1
|
Mohamed AA, Armanious M, Bedair RW, Amin NS, El Tayebi HM. When less is more: The association between the expression of polymorphic CYPs and AFB1-induced HCC. Eur J Clin Invest 2024; 54:e14297. [PMID: 39099542 DOI: 10.1111/eci.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND An individual's genetic fingerprint is emerging as a pivotal predictor of numerous disease- and treatment-related factors. Single nucleotide polymorphisms (SNPs) in drug-metabolizing enzymes play key roles in an individual's exposure to a malignancy-associated risk, such as Aflatoxin B1 (AFB1)-induced hepatocellular carcinoma (HCC). AIM This study aimed at reviewing literature on the polymorphisms that exist in CYP enzymes and their possible link with susceptibility to AFB1-induced HCC. MATERIALS & METHODS A set of keywords associated with the study subject of interest was used to search the Google Scholar and the PubMed database. The last ten years' worth of research projects were included in the results filter. The research involved HCC patients and any connection between polymorphic forms of CYP enzymes and their susceptibility to AFB1-induced HCC, including older but significant data. RESULTS Variations in CYP1A2 and CYP3A4 were reported to impact the rate and magnitude of AFB1 bio-activation, thus influencing an individual's vulnerability to develop HCC. In HCC patients, the activity of CYP isoforms varies, where increased activity has been reported with CYP2C9, CYP2D6, and CYP2E1, while CYP1A2, CYP2C8, and CYP2C19 exhibit decreased activity. CYP2D6*10 frequency has been discovered to differ considerably in HCC patients. Rs2740574 (an upstream polymorphism in CYP3A4 as detected in CYP3A4*1B) and rs776746 (which affects CYP3A5 RNA splicing), both of which influence CYP3A expression, thus impacting the variability of AFB1-epoxide adducts in HCC patients. DISCUSSION CYP1A2 is the primary enzyme accountable for the formation of harmful AFBO globally. CYP3A4, CYP3A5, CYP3A7, CYP2B7, and CYP3A3 are also implicated in the bio-activation of AFB1 to mutagenic metabolites. It is thought that CYP3A4 is the protein that interacts with AFB1 metabolism the most. CONCLUSION Polymorphic variants of CYP enzymes have a functional impact on the susceptibility to AFB1-induced HCC. Outlining such variation and their implications may provide deeper insights into approaching HCC in a more personalized manner for guiding future risk-assessment, diagnosis, and treatment.
Collapse
Affiliation(s)
- Asmaa Ashraf Mohamed
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monica Armanious
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana W Bedair
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nada Sherif Amin
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
2
|
Chen W, Liu Y, Deng X, Li B, Wang H, Wei G, Chen K, Wang S. CYP2C19 Loss-of-Function is an Associated Risk Factor for Premature Coronary Artery Disease: A Case-Control Study. Int J Gen Med 2024; 17:5049-5058. [PMID: 39512259 PMCID: PMC11542493 DOI: 10.2147/ijgm.s486187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Cytochrome P450 2C19 (CYP2C19) is a major enzyme involved in the biotransformation and metabolism of various substances. Loss-of-function of the CYP2C19 gene represents downregulation of CYP2C19 enzyme indication limited or no enzymatic function, which may be, in turn, associated with some disease susceptibility. The relationship between CYP2C19 polymorphisms and susceptibility to premature coronary artery disease (PCAD) is not fully understood. This study aimed to assess this relationship. Methods This study included 635 PCAD patients, and 548 age-matched non-CAD individuals as controls, from November 2019 to August 2023. The CYP2C19 rs4244285 (681G > A, *2) and rs4986893 (636G > A, *3) were genotyped, and the distribution of CYP2C19 polymorphisms between patients and controls and the relationship between CYP2C19 polymorphisms and PCAD risk were analyzed. Results A total of 442 (37.4%), 543 (45.9%), and 198 (16.7%) individuals had CYP2C19 extensive metabolizer (EM) (*1/*1), intermediate metabolizer (IM) (*1/*2 and *1/*3), and poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) phenotypes, respectively. CYP2C19 *2/*2 genotype frequency was higher, *1/*1 genotype was lower in PCAD patients than controls. Individuals with CYP2C19 PM phenotype had higher triglyceride (TG) levels than those with CYP2C19 EM or IM phenotypes. Logistic regression analysis showed that body mass index (BMI) ≥24.0 kg/m2 (≥24.0 kg/m2 vs 18.5-23.9 kg/m2, odds ratio (OR): 1.326, 95% confidence interval (CI): 1.041-1.688, p = 0.022), smoking (OR: 1.974, 95% CI: 1.283-3.306, p = 0.002), hypertension (OR: 1.327, 95% CI: 1.044-1.687, p = 0.021), diabetes mellitus (OR: 1.390, 95% CI: 1.054-1.834, p = 0.020), CYP2C19 PM phenotype (PM phenotype vs EM phenotype, OR: 1.701, 95% CI: 1.200-2.411, p = 0.003), and CYP2C19 IM+PM phenotypes (IM+PM vs EM phenotype, OR: 1.369, 95% CI: 1.077-1.740, p = 0.010) were associated with PCAD. Conclusion CYP2C19 PM or IM+PM phenotypes, overweight, smoking, hypertension, and diabetes mellitus were associated with PCAD.
Collapse
Affiliation(s)
- Wenhao Chen
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yuanliang Liu
- Department of Computer Tomography, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xunwei Deng
- Research Experimental Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Bin Li
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Hao Wang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Guoliang Wei
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Kehui Chen
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Shen Wang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
3
|
Lin Y, Yang M, Liu Q, Cai Y, Zhang Z, Xu C, Luo M. Apolipoprotein E Gene ε4 Allele is Associated with Atherosclerosis in Multiple Vascular Beds. Int J Gen Med 2024; 17:5039-5048. [PMID: 39512258 PMCID: PMC11542474 DOI: 10.2147/ijgm.s475771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Background Atherosclerosis is a systemic disease that can involve multiple vascular beds. The risk factors for atherosclerosis in multiple vascular beds remain unclear. Apolipoprotein E (APOE) is involved in inflammation and lipid deposition in the process of atherosclerosis. The objective of this study was to investigate whether APOE polymorphisms are associated with atherosclerosis in multiple vascular beds. Methods A total of 416 patients with atherosclerosis in single vascular bed and 658 patients with atherosclerosis in multiple vascular beds were included. APOE genotypes were detected and the differences of APOE genotypes between the groups were compared. Logistic regression analysis was performed to analyze the relationship between APOE genotypes and atherosclerosis in multiple vascular beds. Results APOE E3/E4 genotype frequency was lower in the patients with atherosclerosis in multiple vascular beds than that of patients with atherosclerosis in single vascular bed (11.4% vs 17.8%, P=0.004). There was no significant difference in age and gender distribution, proportion of history of smoking, alcohol consumption, hypertension, and diabetes mellitus between the two groups (all P>0.05), and among patients with different APOE alleles (all P>0.05). Logistic regression analysis indicated that APOE E3/E4 genotype (E3/E4 vs E3/E3: odds ratio (OR) 0.598, 95% confidence interval (CI): 0.419-0.854, P=0.005), and APOE ε4 allele (ε4 vs ε3: OR 0.630, 95% CI: 0.444-0.895, P=0.010) associated with atherosclerosis in multiple vascular beds. Conclusion APOE ε4 allele is associated with atherosclerosis in multiple vascular beds.
Collapse
Affiliation(s)
- Youni Lin
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Min Yang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Qifeng Liu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yufu Cai
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhouhua Zhang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Chongfei Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Ming Luo
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
4
|
Shi Y, Yang Y, Feng M, Wu H. CYP2C19 loss-of-function variants are independent risk factors for premature cerebral infarction: a hospital based retrospective study. BMC Cardiovasc Disord 2024; 24:602. [PMID: 39472784 PMCID: PMC11520391 DOI: 10.1186/s12872-024-04269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE Cytochrome P450 2C19 (CYP2C19) plays an vital role in the course of cardiovascular and cerebrovascular diseases by affecting lipid metabolism. Triglyceride-glucose (TyG) is a comprehensive index composed of triglyceride and blood glucose, has relationship with some diseases. There was no research report on the association CYP2C19 polymorphisms, TyG with premature cerebral infarction (CI) (onset ≤ 65 years old) susceptibility. METHODS This study retrospectively analyzed 1953 CI patients aged ≤ 65 years old from December 2018 to March 2024, and 1919 age-matched individuals with non-CI as controls. The relationship between CYP2C19 polymorphisms, TyG and premature CI risk were analyzed. RESULTS The proportion of hypertension, and diabetes mellitus in patients with premature CI was higher than those in controls. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), and TyG levels in patients with premature CI were significantly higher than those in controls (all p < 0.05). The patients had lower CYP2C19 *1 allele frequency (63.3% vs. 69.6%, p < 0.001) and higher CYP2C19 *2 allele frequency (31.3% vs. 25.4%, p < 0.001) than controls. Logistic regression analysis showed that smoking history (odds ratio (OR): 1.193, 95% confidence interval (CI): 1.002-1.422, p = 0.048), hypertension (OR: 3.371, 95% CI: 2.914-3.898, p < 0.001), diabetes mellitus (OR: 1.911, 95% CI: 1.632-2.237, p < 0.001), CYP2C19 intermediate metabolizer (IM) + poor metabolizer (PM) phenotypes (OR: 1.424, 95% CI: 1.243-1.631, p < 0.001), and dyslipidemia (OR: 1.294, 95% CI: 1.077-1.554, p = 0.006) were independent risk factors for premature CI. CONCLUSIONS History of smoking, hypertension, diabetes mellitus, dyslipidemia, and CYP2C19 IM + PM phenotypes were independently associated with premature CI susceptibility.
Collapse
Affiliation(s)
- Yuliang Shi
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Yuxian Yang
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Miaoling Feng
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
| |
Collapse
|
5
|
Han W, Xiong N, Zhong R, Pan Z. CYP2C19 Poor Metabolizer Status and High System Inflammation Response Index are Independent Risk Factors for Premature Myocardial Infarction: A Hospital-Based Retrospective Study. Int J Gen Med 2024; 17:4959-4969. [PMID: 39494358 PMCID: PMC11529344 DOI: 10.2147/ijgm.s489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Objective Atherosclerosis (AS) is a sustained chronic vascular inflammatory response caused by lipid metabolism disorders and immune response disorders and is the main cause of premature (men ≤ 55 years old, women ≤ 65 years old) myocardial infarction (PMI). Cytochrome P450 2C19 (CYP2C19) (related to vascular function and lipid metabolism) and peripheral immune cell levels and plays an important role in the course of AS. The association CYP2C19 polymorphisms, comprehensive immunoinflammatory indices with PMI susceptibility is unclear. Methods This study included 485 PMI patients, and 639 age-matched non-PMI individuals as controls, from January 2019 to March 2024. The relationship between CYP2C19 polymorphisms, peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and PMI risk were analyzed. Results The inflammatory indices levels in PMI patients were higher than those in controls (all p<0.05). The frequencies of the CYP2C19 *1/*2 and *2/*2 genotypes were higher, while the frequency of the *1/*1 genotype was lower in the PMI patients than those in controls. The cut-off values of TC, TG, LDL-C, PIV, SII, and SIRI were 5.065, 1.305, 2.805, 410.485, 869.645, and 1.495 for distinguishing PMI, respectively. Logistic regression analysis showed that male (odds ratio (OR): 1.607, 95% confidence interval (CI): 1.134-2.277, p=0.008), history of smoking (OR: 7.108, 95% CI: 4.351-11.614, p<0.001), diabetes mellitus (OR: 4.906, 95% CI: 3.333-7.223, p<0.001), CYP2C19 poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) (OR: 2.147, 95% CI: 1.279-3.603, p=0.004), and high TG (≥1.305 vs <1.305, OR: 2.598, 95% CI: 1.864-3.623, p<0.001) and SIRI level (≥1.495 vs <1.495, OR: 2.495, 95% CI: 1.432-4.349, p=0.001) were independent risk factors for PMI. Conclusion CYP2C19 PM phenotype, high SIRI level (≥1.495) and TG level (≥1.305), male, history of smoking, and diabetes mellitus were independently associated with PMI susceptibility.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Renkai Zhong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhongyi Pan
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
6
|
Cheng Y, Luo L, Tang H, Wang J, Ren L, Cui G, Zhao Y, Tang J, Su P, Wang Y, Hu Y, Ma Y, Guo J, Huang L. Engineering the microenvironment of P450s to enhance the production of diterpenoids in Saccharomyces cerevisiae. Acta Pharm Sin B 2024; 14:4608-4618. [PMID: 39525594 PMCID: PMC11544389 DOI: 10.1016/j.apsb.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 11/16/2024] Open
Abstract
Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products (PNPs). Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient production of PNPs through synthetic biology. In this study, we engineered Saccharomyces cerevisiae to optimize the microenvironment for boosting the activities of P450s, including coexpression with the redox partner genes, enhancing NADPH supply, expanding the endoplasmic reticulum (ER), strengthening heme biosynthesis, and regulating iron uptake. This created a platform for the efficient production 11,20-dihydroxyferruginol, a key intermediate of the bioactive compound tanshinones. The yield was enhanced by 42.1-fold through 24 effective genetic edits. The optimized strain produced up to 67.69 ± 1.33 mg/L 11,20-dihydroxyferruginol in shake flasks. Our work represents a promising advancement toward constructing yeast cell factories containing P450s and paves the way for microbial biosynthesis of tanshinones in the future.
Collapse
Affiliation(s)
- Yatian Cheng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Linglong Luo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Hao Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Li Ren
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yujun Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Jinfu Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Ping Su
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yanan Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ying Ma
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| |
Collapse
|
7
|
Jiang Y, Wang K, Mei X, Zhou Y. The potential Role of CYP2D6*10(c.100 C>T) Gene Polymorphism in Kidney Injury of Patients with Hypertension Complicated with Non-Elevated Cystatin C. Cardiovasc Toxicol 2024; 24:836-841. [PMID: 38867055 DOI: 10.1007/s12012-024-09880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
This study aims to investigate the potential role of CYP2D6*10 (c.100 C>T) gene polymorphism in renal function injury among hypertensive patients without elevated cystatin C. A cohort of hypertensive patients without elevated cystatin C was enrolled between 2021 and 2024 in the Fourth Affiliated Hospital of Soochow University, and their peripheral venous blood was used for total RNA extraction and CYP2D6*10 genotype analysis. Based on kidney injury status, patients were categorized into two groups, hypertensive patients with kidney injury (n = 94) and those without (n = 893). General characteristics such as age, gender and hyperlipemia were compared between the two groups. Multiple genotype models were investigated between the two groups, including allele models, dominant models, recessive models, co-dominant models, and super-dominant models. The results revealed that in the co-dominant gene model (CC vs. CT vs. TT), the risk of hypertension combined with renal injury was lower with the CT genotype compared to the CC genotype (Odds Ratio (OR) = 0.55, 95% Confidence Interval (CI) = 0.32-0.93, p = 0.02). In the overdominance model (CC + TT vs. CT), the risk of hypertension and renal injury in CC and CT genotypes was 0.42 times lower than that in the CT genotype (OR = 0.42, 95% CI = 0.27-0.64, p < 0.001). This study proposes CYP2D610 gene polymorphism as a potential predictor of renal function injury in hypertensive patients with normal cystatin C levels.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute for Hypertension of Soochow University, Suzhou, 215000, China
| | - Kuangyi Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute for Hypertension of Soochow University, Suzhou, 215000, China
| | - Xiaofei Mei
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute for Hypertension of Soochow University, Suzhou, 215000, China
| | - Yafeng Zhou
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute for Hypertension of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
8
|
Gudur RA, Bhosale SJ, Gudur AK, Kale SR, More AL, Datkhile KD. The Effect of CYP2C19*2 (rs4244285) and CYP17 (rs743572) SNPs on Adriamycin and Paclitaxel based Chemotherapy Outcomes in Breast Cancer Patients. Asian Pac J Cancer Prev 2024; 25:1977-1986. [PMID: 38918659 PMCID: PMC11382849 DOI: 10.31557/apjcp.2024.25.6.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) are phase I metabolizing enzymes involved in detoxification of chemotherapeutic agents. Among the CYP gene family, including CYP1A1, CYP1B1, CYP2C, CYP2D, CYP2E and CYP17, their significance in cancer susceptibility is well established. However, there remains limited understanding regarding the polymorphisms of CYP2C19*2 and CYP17 and their potential correlation with chemotherapy-induced toxicity reactions in breast cancer (BC) patients. In this study we intended to identify the association of CYP2C19*2 and CYP17 gene polymorphisms on drug response as well as toxicity reactions in BC patients undergoing adriamycin/paclitaxel based chemotherapy within Indian population. METHODS Two hundred BC patients receiving adriamycin and paclitaxel chemotherapy were enrolled in this study and chemotherapy induced hematological and non-hematological toxicity reactions were noted. The polymorphisms of CYP2C19*2 (681G>A) and CYP17 (34T>C) isoforms of cytochrome p 450 gene was studied by PCR and RFLP analysis. RESULTS The univariate logistic regression analysis revealed significant associations between CYP2C19*2 (681 G>A) polymorphisms with hematological toxicities i.e., anemia (OR=9.77, 95% CI: 2.84-33.52; p=0.0003), neutropenia (OR=5.72, 95% CI: 1.75-18.68; p=0.003), febrile neutropenia (OR=4.29, 95% CI: 1.32-13.87; p=0.014) and thrombocytopenia (OR=5.86, 95% CI: 1.15-29.72); p=0.032) in BC patients. Additionally BC patients treated with adriamycin exhibited significant association between CYP2C19*2 polymorphism with chemotherapy induced nausea and vomiting (CINV) (OR=99.73, 95% CI: 5.70-174.64); p=0.001), fatigue (OR=83.29, 95% CI: 4.77-145.69); p=0.002), bodyache (OR=4.44, 95% CI: 1.24-15.91); p=0.021) and peripheral neuropathy (OR=12.00, 95% CI: 1.80-79.89); p=0.010. Furthermore, the regression analysis indicated an association between CYP17 with body ache (OR=2.77, 95% CI: 1.21-6.34; p=0.015) and peripheral neuropathy (OR=3.90, 95% CI: 1.59-9.53; p=0.002) in BC patients treated with paclitaxel chemotherapy. CONCLUSION The findings obtained from this study illustrated significant association of CYP2C9*2 (681G>A) polymorphism with adreamicin based chemotherapy induced toxicities and CYP17 (34T>C) polymorphism with paclitaxel induced bodyache and peripheral neuropathy in BC patients.
Collapse
Affiliation(s)
- Rashmi A Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India
| | - Suresh J Bhosale
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India
| | - Anand K Gudur
- Department of Oncology, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India
| | - Shivani R Kale
- Department of Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India
| | - Ashwini L More
- Department of Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India
| | - Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India
| |
Collapse
|
9
|
Pasqui E, Luzzi L, Lazzeri E, Casilli G, Ferrante G, Catelli C, Paladini P, de Donato G. Prevalence of concomitant aortic disease and lung cancer: an exploratory study. J Thorac Dis 2024; 16:2800-2810. [PMID: 38883621 PMCID: PMC11170407 DOI: 10.21037/jtd-23-1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 06/18/2024]
Abstract
Background Lung cancer and aortic disease share multiple risk factors. The co-presence of both diseases defines a peculiar type of patient who needs a specific protocol of treatment and follow-up. The aim of our study was to evaluate the prevalence of aortic disease in a population of patients with a diagnosis of primary lung cancer. Methods A retrospective, single center analysis of all patients admitted to the Thoracic Surgery Unit from January 2015 to January 2021. Demographic and baseline characteristics were retrieved from hospital electronic charts. All patients were screened for aortic disease, reviewing thoraco-abdominal Computed Tomography with contrast medium administration performed for oncological reasons. A cancer-free control group was obtained for comparison. Multilinear regression analysis was performed to identify the risk factors for the presence of aortic disease. Results A total of 264 patients were preliminarily identified. After reviewing for exclusion criteria, a total of 148 patients were included in the analysis. Most of the patients were male (62.2%) with a mean age of 71±8.7 years. Cardiovascular risk factors were extensively prevalent in the population study. The incidence of aortic pathologies in the group of patients suffering from primary lung cancer was 27% (40 patients). The majority presented thoracic aortic aneurysms (11.5%). Comparison between the lung cancer group and the control group highlighted a substantial difference in terms of aortic disease prevalence (27% vs. 2.9%; P<0.0001). The regression analysis revealed that coronary artery disease [odds ratio (OR) 4.6988, P=0.001], peripheral artery disease (OR 7.7093, P=0.002), hypertension (OR 4.0152, P=0.03) and history of previous non-aortic vascular surgery procedures (OR 6.4509, P=0.003) were risk factors for aortic disease in patients with primary lung cancer. Conclusions Patients with lung cancer have a high prevalence of aortic disease, defining a peculiar subset of patients who deserve a specific protocol of treatment and follow-up. Further studies are needed to define a dedicated standardized multidisciplinary approach.
Collapse
Affiliation(s)
- Edoardo Pasqui
- Vascular Surgery Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luca Luzzi
- Lung Transplantation Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Vascular Surgery Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giulia Casilli
- Vascular Surgery Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Giulia Ferrante
- Vascular Surgery Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Chiara Catelli
- Lung Transplantation Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Piero Paladini
- Thoracic Surgery Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Gianmarco de Donato
- Vascular Surgery Unit, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Carrera-Pacheco SE, Mueller A, Puente-Pineda JA, Zúñiga-Miranda J, Guamán LP. Designing cytochrome P450 enzymes for use in cancer gene therapy. Front Bioeng Biotechnol 2024; 12:1405466. [PMID: 38860140 PMCID: PMC11164052 DOI: 10.3389/fbioe.2024.1405466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Cancer is a significant global socioeconomic burden, as millions of new cases and deaths occur annually. In 2020, almost 10 million cancer deaths were recorded worldwide. Advancements in cancer gene therapy have revolutionized the landscape of cancer treatment. An approach with promising potential for cancer gene therapy is introducing genes to cancer cells that encode for chemotherapy prodrug metabolizing enzymes, such as Cytochrome P450 (CYP) enzymes, which can contribute to the effective elimination of cancer cells. This can be achieved through gene-directed enzyme prodrug therapy (GDEPT). CYP enzymes can be genetically engineered to improve anticancer prodrug conversion to its active metabolites and to minimize chemotherapy side effects by reducing the prodrug dosage. Rational design, directed evolution, and phylogenetic methods are some approaches to developing tailored CYP enzymes for cancer therapy. Here, we provide a compilation of genetic modifications performed on CYP enzymes aiming to build highly efficient therapeutic genes capable of bio-activating different chemotherapeutic prodrugs. Additionally, this review summarizes promising preclinical and clinical trials highlighting engineered CYP enzymes' potential in GDEPT. Finally, the challenges, limitations, and future directions of using CYP enzymes for GDEPT in cancer gene therapy are discussed.
Collapse
Affiliation(s)
- Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | | | | |
Collapse
|
11
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Ageeli Hakami M. Diabetes and diabetic associative diseases: An overview of epigenetic regulations of TUG1. Saudi J Biol Sci 2024; 31:103976. [PMID: 38510528 PMCID: PMC10951089 DOI: 10.1016/j.sjbs.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The epigenetic regulation of lncRNA TUG1 has garnered significant attention in the context of diabetes and its associated disorders. TUG1's multifaceted roles in gene expression modulation, and cellular differentiation, and it plays a major role in the growth of diabetes and the issues that are related to it due to pathological processes. In diabetes, aberrant epigenetic modifications can lead to dysregulation of TUG1 expression, contributing to disrupted insulin signaling, impaired glucose metabolism, and beta-cell dysfunction. Moreover, it has been reported that TUG1 contributes to the development of problems linked to diabetes, such as nephropathy, retinopathy, and cardiovascular complications, through epigenetically mediated mechanisms. Understanding the epigenetic regulations of TUG1 offers novel insights into the primary molecular mechanisms of diabetes and provides a possible path for healing interventions. Targeting epigenetic modifications associated with TUG1 holds promise for restoring proper gene expression patterns, ameliorating insulin sensitivity, and mitigating the inception and development of diabetic associative diseases. This review highlights the intricate epigenetic landscape that governs TUG1 expression in diabetes, encompassing DNA methylation and alterations in histone structure, as well as microRNA interactions.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Yang Y, Yang R, Deng F, Yang L, Yang G, Liu Y, Tian Q, Wang Z, Li A, Shang L, Cheng G, Zhang L. Immunoactivation by Cutaneous Blue Light Irradiation Inhibits Remote Tumor Growth and Metastasis. ACS Pharmacol Transl Sci 2024; 7:1055-1068. [PMID: 38633599 PMCID: PMC11019738 DOI: 10.1021/acsptsci.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.
Collapse
Affiliation(s)
- Yingchun Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fangqing Deng
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Luqiu Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guanghao Yang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanyan Liu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Tian
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zixi Wang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Aipeng Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Shang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Genyang Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lianbing Zhang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Lu Y, Chen H, Shao Z, Sun L, Li C, Lu Y, You X, Yang X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front Microbiol 2024; 15:1301204. [PMID: 38591032 PMCID: PMC10999552 DOI: 10.3389/fmicb.2024.1301204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyuan Shao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| |
Collapse
|
15
|
Elfaki I, Mir R, Tayeb F, Alalawy AI, Barnawi J, Dabla PK, Moawadh MS. Potential Association of The Pathogenic Kruppel-like Factor 14 (KLF14) and Adiponectin (ADIPOQ) SNVs with Susceptibility to T2DM. Endocr Metab Immune Disord Drug Targets 2024; 24:1090-1100. [PMID: 38031795 DOI: 10.2174/0118715303258744231117064253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
AIM To evaluate the associations of the pathogenic variants in Kruppel-like Factor 14 (KLF 14) and Adiponectin (ADIPOQ) with susceptibility to type 2 diabetes mellitus (T2DM). BACKGROUND Type 2 diabetes mellitus (T2DM) is a pandemic metabolic disease characterized by increased blood sugar and caused by resistance to insulin in peripheral tissues and damage to pancreatic beta cells. Kruppel-like Factor 14 (KLF-14) is proposed to be a regulator of metabolic diseases, such as diabetes mellitus (DM) and obesity. Adiponectin (ADIPOQ) is an adipocytokine produced by the adipocytes and other tissues and was reported to be involved in T2DM. OBJECTIVES To study the possible association of the KLF-14 rs972283 and ADIPOQ-rs266729 with the risk of T2DM in the Saudi population. METHODS We have evaluated the association of KLF-14 rs972283 C>T and ADIPOQ-rs266729 C>G SNV with the risk to T2D in the Saudi population using the Amplification Refractory Mutation System PCR (ARMS-PCR), and blood biochemistry analysis. For the KLF-14 rs972283 C>T SNV we included 115 cases and 116 healthy controls, and ADIPOQ-rs266729 C>G SNV, 103 cases and 104 healthy controls were included. RESULTS Results indicated that the KLF-14 rs972283 GA genotype and A allele were associated with T2D risk with OR=2.14, p-value= 0.014 and OR=1.99, p-value=0.0003, respectively. Results also ADIPOQ-rs266729 CG genotype and C allele were associated with an elevated T2D risk with an OR=2.53, p=0.003 and OR=1.66, p-value =0.012, respectively. CONCLUSION We conclude that SNVs in KLF-14 and ADIPOQ are potential loci for T2D risk. Future large-scale studies to verify these findings are recommended. These results need further verifications in protein functional and large-scale case control studies before being introduced for genetic testing.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Faris Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research (GIPMER), Associated to Maulana Azad Medical College, Delhi 110002, India
| | - Mamdoh Shafig Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| |
Collapse
|
16
|
Hu Z, Chen S, Shi T, Dong Z, Cheng M, Li N, Zhao H, Zhu H, Han C, Xu L. Masson pine pollen aqueous extract ameliorates cadmium-induced kidney damage in rats. Front Mol Biosci 2023; 10:1249744. [PMID: 38143799 PMCID: PMC10748820 DOI: 10.3389/fmolb.2023.1249744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/19/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: Cadmium (Cd) is a hazardous environmental pollutant present in soil, water, and food. Accumulation of Cd in organisms can cause systematic injury and damage to the kidney. The Masson pine pollen aqueous extract (MPPAE) has attracted increasing attention due to its antioxidant activity and ability to enhance immunity. Methods: In this study, we investigated the potential of MPPAE to protect against Cd-induced kidney damage in rats and the underlying mechanism. The transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, were explored. Results: The concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were both significantly altered after treatment with MPPAE. Furthermore, sequencing and analysis of the transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, revealed differential expression of numerous genes and metabolites compared with the untreated control rats. These differentially expressed genes (DEGs) included detoxification-related genes such as cytochrome P450 and the transporter. The differentially expressed metabolites (DEMs) included 4-hydroxybenzoic acid, L-ascorbate, and ciliatine. Conjoint transcriptome and metabolome analysis showed that several DEGs were correlated with DEMs. Conclusion: These preliminary findings indicate the potential of MPPAE for the treatment of toxic metal poisoning.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Sixin Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Tala Shi
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Zhaoju Dong
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Haibo Zhu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Chunlei Han
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Lanlan Xu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
Xie J, Pan T, Luo W, Zhang S, Fang Y, Xu Z. CYP2C19 *2/*2 Genotype is a Risk Factor for Multi-Site Arteriosclerosis: A Hospital-Based Cohort Study. Int J Gen Med 2023; 16:5139-5146. [PMID: 37954650 PMCID: PMC10637229 DOI: 10.2147/ijgm.s437251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Background Vascular diseases such as atherosclerosis usually affect multiple organs. Genetic factors have a certain proportion in the risk factors of atherosclerosis. The purpose was to investigate the relationship of cytochrome P450 2C19 (CYP2C19) polymorphisms with multi-site atherosclerosis. Methods The study included 410 patients with single-site atherosclerosis and 529 patients with multi-site atherosclerosis. The relationship between CYP2C19 rs4244285 and rs4986893 polymorphisms and single-site atherosclerosis and multi-site atherosclerosis was analyzed. Results The proportion of CYP2C19 rs4244285 A allele (35.9% vs 29.9%, P=0.007) and rs4986893 G allele (97.7% vs 94.8%, P=0.001) in multi-site atherosclerosis group was significantly higher than that in single-site atherosclerosis group. The distribution of CYP2C19 genotypes was significantly different between the two groups (P=0.002). The results of univariate logistic regression indicated that CYP2C19 *1/*3 genotype (*1/*3 vs *1/*1: odds ratio (OR) 0.456, 95% confidence interval (CI): 0.231-0.902, P=0.024) may decrease risk of multi-site atherosclerosis, while *2/*2 genotype (*2/*2 vs *1/*1: OR 1.780, 95% CI: 1.100-2.880, P=0.019) may increase risk of multi-site atherosclerosis. Multivariate logistic regression (adjusted for gender, age, smoking, drinking, hypertension, and diabetes) indicated that CYP2C19 *1/*3 genotype (*1/*3 vs *1/*1: OR 0.459, 95% CI: 0.231-0.909, P=0.026) may be an independent protective factor for multi-site atherosclerosis, while *2/*2 genotype (*2/*2 vs *1/*1: OR 1.767, 95% CI: 1.091-2.864, P=0.021) may be an independent risk factor for multi-site atherosclerosis. Conclusion CYP2C19 *1/*3 genotype may be an independent protective factor for multi-site atherosclerosis, while *2/*2 genotype may be an independent risk factor for multi-site atherosclerosis.
Collapse
Affiliation(s)
- Jieyao Xie
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Tingjun Pan
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Weiwen Luo
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Songsheng Zhang
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yuquan Fang
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhou Xu
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
18
|
Wang J, Yang H, Wang C, Kan C. Cyp2e1 knockdown attenuates high glucose-induced apoptosis and oxidative stress of cardiomyocytes by activating PI3K/Akt signaling. Acta Diabetol 2023; 60:1219-1229. [PMID: 37195324 DOI: 10.1007/s00592-023-02110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
AIMS Cyp2e1 is a crucial CYP450 enzyme participating in diabetes and cardiovascular disorder. However, the role of Cyp2e1 in diabetic cardiomyopathy (DCM) has never been reported. Thus, we intended to identify the effects of Cyp2e1 on cardiomyocytes under high glucose (HG) conditions. METHODS Identification of differentially expressed genes in DCM and control rats was performed using bioinformatics analysis based on GEO database. The Cyp2e1-knockdown H9c2 and HL-1 cells were established through transfection with si-Cyp2e1. Western blot analysis was performed to determine the expression levels of Cyp2e1, apoptosis-related proteins and PI3K/Akt signaling-associated proteins. TUNEL assay was performed to assess apoptotic rate. Reactive oxygen species (ROS) generation was examined by DCFH2-DA staining assay. RESULTS From the bioinformatics analysis, Cyp2e1 was confirmed as an upregulated gene in DCM tissues. In vitro assays proved that Cyp2e1 expression was markedly increased in HG-induced H9c2 and HL-1 cells. Cyp2e1 knockdown attenuated HG-induced apoptosis in both H9c2 and HL-1 cells, as proved by deceased apoptotic rate, relative cleaved caspase-3/caspase-3 level, and caspase-3 activity. Cyp2e1 knockdown reduced ROS generation and elevated the expression level of nuclear Nrf2 in HG-induced H9c2 and HL-1 cells. Increased relative levels of p-PI3K/PI3K and p-Akt/Akt were found in Cyp2e1-knockdown H9c2 and HL-1 cells. Inhibition of PI3K/Akt using LY294002 reversed the inhibitory effects of Cyp2e1 knockdown on cell apoptosis and ROS generation on cardiomyocytes. CONCLUSIONS Cyp2e1 knockdown attenuated HG-induced apoptosis and oxidative stress by activating PI3K/Akt signaling in cardiomyocytes. These findings suggested that Cyp2e1 might be potentially used as an effective therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Jianying Wang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, Henan Province, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, Henan Province, China
| | - Chao Wang
- Department of Geriatrics, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, Henan Province, China
| | - Cuie Kan
- Department of Intensive Care Unit, Huai'an Second Peopl's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 South Huaihai Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
19
|
Markovič R, Grubelnik V, Završnik T, Blažun Vošner H, Kokol P, Perc M, Marhl M, Završnik M, Završnik J. Profiling of patients with type 2 diabetes based on medication adherence data. Front Public Health 2023; 11:1209809. [PMID: 37483941 PMCID: PMC10358769 DOI: 10.3389/fpubh.2023.1209809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a complex, chronic disease affecting multiple organs with varying symptoms and comorbidities. Profiling patients helps identify those with unfavorable disease progression, allowing for tailored therapy and addressing special needs. This study aims to uncover different T2DM profiles based on medication intake records and laboratory measurements, with a focus on how individuals with diabetes move through disease phases. Methods We use medical records from databases of the last 20 years from the Department of Endocrinology and Diabetology of the University Medical Center in Maribor. Using the standard ATC medication classification system, we created a patient-specific drug profile, created using advanced natural language processing methods combined with data mining and hierarchical clustering. Results Our results show a well-structured profile distribution characterizing different age groups of individuals with diabetes. Interestingly, only two main profiles characterize the early 40-50 age group, and the same is true for the last 80+ age group. One of these profiles includes individuals with diabetes with very low use of various medications, while the other profile includes individuals with diabetes with much higher use. The number in both groups is reciprocal. Conversely, the middle-aged groups are characterized by several distinct profiles with a wide range of medications that are associated with the distinct concomitant complications of T2DM. It is intuitive that the number of profiles increases in the later age groups, but it is not obvious why it is reduced later in the 80+ age group. In this context, further studies are needed to evaluate the contributions of a range of factors, such as drug development, drug adoption, and the impact of mortality associated with all T2DM-related diseases, which characterize these middle-aged groups, particularly those aged 55-75. Conclusion Our approach aligns with existing studies and can be widely implemented without complex or expensive analyses. Treatment and drug use data are readily available in healthcare facilities worldwide, allowing for profiling insights into individuals with diabetes. Integrating data from other departments, such as cardiology and renal disease, may provide a more sophisticated understanding of T2DM patient profiles.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Tadej Završnik
- University Clinical Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Helena Blažun Vošner
- Community Healthcare Center Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Faculty of Health and Social Sciences, Slovenj Gradec, Slovenia
- Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea - ECM, Maribor, Slovenia
- Complexity Science Hub Vienna, Vienna, Austria
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Matej Završnik
- Department of Endocrinology and Diabetology, University Medical Center Maribor, Maribor, Slovenia
| | - Jernej Završnik
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Community Healthcare Center Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Alma Mater Europaea - ECM, Maribor, Slovenia
- Science and Research Center Koper, Koper, Slovenia
| |
Collapse
|
20
|
Yuan X, Li H, Guo X, Jiang H, Zhang Q, Zhang L, Wang G, Li W, Zhao M. Functional roles of two novel P450 genes in the adaptability of Conogethes punctiferalis to three commonly used pesticides. Front Physiol 2023; 14:1186804. [PMID: 37457033 PMCID: PMC10338330 DOI: 10.3389/fphys.2023.1186804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Insect cytochrome P450 (CYP450) genes play important roles in the detoxification and metabolism of xenobiotics, such as plant allelochemicals, mycotoxins and pesticides. The polyphagous Conogethes punctiferalis is a serious economic pest of fruit trees and agricultural crops, and it shows high adaptability to different living environments. Methods: The two novel P450 genes CYP6CV1 and CYP6AB51 were identified and characterized. Quantitative real-time PCR (qRT-PCR) technology was used to study the expression patterns of the two target genes in different larval developmental stages and tissues of C. punctiferalis. Furthermore, RNA interference (RNAi) technology was used to study the potential functions of the two P450 genes by treating RNAi-silenced larvae with three commonly used pesticides. Results: The CYP6CV1 and CYP6AB51 genes were expressed throughout various C. punctiferalis larval stages and in different tissues. Their expression levels increased along with larval development, and expression levels of the two target genes in the midgut were significantly higher than in other tissues. The toxicity bioassay results showed that the LC50 values of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin on C. punctiferalis larvae were 0.2028 μg/g, 0.0683 μg/g and 0.6110 mg/L, respectively. After treating with different concentrations of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin (LC10, LC30, LC50), independently, the relative expressions of the two genes CYP6CV1 and CYP6AB51 were significantly induced. After the dsRNA injection, the expression profiles of the two CYP genes were reduced 72.91% and 70.94%, respectively, and the mortality rates of the larvae significantly increased when treated with the three insecticides independently at LC10 values. Discussion: In the summary, after interfering with the CYP6CV1 and CYP6AB51 in C. punctiferalis, respectively, the sensitivity of C. punctiferalis to chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin was significantly increased, indicating that the two CYP6 genes were responsible for the adaptability of C. punctiferalis to the three chemical insecticides in C. punctiferalis. The results from this study demonstrated that CYP6CV1 and CYP6AB51 in C. punctiferalis play crucial roles in the detoxification of chlorantraniliprole, emamectin benzoate and lambda-cyhalothrin.
Collapse
Affiliation(s)
- Xingxing Yuan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Han Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Zhang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weizheng Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Cai N, Li C, Gu X, Zeng W, Liu J, Zeng G, Zhong J, Zhu J, Hong H. ALDH2 rs671 and MTHFR rs1801133 polymorphisms are risk factors for arteriosclerosis in multiple arteries. BMC Cardiovasc Disord 2023; 23:319. [PMID: 37355582 PMCID: PMC10290786 DOI: 10.1186/s12872-023-03354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Arteriosclerosis in multiple arteries has long been associated with heightened cardiovascular risk. Acetaldehyde dehydrogenase 2 (ALDH2) and methylenetetrahydrofolate reductase (MTHFR) play an important role in the pathogenesis of arteriosclerosis by participating in the oxidation and reduction reactions in vascular endothelial cells. The purpose was to investigate the relationship of ALDH2 and MTHFR gene polymorphisms with arteriosclerosis in multiple arteries. METHODS 410 patients with arteriosclerosis in single artery and 472 patients with arteriosclerosis in multiple arteries were included. The relationship between ALDH2 rs671 and MTHFR rs1801133 polymorphisms and arteriosclerosis in single artery and arteriosclerosis in multiple arteries was analyzed. RESULTS The proportion of ALDH2 rs671 A allele (35.6% vs. 30.9%, P = 0.038) and MTHFR rs1801133 T allele (32.6% vs. 27.1%, P = 0.012) in patients with arteriosclerosis in multiple arteries was significantly higher than that in arteriosclerosis in single artery, respectively. The proportion of history of alcohol consumption in patients with ALDH2 rs671 G/G genotype was higher than those in ALDH2 rs671 G/A genotype and A/A genotype (P < 0.001). The results of logistic regression analysis indicated that ALDH2 rs671 A/A genotype (A/A vs. G/G: OR 1.996, 95% CI: 1.258-3.166, P = 0.003) and MTHFR rs1801133 T/T genotype (T/T vs. C/C: OR 1.943, 95% CI: 1.179-3.203, P = 0.009) may be independent risk factors for arteriosclerosis in multiple arteries (adjusted for age, sex, smoking, drinking, hypertension, and diabetes). CONCLUSIONS ALDH2 rs671 A/A and MTHFR rs1801133 T/T genotypes may be independent risk factors for arteriosclerosis in multiple arteries.
Collapse
Affiliation(s)
- Nan Cai
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China.
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China.
| | - Cunren Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Xianfang Gu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Wenfeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Jingfeng Liu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Guopeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Jiawei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Junxing Zhu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| | - Haifeng Hong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, China
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, China
| |
Collapse
|
22
|
Nasri D, Manwar R, Kaushik A, Er EE, Avanaki K. Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment. Theranostics 2023; 13:3346-3367. [PMID: 37351178 PMCID: PMC10283067 DOI: 10.7150/thno.84253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/29/2023] [Indexed: 06/24/2023] Open
Abstract
Hypoxia causes the expression of signaling molecules which regulate cell division, lead to angiogenesis, and further, in the tumor microenvironment, promote resistance to chemotherapy and radiotherapy, and induce metastasis. Photoacoustic imaging (PAI) takes advantage of unique absorption characteristics of chromophores in tissues and provides the opportunity to construct images with a high degree of spatial and temporal resolution. In this review, we discuss the physiologic characteristics of tumor hypoxia, and current applications of PAI using endogenous (label free imaging) and exogenous (organic and inorganic) contrast agents. Features of various methods in terms of their efficacy for determining physiologic and proteomic phenomena are analyzed. This review demonstrates that PAI has the potential to understand tumor growth and metastasis development through measurement of regulatory molecule concentrations, oxygen gradients, and vascular distribution.
Collapse
Affiliation(s)
- Deyana Nasri
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, IL, USA
| | - Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, IL, USA
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ekrem Emrah Er
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, IL, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, IL, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Tseng WEJ, Chang CW, Hwang JS, Ko PC, Liu CJ, Lim SN. Association of Long-term Antiseizure Medication Use and Incident Type 2 Diabetes Mellitus. Neurology 2023; 100:e2071-e2082. [PMID: 36963840 PMCID: PMC10186244 DOI: 10.1212/wnl.0000000000207222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/09/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Diabetes mellitus (DM) contributes significantly to metabolic syndrome and cardiovascular events, and it may be a comorbidity of epilepsy. The objective of this study was to investigate whether long-term antiseizure medication (ASM) use is associated with the risk of developing type 2 diabetes. METHODS We analyzed data from the Chang Gung Research Database. Patients aged ≥45 years who received ASM treatment from January 2001 to May 2019 were identified. Patients with DM-associated diseases and short-term ASM use were excluded. The patients were classified into nonenzyme interaction, enzyme-inducing, enzyme-inhibiting, and mixed ASM groups. The rate of incident diabetes associated with individual ASM was further analyzed. Propensity score weighting was performed to balance between-group differences. Analyses were conducted with Cox proportional regression models and stabilized inverse probability of treatment weighting (IPTW). Hazard ratios (HRs) were calculated at 3, 4, 6, and 9 years after the index date and the end of follow-up. RESULTS A total of 5,103 patients were analyzed, of whom 474 took nonenzyme interaction ASMs, 1,156 took enzyme-inducing ASMs, 336 took enzyme-inhibiting ASMs, and 3,137 took mixed ASMs. During follow-up (39,248 person-years), 663 patients developed new-onset DM, and the prevalence was 13.0%. The incidence of DM plateaued at 6-9 years after ASM initiation. Enzyme-inhibiting ASMs were significantly associated with a higher HR starting at the third year and then throughout the study period. The HRs were 1.93 (95% CI 1.33-2.80), 1.85 (95% CI 1.24-2.75), and 2.08 (95% CI 1.43-3.03) in unadjusted, adjusted, and stabilized IPTW models, respectively, at the end of follow-up. The dosing of ASM did not increase the risk of DM, and none of the individual ASM analyses reached statistical significance. DISCUSSION The long-term use of enzyme-inhibiting ASMs was associated with an increased risk of incident DM, and the risk increased with the duration of treatment. These findings may guide the choice of drugs in those requiring long-term ASM therapy, particularly in high-risk individuals. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that enzyme-inhibiting ASMs were associated with an increased risk of developing DM compared with nonenzyme interaction ASMs.
Collapse
Affiliation(s)
- Wei-En Johnny Tseng
- From the Section of Epilepsy (W.-E.J.T., C.-W.C., C.-J.L., S.-N.L.), Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, and Chang Gung University College of Medicine; PhD Program in Biomedical Engineering (W.-E.J.T.), Chang Gung University; Division of Endocrinology and Metabolism (J.-S.H.), Department of Internal Medicine, Linkou Chang Gung Memorial Hospital; and Center for Big Data Analytics and Statistics (P.-C.K.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Wei Chang
- From the Section of Epilepsy (W.-E.J.T., C.-W.C., C.-J.L., S.-N.L.), Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, and Chang Gung University College of Medicine; PhD Program in Biomedical Engineering (W.-E.J.T.), Chang Gung University; Division of Endocrinology and Metabolism (J.-S.H.), Department of Internal Medicine, Linkou Chang Gung Memorial Hospital; and Center for Big Data Analytics and Statistics (P.-C.K.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jawl-Shan Hwang
- From the Section of Epilepsy (W.-E.J.T., C.-W.C., C.-J.L., S.-N.L.), Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, and Chang Gung University College of Medicine; PhD Program in Biomedical Engineering (W.-E.J.T.), Chang Gung University; Division of Endocrinology and Metabolism (J.-S.H.), Department of Internal Medicine, Linkou Chang Gung Memorial Hospital; and Center for Big Data Analytics and Statistics (P.-C.K.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Chuan Ko
- From the Section of Epilepsy (W.-E.J.T., C.-W.C., C.-J.L., S.-N.L.), Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, and Chang Gung University College of Medicine; PhD Program in Biomedical Engineering (W.-E.J.T.), Chang Gung University; Division of Endocrinology and Metabolism (J.-S.H.), Department of Internal Medicine, Linkou Chang Gung Memorial Hospital; and Center for Big Data Analytics and Statistics (P.-C.K.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Jing Liu
- From the Section of Epilepsy (W.-E.J.T., C.-W.C., C.-J.L., S.-N.L.), Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, and Chang Gung University College of Medicine; PhD Program in Biomedical Engineering (W.-E.J.T.), Chang Gung University; Division of Endocrinology and Metabolism (J.-S.H.), Department of Internal Medicine, Linkou Chang Gung Memorial Hospital; and Center for Big Data Analytics and Statistics (P.-C.K.), Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Siew-Na Lim
- From the Section of Epilepsy (W.-E.J.T., C.-W.C., C.-J.L., S.-N.L.), Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, and Chang Gung University College of Medicine; PhD Program in Biomedical Engineering (W.-E.J.T.), Chang Gung University; Division of Endocrinology and Metabolism (J.-S.H.), Department of Internal Medicine, Linkou Chang Gung Memorial Hospital; and Center for Big Data Analytics and Statistics (P.-C.K.), Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Cai N, Li C, Gu X, Zeng W, Zhong J, Liu J, Zeng G, Zhu J, Hong H. CYP2C19 loss-of-function is associated with increased risk of hypertension in a Hakka population: a case-control study. BMC Cardiovasc Disord 2023; 23:185. [PMID: 37024851 PMCID: PMC10080785 DOI: 10.1186/s12872-023-03207-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Genetic factors have a certain proportion in the risk factors of hypertension. The purpose was to investigate the relationship of cytochrome P450 2C19 (CYP2C19) polymorphisms with hypertension in Hakka population. METHODS The study included 1,872 hypertensive patients and 1,110 controls. The genotypes of CYP2C19 rs4244285 and rs4986893 of all individuals were detected and analyzed. RESULTS The genotype and allele distributions of CYP2C19 rs4244285 were significantly different between hypertension group and control group. The CYP2C19 *1/*1 genotype was the most predominant among the subjects (40.8%), followed by the CYP2C19 *1/*2 genotype (40.5%). The percentage of CYP2C19*1, *2, and *3 allele was 64.2%, 30.8%, and 5.0%, respectively. The proportion of intermediate metabolizers (IM) (49.3% vs. 42.9%), poor metabolizers (PM) (14.3% vs. 8.9%) (P < 0.001), and CYP2C19*2 allele (33.8% vs. 25.7%, P < 0.001) in hypertension group was significantly higher than that in control group. Multivariate logistic regression (adjusted for gender, age, smoking, and drinking) indicated that CYP2C19 *1/*2, *1/*3, and *2/*2 genotypes may increase susceptibility to hypertension. And the CYP2C19 IM genotype (IM vs. EM: OR 1.514, 95% CI: 1.291-1.775, P < 0.001), PM genotype (PM vs. EM: OR 2.120, 95% CI: 1.638-2.743, P < 0.001), IM + PM genotypes (IM + PM vs. EM: OR 1.617, 95% CI: 1.390-1.882, P < 0.001) may increase risk of hypertension. CONCLUSIONS CYP2C19 loss-of-function (IM, PM genotypes) is independent risk factor for hypertension susceptibility. Specifically, the risk genotypes include CYP2C19 *1/*2, *1/*3, and *2/*2.
Collapse
Affiliation(s)
- Nan Cai
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
- , No. 63 Huangtang Road, Meijiang District, Meizhou, China.
| | - Cunren Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Xianfang Gu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Wenfeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Jiawei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Jingfeng Liu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Guopeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Junxing Zhu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Haifeng Hong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
25
|
Hassen LM, Daghestani MH, Omair MA, Althomali AK, Almukaynizi FB, Almaghlouth IA. CYP2D6 genetic polymorphisms in Saudi systemic lupus erythematosus patients: A cross-sectional study. Saudi Med J 2023; 44:237-245. [PMID: 36940959 PMCID: PMC10043891 DOI: 10.15537/smj.2023.44.3.20220581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES To determine the prevalence of selected single nucleotide polymorphisms (rs1080985, rs28624811, rs1065852, rs28371725, and rs1135840) in cytochrome P450 2D6 (CYP2D6) gene among Saudi systemic lupus erythematosus (SLE) patients and to investigate the association between the genetic variants and clinical features of SLE. METHODS This cross-sectional study was carried out on adult Saudi patients at King Khalid University Hospital, Riyadh, Saudi Arabia. Patients with confirmed SLE based on the 2012 Systemic Lupus International Collaborating Clinics classification criteria were included in the study. Peripheral blood was collected for genomic deoxyribonucleic acid extraction and TaqMan® technologies were used for target genotyping. For statistical analysis, differences in genotype frequencies were determined using the Chi-square test, and the association between the variant genotypes and SLE features was evaluated using logistical regression models. RESULTS There were 107 participants included in this study. Overall, the most predominant (23.4%) recessive genotype was AA in rs28624811, and the least prevalent (1.9%) recessive genotype was TT in rs28371725. Moreover, the variant rs1080985 genotypes (GC or CC) were significantly associated with the presence of serositis manifestation (OR=3.15, p=0.03), even after adjusting for age and gender. However, the dominant rs28624811 genotype (GG) was associated with renal involvement (OR=2.56, p=0.03). CONCLUSION Systemic lupus erythematosus patients carrying CYP2D6 variants might be considered at risk for certain manifestations of SLE. Further studies are needed to investigate the implication of these genetic variations in clinical outcomes and drug response.
Collapse
Affiliation(s)
- Lena M. Hassen
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Maha H. Daghestani
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed A. Omair
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Arwa K. Althomali
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Fatimah B. Almukaynizi
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ibrahim A. Almaghlouth
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
26
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
27
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
28
|
Bellerba F, Chatziioannou AC, Jasbi P, Robinot N, Keski-Rahkonen P, Trolat A, Vozar B, Hartman SJ, Scalbert A, Bonanni B, Johansson H, Sears DD, Gandini S. Metabolomic profiles of metformin in breast cancer survivors: a pooled analysis of plasmas from two randomized placebo-controlled trials. J Transl Med 2022; 20:629. [PMID: 36581893 PMCID: PMC9798585 DOI: 10.1186/s12967-022-03809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Obesity is a major health concern for breast cancer survivors, being associated with high recurrence and reduced efficacy during cancer treatment. Metformin treatment is associated with reduced breast cancer incidence, recurrence and mortality. To better understand the underlying mechanisms through which metformin may reduce recurrence, we aimed to conduct metabolic profiling of overweight/obese breast cancer survivors before and after metformin treatment. METHODS Fasting plasma samples from 373 overweight or obese breast cancer survivors randomly assigned to metformin (n = 194) or placebo (n = 179) administration were collected at baseline, after 6 months (Reach For Health trial), and after 12 months (MetBreCS trial). Archival samples were concurrently analyzed using three complementary methods: untargeted LC-QTOF-MS metabolomics, targeted LC-MS metabolomics (AbsoluteIDQ p180, Biocrates), and gas chromatography phospholipid fatty acid assay. Multivariable linear regression models and family-wise error correction were used to identify metabolites that significantly changed after metformin treatment. RESULTS Participants (n = 352) with both baseline and study end point samples available were included in the analysis. After adjusting for confounders such as study center, age, body mass index and false discovery rate, we found that metformin treatment was significantly associated with decreased levels of citrulline, arginine, tyrosine, caffeine, paraxanthine, and theophylline, and increased levels of leucine, isoleucine, proline, 3-methyl-2-oxovalerate, 4-methyl-2-oxovalerate, alanine and indoxyl-sulphate. Long-chain unsaturated phosphatidylcholines (PC ae C36:4, PC ae C38:5, PC ae C36:5 and PC ae C38:6) were significantly decreased with the metformin treatment, as were phospholipid-derived long-chain n-6 fatty acids. The metabolomic profiles of metformin treatment suggest change in specific biochemical pathways known to impair cancer cell growth including activation of CYP1A2, alterations in fatty acid desaturase activity, and altered metabolism of specific amino acids, including impaired branched chain amino acid catabolism. CONCLUSIONS Our results in overweight breast cancer survivors identify new metabolic effects of metformin treatment that may mechanistically contribute to reduced risk of recurrence in this population and reduced obesity-related cancer risk reported in observational studies. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01302379 and EudraCT Protocol #: 2015-001001-14.
Collapse
Affiliation(s)
- Federica Bellerba
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Nivonirina Robinot
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Amarine Trolat
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Béatrice Vozar
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Sheri J Hartman
- Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
29
|
Szewczuk NA, Duchowicz PR, Pomilio AB, Lobayan RM. Resonance structure contributions, flexibility, and frontier molecular orbitals (HOMO-LUMO) of pelargonidin, cyanidin, and delphinidin throughout the conformational space: application to antioxidant and antimutagenic activities. J Mol Model 2022; 29:2. [PMID: 36480114 DOI: 10.1007/s00894-022-05392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
This research refers to the study and understanding of the conformational space of the positive-charged anthocyanidin structures in relation with the known chemical reactivities and bioactivities of these compounds. Therefore, the planar (P) and nonplanar (Z) conformers of the three hydroxylated anthocyanidins pelargonidin, cyanidin, and delphinidin were analyzed throughout the conformational space at the B3LYP/6-311 ++ G** level of theory. The outcome displayed eleven new conformers for pelargonidin, fifty-four for cyanidin, and thirty-one for delphinidin. Positive-charged quinoidal structures showed a significant statistical weight in the conformational space, thus coexisting simultaneously with other resonance structures, such that under certain reaction conditions, the anthocyanidins behave as positive-charged quinoidal structures instead of oxonium salts. The calculations of the permanent dipole moment and the polarizability showed relationships with the quantity and arrangement of hydroxyls in the structure. In addition, theoretical calculations were used to analyze the frontier molecular orbitals (HOMO-LUMO) of the three anthocyanidins. The novel conception of this work lies in the fact that dipole moment, polarizability, and HOMO-LUMO values were related to the reactivity/bioactivity of these three anthocyanidins. HOMO-LUMO energy gaps were useful to explain the antioxidant activity, while the percent atom contributions to HOMO were appropriate to demonstrate the antimutagenic activity as enzyme inhibitors, as well as the steric and electrostatic requirements to form the pharmacophore. Delphinidin was the strongest antioxidant anthocyanidin, and pelargonidin the best anthocyanidin with antimutagenic activity.
Collapse
Affiliation(s)
- Nicolas A Szewczuk
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Universidad Nacional de La Plata (UNLP), Diag. 113 Y 64, C.C. 16, Sucursal 4, B1900, La Plata, Argentina
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Universidad Nacional de La Plata (UNLP), Diag. 113 Y 64, C.C. 16, Sucursal 4, B1900, La Plata, Argentina
| | - Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF, Buenos Aires, Argentina
| | - Rosana M Lobayan
- Departamento de Física, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5300, 3400, Corrientes, Argentina.
| |
Collapse
|
30
|
Mir R, Elfaki I, Javid J, Barnawi J, Altayar MA, Albalawi SO, Jalal MM, Tayeb FJ, Yousif A, Ullah MF, AbuDuhier FM. Genetic Determinants of Cardiovascular Disease: The Endothelial Nitric Oxide Synthase 3 (eNOS3), Krüppel-Like Factor-14 (KLF-14), Methylenetetrahydrofolate Reductase (MTHFR), MiRNAs27a and Their Association with the Predisposition and Susceptibility to Coronary Artery Disease. Life (Basel) 2022; 12:life12111905. [PMID: 36431040 PMCID: PMC9697170 DOI: 10.3390/life12111905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary artery disease (CAD) is an important cause of death worldwide. CAD is caused by genetic and other factors including hypertension, hyperlipidemia, obesity, stress, unhealthy diet, physical inactively, smoking and Type 2 diabetes (T2D). The genome wide association studies (GWASs) have revealed the association of many loci with risk to diseases such as cancers, T2D and CAD. Nitric oxide (NO) is a potent vasodilator and is required for normal vascular health. It is produced in the endothelial cells in a reaction catalyzed by the endothelial NO synthase (eNOS). Methylenetetrahydrofolate reductase (MTHFR) is a very important enzyme involved in metabolism of folate and homocysteine, and its reduced function leads to cardiovascular disease. The Krüppel-like factor-14 (KLF-14) is an important transcriptional regulator that has been implicated in metabolic syndrome. MicroRNA (MiRNAs) are short non-coding RNAs that regulate the gene expression of proteins involved in important physiological processes including cell cycle and metabolism. In the present study, we have investigated the potential impact of germline pathogenic variants of endothelial eNOS, KLF-14, MTHFR, MiRNA-27a and their association with risk to CAD in the Saudi population. Methods: Amplification Refractory Mutation System (ARMS) PCR was used to detect MTHFR, KLF-14, miRNA-27a and eNOS3 genotyping in CAD patients and healthy controls. About 125 CAD cases and 125 controls were enrolled in this study and statistical associations were calculated including p-value, risk ratio (RR), and odds ratio (OD). Results: There were statistically significant differences (p < 0.05) in genotype distributions of MTHFR 677 C>T, KLF-14 rs972283 G>A, miRNAs27a rs895819 A>G and eNOS3 rs1799983 G>T between CAD patients and controls. In addition, our results indicated that the MTHFR-TT genotype was associated with increased CAD susceptibility with an OR 2.75 (95%) and p < 0.049, and the KLF14-AA genotype was also associated with increased CAD susceptibility with an OR of 2.24 (95%) and p < 0.024. Moreover, the miRNAs27a-GG genotype protects from CAD risk with an OR = 0.31 (0.016), p = 0.016. Our results also indicated that eNOS3 -GT genotype is associated with CAD susceptibility with an OR = 2.65, and p < 0.0003. Conclusion: The MTHFR 677C>T, KLF14 rs972283 G>A, miRNAs27a A>G, and eNOS3 rs1799983 G>T genotypes were associated with CAD susceptibility (p < 0.05). These findings require verification in future large-scale population based studies before these loci are used for the prediction and identification of individuals at risk to CAD. Weight control, physical activity, and smoking cessation are very influential recommendations given by clinicians to the at risk individuals to reduce or delay the development of CAD.
Collapse
Affiliation(s)
- Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence: (R.M.); (I.E.)
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence: (R.M.); (I.E.)
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Jameel Barnawi
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Malik A. Altayar
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Salem Owaid Albalawi
- Department of Cardiology, King Fahd Specialist Hospital, Tabuk 71491, Saudi Arabia
| | - Mohammed M. Jalal
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faris J. Tayeb
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aadil Yousif
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Fahad Ullah
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Faisel M. AbuDuhier
- Prince Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
31
|
Akhmetova DA, Kozlov VV, Gulyaeva LF. New Insight into the Role of AhR in Lung Carcinogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1219-1225. [PMID: 36509717 DOI: 10.1134/s0006297922110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung cancer (LC), one of the most common malignant neoplasms, is the leading cause of high cancer mortality worldwide. Smoking is a risk factor for almost all histological types of LC. Benzo[a]pyrene (BaP), one of the main constituents of tobacco smoke, can cause cancer. It has been established that its toxic effects can develop in the following ways: genotoxic (formation of adducts with DNA) and non-genotoxic or epigenetic. The latter is less known, although it is known that BaP activates aryl hydrocarbon receptor (AhR), which regulate transcription of many target genes, including microRNAs, which can lead to initiation and enhancement of the malignant cell transformation. Recent studies are evaluating the role of AhR in the regulation of immune checkpoints, as cigarette smoke and BaP induce the AhR-regulated expression of PD-L1 (CD274) in lung epithelial cells in vitro and in vivo. In addition, kynurenine (a metabolite of tryptophan) has been found to stimulate the PD-1 (CD279) expression in cytotoxic T cells by activating AhR. Recent studies confirm great importance of AhR expressed in malignant cells for suppression of antitumor immunity. All this makes us rethink the role of AhR in lung carcinogenesis and investigate the mechanisms of its activation by exogenous and endogenous ligands. This review highlights the current understanding of the functional features of AhR and its role in the LC pathogenesis.
Collapse
Affiliation(s)
- Dinara A Akhmetova
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia.
| | - Vadim V Kozlov
- Research Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia.,Department of Thoracic Oncology #3, Novosibirsk Regional Clinical Oncology Center, Novosibirsk, 630108, Russia
| | - Ludmila F Gulyaeva
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia.,Research Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| |
Collapse
|
32
|
CYP35 family in Caenorhabditis elegans biological processes: fatty acid synthesis, xenobiotic metabolism, and stress responses. Arch Toxicol 2022; 96:3163-3174. [PMID: 36175686 DOI: 10.1007/s00204-022-03382-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023]
Abstract
With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
Collapse
|
33
|
Comparative Studies on a Standardized Subfraction of Red Onion Peel Ethanolic Extract (Plant Substance), Quercetin (Pure Compound), and Their Cell Mechanism and Metabolism on MDA-MB-231. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9284063. [PMID: 36118099 PMCID: PMC9473877 DOI: 10.1155/2022/9284063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
This study indicates the presence of quercetin in subfraction F1 and the standardized value of F1 derived from research using ultra-performance liquid chromatography (UPLC) and AlCl3 colorimetric assays, which further proved that both F1 and quercetin are potential growth inhibitors in MDA-MB-231 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In the process, staining of F1-treated cells with annexin/propidium iodide (PI) reduced cell proliferation and induced only S and G2 phases of cell cycle arrest in the treated cells by flow cytometry. Quercetin reduced cell proliferation by inducing apoptosis and S phase arrest. The 5′-bromo-2′-deoxyuridine (BrdU) incorporation of DNA synthesis in MDA-MB-231 cells was also inhibited after F1 and quercetin treatments. F1 and quercetin induced CYP1A1 and CYP1B1 gene expression, but only F1 induced CYP2S1 gene expression in the treated cells. Both F1 and quercetin inhibited the proliferation of MDA-MB-231 cells in different ways, but F1 is likely a better potential anticancer agent derived from the green approach towards breast cancer treatment.
Collapse
|
34
|
Xiao K, Li S, Ding J, Wang Z, Wang D, Cao X, Zhang Y, Dong Z. Expression and clinical value of circRNAs in serum extracellular vesicles for gastric cancer. Front Oncol 2022; 12:962831. [PMID: 36059681 PMCID: PMC9428625 DOI: 10.3389/fonc.2022.962831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Objective At present, there are still no effective diagnosis methods for gastric cancer (GC). Increasing evidences indicate that Extracellular Vesicle circular RNAs (EV circRNAs) play a crucial role in several diseases. However, their correlations with GC are not clarified. This study aims to investigate the expression profile of serum EV circRNAs in GC and evaluate its potential clinical value. Methods High-throughput RNA sequencing (RNA-seq) was used to assess circRNA expression profiles between 4 patients with GC and 4 healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to determine the biological functions of differentially expressed (DE) circRNAs. A circRNA-miRNA-mRNA network was constructed using bioinformatics tools. Reverse transcription-quantitative polymerase chain reaction (RT-q)PCR was used to validate the dysregulated circRNAs. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of circRNAs for GC. Results A total of 4692 circRNAs were detected in the serum EVs of healthy controls and patients with GC, most of which were novel (98%) and intergenic (52%). 7 circRNAs were upregulated and 4 circRNAs were downregulated (|log2Fold Change| > 2, P < 0.05). GO and KEGG pathway enrichment analyses revealed that DE circRNAs were primarily involved in glutathione metabolism, protein folding, and drug metabolism-cytochrome P450. Of these, 3 circRNAs (Chr10q11, Chr1p11, and Chr7q11) were identified to be significantly overexpressed in patients with GC compared with healthy controls using RT-qPCR. The combination of 3 EV circRNAs and carcinoembryonic antigen (CEA) produced an area under the curve (AUC) of 0.866 (95%CI: 0.803-0.915) with a sensitivity and specificity of 80.4% and 81.8%, respectively. Additionally, the expression levels of 3 EV circRNAs were significantly correlated with tumor size, lymph node metastasis, and TNM stage. The circRNA-miRNA-mRNA network showed that the 3 identified circRNAs were predicted to interact with 13 miRNAs and 91 mRNAs. Conclusion Our results illustrate that the panel of EV circRNAs in serum are aberrantly expressed and may act as the suitable biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Shirong Li
- Department of Laboratory Medicine, Weifang People’s Hospital, Weifang, China
| | - Juan Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangting Cao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Zhaogang Dong, ; Yi Zhang,
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Zhaogang Dong, ; Yi Zhang,
| |
Collapse
|
35
|
Aja PM, Awoke JN, Agu PC, Adegboyega AE, Ezeh EM, Igwenyi IO, Orji OU, Ani OG, Ale BA, Ibiam UA. Hesperidin abrogates bisphenol A endocrine disruption through binding with fibroblast growth factor 21 (FGF-21), α-amylase and α-glucosidase: an in silico molecular study. J Genet Eng Biotechnol 2022; 20:84. [PMID: 35648239 PMCID: PMC9160168 DOI: 10.1186/s43141-022-00370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/20/2022] [Indexed: 12/03/2022]
Abstract
Background Fibroblast growth factor 21 (FGF-21), alpha-amylase, and alpha-glucosidase are key proteins implicated in metabolic dysregulations. Bisphenol A (BPA) is an environmental toxicant known to cause endocrine dysregulations. Hesperidin from citrus is an emerging flavonoid for metabolic diseases management. Through computational approach, we investigated the potentials of hesperidin in abrogating BPA interference in metabolism. The 3D crystal structure of the proteins (FGF-21, α-amylase, and α-glucosidase) and the ligands (BPA and hesperidin) were retrieved from the PDB and PubChem database respectively. Using Autodock plugin Pyrx, molecular docking of the ligands and individual proteins were performed to ascertain their binding affinities and their potentials to compete for the same binding site. Validation of the docking study was considered as the ability of the ligands to bind at the same site of each proteins. The docking poses were visualized using UCSF Chimera and Discovery Studio 2020, respectively to reveal each of the protein-ligands interactions within the binding pockets. Using SwissAdme and AdmeSar servers, we further investigated hesperidin’s ADMET profile. Hesperidin used was purchased commercially. Results Hesperidin and BPA competitively bound to the same site on each protein. Interestingly, hesperidin had greater binding affinities (Kcal/mol) − 5.80, − 9.60, and − 9.60 than BPA (Kcal/mol) − 4.40, − 7.20, − 7.10 for FGF-21, α-amylase, and α-glucosidase respectively. Visualizations of the binding poses showed that hesperidin interacted with stronger bonds than BPA within the proteins’ pockets. Although hesperidin violated Lipinski rule of five, this however can be optimized through structural modifications. Conclusions Hesperidin may be an emerging natural product with promising therapeutic potentials against metabolic and endocrine derangement.
Collapse
Affiliation(s)
- P M Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - J N Awoke
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria. .,Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - P C Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - A E Adegboyega
- Department of Biochemistry, Faculty of Medical Sciences, University of Jos/Jaris Computational Biology Centre, Jos, Nigeria
| | - E M Ezeh
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I O Igwenyi
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - O U Orji
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - O G Ani
- Nutrition and Exercise Physiology, University of Missouri, Columbia, United States of America
| | - B A Ale
- Department of Biochemistry, University of Nigeria Nsukka, Nsukka, Nigeria
| | - U A Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
36
|
Zhao Y, Lin S, Chen K, Chen D, Lai J. Ultrasonic characteristics and influencing factors of atherosclerosis in diabetic patients. Am J Transl Res 2022; 14:3113-3120. [PMID: 35702108 PMCID: PMC9185038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The purpose of this research was to observe the characteristics of atherosclerosis in diabetic patients by ultrasound and analyze the factors influencing the development of atherosclerosis in these patients. METHODS Ninety diabetic patients treated in our hospital from January 2019 to December 2019 were enrolled in this retrospective analysis. The transcranial Doppler ultrasound (TCD) and carotid ultrasound were used to determine the presence of intracranial (stenosis) and extracranial (plaque) atherosclerosis. The differences in characteristics of different lesions and risk factors for the development of atherosclerosis were compared. RESULTS Ultrasound examination of the 90 enrolled patients showed that 5 (5.56%) had only intracranial artery stenosis, 30 (33.33%) had only extracranial atherosclerosis, 20 (22.22%) had intracranial artery stenosis combined with extracranial atherosclerosis, and 35 (38.89%) had no lesions. The intracranial stenosis rate (27.78%) was significantly higher than that of extracranial carotid stenosis or occlusion (2.22%) (P < 0.001). Logistic regression analysis revealed that the duration of diabetes mellitus and concomitant hypertension were independent risk factors for intracranial and extracranial atherosclerosis (P < 0.05). Compared with the control group, the study group showed reduced carotid plaque, decreased inflammatory response, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) as well as elevated high-density lipoprotein cholesterol (HDL-C) (P < 0.05). CONCLUSION Diabetic patients have a higher incidence of atherosclerosis, which is related to the duration of the diabetes mellitus and concomitant hypertension, so the monitoring of these patients needs to be strengthened. In addition, the administration of atorvastatin can better improve hyperlipidemia and slow down the development of atherosclerosis.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Shibin Lin
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Kailiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Die Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Jineng Lai
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| |
Collapse
|
37
|
Luan G, Wang M, Yuan J, Bu X, Song J, Wang C, Zhang L. Regulatory network identified by pulmonary transcriptome and proteome profiling reveals extensive change of tumor-related genes in microRNA-21 knockout mice. J Cancer Res Clin Oncol 2022; 148:1919-1929. [PMID: 35511299 DOI: 10.1007/s00432-022-03967-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
Abstract
PURPOSE MicroRNA-21 (miR-21) is a well-known oncomiR and plays key roles in regulating various biological processes related to pulmonary diseases, especially lung carcinoma. The regulatory roles and downstream targets of miR-21 remain far from well understood. We aimed to identify miR-21-gene regulatory network in lung tissue. METHODS Transcriptome and proteome analyses were performed on lung tissues from miR-21 knockout (KO) mice and their wildtype (WT) littermates. Differentially expressed genes (DEGs) and proteins (DEPs) between miR-21KO and WT were analyzed, and correlation analysis was performed between transcriptional and translational level. DEPs were used for prediction of miR-21 target genes and construction of co-expression network. RESULTS Comparing with WT mice, 820 DEGs and 623 DEPs were identified in lung tissues of miR-21KO mice. Upregulated DEGs and DEPs were both significantly enriched in pathways of metabolism of xenobiotics by cytochrome P450, drug metabolism, and chemical carcinogenesis. Of the 31 molecules commonly identified in DEGs and DEPs, 9 upregulated genes were tumor suppressor genes while 8 downregulated genes were oncogenes, and 12 genes showed closely positive correlation between mRNA and protein expression. Real-time PCR validation results were consistent with the omics data. Among the upregulated DEPs in miR-21KO mice, 21 genes were predicted as miR-21 targets. The miR-21 regulatory network was constructed by target genes and their highly co-expressed proteins, which identified the miR-21 target Itih4 as a hub gene. CONCLUSION MiR-21-gene regulatory network was constructed in mouse lung tissue. MiR-21KO resulted in extensive upregulation of tumor suppressor genes and downregulation of oncogenes.
Collapse
Affiliation(s)
- Ge Luan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Jing Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Xiangting Bu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Jing Song
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China.
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China.
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China.
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China.
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, No. 1, DongJiaoMinXiang, DongCheng District, Beijing, 100730, China.
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
38
|
Fan HH, Li BQ, Wu KY, Yan HD, Gu MJ, Yao XH, Dong HJ, Zhang X, Zhu JH. Polymorphisms of Cytochromes P450 and Glutathione S-Transferases Synergistically Modulate Risk for Parkinson’s Disease. Front Aging Neurosci 2022; 14:888942. [PMID: 35572141 PMCID: PMC9099289 DOI: 10.3389/fnagi.2022.888942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Environmental substances such as pesticides are well-known in link with Parkinson’s disease (PD) risk. Enzymes including cytochromes P450 (CYPs), esterases and glutathione S-transferases (GSTs) are responsible for the xenobiotic metabolism and may functionally compensate each other for subtypes in the same class. We hypothesize that the genetic effects of each class modulate PD risk stronger in a synergistic way than individually. Methods We selected 14 polymorphic loci out of 13 genes which encode enzymes in the classes of CYP, esterase, and GST, and recruited a cohort of 1,026 PD and control subjects from eastern China. The genotypes were identified using improved multiplex ligation detection reaction and analyzed using multiple models. Results A total of 13 polymorphisms remained after Hardy-Weinberg equilibrium analysis. None of the polymorphisms were independently associated with PD risk after Bonferroni correction either by logistic regression or genetic models. In contrast, interaction analyses detected increased resistance to PD risk in individuals carrying the rs12441817/CC (CYP1A1) and rs2070676/GG + GC (CYP2E1) genotypes (P = 0.002, OR = 0.393, 95% CI = 0.216–0.715), or carrying the GSTM1-present, GSTT1-null, rs156697/AG + GG (GSTO2) and rs1695/AA (GSTP1) genotypes (P = 0.003, OR = 0.348, 95% CI = 0.171–0.706). The synergistic effect of GSTs on PD was primarily present in females (P = 0.003). No synergistic effect was observed within genotypes of esterases. Conclusion We demonstrate a presence of synergistic but not individual impact on PD susceptibility in polymorphisms of CYPs and GSTs. The results indicate that the genetic interplay leads the way to PD development for xenobiotic metabolizing enzymes.
Collapse
Affiliation(s)
- Hui-Hui Fan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bao-Qing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ke-Yun Wu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Hai-Dan Yan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Meng-Jie Gu
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xing-Hao Yao
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Hao-Jia Dong
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiong Zhang
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiong Zhang,
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Jian-Hong Zhu,
| |
Collapse
|
39
|
Zhai XY, Chen ZJ, Liu J, Zhang N, Yang H. Expression of CYP76C6 Facilitates Isoproturon Metabolism and Detoxification in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4599-4610. [PMID: 35385284 DOI: 10.1021/acs.jafc.1c08137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agricultural chemical residues in farmland and crops is one of the serious public issues that constantly threatens crop production, food security, and human health. Understanding their decay mechanism in crops for accelerating their degradative metabolism is important. In this study, a rice uncharacterized cytochrome P450 gene encoding CYP76C6 was functionally identified in rice exposed to isoproturon (IPU). To verify the role of CYP76C6 in rice resistance to IPU toxicity, CYP76C6 overexpression (OEs) and knockout mutant rice by CRISPR/Cas9 were generated through genetic transformation and gene-editing technologies. Assessment of growth and physiological responses revealed that the growth of OE lines was improved, the IPU-induced cellular damage was attenuated, and IPU accumulation was significantly repressed, whereas the Cas9 lines displayed a contrasting phenotype compared to the wild-type. Both relative contents of IPU metabolites and conjugates in OE lines were reduced and those in Cas9 line were increased, suggesting that CYP76C6 plays a critical role in IPU degradation. Our study unveils a new regulator, together with its mechanism for IPU decay in rice crops, which will be used in reality to reduce environmental risks in food safety and human health.
Collapse
Affiliation(s)
- Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
40
|
Ibrahim S, Fahim SA, Tadros SA, Badary OA. Suppressive effects of thymoquinone on the initiation stage of diethylnitrosamine hepatocarcinogenesis in rats. J Biochem Mol Toxicol 2022; 36:e23078. [PMID: 35437842 DOI: 10.1002/jbt.23078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/09/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death globally. Chemoprevention is the most effective technique for reducing HCC incidence. Thymoquinone (TQ), the main bioactive constituent of Nigella sativa, exhibits anti-inflammatory and antineoplastic activities against various cancers. Therefore, TQ was tested as an inhibitor of the initial phase of diethylnitrosamine (DEN)-induced HCC in rats. Twenty-four male Wistar albino rats were randomly placed into four equal groups. Group 1 received saline and acted as the negative control; Group 2 received TQ; Group 3 received DEN; and Group 4 received TQ for 7 days and DEN on the 8th day. After 24 h of fasting, blood samples were taken from the slaughtered rats. Additionally, each rat's liver was dissected and separated into two halves for histological and biochemical investigation. DEN-induced hepatotoxicity was detected by elevated hepatic enzymes and HCC biomarkers reduced antioxidant and proapoptotic statuses. DEN administration caused a significant increase in the levels of glutathione, superoxide dismutase, malondialdehyde, caspase-3, alpha-fetoprotein (AFP), AFPL3, glypican 3, and the expression of BAX. However, DEN significantly decreased glutathione peroxidase, catalase, and CYP2E1 and the expression of BCl-2. Furthermore, it caused histological changes and showed a strong positive GSH S-transferase P expression in the hepatic parenchyma. Pretreatment with TQ prevented the histopathological and most of the biochemical changes and improved the antioxidant status. TQ supplementation appears to suppress the development of DEN-initiated liver cancer by reducing oxidative stress, activating the intrinsic mitotic apoptosis pathway, and retaining the antioxidant enzymes.
Collapse
Affiliation(s)
- Samar Ibrahim
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
41
|
Zhang J, Feng Q. Pharmacological Effects and Molecular Protective Mechanisms of Astragalus Polysaccharides on Nonalcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:854674. [PMID: 35308224 PMCID: PMC8929346 DOI: 10.3389/fphar.2022.854674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been renamed metabolic dysfunction-associated fatty liver disease (MAFLD), a condition for which there is now no authorized treatment. The search for new medications to treat MAFLD made from natural substances is gaining traction. The function of anti-oxidant, anti-inflammation, hypoglycaemic, antiviral, hypolipidemic, and immunomodulatory actions of Astragalus polysaccharides (APS), a chemical molecule isolated from Astragalus membranaceus, has become the focus of therapeutic attention. We have a large number of papers on the pharmacological effects of APS on NAFLD that have never been systematically reviewed before. According to our findings, APS may help to slow the progression of non-alcoholic fatty liver disease (NAFL) to non-alcoholic steatohepatitis (NASH). Lipid metabolism, insulin resistance (IR), oxidative stress (OS), endoplasmic reticulum stress (ERS), inflammation, fibrosis, autophagy, and apoptosis are some of the pathogenic pathways involved. SIRT1/PPARα/FGF21, PI3K/AKT/IRS-1, AMPK/ACC, mTOR/4EBP-1/S6K1, GRP78/IRE-1/JNK, AMPK/PGC-1/NRF1, TLR4/MyD88/NF-κB, and TGF-β/Smad pathways were the most common molecular protective mechanisms. All of the information presented in this review suggests that APS is a natural medication with a lot of promise for NAFLD, but more study, bioavailability studies, medicine type and dosage, and clinical proof are needed. This review could be useful for basic research, pharmacological development, and therapeutic applications of APS in the management of MAFLD.
Collapse
|
42
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
43
|
Mohammed HA, Khan RA. Anthocyanins: Traditional Uses, Structural and Functional Variations, Approaches to Increase Yields and Products' Quality, Hepatoprotection, Liver Longevity, and Commercial Products. Int J Mol Sci 2022; 23:2149. [PMID: 35216263 PMCID: PMC8875224 DOI: 10.3390/ijms23042149] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are water-soluble, colored compounds of the flavonoid class, abundantly found in the fruits, leaves, roots, and other parts of the plants. The fruit berries are prime sources and exhibit different colors. The anthocyanins utility as traditional medicament for liver protection and cure, and importance as strongest plants-based anti-oxidants have conferred these plants products different biological activities. These activities include anti-inflammation, liver protective, analgesic, and anti-cancers, which have provided the anthocyanins an immense commercial value, and has impelled their chemistry, biological activity, isolation, and quality investigations as prime focus. Methods in extraction and production of anthocyanin-based products have assumed vital economic importance. Different extraction techniques in aquatic solvents mixtures, eutectic solvents, and other chemically reactive extractions including low acid concentrations-based extractions have been developed. The prophylactic and curative therapy roles of the anthocyanins, together with no reported toxicity has offered much-needed impetus and economic benefits to these classes of compounds which are commercially available. Information retrieval from various search engines, including the PubMed®, ScienceDirect®, Scopus®, and Google Scholar®, were used in the review preparation. This imparted an outlook on the anthocyanins occurrence, roles in plants, isolation-extraction, structures, biosynthetic as well as semi- and total-synthetic pathways, product quality and yields enhancements, including uses as part of traditional medicines, and uses in liver disorders, prophylactic and therapeutic applications in liver protection and longevity, liver cancer and hepatocellular carcinoma. The review also highlights the integrated approach to yields maximizations to meet the regular demands of the anthocyanins products, also as part of the extract-rich preparations together with a listing of marketed products available for human consumption as nutraceuticals/food supplements.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
44
|
Packaging and Delivery of Asthma Therapeutics. Pharmaceutics 2021; 14:pharmaceutics14010092. [PMID: 35056988 PMCID: PMC8777963 DOI: 10.3390/pharmaceutics14010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a life-altering, chronic disease of heterogenous origin that features a complex interplay of immune and environmental signaling. Although very little progress has been made in prevention, diverse types of medications and delivery systems, including nanoscale systems, have been or are currently being developed to control airway inflammation and prevent exacerbations and fibrosis. These medications are delivered through mechanical methods, with various inhalers (with benefits and drawbacks) existing, and new types offering some variety in delivery. Of particular interest is the progress being made in nanosized materials for efficient penetration into the epithelial mucus layer and delivery into the deepest parts of the lungs. Liposomes, nanoparticles, and extracellular vesicles, both natural and synthetic, have been explored in animal models of asthma and have produced promising results. This review will summarize and synthesize the latest developments in both macro-(inhaler) and micro-sized delivery systems for the purpose of treating asthma patients.
Collapse
|
45
|
Jiang L, Dong C, Liu T, Shi Y, Wang H, Tao Z, Liang Y, Lian J. Improved Functional Expression of Cytochrome P450s in Saccharomyces cerevisiae Through Screening a cDNA Library From Arabidopsis thaliana. Front Bioeng Biotechnol 2021; 9:764851. [PMID: 34957066 PMCID: PMC8696027 DOI: 10.3389/fbioe.2021.764851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 enzymes (P450s) are a superfamily of heme-thiolate proteins widely existing in various organisms and play a key role in the metabolic network and secondary metabolism. However, the low expression levels and activities have become the biggest challenge for P450s studies. To improve the functional expression of P450s in Saccharomyces cerevisiae, an Arabidopsis thaliana cDNA library was expressed in the betaxanthin-producing yeast strain, which functioned as a biosensor for high throughput screening. Three new target genes AtGRP7, AtMSBP1, and AtCOL4 were identified to improve the functional expression of CYP76AD1 in yeast, with accordingly the accumulation of betaxanthin increased for 1.32-, 1.86-, and 1.10-fold, respectively. In addition, these three targets worked synergistically/additively to improve the production of betaxanthin, representing a total of 2.36-fold improvement when compared with the parent strain. More importantly, these genes were also determined to effectively increase the activity of another P450 enzyme (CYP736A167), catalyzing the hydroxylation of α-santalene to produce Z-α-santalol. Simultaneous overexpression of AtGRP7, AtMSBP1, and AtCOL4 increased α-santalene to Z-α-santalol conversion rate for more than 2.97-fold. The present study reported a novel strategy to improve the functional expression of P450s in S. cerevisiae and promises the construction of platform yeast strains for the production of natural products.
Collapse
Affiliation(s)
- Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yi Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Handing Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Chen M, Chen M, Lu D, Wang Y, Zhang L, Wang Z, Wu B. Period 2 Regulates CYP2B10 Expression and Activity in Mouse Liver. Front Pharmacol 2021; 12:764124. [PMID: 34887762 PMCID: PMC8650840 DOI: 10.3389/fphar.2021.764124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
CYP2B10 is responsible for metabolism and detoxification of many clinical drugs. Here, we aimed to investigate a potential role of Period 2 (PER2) in regulating expression of hepatic CYP2B10. Regulatory effects of PER2 on hepatic expression of CYP2B10 and other enzymes were determined using Per2-deficient mice with exons 4-6 deleted (named Per2Del4-6 mice). In vitro and in vivo metabolic activities of CYP2B10 were probed using cyclophosphamide (CPA) as a specific substrate. Regulatory mechanism was investigated using luciferase reporter assays. Genotyping and Western blotting demonstrated loss of wild-type Per2 transcript and markedly reduced PER2 protein in Per2Del4-6 mice. Hepatic expression of a plenty of drug-metabolizing genes (including Cyp2a4/2a5, Cyp2b10, Ugt1a1, Ugt1a9, Ugt2b36, Sult1a1 and Sult1e1) were altered (and majority were down-regulated) in Per2Del4-6 mice. Of note, Cyp2b10, Ugt1a9 and Sult1a1 were three genes considerably affected with reduced expression. Decreased expression of CYP2B10 was translated to reduced metabolism and altered pharmacokinetics of CPA as well as attenuated CPA hepatotoxicity in Per2Del4-6 mice. Positive regulation of CYP2B10 by PER2 was further confirmed in both Hepa-1c1c7 and AML-12 cells. Based on luciferase reporter assays, it was shown that PER2 regulated Cyp2b10 transcription in a REV-ERBα-dependent manner. REV-ERBα was negatively regulated by PER2 (increased REV-ERBα expression in Per2Del4-6 mice) and itself was also a repressor of CYP2B10. In conclusion, PER2 positively regulates CYP2B10 expression and activity in mouse liver through inhibiting its repressor REV-ERBα.
Collapse
Affiliation(s)
- MengLin Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Wang Q, Cai Y, Fu X, Chen L. High RPS27A Expression Predicts Poor Prognosis in Patients With HPV Type 16 Cervical Cancer. Front Oncol 2021; 11:752974. [PMID: 34796111 PMCID: PMC8593198 DOI: 10.3389/fonc.2021.752974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence and the mortality rate of cervical cancer have been gradually increasing, becoming one of the major causes of cancer-related death in women. In particular, patients with advanced and recurrent cervical cancers present a very poor prognosis. In addition, the vast majority of cervical cancer cases are caused by human papillomavirus (HPV) infection, of which HPV16 infection is the main cause and squamous cell carcinoma is the main presenting type. In this study, we performed screening of differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) database and GSE6791, constructed a protein–protein interaction (PPI) network to screen 34 hub genes, filtered to the remaining 10 genes using the CytoHubba plug-in, and used survival analysis to determine that RPS27A was most associated with the prognosis of cervical cancer patients and has prognostic and predictive value for cervical cancer. The most significant biological functions and pathways of RPS27A enrichment were subsequently investigated with gene set enrichment analysis (GSEA), and integration of TCGA and GTEx database analyses revealed that RPS27A was significantly expressed in most cancer types. In this study, our analysis revealed that RPS27A can be used as a prognostic biomarker for HPV16 cervical cancer and has biological significance for the growth of cervical cancer cells.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| | - Yan Cai
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| | - Xuewen Fu
- School of Medicine, Ningbo University, Ningbo, China
| | - Liang Chen
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, China
| |
Collapse
|
48
|
Possible Role of Cytochrome P450 1B1 in the Mechanism of Gemcitabine Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101396. [PMID: 34680513 PMCID: PMC8533121 DOI: 10.3390/biomedicines9101396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Patient-derived xenograft models reportedly represent original tumor morphology and gene mutation profiles. In addition, patient-derived xenografts are expected to recapitulate the parental tumor drug responses. In this study, we analyzed the pathways involved in gemcitabine resistance using patient-derived xenograft models of pancreatic cancer. The patient-derived xenograft models were established using samples from patients with pancreatic cancer. The models were treated with gemcitabine to better understand the mechanism of resistance to this anti-cancer drug. We performed comparative gene analysis through the next-generation sequencing of tumor tissues from gemcitabine-treated or non-treated patient-derived xenograft mice and gene set enrichment analysis to analyze mRNA profiling data. Pathway analysis of gemcitabine-treated patient-derived xenografts disclosed the upregulation of multiple gene sets and identified several specific gene pathways that could potentially be related to gemcitabine resistance in pancreatic cancer. Further, we conducted an in vitro analysis to validate these results. The mRNA expression of cytochrome P450 1B1 and cytochrome P450 2A6 was upregulated in a concentration-dependent manner following gemcitabine treatment. Moreover, the sensitivity to gemcitabine increased, and viable cells were decreased by the cytochrome P450 1B1 inhibitor, indicating that the cytochrome P450 1B1 pathway may be related to gemcitabine resistance in pancreatic cancer.
Collapse
|
49
|
Ni KD, Liu JY. The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases. Front Pharmacol 2021; 12:716801. [PMID: 34594219 PMCID: PMC8476763 DOI: 10.3389/fphar.2021.716801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
The cytochrome P450 (CYP) ω-hydroxylases are a subfamily of CYP enzymes. While CYPs are the main metabolic enzymes that mediate the oxidation reactions of many endogenous and exogenous compounds in the human body, CYP ω-hydroxylases mediate the metabolism of multiple fatty acids and their metabolites via the addition of a hydroxyl group to the ω- or (ω-1)-C atom of the substrates. The substrates of CYP ω-hydroxylases include but not limited to arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, epoxyeicosatrienoic acids, leukotrienes, and prostaglandins. The CYP ω-hydroxylases-mediated metabolites, such as 20-hyroxyleicosatrienoic acid (20-HETE), 19-HETE, 20-hydroxyl leukotriene B4 (20-OH-LTB4), and many ω-hydroxylated prostaglandins, have pleiotropic effects in inflammation and many inflammation-associated diseases. Here we reviewed the classification, tissue distribution of CYP ω-hydroxylases and the role of their hydroxylated metabolites in inflammation-associated diseases. We described up-regulation of CYP ω-hydroxylases may be a pathogenic mechanism of many inflammation-associated diseases and thus CYP ω-hydroxylases may be a therapeutic target for these diseases. CYP ω-hydroxylases-mediated eicosanods play important roles in inflammation as pro-inflammatory or anti-inflammatory mediators, participating in the process stimulated by cytokines and/or the process stimulating the production of multiple cytokines. However, most previous studies focused on 20-HETE,and further studies are needed for the function and mechanisms of other CYP ω-hydroxylases-mediated eicosanoids. We believe that our studies of CYP ω-hydroxylases and their associated eicosanoids will advance the translational and clinal use of CYP ω-hydroxylases inhibitors and activators in many diseases.
Collapse
Affiliation(s)
- Kai-Di Ni
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Marzocco S, Singla RK, Capasso A. Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules 2021; 26:molecules26175333. [PMID: 34500768 PMCID: PMC8434243 DOI: 10.3390/molecules26175333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023] Open
Abstract
Lycopene is a pigment belonging to the group of carotenoids and it is among the most carefully studied antioxidants found especially in fruit and vegetables. As a carotenoid, lycopene exerts beneficial effects on human health by protecting lipids, proteins, and DNA from damage by oxidation. Lycopene is a powerful oxygen inactivator in the singlet state. This is suggestive of the fact that lycopene harbors comparatively stronger antioxidant properties over other carotenoids normally present in plasma. Lycopene is also reported to hinder cancer cell proliferation. The uncontrolled, rapid division of cells is a characteristic of the metabolism of cancer cells. Evidently, lycopene causes a delay in the progression of the cell cycle, which explains its antitumor activity. Furthermore, lycopene can block cell transformation by reducing the loss of contact inhibition of cancer cells. This paper collects recent studies of scientific evidence that show the multiple beneficial properties of lycopene, which acts with different molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-96-92-50
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China;
- iGlobal Research and Publishing Foundation, New Delhi 110059, India
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| |
Collapse
|