as hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PH) or hepcidin antagonists are emerging in the light of recent research. This review summarizes the potential therapeutic tools for anemia therapy in the cardiorenal population.
Collapse
Affiliation(s)
- Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology and Physiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
9
|
Anwar H, Navaid S, Muzaffar H, Hussain G, Faisal MN, Ijaz MU, Riđanović S. Analyzing cross-talk of EPO and EGF genes along with evaluating therapeutic potential of Cinnamomum verum in cigarette-smoke-induced lung pathophysiology in rat model. Food Sci Nutr 2023; 11:1486-1498. [PMID: 36911850 PMCID: PMC10002988 DOI: 10.1002/fsn3.3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023] Open
Abstract
The integrity of the distal alveolar epithelium is crucial for lung regeneration following an injury. The present study aimed to evaluate the effect of Cinnamomum verum extract; cross-talk of epidermal growth factor (EGF) and erythropoietin (EPO) genes in a smoke-induced lung injury rat model. For experimentation (n = 27), albino rats were divided equally into three groups, i.e., negative control (NC), positive control (PC), and treatment group (TG). Cigarette smoke was exposed to PC and TG (4 CG/day). C. verum was given orally (350 mg/kg body weight) for 21 days. Decapitation (n = 3) was done on 14th, 18th, and 21st days, respectively. Analyses (hematology, biochemical, high performance liquid chromatography [HPLC], histology, and gene expression) were carried out and results were statistically analyzed by two-way analysis of variance. HPLC analysis of ethanolic extract of C. verum was done to identify the presence of phenolic constituents which showed high concentrations of quercetin and P-coumaric acid. Serum oxidative parameters such as total oxidant status, malondialdehyde, and hematological parameters such as red blood cells, hemoglobin, hematocrit, and white blood cells were significantly (p < .05) elevated in the PC group; however, these parameters were significantly (p < .05) improved in TG. While total antioxidant capacity and serum parameters such as total protein, albumin, and globulin were significantly (p < .05) reduced in the PC group but significantly improved (p < .05) in TG. Histological analysis revealed that smoke exposure resulted in a measurable increase in alveolar septal thickening while ethanolic extract of C. verum greatly ameliorated the histopathological changes in the lung alveoli. The gene expression analysis of EGF and EPO genes showed a significant upregulation (p < .05) of both genes in PC group while in TG, the level of both genes downregulated, in which lung damage was ameliorated due to cytoprotective effects of ethanolic extract of C. verum.
Collapse
Affiliation(s)
- Haseeb Anwar
- Department of PhysiologyGovernment College UniversityFaisalabadPakistan
| | - Soha Navaid
- Department of PhysiologyGovernment College UniversityFaisalabadPakistan
| | - Humaira Muzaffar
- Department of PhysiologyGovernment College UniversityFaisalabadPakistan
| | - Ghulam Hussain
- Department of PhysiologyGovernment College UniversityFaisalabadPakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and PharmacologyUniversity of AgricultureFaisalabadPunjabPakistan
| | - Muhammad Umar Ijaz
- Department of ZoologyWildlife and Fisheries, University of AgricultureFaisalabadPakistan
| | - Sanel Riđanović
- Department of Biology, Faculty of EducationDžemal Bijedić University of MostarMostarBosnia and Herzegovina
| |
Collapse
|
10
|
Heiland CE, Ericsson M, Pohanka A, Ekström L, Marchand A. Optimizing detection of erythropoietin receptor agonists from dried blood spots for anti-doping application. Drug Test Anal 2022; 14:1377-1386. [PMID: 35322582 PMCID: PMC9544842 DOI: 10.1002/dta.3260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
The World Anti-Doping Agency (WADA) has recently implemented dried blood spots (DBSs) as a matrix for doping control. However, specifications regarding the analysis of the class of prohibited substances called erythropoietin (EPO) receptor agonists (ERAs) from DBSs are not yet described. The aim of this study was to find optimal conditions (sample volume and storage) to sensitively detect endogenous erythropoietin (hEPO) and prohibited ERAs from DBSs and compare detection limits to WADA-stipulated minimum required performance levels (MRPLs) for ERAs in serum/plasma samples. Venous whole blood was spotted onto Whatman 903 DBS cards with primarily 60 μl of blood, but various volumes from 20 to75 μl were tested. All samples were immunopurified with MAIIA EPO Purification Gel kit (EPGK) and analysed with sodium N-lauroylsarcosinate polyacrylamide gel electrophoresis (SAR-PAGE) and Western blot. Sixty-microliter DBSs allowed the detection of the four main ERAs (BRP, NESP, CERA and EPO-Fc) at concentrations close to WADA's MRPLs described for 500 μl of serum/plasma. Different storage temperatures, from -20°C to 37°C, were evaluated and did not affect ERA detection. A comparison of the detection of endogenous EPO from the different anti-doping matrices (urine, serum and DBSs produced from upper arm capillary blood) from five participants for 6 weeks was performed. Endogenous EPO extracted from DBSs showed intra-individual variations in male and female subjects, but less than in urine. Doping controls would benefit from the stability of ERAs on DBSs: It can be a complementary matrix for ERA analysis, particularly in the absence of EPO signals in urine.
Collapse
Affiliation(s)
- Carmel E. Heiland
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
- Clinical Pharmacology, Karolinska University LaboratoryKarolinska University HospitalStockholmSweden
| | - Magnus Ericsson
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
- Laboratoire AntiDopage Français (LADF)University of Paris‐SaclayChâtenay‐MalabryFrance
| | - Anton Pohanka
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
- Clinical Pharmacology, Karolinska University LaboratoryKarolinska University HospitalStockholmSweden
| | - Lena Ekström
- Department of Laboratory MedicineKarolinska InstituteStockholmSweden
- Clinical Pharmacology, Karolinska University LaboratoryKarolinska University HospitalStockholmSweden
| | - Alexandre Marchand
- Laboratoire AntiDopage Français (LADF)University of Paris‐SaclayChâtenay‐MalabryFrance
| |
Collapse
|
11
|
Palus S, Elkina Y, Braun T, von Haehling S, Döhner W, Anker SD, Cerami A, Brines M, Springer J. The erythropoietin-derived peptide ARA 284 reduces tissue wasting and improves survival in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:2202-2210. [PMID: 35586884 PMCID: PMC9397558 DOI: 10.1002/jcsm.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cancer cachexia (CC) is a severe complication during the last stages of the disease, which is characterized by the substantial loss of muscle and fat mass. Currently, there is no effective treatment of CC. Erythropoietin plays tissue-protective role in different tissues. Based on the structure of erythropoietin, small non-erythropoietic peptides were synthesized, which activate tissue-protective signalling pathways. METHODS Here, we investigated the influence of the tissue-protective peptide ARA 284 on CC in rats using the Yoshida hepatoma model. RESULTS Treatment with ARA 284 (1.7 μg/kg/day) counteracted the loss of body weight (12.46 ± 4.82% ARA 284 vs. 26.85 ± 0.88% placebo, P < 0.01), fat mass (P < 0.01), and lean mass (P < 0.01). It improved spontaneous activity of ARA 284-treated animals. Further, gastrocnemius mass was increased (13.2% ARA 284 vs. placebo, P < 0.01) in association with induced p-Akt (P < 0.01) and decreased in p-p38 MAPK, GSK-3β, and myostatin (all P < 0.01), suggesting an induction of anabolic pathways. At the same time, we observed the significant increase in the survival of animals by high-dose ARA 284 treatment (hazard ratio: 0.46, 95% confidence interval: 0.23-0.94, P = 0.0325). CONCLUSIONS Taken together these results suggest that ARA 284 can be considered beneficial in experimental CC and it remains to be seen, if it can have similar beneficial effects in CC patient.
Collapse
Affiliation(s)
- Sandra Palus
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yulia Elkina
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Braun
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| | - Wolfram Döhner
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Centre for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan D Anker
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Tian P, Zhao X, Huang L, Feng J, Zhao L, Liang L, Huang B, Zhang Y, Zhang J. Prognostic value of high-sensitivity cardiac troponin I in patients with non-ischaemic heart failure: insights from China. ESC Heart Fail 2022; 9:3345-3357. [PMID: 35831235 DOI: 10.1002/ehf2.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Evidence of the prognostic value of high-sensitivity troponin in patients with non-ischaemic heart failure (NIHF) is scarce. This study aimed to assess the predictive value of high-sensitivity cardiac troponin I (hs-cTnI) in NIHF patients. METHODS Hs-cTnI was measured at baseline in 650 NIHF patients admitted to the Heart Failure Center. The prognostic value of hs-cTnI was assessed based on a well-established model (including age, sex, New York Heart Association class, left ventricular ejection fraction, haemoglobin, sodium, estimated glomerular filtration rate, diabetes mellitus, treatment with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, treatment with β-blockers, and NT-proBNP). RESULTS During a median follow-up of 1036 days, 163 patients died of various causes. In total, 46.92% of patients had high hs-cTnI (hs-cTnI >0.011 ng/ml). Over a 3-year follow-up, patients with high hs-cTnI (>0.011 ng/ml) had a 1.54 [95% confidence interval (95% CI) 1.11-2.15] fold higher all-cause mortality risk than those without. Increasing concertation of hs-cTnI was also associated with a 23.0% (95% CI 13-33%, per log2 increase) increment risk of all-cause mortality. The inclusion of hs-cTnI significantly improved the risk prediction and stratification of all-cause mortality (integrated discrimination improvement 1.58%, 95% CI 0.38-2.79%, absolute net reclassification improvement 23.41% 95% CI 4.52-44.49%, additive net reclassification improvement 27.8%, 95% CI 9.29-46.3%) of the well-established model. CONCLUSIONS Hs-cTnI provides significant prognostic value and could further remarkably improve risk stratification and prediction capabilities in NIHF patients.
Collapse
Affiliation(s)
- Pengchao Tian
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Xuemei Zhao
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Liyan Huang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Jiayu Feng
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Lang Zhao
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Lin Liang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Boping Huang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Yuhui Zhang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China
| | - Jian Zhang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science, Peking Union Medical College, 10037, Beijing, China.,Key Laboratory of Clinical Research for Cardiovascular Medications, National Health Committee, 10037, Beijing, China
| |
Collapse
|
13
|
Wang J, Wang F, Yuan L, Ruan H, Zhu Z, Fan X, Zhu L, Peng X. Blood-Enriching Effects and Immune-Regulation Mechanism of Steam-Processed Polygonatum Sibiricum Polysaccharide in Blood Deficiency Syndrome Mice. Front Immunol 2022; 13:813676. [PMID: 35250989 PMCID: PMC8892585 DOI: 10.3389/fimmu.2022.813676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Polygonatum sibiricum Red. has been used as a medicinal herb and nutritional food in traditional Chinese medicine for a long time. It must be processed prior to clinical use for safe and effective applications. However, the present studies mainly focused on crude Polygonatum sibiricum (PS). This study aimed to investigate the chemical properties, blood-enriching effects and mechanism of polysaccharide from the steam-processed Polygonatum sibiricum (SPS), which is a common form of PS in clinical applications. Instrumentation analyses and chemistry analyses revealed the structure of SPS polysaccharide (SPSP). A mice model of blood deficiency syndrome (BDS) was induced by acetylphenylhydrazine (APH) and cyclophosphamide (CTX). Blood routine test, spleen histopathological changes, serum cytokines, etc. were measured. The spleen transcriptome changes of BDS mice were detected by RNA sequencing (RNA-seq). The results showed that SPSP consists predominantly of Gal and GalA together with fewer amounts of Man, Glc, Ara, Rha and GlcN. It could significantly increase peripheral blood cells, restore the splenic trabecular structure, and reverse hematopoietic cytokines to normal levels. RNA-seq analysis showed that 122 differentially expressed genes (DEGs) were obtained after SPSP treatment. GO and KEGG analysis revealed that SPSP-regulated DEGs were mainly involved in hematopoiesis, immune regulation signaling pathways. The reliability of transcriptome profiling was validated by quantitative real-time PCR and Western blot, and the results indicated that the potential molecular mechanisms of the blood-enriching effects of SPSP might be associated with the regulating of JAK1-STAT1 pathway, and elevated the hematopoietic cytokines (EPO, G-CSF, TNF-α and IL-6). This work provides important information on the potential mechanisms of SPSP against BDS.
Collapse
Affiliation(s)
- Juan Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Furong Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Lixia Yuan
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Hongsheng Ruan
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Zhibiao Zhu
- Department of Quality Control, Zhejiang Sanxitang Chinese Medicine Co., LTD, Yiwu, China
| | - Xiaoling Fan
- Department of Quality Control, Zhejiang Sanxitang Chinese Medicine Co., LTD, Yiwu, China
| | - Lingyan Zhu
- Department of Quality Control, Zhejiang Sanxitang Chinese Medicine Co., LTD, Yiwu, China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, China
| |
Collapse
|
14
|
Sokolov AV, Dubrovskaya NM, Kostevich VA, Vasilev DS, Voynova IV, Zakharova ET, Runova OL, Semak IV, Budevich AI, Nalivaeva NN, Vasilyev VB. Lactoferrin Induces Erythropoietin Synthesis and Rescues Cognitive Functions in the Offspring of Rats Subjected to Prenatal Hypoxia. Nutrients 2022; 14:nu14071399. [PMID: 35406012 PMCID: PMC9003537 DOI: 10.3390/nu14071399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The protective effects of recombinant human lactoferrin rhLF (branded “CAPRABEL™”) on the cognitive functions of rat offspring subjected to prenatal hypoxia (7% O2, 3 h, 14th day of gestation) have been analyzed. About 90% of rhLF in CAPRABEL was iron-free (apo-LF). Rat dams received several injections of 10 mg of CAPRABEL during either gestation (before and after the hypoxic attack) or lactation. Western blotting revealed the appearance of erythropoietin (EPO) alongside the hypoxia-inducible factors (HIFs) in organ homogenates of apo-rhLF-treated pregnant females, their embryos (but not placentas), and in suckling pups from the dams treated with apo-rhLF during lactation. Apo-rhLF injected to rat dams either during pregnancy or nurturing the pups was able to rescue cognitive deficits caused by prenatal hypoxia and improve various types of memory both in young and adult offspring when tested in the radial maze and by the Novel Object Recognition (NOR) test. The data obtained suggested that the apo-form of human LF injected to female rats during gestation or lactation protects the cognitive functions of their offspring impaired by prenatal hypoxia.
Collapse
Affiliation(s)
- Alexey V. Sokolov
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
- Faculty of Dental Medicine and Medical Technologies, Saint Petersburg State University, 8A 21st Line V.O., 199034 Saint-Petersburg, Russia
- Correspondence: (A.V.S.); (V.B.V.)
| | - Nadezhda M. Dubrovskaya
- Laboratory of Physiology and Pathology of CNS, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave., 194223 Saint-Petersburg, Russia; (N.M.D.); (D.S.V.); (N.N.N.)
| | - Valeria A. Kostevich
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Dmitrii S. Vasilev
- Laboratory of Physiology and Pathology of CNS, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave., 194223 Saint-Petersburg, Russia; (N.M.D.); (D.S.V.); (N.N.N.)
| | - Irina V. Voynova
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Elena T. Zakharova
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Olga L. Runova
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
| | - Igor V. Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Nezavisimisty Ave. 4, 220030 Minsk, Belarus;
| | - Alexander I. Budevich
- Scientific and Practical Centre on Animal Husbandry of the National Academy of Sciences of Belarus, 11 Frunze Str., 222160 Zhodino, Belarus;
| | - Natalia N. Nalivaeva
- Laboratory of Physiology and Pathology of CNS, Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave., 194223 Saint-Petersburg, Russia; (N.M.D.); (D.S.V.); (N.N.N.)
| | - Vadim B. Vasilyev
- Department of Molecular Genetics, Institute of Experimental Medicine, Acad. Pavlov Str. 12, 197376 Saint-Petersburg, Russia; (V.A.K.); (I.V.V.); (E.T.Z.); (O.L.R.)
- Faculty of Dental Medicine and Medical Technologies, Saint Petersburg State University, 8A 21st Line V.O., 199034 Saint-Petersburg, Russia
- Correspondence: (A.V.S.); (V.B.V.)
| |
Collapse
|
15
|
Anderson S. Congenital Nephrotic Syndrome of the Finnish Type in a Dominican Newborn: An Overview and Case Report. Neonatal Netw 2022; 41:83-88. [PMID: 35260424 DOI: 10.1891/11-t-745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
Congenital nephrotic syndrome of the Finnish type (CNS-FT) is a rare genetic condition that causes massive proteinuria, hypoproteinemia, hypercholesterolemia, and edema that progresses to end-stage renal disease. Symptoms may manifest in utero as fetal hydrops or during the first few days to months of life. This article shares the case of a Dominican infant who presented with CNS-FT. It provides a comprehensive overview of CNS-FT including the underlying genetic cause, prenatal and postnatal diagnostic testing options, and treatment recommendations. It walks the reader through the diagnostic and initial and longer-term management of this infant and provides patient outcome at 10 months of age.
Collapse
|
16
|
Gonzalez-Candia A, Herrera EA. High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Front Physiol 2021; 12:786038. [PMID: 34950057 PMCID: PMC8688922 DOI: 10.3389/fphys.2021.786038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Yaghobee S, Rouzmeh N, Taheri M, Aslroosta H, Mahmoodi S, Mohammadnejad Hardoroodi M, Soleimanzadeh Azar P, Khorsand A. Evaluation of topical erythropoietin application on the healing outcome of gingival graft recipient site; a randomized controlled clinical trial. BMC Oral Health 2021; 21:578. [PMID: 34772399 PMCID: PMC8588661 DOI: 10.1186/s12903-021-01948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background Free gingival graft (FGG) is a highly predictable method to increase the width of keratinized gingiva. Various materials have been reported to accelerate the wound healing process. Considering the positive effect of EPO on dermal wound healing this study aimed to investigate the effects of EPO on the rate of healing and degree of inflammation in free gingival grafts. Methods Seventeen patients with bilateral lack of keratinized gingiva in mandible were selected for this clinical trial. The surgical intervention was performed after phase I periodontal therapy. Recipient site was prepared apical to the mucogingival line, and FGG was harvested from the palate. Before graft placement, the test side and control side were treated with 1 ml of EPO 4000 IU/ml and distilled water, respectively, for 2 min. On days 7, 14, 21, 28, 60, and 90 after surgery, the grafted sites were examined by blinded observers to compare the healing and inflammation of the areas. Results All the 17 patients completed the surgeries and follow-up examinations. Direct examination revealed significantly better healing in EPO group only on the 28th day. Assessment of the photographs showed a significant value in favor of the test group at some other time points as well. The EPO group demonstrated less inflammation, which was statistically significant in many time points. The graft area was 80.88 ± 30.21 mm2 and 71.35 ± 15.62 mm2 in the EPO and control groups, respectively. The difference was not significant, though. Conclusions Topical application of erythropoietin can accelerate the healing of gingival grafts and reduce the inflammation during healing period. The final graft outcome, nevertheless, does not seem to be influenced by EPO. Trial registration This was a split-mouth randomized controlled clinical trial (IRCT201201278830N1). The first registration date: 2016-10-22
Collapse
Affiliation(s)
- Siamak Yaghobee
- Periodontics Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nina Rouzmeh
- Periodontics Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Taheri
- Periodontics Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoori Aslroosta
- Periodontics Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Mahmoodi
- Independent Researcher, Novin Formula Consulting Group, Tehran, Iran
| | | | | | - Afshin Khorsand
- Periodontics Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Acharya R, Upadhyay K. An Unusual Occurrence of Erythrocytosis in a Child with Nephrotic Syndrome and Advanced Chronic Kidney Disease. Pediatr Rep 2021; 13:463-469. [PMID: 34449692 PMCID: PMC8396269 DOI: 10.3390/pediatric13030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Anemia is common in patients with nephrotic syndrome (NS) for various reasons. Furthermore, anemia can occur in patients with chronic kidney disease (CKD) predominantly owing to inappropriately low erythropoietin (EPO) production relative to the degree of anemia. However, erythrocytosis is uncommon in patients with NS and advanced CKD who are not treated with exogenous erythropoietin stimulating agents, and when present, will necessitate exploration of the other etiologies. Case summary: Here, we describe an 8-year-old girl with erythrocytosis in association with NS and advanced CKD. The patient was found to have erythrocytosis during the evaluation for hypertensive urgency. She also had nephrotic range proteinuria without edema. Serum hemoglobin and hematocrit were 17 gm/dL and 51%, respectively, despite hydration. Renal function test showed an estimated glomerular filtration rate of 30 mL/min/1.73 m2. There was mild iron deficiency anemia with serum iron saturation of 18%. Serum EPO level was normal. Urine EPO was not measured. Renal biopsy showed evidence of focal segmental glomerulosclerosis. Genetic testing for NS showed mutations in podocyte genes: NUP93, INF2, KANK1, and ACTN4. Gene sequence analysis of genes associated with erythrocytosis showed no variants in any of these genes. She required chronic dialysis ten months later and, subsequently, a renal transplantation 14 months after the initial presentation. Conclusion: Since the serum EPO level was normal, an increased sensitivity to EPO is the most probable mechanism of erythrocytosis. The unusual association of erythrocytosis in patients with NS and advanced CKD needs to be studied further in larger studies.
Collapse
Affiliation(s)
- Ratna Acharya
- Division of General Pediatrics, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA;
| | - Kiran Upadhyay
- Division of Pediatric Nephrology, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
The effect of erythropoietin on cardiac and neurotoxicity induced by carbon monoxide poisoning. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.27.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Wu Y, Yang B. Erythropoietin Receptor/β Common Receptor: A Shining Light on Acute Kidney Injury Induced by Ischemia-Reperfusion. Front Immunol 2021; 12:697796. [PMID: 34276689 PMCID: PMC8278521 DOI: 10.3389/fimmu.2021.697796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major cause of AKI, not only induces kidney injury, but also stimulates the self-defense system including innate immune responses to limit injury. One of these responses is the production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously triggered, but behind the action of its receptors, either by the homodimer EPO receptor (EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/β common receptor (EPOR/βcR) which has a broad range of biological protections. EPOR/βcR is expressed in several cell types including tubular epithelial cells at low levels or absent in normal kidneys, but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular membrane post IR. EPOR/βcR mediates anti-apoptosis, anti-inflammation, pro-regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways in AKI. However, the precise roles of EPOR/βcR in the pathogenesis and progression of AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis and monitoring repair or chronic progression requires further investigation. Here, we review biological functions and mechanistic signaling pathways of EPOR/βcR in AKI, and discuss its potential clinical applications as a biomarker for effective diagnosis and predicting prognosis, as well as directing cell target drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
21
|
Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother 2021; 139:111558. [PMID: 33894624 DOI: 10.1016/j.biopha.2021.111558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is a hypoxia-induced hormone produced in adult kidneys with erythropoietic and non-erythropoietic effects. In vivo studies represent an important role to comprehend the efficacy and safety in the early phase of repurposing drugs. The aim is to evaluate the potential anti-inflammatory effect of EPO observed in animal models of disease. Following PRISMA statements, electronic database Medline via PubMed platform was used to search articles with the research expression ((erythropoietin [MeSH Terms]) AND (inflammation [MeSH Terms]) AND (disease models, animal [MeSH Terms])). The inclusion criteria were original articles, studies where EPO was administered, studies where inflammation was studied and/or evaluated, non-clinical studies in vivo with rodents, and articles published in English. Thirty-six articles met the criteria for qualitative analysis. Exogenous EPO was used in models of sepsis, traumatic brain injury, and autoimmune neuritis, with an average of 3000 IU/Kg for single and multiple doses, using mice and rats. Biomarkers such as immune-related effectors, cytokines, reactive oxygen species, prostaglandins, and other biomarkers were assessed. EPO has been recognized as a multifunctional cytokine with anti-inflammatory properties, showing its significant effect both in acute and chronic models of inflammation. Further non-clinical studies are suggested for the enlightenment of anti-inflammatory mechanisms of EPO in lower doses, allowing us to understand the translational data for humans.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina Alípio
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
22
|
Nadim AH, Abd El-Aal MA, Al-Ghobashy MA, El-Saharty YS. Facile imprinted polymer for label-free highly selective potentiometric sensing of proteins: case of recombinant human erythropoietin. Anal Bioanal Chem 2021; 413:3611-3623. [PMID: 33866391 DOI: 10.1007/s00216-021-03325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
In the current study, a molecularly imprinted polymer (MIP)-based potentiometric sensor was fabricated for a label-free determination of recombinant human erythropoietin (rhEPO). The MIP sensor was operated under zero current conditions using tetra-butyl ammonium bromide as a marker ion. A highly ordered rhEPO surface imprinted layer was prepared using 3-aminopropyl triethoxysilane and tetraethoxysilane as a monomer and cross-linker, respectively, under mild reaction conditions. A two-fold increase in the signal output was obtained by polymeric surface minimization (0.5 mm) that allowed more pronounced molecular recognition (imprinting factor = 20.1). The proportion of cross-reactivity was examined using different interfering biomolecules. Results confirmed sensor specificity for both structurally related and unrelated proteins. An ~40% decrease in the response was obtained for rhEPO-β compared to rhEPO-α. The imprinted polymeric surface was evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. Under the optimal measurement conditions, a linear range of 10.00-1000.00 ng mL-1 (10-10 - 10-8 M) was obtained. The sensor was employed for the determination of rhEPO in different biopharmaceutical formulations. Results were validated against standard immunoassay. Spiked human serum samples were analyzed and the assay was validated. The presence of non-specific proteins did not significantly affect (~8%) the results of our assay. A concentration-dependent linear response was produced in an identical range with detection limit as low as 6.50 ng mL-1 (2.14 × 10-10 M). The facile fabricated MIP sensor offers a cost-effective, portable, and easy to use alternative for biosimilarity assessment and clinical application.
Collapse
Affiliation(s)
- Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - May A Abd El-Aal
- National Organization for Research and Control of Biologicals, 51 Wezaret El-Zeraa St., Dokki, Giza, 354, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt. .,Bioanalysis Research Group, School of Pharmacy, New Giza University, Km 22 Cairo-Alex road, Giza, 12563, Egypt.
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
23
|
Toleubayev M, Dmitriyeva M, Kozhakhmetov S, Sabitova A. Efficacy of erythropoietin for wound healing: A systematic review of the literature. Ann Med Surg (Lond) 2021; 65:102287. [PMID: 33948167 PMCID: PMC8079955 DOI: 10.1016/j.amsu.2021.102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To systematically review the available literature on the efficacy of erythropoietin for wound healing in human patients. Design The review was reported following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A descriptive-analytical method was used to analyse and integrate review findings. Data sources A primary search of electronic databases was performed using a combination of search terms related to the following areas of interest: ‘efficacy’, ‘erythropoietin’ and ‘wound healing’. A secondary search of the grey literature was conducted in addition to checking the reference list of included studies and review papers. Results Seven distinct studies involving 150 patients met the inclusion criteria for the review. The included studies suggest that topical and subcutaneous application of erythropoietin improves the wound healing process via faster re-epithelialization and reducing wound area and depth. Conclusions There were a limited number of studies and a great degree of heterogeneity of evidence due to differences in the course of concomitant illness, wound aetiology, and the time and dosing regimens adopted. Further research adopting validated and consistent outcome measures is recommended to determine the efficacy and safety of erythropoietin for wound healing. Topical and subcutaneous application of erythropoietin improves the wound healing process in human patients. Topical and subcutaneous application of erythropoietin contributes to reducing wound area and depth in human patients. Topical and subcutaneous application of erythropoietin has the potential to prevent wounds from becoming chronic.
Collapse
Affiliation(s)
- Medet Toleubayev
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Mariya Dmitriyeva
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Saken Kozhakhmetov
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Alina Sabitova
- Unit for Social and Community Psychiatry, WHO Collaborating Centre for Mental Health Service Development, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
El-Aal MAA, Al-Ghobashy MA, El-Saharty YS. Preparation and characterization of 96-well microplates coated with molecularly imprinted polymer for determination and biosimilarity assessment of recombinant human erythropoietin. J Chromatogr A 2021; 1641:462012. [PMID: 33647538 DOI: 10.1016/j.chroma.2021.462012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023]
Abstract
Synthesis and applications of molecularly imprinted polymers (MIP) are rapidly growing. In this study, a biomimetic MIP was prepared through silanes polymerization on the surface of 96-well microplates using recombinant human erythropoietin-alfa (rhEPO) as a template molecule. The rhEPO was immobilized onto the plate surface using bi-functional cross-linker and a thin imprinted layer following sol-gel procedure was constructed. After template extraction, uniform three-dimensional cavities compatible with the configuration of rhEPO were obtained. The rhEPO-MIP preparation was optimized using 2-level factorial design and response surface design where polymerization time and interactions between the different variable were found to be the most significant factors. Size-exclusion chromatography (SEC) was used to monitor the stability of the rhEPO under the investigated polymerization conditions. Determination of rhEPO using the MIP microplate showed good dynamic response fitting to the 4 PL regression model (0.9962) over a concentration range of 10.00 - 100.00 ng mL-1. Adsorption of rhEPO onto MIP followed the Langmuir isotherm model (r = 0.9957, χ2 =0.02786) with pseudo-second-order kinetics (r = 0.9984). The surface of the rhEPO-MIP was characterized using scanning electron microscopy (SEM) while step-by-step surface modification was tracked using Fourier transform infrared (FTIR) spectroscopy. The rhEPO-MIP was able to distinguish between the rhEPO-alfa template and modified rhEPO molecules; rhEPO-beta, hyperglycosylated and pegylated forms (imprinting factors < 2) and in the commonly used formulation additive human serum albumin (HSA) (R% = 113.96 -95.22%). The rhEPO-MIP was applied to compare the receptor-binding pattern to rhEPO and its biosimilars / structural analogues. The results were cross-validated using the conventional assay protocol (RP-HPLC and ELISA) and an acceptable correlation was observed with RP-HPLC (maximum deviation is 7.78%). This work confirmed the applicability of rhEPO-MIP with its unique binding features for batch release, stability and biosimilarity assessment as well as subsequent evaluation of batch-to-batch consistency during bioproduction of target analytes.
Collapse
Affiliation(s)
- May A Abd El-Aal
- National Organization for Research and Control of Biologicals, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Bioanalysis Research Group, School of Pharmacy, Newgiza University, Egypt.
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
25
|
Zheng Y, Deng Z, Tang M, Cai P. Erythropoietin promoter polymorphism is associated with treatment efficacy and severe hematologic toxicity for platinum-based chemotherapy. Expert Opin Drug Metab Toxicol 2021; 17:495-502. [PMID: 33461346 DOI: 10.1080/17425255.2021.1879048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Erythropoietin (EPO) plays a substantial role in cancer development and probably affects clinical outcomes. A functional polymorphism (rs1617640, G > T) in the promoter region of the EPO increases protein expression. This study investigated the association of EPO rs1617640 with treatment efficacy and severe toxicity in non-small cell lung cancer (NSCLC) patients undergoing platinum-based regimens.Methods: 437 Chinese NSCLC patients treated with platinum-based chemotherapy were recruited. Association between EPO rs1617640 and clinical outcomes was calculated by multivariable logistic regression.Results: The TT genotype of EPO rs1617640 was significantly correlated with a higher response rate to platinum-based treatment than the other genotypes (OR, 0.507; 95% CI: 0.305-0.842; P = 0.009), particularly in elderly patients (>55 years), male gender, smokers, IV stage, cisplatin-based chemotherapies, and platinum-gemcitabine regimen subgroups. As for toxicity, EPO rs1617640 TT genotype demonstrated poorer tolerance to grade 3-4 hematologic toxicity (OR, 1.783; 95% CI: 1.098-2.898; P = 0.019), particularly in subgroups of elderly patients (>55 years), male gender, smokers, IIIA+IIIB stage, and cisplatin-based chemotherapies.Conclusion: Our results demonstrated the role of EPO rs1617640 as a possible predictive marker of treatment efficacy and severe toxicity for platinum-based chemotherapy.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha People's Republic of China
| | - Zheng Deng
- General Department, Hunan Institute for Tuberculosis Control Changsha, People's Republic of China.,General Department, Hunan Chest Hospital, Changsha, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Pei Cai
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha People's Republic of China
| |
Collapse
|
26
|
Hwang CH. Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review. Int J Nanomedicine 2020; 15:9683-9701. [PMID: 33311979 PMCID: PMC7726550 DOI: 10.2147/ijn.s287456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
Although the incidence of central nervous system injuries has continued to rise, no promising treatments have been elucidated. Erythropoietin plays an important role in neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready application in patients with central nervous system injuries. However, erythropoietin has a very short therapeutic time window (within 6–8 hours) after injury, and it has both hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic differences. These differences lead to limited amounts of erythropoietin binding to in situ erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocarriers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing erythropoietin obtained by nanospray drying may be the most promising. With the incorporation of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external magnetic navigation is another area of great interest for targeted delivery within the therapeutic time window. Intravenous administration is the most readily used route. Manufactured erythropoietin nanocarriers should be clearly characterized using bioengineering analyses of the in vivo size distribution and the quality of entrapment or adsorption. Further preclinical trials are required to increase the therapeutic bioavailability (in vivo biological identity alteration, passage through the lung capillaries or the blood brain barrier, and timely degradation followed by removal of the nanocarriers from the body) and decrease the adverse effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the nanocarrier.
Collapse
Affiliation(s)
- Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
27
|
Perron-Deshaies G, St-Louis P, Romero H, Scorza T. Impact of Erythropoietin Production by Erythroblastic Island Macrophages on Homeostatic Murine Erythropoiesis. Int J Mol Sci 2020; 21:ijms21238930. [PMID: 33255601 PMCID: PMC7728051 DOI: 10.3390/ijms21238930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Erythropoietin (EPO) is an essential hormone for erythropoiesis, protecting differentiating erythroblasts against apoptosis. EPO has been largely studied in stress or pathological conditions but its regulatory role in steady state erythropoiesis has been less documented. Herein, we report production of EPO by bone marrow-derived macrophages (BMDM) in vitro, and its further enhancement in BMDM conditioned with media from apoptotic cells. Confocal microscopy confirmed EPO production in erythroblastic island (EBI)-associated macrophages, and analysis of mice depleted of EBI macrophages by clodronate liposomes revealed drops in EPO levels in bone marrow (BM) cell lysates, and decreased percentages of EPO-responsive erythroblasts in the BM. We hypothesize that EBI macrophages are an in-situ source of EPO and sustain basal erythropoiesis in part through its secretion. To study this hypothesis, mice were injected with clodronate liposomes and were supplied with exogenous EPO (1-10 IU/mouse) to evaluate potential rescue of the deficiency in erythroid cells. Our results show that at doses of 5 and 10 IU, EPO significantly rescues BM steady state erythropoiesis in mice deficient of macrophages. We propose existence of a mechanism by which EBI macrophages secrete EPO in response to apoptotic erythroblasts, which is in turn controlled by the numbers of erythroid precursors generated.
Collapse
Affiliation(s)
- Genève Perron-Deshaies
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (G.P.-D.); (P.S.-L.); (H.R.)
| | - Philippe St-Louis
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (G.P.-D.); (P.S.-L.); (H.R.)
| | - Hugo Romero
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (G.P.-D.); (P.S.-L.); (H.R.)
- CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Tatiana Scorza
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (G.P.-D.); (P.S.-L.); (H.R.)
- Correspondence: ; Tel.: +1-514-9873000 (ext. 1918)
| |
Collapse
|
28
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
29
|
Musio F. Revisiting the treatment of anemia in the setting of chronic kidney disease, hematologic malignancies, and cancer: perspectives with opinion and commentary. Expert Rev Hematol 2020; 13:1175-1188. [PMID: 33028115 DOI: 10.1080/17474086.2020.1830371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Anemia has and will continue to be a central theme in medicine particularly as clinicians are treating a burgeoning population of complex multi-organ system processes. As a result of multiple randomized controlled trials (RCTs), meta-analyses, and societal recommendations overly restrictive paradigms and under-administration of erythropoiesis stimulating agents (ESAs) have likely been followed by clinicians among all specialties. AREAS COVERED A review of anemia in the context of chronic kidney disease, hematologic malignancies, and cancer is presented with focus on the establishment of ESAs as integral in the treatment of anemia. Multiple RCTs and meta-analyses studying the use of ESAs are presented with focus upon their application to clinical practice. A 'compendium' is proffered describing the evolution, establishment, and implications of ESA administration initially among those with CKD with rapid subsequent application to the Hematology-Oncology population of patients. Literature search methodologies have included MEDLINE (1985-2020), PubMed (1996-2020), Cochrane Central Trials (1985-2020), EMBASE (2000-2020), and ClinicalTrials.gov (2000-2020). EXPERT OPINION Upon evaluation of risks and benefits of ESAs focused opinion and commentary is made supporting more liberal use of these agents and strongly suggesting that the current underlying treatment 'pendulum' has perhaps shifted too far to the 'under-treatment' side in many cases.
Collapse
Affiliation(s)
- Franco Musio
- Senior Partner, Nephrology Associates of Northern Virginia , VA, Fairfax, Virginia, USA
- Nephrology Division Chief, Inova Fairfax Hospital, Department of Medicine, Falls Church , Virginia, VA, USA
- Associate Professor of Medicine, Virginia Commonwealth University (Inova Fairfax Hospital Campus) , Richmond, Virginia, USA
| |
Collapse
|
30
|
Szczesny D, Mołoniewicz K, Markuszewski MJ, Wiczling P. Proof-of-concept study on improved efficacy of rHuEPO administered as a long-term infusion in rats. Pharmacol Rep 2020; 72:1264-1270. [PMID: 32748255 PMCID: PMC7550370 DOI: 10.1007/s43440-020-00150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/02/2022]
Abstract
Background Human recombinant erythropoietin (rHuEPO) is often used in the treatment of diseases associated with a decreased production of red blood cells (RBC), such as chronic renal failure. rHuEPO is typically administered as an intravenous or subcutaneous (SC) injection every few days. The low minimum effective concentration (MEC) of rHuEPO, compared to the concentrations observed after standard doses, suggests that a low dose of the drug administered as a long-term infusion should be efficacious. This study aimed to compare the efficacy observed after a single subcutaneous administration of rHuEPO with that observed after a long-term infusion of rHuEPO via implanted osmotic pumps at a similar or lower dose. Materials and methods In this study three rats received rHuEPO as a single SC injection at a dose of 1350 IU/kg, nine via osmotic pumps at a rate of 0.25, 0.5 and 1 IU/kg and at a total dose of 333 IU/kg, 667 IU/kg, 1333 IU/kg. Three rats served as a control group. The erythropoietin concentrations, RBC count and hemoglobin were measured. Results An increase in RBC count and hemoglobin was observed after SC infusion of rHuEPO. The baseline corrected area under the effect curve for hemoglobin and RBC count was more than 10-times higher for the SC infusion than for a single SC administration with a comparable dose. Conclusions This study demonstrates that administration of rHuEPO as a long-term infusion at a rate ensuring MEC allows to achieve a high efficacy of therapy using relatively small doses of the drug.
Collapse
Affiliation(s)
- Damian Szczesny
- Department of Biopharmacy and Pharmacodynamics, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | - Katarzyna Mołoniewicz
- Department of Biopharmacy and Pharmacodynamics, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmacy and Pharmacodynamics, Medical University of Gdańsk, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmacy and Pharmacodynamics, Medical University of Gdańsk, 80-416, Gdańsk, Poland.
| |
Collapse
|
31
|
Nguyen CT, Kim CR, Le TH, Koo KI, Hwang CH. Magnetically guided targeted delivery of erythropoietin using magnetic nanoparticles: Proof of concept. Medicine (Baltimore) 2020; 99:e19972. [PMID: 32384447 PMCID: PMC7220084 DOI: 10.1097/md.0000000000019972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The objective of this proof-of-concept study was to demonstrate the targeted delivery of erythropoietin (EPO) using magnetically guided magnetic nanoparticles (MNPs).MNPs consisting of a ferric-ferrous mixture (FeCl3·6H2O and FeCl2·4H2O) were prepared using a co-precipitation method. The drug delivery system (DDS) was manufactured via the spray-drying technique using a nanospray-dryer. The DDS comprised 7.5 mg sodium alginate, 150 mg MNPs, and 1000 IU EPO.Scanning electron microscopy revealed DDS particles no more than 500 nm in size. Tiny particles on the rough surfaces of the DDS particles were composed of MNPs and/or EPO, unlike the smooth surfaces of the only alginate particles. Transmission electron microscopy showed the tiny particles from 5 to 20 nm in diameter. Fourier-transform infrared spectroscopy revealed DDS peaks characteristic of MNPs as well as of alginate. Thermal gravimetric analysis presented that 50% of DDS weight was lost in a single step around 500°C. The mode size of the DDS particles was approximately 850 nm under in vivo conditions. Standard soft lithography was applied to DDS particles prepared with fluorescent beads using a microchannel fabricated to have one inlet and two outlets in a Y-shape. The fluorescent DDS particles reached only one outlet reservoir in the presence of a neodymium magnet. The neurotoxicity was evaluated by treating SH-SY5Y cells in 48-well plates (1 × 10 cells/well) with 2 μL of a solution containing sodium alginate (0.075 mg/mL), MNPs (1.5 mg/mL), or sodium alginate + MNPs. A cell viability assay kit was used to identify a 93% cell viability after MNP treatment and a 94% viability after sodium alginate + MNP treatment, compared with the control. As for the DDS particle neurotoxicity, a 95% cell viability was noticed after alginate-encapsulated MNPs treatment and a 93% cell viability after DDS treatment, compared with the control.The DDS-EPO construct developed here can be small under in vivo conditions enough to pass through the lung capillaries with showing the high coating efficiency. It can be guided using magnetic control without displaying significant neurotoxicity in the form of solution or particles.
Collapse
Affiliation(s)
| | - Chung Reen Kim
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan
| | - Thi Huong Le
- Department of Biomedical Engineering, University of Ulsan, Ulsan
| | - Kyo-in Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan
| | - Chang Ho Hwang
- Department of Biomedical Engineering, University of Ulsan, Ulsan
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
32
|
Kim JY, Choi D, Kim J, Kim YM, Lim H, Sung JM, Lee MK, Choung YJ, Chang JH, Jeong MA. Co-administration of erythropoietin and iron complex improves late-phase liver regeneration. BMB Rep 2020. [PMID: 31401982 PMCID: PMC7118350 DOI: 10.5483/bmbrep.2020.53.3.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Erythropoietin and iron have individually shown beneficial effects on early-phase liver regeneration following partial hepatectomy (PHx); however, there are limited data on the combined effect on late-phase liver regeneration after PHx. Here we examined combined effects of recombinant human erythropoietin (rhEPO, 3,000 IU/kg) and iron isomaltoside (IIM, 40 mg/kg) on late-phase liver regeneration following PHx and investigated the possible underlying mechanism. Rats administrated with rhEPO showed significantly higher liver mass restoration, interleukin-6 (IL-6, a hepatocyte mitogen) levels, and Ki-67-positive hepatocytes on day 7 after PHx than saline-treated controls. These beneficial effects were further enhanced on days 7 and 14 by co-treatment with IIM. This combination also significantly improved liver function indices, such as increased albumin production and decreased bilirubin levels, but did not alter serum levels of toxic parameters, such as aspartate transaminase and alanine transaminase. This study demonstrates that the combination of rhEPO and IIM synergistically improves late-phase liver regeneration and function after PHx, probably by promoting IL-6-mediated hepatocyte proliferation without adverse effects. Thus, this combination treatment can be a potential therapeutic strategy for patients undergoing resection for hepatic malignancies.
Collapse
Affiliation(s)
- Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University Hospital, Seoul 04763, Korea
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, School of Medicine, Chuncheon 24341, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, School of Medicine, Chuncheon 24341, Korea
| | - Hyunyoung Lim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| | - Jeong Min Sung
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| | - Min Kyu Lee
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| | - Yoo Jin Choung
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| | - Ji Hee Chang
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| | - Mi Ae Jeong
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul 04763, Korea
| |
Collapse
|
33
|
Cao F, Tian X, Li Z, Lv Y, Han J, Zhuang R, Cheng B, Gong Y, Ying B, Jin S, Gao Y. Suppression of NLRP3 Inflammasome by Erythropoietin via the EPOR/JAK2/STAT3 Pathway Contributes to Attenuation of Acute Lung Injury in Mice. Front Pharmacol 2020; 11:306. [PMID: 32265704 PMCID: PMC7096553 DOI: 10.3389/fphar.2020.00306] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. An excessive inflammatory response results in the progression of ALI/ARDS, and the NLRP3 inflammasome is a key participant in inflammation. Erythropoietin (EPO), which is clinically used for anemia, reportedly exerts pleiotropic effects in ALI. However, whether EPO could protect against lipopolysaccharide (LPS)-induced ALI by regulating the NLRP3 inflammasome and its underlying mechanisms remain poorly elucidated. This study aimed to explore whether the therapeutic effects of EPO rely on the suppression of the NLRP3 inflammasome and the specific mechanisms in an LPS-induced ALI mouse model. ALI was induced in C57BL/6 mice by intraperitoneal (i.p.) injection of LPS (15 mg/kg). EPO was administered intraperitoneally at 5 U/g after LPS challenge. The mice were sacrificed 8 h later. Our findings indicated that application of EPO markedly diminished LPS-induced lung injury by restoring histopathological changes, lessened lung wet/dry (W/D) ratio, protein concentrations in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) levels. Meanwhile, EPO evidently decreased interleukin-1β (IL-1β) and interleukin-18 (IL-18) secretion, the expression of NLRP3 inflammasome components including pro-IL-1β, NLRP3, and cleaved caspase-1 as well as phosphorylation of nuclear factor-κB (NF-κB) p65, which may be associated with activation of EPO receptor (EPOR), phosphorylation of Janus-tyrosine kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). However, all the beneficial effects of EPO on ALI and modulation NLRP3 inflammasome were remarkably abrogated by the inhibition of EPOR/JAK2/STAT3 pathway and knockout (KO) of NLRP3 gene. Taken together, this study indicates that EPO can effectively attenuate LPS-induced lung injury in mice by suppressing the NLRP3 inflammasome, which is dependent upon activation of EPOR/JAK2/STAT3 signaling and inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Fei Cao
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Tian
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhongwang Li
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya Lv
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Han
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rong Zhuang
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bihuan Cheng
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuqiang Gong
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Binyu Ying
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ye Gao
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Afreen S, Bohler S, Müller A, Demmerath EM, Weiss JM, Jutzi JS, Schachtrup K, Kunze M, Erlacher M. BCL-XL expression is essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis 2020; 11:8. [PMID: 31907357 PMCID: PMC6944703 DOI: 10.1038/s41419-019-2203-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
The anti-apoptotic BCL-2 proteins (BCL-2, BCL-XL, MCL-1, A1, BCL-W) counteract apoptotic signals emerging during development and under stress conditions, and are thus essential for the survival of every cell. While the “BCL-2 addiction” of different cell types is well described in mouse models, there is only limited information available on the role of different anti-apoptotic BCL-2 proteins in a given human cell type. Here we characterize the role of BCL-XL for survival and function of human hematopoietic cells, with the aim to predict hematological side effects of novel BCL-XL-inhibiting BH3-mimetics and to identify hematological malignancies potentially responsive to such inhibitors. Earlier clinical studies have shown that the combined BCL-2/BCL-XL/BCL-W inhibitor, Navitoclax (ABT-263) induces severe thrombocytopenia caused by direct platelet demise and counteracted by increased megakaryopoiesis. In contrast, murine studies have reported important contribution of BCL-XL to survival of late erythroid cells and megakaryocytes. Using lentiviral knockdown, we show that the roles of BCL-XL for human hematopoietic cells are much more pronounced than expected from murine data and clinical trials. Efficient genetic or chemical BCL-XL inhibition resulted in significant loss of human erythroid cells beginning from very early stages of erythropoiesis, and in a reduction of megakaryocytes. Most importantly, BCL-XL deficient human hematopoietic stem cells and multipotent progenitors were reduced in numbers, and they showed a severely impaired capacity to engraft in mice during xenotransplantation. BCL-XL deficiency was fully compensated by BCL-2 overexpression, however, loss of its antagonist BIM did not result in any rescue of human erythroid or stem and progenitor cells. We thus conclude that novel and specific BCL-XL inhibitors might be efficient to treat malignancies of erythroid or megakaryocytic origin, such as polycythemia vera, acute erythroid leukemia, essential thrombocytosis or acute megakaryocytic leukemia. At the same time, it can be expected that they will have more severe hematological side effects than Navitoclax.
Collapse
Affiliation(s)
- Sehar Afreen
- Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Sheila Bohler
- Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Alexandra Müller
- Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Eva-Maria Demmerath
- Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Julia Miriam Weiss
- Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Jonas Samuel Jutzi
- Faculty of Medicine, Section of Molecular Hematology, Department of Medicine I, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Kristina Schachtrup
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Mirjam Kunze
- Faculty of Medicine, Department of Obstetrics and Gynecology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
35
|
Teo GY, Rasedee A, Al-Haj NA, Beh CY, How CW, Rahman HS, Alitheen NB, Rosli R, Abdullah ASH, Ali AS. Effect of fetal bovine serum on erythropoietin receptor expression and viability of breast cancer cells. Saudi J Biol Sci 2019; 27:653-658. [PMID: 32210684 PMCID: PMC6997850 DOI: 10.1016/j.sjbs.2019.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/17/2019] [Accepted: 11/24/2019] [Indexed: 02/03/2023] Open
Abstract
Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.
Collapse
Affiliation(s)
- Guan-Young Teo
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - Nagi A Al-Haj
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Chaw Yee Beh
- Institute of Bioscience, Universiti Putra Malaysia, Malaysia
| | - Chee Wun How
- Monash University, 47500 Bandar Sunway, Selangor, Malaysia
| | | | | | - Rozita Rosli
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | | | | |
Collapse
|
36
|
Kang B, Park SV, Soh HT, Oh SS. A Dual-Sensing DNA Nanostructure with an Ultrabroad Detection Range. ACS Sens 2019; 4:2802-2808. [PMID: 31547650 DOI: 10.1021/acssensors.9b01503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite considerable interest in the development of biosensors that can measure analyte concentrations with a dynamic range spanning many orders of magnitude, this goal has proven difficult to achieve. We describe here a modular biosensor architecture that integrates two different readout mechanisms into a single-molecule construct that can achieve target detection across an extraordinarily broad dynamic range. Our dual-mode readout DNA biosensor combines an aptamer and a DNAzyme to quantify adenosine triphosphate (ATP) with two different mechanisms, which respond to low (micromolar) and high (millimolar) concentrations by generating distinct readouts based on changes in fluorescence and absorbance, respectively. Importantly, we have also devised regulatory strategies to fine-tune the target detection range of each sensor module by controlling the target-sensitivity of each readout mechanism. Using this strategy, we report the detection of ATP at a dynamic range spanning 1-500 000 μM, more than 5 orders of magnitude, representing the largest dynamic range reported to date with a single biosensor construct.
Collapse
Affiliation(s)
| | | | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Canary Center at Stanford University, 3155 Porter Drive, Stanford, California 94305, United States
| | | |
Collapse
|
37
|
FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2019; 16:7-19. [PMID: 31519999 DOI: 10.1038/s41581-019-0189-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This 'liquid bone biopsy for FGF23 dynamics' enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.
Collapse
|
38
|
Guo M, Ma X, Feng Y, Han S, Dong Q, Cui M, Zhao Y. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes. FASEB J 2019; 33:11123-11136. [PMID: 31298941 DOI: 10.1096/fj.201900402rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Astrocyte function is an important contributor to cellular viability during brain hypoxia and ischemia. Levels of the hypoxia-inducible transcription factors (HIFs) HIF-1 and HIF-2 are increased in hypoxic conditions and impact the neuroprotective properties of astrocytes. For example, HIF-2 induces levels of erythropoietin (EPO), a neuroprotectant, by astrocytes. In contrast, HIF-1 activity in astrocytes diminishes the viability of neurons in cocultures during hypoxia. Thus, HIF-1 and HIF-2 may have opposing effects on astrocytes. In this study, we explore the balance of HIF-1 and HIF-2 signaling in astrocytes during chronic (1-7 d) hypoxia while altering the degree of hypoxia and glucose availability. In addition, we investigate the effects of these conditions on neuron apoptosis. During exposure to chronic moderate hypoxia (2% O2) and plentiful glucose (10 mM), HIF-2 and EPO abundance increases from d 1 to 7. Similarly, pretreatment with moderate hypoxia markedly increases the abundance of HIF-2 and EPO when astrocytes are subsequently exposed to severe hypoxia (0.5% O2; 24 h) in 10 mM glucose, which inhibits neuron apoptosis in coculture. Although HIF-1 targets the expression increase during the 7 d in chronic moderate hypoxia (2% O2) and limited glucose (2 mM), further exposure to severe hypoxia (0.5% O2; 24 h) induces a decrease of most HIF-1 targets in astrocytes. Notably, in astrocyte exposure to 2% O2 prior to 0.5% O2, the expression of iNOS, an HIF-1-regulated protein, keeps increasing when glucose is limited, whereas EPO and VEGF abundance is suppressed, inducing increased apoptosis of neurons in coculture under limited glucose (2 mM). Thus, both hypoxic severity and glucose abundance regulate the balance of HIF-1 and HIF-2 activity in astrocytes, leading to diverse effects on neurons. These results could have important implications on the adaptive or pathologic role of astrocytes during chronic hypoxia and ischemia.-Guo, M., Ma, X., Feng, Y., Han, S., Dong, Q., Cui, M., Zhao, Y. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoye Ma
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Bastakis GG, Ktena N, Karagogeos D, Savvaki M. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis. Dev Neurobiol 2019; 79:819-836. [PMID: 31297983 DOI: 10.1002/dneu.22710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni- or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.
Collapse
Affiliation(s)
| | - Niki Ktena
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Domna Karagogeos
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Maria Savvaki
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
40
|
Berlian G, Tandrasasmita OM, Tjandrawinata RR. Upregulation of endogenous erythropoietin expression by DLBS6747, a bioactive fraction of Ipomoea batatas L. leaves, via increasing HIF1α transcription factor in HEK293 kidney cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:190-198. [PMID: 30685435 DOI: 10.1016/j.jep.2019.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ipomoea batatas L., locally known as ubi jalar, is widely used in Indonesia and other countries as a folk remedy for various chronic diseases, including anemia-associated chronic kidney disease by increasing hematological parameters such as packed cell volume, white blood cells and platelet counts. AIM OF THE STUDY The aim of this study is to evaluate the effect of DLBS6747, a bioactive fraction of I. batatas L. leaves, on increasing EPO expression through the upregulation of HIF1α. MATERIALS AND METHODS Effect of DLBS6747 on EPO expression and its transcription factor, HIFs, was evaluated in normoxia and hypoxia conditions. Effect of DLBS6747 on several genes involved in EPO expression were evaluated in a time-course manner using conventional and real-time PCR, while the protein level were revealed using western blot and ELISA. The involvement of HIF1α was also confirmed by HIF1α siRNA. RESULTS Administration of DLBS6747 increased transcriptional activity of EPO through the regulation of its transcriptional factors, which include HIF1α, HIF2α and NFᴋB. The effect was found to be dependent on oxygen availability, wherein DLBS6747-increased EPO expression was found to be more significant in hypoxic condition. In normoxia and hypoxia, 40 μg/mL DLBS6747 increased HIF1α and HIF2α expressions at mRNA level, wherein the peak appeared in 12 h treatment (up to 7.9- and 8.6-folds, respectively). On the other hand, increased protein level was only found in hypoxia, where the highest HIF1α expression was observed at 6 h (7.5-folds increase) and started to decrease after the hours, while HIF2α was found to be increased time-dependently (up to 13.8-folds in 24 h). The mechanism of action of DLBS6747 as erythropoietin stimulating agent is more likely to affect the regulation of HIF1α, as confirmed by HIF1α siRNA which showed that DLBS6747 failed to increase EPO expression during co-incubation with HIF1α siRNA. DLBS6747 treatment also decreased NFᴋB time-dependently in normoxia, while no NFᴋB was detected in hypoxia, which revealed mimicking hypoxia activity of DLBS6747 to increase EPO expression. CONCLUSION These findings showed convincing evidences that DLBS6747 increases endogenous EPO production primarily via upregulation of its transcription factors, especially HIF1α, in human embryonic kidney HEK293 cells. This is the first molecular report that reveals the mechanism of action of natural-based erythropenia drug in different oxygen availability.
Collapse
Affiliation(s)
- Guntur Berlian
- Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia.
| | - Olivia Mayasari Tandrasasmita
- Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia.
| | - Raymond Rubianto Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences (DLBS), Industri Selatan V Block PP No. 7, Jababeka Industrial Estate II, Cikarang 17550, West Java, Indonesia.
| |
Collapse
|
41
|
Adsorption of recombinant human erythropoietin and protein impurities on a multimodal chromatography membrane. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00743-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
43
|
Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019; 8:cells8030207. [PMID: 30823476 PMCID: PMC6468851 DOI: 10.3390/cells8030207] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by an abrupt loss of renal function. Accumulating evidence indicates that incomplete or maladaptive repair after AKI can result in kidney fibrosis and the development and progression of chronic kidney disease (CKD). Hypoxia, a condition of insufficient supply of oxygen to cells and tissues, occurs in both acute and chronic kidney diseases under a variety of clinical and experimental conditions. Hypoxia-inducible factors (HIFs) are the "master" transcription factors responsible for gene expression in hypoxia. Recent researches demonstrate that HIFs play an important role in kidney injury and repair by regulating HIF target genes, including microRNAs. However, there are controversies regarding the pathological roles of HIFs in kidney injury and repair. In this review, we describe the regulation, expression, and functions of HIFs, and their target genes and related functions. We also discuss the involvement of HIFs in AKI and kidney repair, presenting HIFs as effective therapeutic targets.
Collapse
|
44
|
McAllister M, Phillips N, Belosevic M. Trypanosoma carassii infection in goldfish (Carassius auratus L.): changes in the expression of erythropoiesis and anemia regulatory genes. Parasitol Res 2019; 118:1147-1158. [PMID: 30747294 DOI: 10.1007/s00436-019-06246-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
Trypanosoma carassii is a flagellated bloodstream parasite of cyprinid fish with pathogenesis manifesting primarily as anemia in experimentally infected fish. This anemia is characterized by decreases in the number of circulating red blood cells (RBCs) during peak parasitemia. We examined changes in the key blood metrics and expression of genes known to be important in the regulation of erythropoiesis. Increasing parasitemia was strongly correlated with an overall decrease in the total number of circulating RBCs. Gene expression of key erythropoiesis regulators (EPO, EPOR, GATA1, Lmo2, and HIFα) and proinflammatory cytokines (IFNγ and TNFα) were measured and their expressions differed from those in fish made anemic by injections of phenylhydrazine (PHZ). Significant upregulation of pro-erythropoietic genes was observed in PHZ-induced anemia, but not during peak parasitic infection. Previously, we reported on functional characterization of goldfish erythropoietin (rgEPO) and its ability to induce survival and differentiation of erythroid progenitor cells in vitro. Treatment of goldfish during the infection with rgEPO reduced the severity of anemia but failed to fully prevent the onset of the anemic state in infected fish. Proinflammatory cytokines have been implicated in the suppression of erythropoiesis during trypanosomiasis, specifically the cytokines TNFα, IFNγ, and IL-1β. Analysis of key proinflammatory cytokines revealed that mRNA levels of IFNγ and TNFα were upregulated in response to infection, but only TNFα increased in response to PHZ treatment. Synergistic activity of the proinflammatory cytokines may be required to sustain prolonged anemia. These findings provide insight into the relationship between T. carassii and host anemia and suggest that T. carassii may directly or indirectly suppress host erythropoiesis.
Collapse
Affiliation(s)
- Mark McAllister
- Department of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Nicole Phillips
- Department of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
45
|
Lacreta G, Bucharles SGE, Sevignani G, Riella MC, Nascimento MMD. Pure red cell aplasia and anti-erythropoietin antibodies in patients on hemodialysis: a report of two cases and a literature review. ACTA ACUST UNITED AC 2018; 41:145-151. [PMID: 30160771 PMCID: PMC6534017 DOI: 10.1590/2175-8239-jbn-2018-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022]
Abstract
Introduction: Anemia is a frequent multifactorial complication of CKD seen in patients on dialysis derived mainly from impaired erythropoietin (EPO) production. A less common cause of anemia in individuals with CKD is pure red cell aplasia (PRCA) secondary to the production of anti-EPO antibodies. Objective: This paper aimed two describe two cases of PRCA secondary to the production of anti-EPO antibodies including choice of treatment, patient progression, and a literature review. Materials: This study included the cases of two patients with CKD on hemodialysis with severe anemia in need of specific investigation and management. Results: Patient 1 with CKD secondary to hypertension treated with EPO for 7 months showed persistent decreases in hemoglobin (Hb) levels despite the subcutaneous administration of increasing doses of EPO; the patient required recurring blood transfusions. Workup and imaging tests were negative for the main causes of anemia in individuals with CKD on dialysis. Patient 2 with CKD secondary to adult polycystic kidney disease had been taking EPO for 2 years. The patient developed severe abrupt anemia the month he was started on HD, and required recurring transfusions to treat the symptoms of anemia. Workup and imaging findings were inconclusive. Specific laboratory tests confirmed the patients had anti-EPO antibodies. After six months of immunosuppressant therapy (corticosteroids + cyclosporine) the patients were stable with Hb > 9.0 g/dl. Conclusion: PRCA is a rare condition among patients on dialysis treated with rhEPO and should be considered as a possible cause of refractory anemia. Treating patients with PRCA may be challenging, since the specific management and diagnostic procedures needed in this condition are not always readily available.
Collapse
Affiliation(s)
- Gabriela Lacreta
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Nefrologia, Curitiba, PR, Brasil.,Fundação Pró Renal, Curitiba, PR, Brasil
| | - Sérgio Gardano Elias Bucharles
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Nefrologia, Curitiba, PR, Brasil.,Fundação Pró Renal, Curitiba, PR, Brasil.,Clínica Evangélico de Hemodiálise, Curitiba, PR, Brasil
| | - Gabriela Sevignani
- Universidade Federal do Paraná, Hospital de Clínicas, Curitiba, PR, Brasil
| | | | - Marcelo Mazza do Nascimento
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Nefrologia, Curitiba, PR, Brasil.,Clínica Evangélico de Hemodiálise, Curitiba, PR, Brasil
| |
Collapse
|
46
|
Reynaldo-Fernández G, Solozábal J, Amaro D, Fernández-Sánchez EM, Rodríguez-Vera L, Bermejo M, Mangas-Sanjuan V, Troconiz IF. Semi-mechanistic Pharmacokinetic/Pharmacodynamic model of three pegylated rHuEPO and ior®EPOCIM in New Zealand rabbits. Eur J Pharm Sci 2018; 120:123-132. [PMID: 29729414 DOI: 10.1016/j.ejps.2018.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Marketed formulations of erythropoietin (EPO) ior®EPOCIM, MIRCERA® and two newly developed pegylated-EPO analogues (PEG-EPO 32 and 40 kDa) formulations were intravenously administered to New Zealand rabbits. A semi-mechanistic Pharmacokinetic/Pharmacodynamic (PK/PD) model describing in a simultaneous and integrated form the time course of reticulocytes, red blood cells and hemoglobin was built to account for the time course of hematopoiesis stimulation after erythropoietin administration. Data analysis was performed based on the population approach with the software NONMEM version 7.3. Erythropoietin disposition of each of the administered formulations was best described with a two compartment model and linear elimination. Different formulations show different clearance and apparent volume of distribution of the central compartment but share estimates of inter-compartmental clearance and apparent peripheral volume of distribution. A semi-mechanistic model including cell proliferation, maturation, and homeostatic regulation provided a good description of the data regardless the type of erythropoietin formulation administered. The system-, and drug-related parameters showed consistency and differed across formulations, respectively. A single IV administration of PEG-EPO 32 and 40 kDa formulations in New Zealand rabbits achieves a median change of 27% and 22% on RET levels, and of 47% and 63% on RBC and HGB levels, respectively compared to MIRCERA®. The administration of new branched PEG-chains formulations improves PK and PD properties of EPO, in terms of increasing elimination half-lives and pharmacological activity on RET, RBC and HGB compared to commercially available formulations (ior®EPOCIM and MIRCERA®).
Collapse
Affiliation(s)
- G Reynaldo-Fernández
- Department of Pharmacy, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | | | - D Amaro
- Center of Molecular Immunology, Cuba
| | - E M Fernández-Sánchez
- Department of Pharmacy, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - L Rodríguez-Vera
- Department of Pharmacy, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - M Bermejo
- Engineering: Pharmacy and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - V Mangas-Sanjuan
- Pharmacy and Pharmaceutical Technology Area, University of Valencia, Spain; Institute of Molecular Recognition and Technological Development (IDM), Joint Centre of Polytechnic University of Valencia and University of Valencia, Spain.
| | - I F Troconiz
- Pharmacometrics & Systems Pharmacology, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G. Iron and innate antimicrobial immunity-Depriving the pathogen, defending the host. J Trace Elem Med Biol 2018; 48:118-133. [PMID: 29773170 DOI: 10.1016/j.jtemb.2018.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
The acute-phase response is triggered by the presence of infectious agents and danger signals which indicate hazards for the integrity of the mammalian body. One central feature of this response is the sequestration of iron into storage compartments including macrophages. This limits the availability of this essential nutrient for circulating pathogens, a host defence strategy known as 'nutritional immunity'. Iron metabolism and the immune response are intimately linked. In infections, the availability of iron affects both the efficacy of antimicrobial immune pathways and pathogen proliferation. However, host strategies to withhold iron from microbes vary according to the localization of pathogens: Infections with extracellular bacteria such as Staphylococcus aureus, Streptococcus, Klebsiella or Yersinia stimulate the expression of the iron-regulatory hormone hepcidin which targets the cellular iron-exporter ferroportin-1 causing its internalization and blockade of iron egress from absorptive enterocytes in the duodenum and iron-recycling macrophages. This mechanism disrupts both routes of iron delivery to the circulation, contributes to iron sequestration in the mononuclear phagocyte system and mediates the hypoferraemia of the acute phase response subsequently resulting in the development of anaemia of inflammation. When intracellular microbes are present, other strategies of microbial iron withdrawal are needed. For instance, in macrophages harbouring intracellular pathogens such as Chlamydia, Mycobacterium tuberculosis, Listeria monocytogenes or Salmonella Typhimurium, ferroportin-1-mediated iron export is turned on for the removal of iron from infected cells. This also leads to reduced iron availability for intra-macrophage pathogens which inhibits their growth and in parallel strengthens anti-microbial effector pathways of macrophages including the formation of inducible nitric oxide synthase and tumour necrosis factor. Iron plays a key role in infectious diseases both as modulator of the innate immune response and as nutrient for microbes. We need to gain a more comprehensive understanding of how the body can differentially respond to infection by extra- or intracellular pathogens. This knowledge may allow us to modulate mammalian iron homeostasis pharmaceutically and to target iron-acquisition systems of pathogens, thus enabling us to treat infections with novel strategies that act independent of established antimicrobials.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria.
| | - Stefanie Dichtl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| |
Collapse
|
48
|
Güven Bağla A, Içkin Gülen M, Ercan F, Aşgün F, Ercan E, Bakar C. Changes in kidney tissue and effects of erythropoietin after acute heart failure. Biotech Histochem 2018; 93:340-353. [PMID: 29671622 DOI: 10.1080/10520295.2018.1443347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Impairment of cardiac function causes renal damage. Renal failure after heart failure is attributed to hemodynamic derangement including reduced renal perfusion and increased venous pressure. One mechanism involves apoptosis and is defined as cardiorenal syndrome type 1. Erythropoietin (EPO) is a cytokine that induces erythropoiesis under hypoxic conditions. Hypoxia inducible factor 1 alpha (HIF-1α) plays a regulatory role in cellular response to hypoxia. Protective effects of EPO on heart, kidney and nervous system are unrelated to red blood cell production. We investigated early changes in and effects of EPO on renal tissues of rats with myocardial infarction by morphology and immunohistochemistry. Coronary artery ligation was used to induce myocardial infarction in Wistar rats. Group 1 comprised sham operated rats; groups 2, 3 and 4 included rats after coronary artery ligation that were sacrificed 6 h after ligation and that were treated with saline, 5,000 U/kg EPO or 10,000 U/kg EPO, respectively; group 5 included rats sacrificed 1 h after ligation. Group 2 showed increased renal tubule damage. Significantly less tubule damage was observed in EPO treated groups. EPO and EPO receptor (EPO-R) immunostaining intensities increased slightly for group 5 and became more intense for group 2. EPO and EPO-R immunostaining was observed in the interstitial area, glomerular cells and tubule epithelial cells of EPO treated groups. HIF-1α immunostaining was observed in collecting tubules in the medulla only in group 2. Caspase-3 immunostaining is an indicator of apoptosis. Caspase-3 staining intensity decreased in renal medulla of EPO treated groups. EPO treatment may exert a protective effect on the renal tissues of patients with cardiorenal syndrome.
Collapse
Affiliation(s)
- A Güven Bağla
- a Çanakkale Onsekiz Mart University , School of Medicine, Department of Histology and Embryology , Çanakkale
| | - M Içkin Gülen
- a Çanakkale Onsekiz Mart University , School of Medicine, Department of Histology and Embryology , Çanakkale
| | - F Ercan
- b Marmara University , School of Medicine, Department of Histology and Embryology , Istanbul
| | - F Aşgün
- c Çanakkale Onsekiz Mart University , School of Medicine, Department of Cardiovascular Surgery , Çanakkale
| | - E Ercan
- d Department of Cardiology , Medical Park Hospital , Izmir
| | - C Bakar
- e Çanakkale Onsekiz Mart University , School of Medicine, Department of Public Health , Çanakkale , Turkey
| |
Collapse
|
49
|
Mihajlović F, Milosavljević A, Đurić D. Pure red cell aplasia induced by erythropoietin. SANAMED 2018. [DOI: 10.24125/sanamed.v13i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Introduction: Recombined human erythropoietin has been present in clinical practice for more than 20 years, in these therapeutic indications: anemia in kidney insufficiency, anemia during chemotherapy of tumors, prevention of anemias that appear in premature born babies, it is used for increasing autologous blood cell levels before blood transfusion, AIDS joined anemia (intensified by zidovudine), anemia joined with chronic inflammatory conditions such as rheumatoid arthritis(still in research phase). During the course of Erythropoietin treatment side effects have been noticed, that include multiple organ systems, and have different levels of frequency. Major number of studies shows connection between erythropoietin treatment and bone marrow aplasia, but small number of them states clearly defined side-effect that explains this phenomenon. Objective: Goal of this paper is to analyze available case studies of bone marrow aplasia during erythropoietin application, access their quality and causality of every study. Method: Research of literature used for the preparation of this systematic review has been conducted during the period of November-December 2017. In search for literature medical base PubMed has been used. Inclusion criteria were: available full article, publications in English language, publications conducted on humans, and case report studies. Eight studies passed selection. Results: results were presented by 5 charts: documentation size, credibility, number of case study reports of side-effects in the paper that was graded, Naranjo causality score, data extraction chart. Mean grade value of the studies quality was 7,0, while mean Naranjo score was 6,6.
Collapse
|
50
|
EPOR 2/βcR 2-independendent effects of low-dose epoetin- α in porcine liver transplantation. Biosci Rep 2017; 37:BSR20171007. [PMID: 29127105 PMCID: PMC5715127 DOI: 10.1042/bsr20171007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemia–reperfusion injury (IRI) remains a key component of graft damage during transplantation. Erythropoietin (EPO) induces anti-inflammatory and anti-apoptotic effects via the EPOR2/βcR2 complex, with a potential risk of thrombosis. Previous work indicates that EPO has EPOR2/βcR2-independent protective effects via direct effects on the endothelium. As the EPOR2/βcR2 receptor has a very low affinity for EPO, we aimed to test the hypothesis that EPO doses below the level that stimulate this receptor elicit cytoprotective effects via endothelial stimulation in a porcine liver transplantation model. Landrace pigs underwent allogenic liver transplantation (follow-up: 6 h) with a portojugular shunt. Animals were divided into two groups: donor and recipient treatment with low-dose EPO (65 IU/kg) or vehicle, administered 6 h before cold perfusion and 30 min after warm reperfusion. Fourteen of 17 animals (82.4%) fulfilled the inclusion criteria. No differences were noted in operative values between the groups including hemoglobin, cold or warm ischemic time. EPO-treated animals showed a significantly lower histopathology score, reduced apoptosis, oxidative stress, and most important a significant up-regulation of endothelial nitric oxide (NO) synthase (eNOS). Donor and recipient treatment with low-dose EPO reduces the hepatic IRI via EPOR2/βcR2-independent cytoprotective mechanisms and represents a clinically applicable way to reduce IRI.
Collapse
|