1
|
Cosin-Tomas M, Hoang T, Qi C, Monasso GS, Langdon R, Kebede Merid S, Calas L, de Prado-Bert P, Richmond R, Jaddoe VV, Duijts L, Wright J, Annesi-Maesano I, Grazuleviciene R, Karachaliou M, Koppelman GH, Melén E, Gruzieva O, Vrijheid M, Yousefi P, Felix JF, London SJ, Bustamante M. Association of exposure to second-hand smoke during childhood with blood DNA methylation. ENVIRONMENT INTERNATIONAL 2025; 195:109204. [PMID: 39693780 DOI: 10.1016/j.envint.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION By recent estimates, 40% of children worldwide are exposed to second-hand smoke (SHS), which has been associated with adverse health outcomes. While numerous studies have linked maternal smoking during pregnancy (MSDP) to widespread differences in child blood DNA methylation (DNAm), research specifically examining postnatal SHS exposure remains sparse. To address this gap, we conducted epigenome-wide meta-analyses to identify associations of postnatal SHS and child blood DNAm. METHODS Six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium (total N = 2,695), with SHS data and child blood DNAm (aged 7-9 years) measured with the Illumina 450K array were included in the meta-analysis. Linear regression models adjusted for covariates were fitted to examine the association between the number of household smokers in postnatal life (0, 1, 2+) and child blood DNAm. Sensitivity models without adjusting for MSDP and restricted to mothers who did not smoke during pregnancy were evaluated. RESULTS Our analysis revealed significant associations (False Discovery Rate < 0.05) between household postnatal SHS exposure and DNAm at 11 CpGs in exposed children. Nine CpGs were mapped to genes (MYO1G, FAM184B, CTDSPL2, LTBP3, PDE10A, and FIBCD1), while 2 CpGs were located in open sea regions. Notably, all except 2 CpGs (mapped to FIBCD1 and CTDSPL2) have previously been linked to either personal smoking habits or in utero exposure to smoking. The models restricted to non-smoking mothers provided similar results. Importantly, several of these CpGs and their associated genes are implicated in conditions exacerbated by or directly linked to SHS. CONCLUSIONS Our findings highlight the potential biological effects of SHS on blood DNAm. These findings support further research on epigenetic factors mediating deleterious effects of SHS on child health and call for public health policies aimed at reducing exposure, particularly in environments where children are present.
Collapse
Affiliation(s)
- Marta Cosin-Tomas
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain.
| | - Thanh Hoang
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Cancan Qi
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Microbiome Medicine Center, Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, China
| | - Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Lucinda Calas
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Paula de Prado-Bert
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincent Vw Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Isabella Annesi-Maesano
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | | | - Marianna Karachaliou
- ISGlobal, Barcelona, Catalonia, Spain; Clinic of preventive and Social Medicine, Medical School, University of Crete, Iraklio, Greece
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Olena Gruzieva
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martine Vrijheid
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Lai M, Kim K, Zheng Y, Castellani CA, Ratliff SM, Wang M, Liu X, Haessler J, Huan T, Bielak LF, Zhao W, Joehanes R, Ma J, Guo X, Manson JE, Grove ML, Bressler J, Taylor KD, Lappalainen T, Kasela S, Blackwell TW, Lake NJ, Faul JD, Ferrier KR, Hou L, Kooperberg C, Reiner AP, Zhang K, Peyser PA, Fornage M, Boerwinkle E, Raffield LM, Carson AP, Rich SS, Liu Y, Levy D, Rotter JI, Smith JA, Arking DE, Liu C. Epigenome-wide Association Analysis of Mitochondrial Heteroplasmy Provides Insight into Molecular Mechanisms of Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318557. [PMID: 39677472 PMCID: PMC11643249 DOI: 10.1101/2024.12.05.24318557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The relationship between mitochondrial DNA (mtDNA) heteroplasmy and nuclear DNA (nDNA) methylation (CpGs) remains to be studied. We conducted an epigenome-wide association analysis of heteroplasmy burden scores across 10,986 participants (mean age 77, 63% women, and 54% non-White races/ethnicities) from seven population-based observational cohorts. We identified 412 CpGs (FDR p < 0.05) associated with mtDNA heteroplasmy. Higher levels of heteroplasmy burden were associated with lower nDNA methylation levels at most significant CpGs. Functional inference analyses of genes annotated to heteroplasmy-associated CpGs emphasized mitochondrial functions and showed enrichment in cardiometabolic conditions and traits. We developed CpG-scores based on heteroplasmy-count associated CpGs (MHC-CpG scores) using elastic net Cox regression in a training cohort. A one-unit higher level of the standardized MHC-CpG scores were associated with 1.26-fold higher hazard of all-cause mortality (95% CI: 1.14, 1.39) and 1.09-fold higher hazard of CVD (95% CI: 1.01-1.17) in the meta-analysis of testing cohorts, adjusting for age, sex, and smoking. These findings shed light on the relationship between mtDNA heteroplasmy and DNA methylation, and the role of heteroplasmy-associated CpGs as biomarkers in predicting all-cause mortality and cardiovascular disease.
Collapse
|
3
|
Opsasnick LA, Zhao W, Schmitz LL, Ratliff SM, Faul JD, Zhou X, Needham BL, Smith JA. Epigenome-wide association study of long-term psychosocial stress in older adults. Epigenetics 2024; 19:2323907. [PMID: 38431869 PMCID: PMC10913704 DOI: 10.1080/15592294.2024.2323907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Long-term psychosocial stress is strongly associated with negative physical and mental health outcomes, as well as adverse health behaviours; however, little is known about the role that stress plays on the epigenome. One proposed mechanism by which stress affects DNA methylation is through health behaviours. We conducted an epigenome-wide association study (EWAS) of cumulative psychosocial stress (n = 2,689) from the Health and Retirement Study (mean age = 70.4 years), assessing DNA methylation (Illumina Infinium HumanMethylationEPIC Beadchip) at 789,656 CpG sites. For identified CpG sites, we conducted a formal mediation analysis to examine whether smoking, alcohol use, physical activity, and body mass index (BMI) mediate the relationship between stress and DNA methylation. Nine CpG sites were associated with psychosocial stress (all p < 9E-07; FDR q < 0.10). Additionally, health behaviours and/or BMI mediated 9.4% to 21.8% of the relationship between stress and methylation at eight of the nine CpGs. Several of the identified CpGs were in or near genes associated with cardiometabolic traits, psychosocial disorders, inflammation, and smoking. These findings support our hypothesis that psychosocial stress is associated with DNA methylation across the epigenome. Furthermore, specific health behaviours mediate only a modest percentage of this relationship, providing evidence that other mechanisms may link stress and DNA methylation.
Collapse
Affiliation(s)
- Lauren A. Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L. Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L. Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Wang S, Casey E, Sordillo J, Aguilar-Lacasaña S, Morales Berstein F, Biedrzycki RJ, Brescianini S, Chen S, Hough A, Isaevska E, Kim WJ, Lecorguillé M, Li SS, Page CM, Park J, Röder S, Salontaji K, Santorelli G, Sun Y, Won S, Zillich E, Zillich L, Annesi-Maesano I, Arshad SH, Bustamante M, Cecil CAM, Elliott HR, Ewart S, Felix JF, Gagliardi L, Håberg SE, Herberth G, Heude B, Holloway JW, Huels A, Karmaus W, Koppelman GH, London SJ, Mumford SL, Nisticò L, Popovic M, Rusconi F, Schisterman EF, Stein DJ, Send T, Tiemeier H, Vonk JM, Vrijheid M, Wiemels JL, Witt SH, Wright J, Yeung EH, Zar HJ, Zenclussen AC, Zhang H, Chavarro JE, Hivert MF. Cesarean delivery and blood DNA methylation at birth and childhood: Meta-analysis in the Pregnancy and Childhood Epigenetics Consortium. SCIENCE ADVANCES 2024; 10:eadr2084. [PMID: 39602535 PMCID: PMC11601205 DOI: 10.1126/sciadv.adr2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Children born via cesarean delivery have a higher risk of metabolic, immunological, and neurodevelopmental disorders compared to those born via vaginal delivery, although mechanisms remain unclear. We conducted a meta-analysis of epigenome-wide association studies to examine the associations between delivery mode and blood DNA methylation at birth and its persistence in early childhood. Participants were from 19 pregnancy cohorts (9833 term newborns) and 6 pediatric cohorts (2429 children aged 6 to 10 years). We identified six CpGs in cord blood associated with cesarean delivery (effect size range: 0.4 to 0.7%, P < 1.0 × 10-7): MAP2K2 (cg19423175), LIM2 (cg01500140), CNP (cg13917614), BLM (cg18247172), RASA3 (cg22348356), and RUNX3 (cg20674490), independent of cell proportions and other confounders. In childhood, none of these CpGs were associated with cesarean delivery, and no additional CpGs were identified. Delivery mode was associated with cell proportions at birth but not in childhood. Further research is needed to elucidate cesarean delivery's molecular influence on offspring health.
Collapse
Affiliation(s)
- Siwen Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Emma Casey
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Joanne Sordillo
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Fernanda Morales Berstein
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Richard J. Biedrzycki
- Glotech Inc., contractor for Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850, USA
| | - Sonia Brescianini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161 Italy
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amy Hough
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon 24289, Korea
| | - Marion Lecorguillé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Sebastian Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
- Department of Physical Health and Aging, Division for Mental and Physical Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
| | - Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Stefan Röder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Kristina Salontaji
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | | | - Yidan Sun
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen 9700 RB, Netherlands
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
- Department of Public Health Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eric Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Isabella Annesi-Maesano
- Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, Montpellier, France
- Division of Respiratory Medicine, Allergology, and of Thoracic Oncology, University Hospital of Montpellier, 34093 Montpellier, France
| | - S. Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry / Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, Netherlands
| | - Luigi Gagliardi
- Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa 56121, Italy
| | - Siri E. Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. box 222 Skøyen, 0213 Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Kalfarveien 31, N-5018 Bergen, Norway
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anke Huels
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen 9700 RB, Netherlands
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sunni L. Mumford
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, PA 19087, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Lorenza Nisticò
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome 00161 Italy
| | - Maja Popovic
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Franca Rusconi
- Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa 56121, Italy
| | - Enrique F. Schisterman
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, Philadelphia, PA 19087, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Dan J. Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa
| | - Tabea Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Judith M. Vonk
- Groningen Research Institute for Asthma and COPD, Groningen 9700 RB, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen 9700 RB, Netherlands
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08005, Spain
- CIBER Epidemiología y Salud Pública, Madrid 28029, Spain
| | - Joseph Leo Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - John Wright
- Bradford Institute for Health Research, Bradford BD9 6RJ, UK
| | - Edwina H. Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20817 USA
| | - Heather J. Zar
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, Department of Paediatrics, University of Cape Town, Rondebosch 7700, South Africa
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Chan MHM, Meijer M, Merrill SM, Fu MPY, Lin D, MacIsaac JL, Riis JL, Granger DA, Thomas EA, Kobor MS. Considerations for Cell Type Heterogeneity in Pediatric Salivary DNA Methylation Analyses: Comparison of Reference Panels & Stratification by Estimated Cell Type Proportion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.621377. [PMID: 39605421 PMCID: PMC11601407 DOI: 10.1101/2024.11.08.621377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Saliva is a widely used sample in epigenetic research with children due to its non-invasive nature. Since DNA methylation (DNAm) profile is cell type (CT) specific, salivary DNAm associations with exposures may be influenced by CT compositions, which is highly variable in saliva as it contains immune and buccal epithelial cells (BEC). Reference-based CT deconvolution and statistically adjusting estimated CT in DNAm analyses have become an increasingly common practice. However, careful examinations of how different reference panels may affect DNAm results and alternative approaches (e.g., stratification) are lacking. To scrutinize the best analytical strategies on pediatric salivary DNAm, the current study used 529 salivary DNAm samples obtained from children (mean age = 7.26 years, SD = 0.26 years) in the Family Life Project. Our results showed higher estimated CT variability with child than adult reference panels and highlighted the impact of these estimated CT discrepancies on DNAm associations with social variables (socioeconomic status). Stratifying salivary DNAm samples by BEC proportions detected a larger number of significant associations with biological variables (sex) and tissue-specific effect with cotinine level, a tobacco smoke-exposure biomarker. We provide analytical recommendations for future epigenetic research involving pediatric saliva samples.
Collapse
Affiliation(s)
- Meingold Hiu-Ming Chan
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Meijer
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah M Merrill
- Department of Psychology, University of Massachusetts Lowell, Lowell, MA USA
| | - Maggie Po Yuan Fu
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - David Lin
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Julia L MacIsaac
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jenna L Riis
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, CA, USA
- Department of Health and Kinesiology, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Douglas A Granger
- Department of Health and Kinesiology, University of Illinois Urbana Champaign, Urbana, IL, USA
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Thomas
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Witt SH, Spanagel R, Hansson AC, Clark SL, van den Oord EJ, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100375. [PMID: 39399155 PMCID: PMC11470413 DOI: 10.1016/j.bpsgos.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 10/15/2024] Open
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms that underlie the development and progression of AUD remains limited. Here, we investigated AUD-associated DNA methylation changes within and across 2 addiction-relevant brain regions, the nucleus accumbens and dorsolateral prefrontal cortex. Methods Illumina HumanMethylation EPIC array data from 119 decedents (61 cases, 58 controls) were analyzed using robust linear regression with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public annotation data and published genetic and epigenetic studies. We also tested for brain region-shared and brain region-specific associations using mixed-effects modeling and assessed implications of these results using public gene expression data from human brain. Results At a false discovery rate of ≤.05, we identified 105 unique AUD-associated CpGs (annotated to 120 genes) within and across brain regions. AUD-associated CpGs were enriched in histone marks that tag active promoters, and our strongest signals were specific to a single brain region. Some concordance was found between our results and those of earlier published alcohol use or dependence methylation studies. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors, some of which also overlapped with previous addiction-related methylation studies. Conclusions Our findings identify AUD-associated methylation signals and provide evidence of overlap with previous genetic and methylation studies. These signals may constitute predisposing genetic differences or robust methylation changes associated with AUD, although more work is needed to further disentangle the mechanisms that underlie these associations and their implications for AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Melyssa S. Minto
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Caryn Willis
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, Maryland
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virgina
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, the University of Texas at Austin, Austin, Texas
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
7
|
Pośpiech E, Rudnicka J, Noroozi R, Pisarek-Pacek A, Wysocka B, Masny A, Boroń M, Migacz-Gruszka K, Pruszkowska-Przybylska P, Kobus M, Lisman D, Zielińska G, Cytacka S, Iljin A, Wiktorska JA, Michalczyk M, Kaczka P, Krzysztofik M, Sitek A, Spólnicka M, Ossowski A, Branicki W. DNA methylation at AHRR as a master predictor of smoke exposure and a biomarker for sleep and exercise. Clin Epigenetics 2024; 16:147. [PMID: 39425209 PMCID: PMC11490037 DOI: 10.1186/s13148-024-01757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND DNA methylation profiling may provide a more accurate measure of the smoking status than self-report and may be useful in guiding clinical interventions and forensic investigations. In the current study, blood DNA methylation profiles of nearly 800 Polish individuals were assayed using Illuminia EPIC and the inference of smoking from epigenetic data was explored. In addition, we focused on the role of the AHRR gene as a top marker for smoking and investigated its responsiveness to other lifestyle behaviors. RESULTS We found > 450 significant CpGs associated with cigarette consumption, and overrepresented in various biological functions including cell communication, response to stress, blood vessel development, cell death, and atherosclerosis. The model consisting of cg05575921 in AHRR (p = 4.5 × 10-32) and three additional CpGs (cg09594361, cg21322436 in CNTNAP2 and cg09842685) was able to predict smoking status with a high accuracy of AUC = 0.8 in the test set. Importantly, a gradual increase in the probability of smoking was observed, starting from occasional smokers to regular heavy smokers. Furthermore, former smokers displayed the intermediate DNA methylation profiles compared to current and never smokers, and thus our results indicate the potential reversibility of DNA methylation after smoking cessation. The AHRR played a key role in a predictive analysis, explaining 21.5% of the variation in smoking. In addition, the AHRR methylation was analyzed for association with other modifiable lifestyle factors, and showed significance for sleep and physical activity. We also showed that the epigenetic score for smoking was significantly correlated with most of the epigenetic clocks tested, except for two first-generation clocks. CONCLUSIONS Our study suggests that a more rapid return to never-smoker methylation levels after smoking cessation may be achievable in people who change their lifestyle in terms of physical activity and sleep duration. As cigarette smoking has been implicated in the literature as a leading cause of epigenetic aging and AHRR appears to be modifiable by multiple exogenous factors, it emerges as a promising target for intervention and investment.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| | - Joanna Rudnicka
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Rezvan Noroozi
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aleksandra Pisarek-Pacek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
| | - Bożena Wysocka
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | - Michał Boroń
- Central Forensic Laboratory of the Police, Warsaw, Poland
| | | | | | - Magdalena Kobus
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Dagmara Lisman
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Sandra Cytacka
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Aleksandra Iljin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, Lodz, Poland
| | | | - Małgorzata Michalczyk
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Piotr Kaczka
- Department of Sport Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michał Krzysztofik
- Institute of Sports Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research of the Jagiellonian University, Krakow, Poland
- Institute of Forensic Research, Krakow, Poland
| |
Collapse
|
8
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
9
|
Pathak GA, Pietrzak RH, Lacobelle A, Overstreet C, Wendt FR, Deak JD, Friligkou E, Nunez Y, Montalvo-Ortiz JL, Levey DF, Kranzler HR, Gelernter J, Polimanti R. Epigenetic and Genetic Profiling of Comorbidity Patterns among Substance Dependence Diagnoses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24315111. [PMID: 39417130 PMCID: PMC11482987 DOI: 10.1101/2024.10.08.24315111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Objective This study investigated the genetic and epigenetic mechanisms underlying the comorbidity patterns of five substance dependence diagnoses (SDs; alcohol, AD; cannabis, CaD; cocaine, CoD; opioid, OD; tobacco, TD). Methods A latent class analysis (LCA) was performed on 31,197 individuals (average age 42±11 years; 49% females) from six cohorts to identify comorbid DSM-IV SD patterns. In subsets of this sample, we tested SD-latent classes with respect to polygenic burden of psychiatric and behavioral traits and epigenome-wide changes in three population groups. Results An LCA identified four latent classes related to SD comorbidities: AD+TD, CoD+TD, AD+CoD+OD+TD (i.e., polysubstance use, PSU), and TD. In the epigenome-wide association analysis, SPATA4 cg02833127 was associated with CoD+TD, AD+TD, and PSU latent classes. AD+TD latent class was also associated with CpG sites located on ARID1B , NOTCH1 , SERTAD4, and SIN3B , while additional epigenome-wide significant associations with CoD+TD latent class were observed in ANO6 and MOV10 genes. PSU-latent class was also associated with a differentially methylated region in LDB1 . We also observed shared polygenic score (PGS) associations for PSU, AD+TD, and CoD+TD latent classes (i.e., attention-deficit hyperactivity disorder, anxiety, educational attainment, and schizophrenia PGS). In contrast, TD-latent class was exclusively associated with posttraumatic stress disorder-PGS. Other specific associations were observed for PSU-latent class (subjective wellbeing-PGS and neuroticism-PGS) and AD+TD-latent class (bipolar disorder-PGS). Conclusions We identified shared and unique genetic and epigenetic mechanisms underlying SD comorbidity patterns. These findings highlight the importance of modeling the co-occurrence of SD diagnoses when investigating the molecular basis of addiction-related traits.
Collapse
|
10
|
Gillespie AL, Walker EM, Hannon E, McQueen GA, Sendt KV, Avila A, Lally J, Okhuijsen-Pfeifer C, van der Horst M, Hasan A, Dempster EL, Burrage J, Bogers J, Cohen D, Boks MP, Collier DA, Egerton A, Luykx JJ, Mill J, MacCabe JH. Longitudinal changes in DNA methylation associated with clozapine use in treatment-resistant schizophrenia from two international cohorts. Transl Psychiatry 2024; 14:390. [PMID: 39333502 PMCID: PMC11436797 DOI: 10.1038/s41398-024-03102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
The second-generation antipsychotic clozapine is used as a medication for treatment-resistant schizophrenia. It has previously been associated with epigenetic changes in pre-clinical rodent models and cross-sectional studies of treatment-resistant schizophrenia. Cross-sectional studies are susceptible to confounding, however, and cannot disentangle the effects of diagnosis and medication. We therefore profiled DNA methylation in sequential blood samples (n = 126) from two independent cohorts of patients (n = 38) with treatment-resistant schizophrenia spectrum disorders who commenced clozapine after study enrolment and were followed up for up to six months. We identified significant non-linear changes in cell-type proportion estimates derived from DNA methylation data - specifically B-cells - associated with time on clozapine. Mixed effects regression models were used to identify changes in DNA methylation at specific sites associated with time on clozapine, identifying 37 differentially methylated positions (DMPs) (p < 5 × 10-5) in a linear model and 90 DMPs in a non-linear quadratic model. We compared these results to data from our previous epigenome-wide association study (EWAS) meta-analysis of psychosis, finding evidence that many previously identified DMPs associated with schizophrenia and treatment-resistant schizophrenia might reflect exposure to clozapine. In conclusion, our results indicate that clozapine exposure is associated with changes in DNA methylation and cellular composition. Our study shows that medication effects might confound many case-control studies of neuropsychiatric disorders performed in blood.
Collapse
Affiliation(s)
- Amy L Gillespie
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Emma M Walker
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Eilis Hannon
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Grant A McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessia Avila
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Marte van der Horst
- Department of Psychiatry, University Medical Center, University Utrecht, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Augsburg, Germany
- DZPG (German Center for Mental Health), partner site München/Augsburg, Augsburg, Germany
| | - Emma L Dempster
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Joe Burrage
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Jan Bogers
- Mental health Organization Rivierduinen, Leiden, The Netherlands
| | - Dan Cohen
- Department of Community Mental Health Care, MHO North-Holland North, Heerhugowaard, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, University Medical Center, University Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
- Dimence Institute for Specialized Mental Health Care, Dimence Group, Deventer, The Netherlands
| | - David A Collier
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jurjen J Luykx
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands
- Amsterdam Neuroscience (Mood, Anxiety, Psychosis, Stress & Sleep program) and Amsterdam Public Health (Mental Health program) research institutes, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
11
|
Deng WQ, Cawte N, Campbell N, Azab SM, de Souza RJ, Lamri A, Morrison KM, Atkinson SA, Subbarao P, Turvey SE, Moraes TJ, Teo KK, Mandhane PJ, Azad MB, Simons E, Paré G, Anand SS. Maternal smoking DNA methylation risk score associated with health outcomes in offspring of European and South Asian ancestry. eLife 2024; 13:RP93260. [PMID: 39141540 PMCID: PMC11324234 DOI: 10.7554/elife.93260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Background Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations. Methods We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504). Results Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (-0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (-0.043±0.013 kg, p=0.0011) in the combined cohorts. Conclusions This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers. Funding This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.
Collapse
Affiliation(s)
- Wei Q Deng
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
- Peter Boris Centre for Addictions Research, St. Joseph’s Healthcare HamiltonHamiltonCanada
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
| | - Nathan Cawte
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research InstituteHamiltonCanada
| | - Natalie Campbell
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
| | - Sandi M Azab
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Russell J de Souza
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Amel Lamri
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research InstituteHamiltonCanada
| | | | | | | | - Stuart E Turvey
- Department of Pediatrics, BC Children’s Hospital, The University of British ColumbiaVancouverCanada
| | - Theo J Moraes
- Department of Pediatrics, University of TorontoTorontoCanada
- Program in Translational Medicine, SickKids Research InstituteTorontoCanada
| | - Koon K Teo
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research InstituteHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | | | - Meghan B Azad
- Children’s Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of ManitobaWinnipegCanada
| | - Elinor Simons
- Section of Allergy and Immunology, Department of Pediatrics and Child Health, University of ManitobaManitobaCanada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research InstituteHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research InstituteHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Sonia S Anand
- Department of Medicine, Faculty of Health Sciences, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research InstituteHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| |
Collapse
|
12
|
Hu W, Chen S, Cai J, Yang Y, Yan H, Chen F. High-dimensional mediation analysis for continuous outcome with confounders using overlap weighting method in observational epigenetic study. BMC Med Res Methodol 2024; 24:125. [PMID: 38831262 PMCID: PMC11145821 DOI: 10.1186/s12874-024-02254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Mediation analysis is a powerful tool to identify factors mediating the causal pathway of exposure to health outcomes. Mediation analysis has been extended to study a large number of potential mediators in high-dimensional data settings. The presence of confounding in observational studies is inevitable. Hence, it's an essential part of high-dimensional mediation analysis (HDMA) to adjust for the potential confounders. Although the propensity score (PS) related method such as propensity score regression adjustment (PSR) and inverse probability weighting (IPW) has been proposed to tackle this problem, the characteristics with extreme propensity score distribution of the PS-based method would result in the biased estimation. METHODS In this article, we integrated the overlapping weighting (OW) technique into HDMA workflow and proposed a concise and powerful high-dimensional mediation analysis procedure consisting of OW confounding adjustment, sure independence screening (SIS), de-biased Lasso penalization, and joint-significance testing underlying the mixture null distribution. We compared the proposed method with the existing method consisting of PS-based confounding adjustment, SIS, minimax concave penalty (MCP) variable selection, and classical joint-significance testing. RESULTS Simulation studies demonstrate the proposed procedure has the best performance in mediator selection and estimation. The proposed procedure yielded the highest true positive rate, acceptable false discovery proportion level, and lower mean square error. In the empirical study based on the GSE117859 dataset in the Gene Expression Omnibus database using the proposed method, we found that smoking history may lead to the estimated natural killer (NK) cell level reduction through the mediation effect of some methylation markers, mainly including methylation sites cg13917614 in CNP gene and cg16893868 in LILRA2 gene. CONCLUSIONS The proposed method has higher power, sufficient false discovery rate control, and precise mediation effect estimation. Meanwhile, it is feasible to be implemented with the presence of confounders. Hence, our method is worth considering in HDMA studies.
Collapse
Affiliation(s)
- Weiwei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shiyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Shorey-Kendrick LE, Davis B, Gao L, Park B, Vu A, Morris CD, Breton CV, Fry R, Garcia E, Schmidt RJ, O’Shea TM, Tepper RS, McEvoy CT, Spindel ER. Development and Validation of a Novel Placental DNA Methylation Biomarker of Maternal Smoking during Pregnancy in the ECHO Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67005. [PMID: 38885141 PMCID: PMC11218700 DOI: 10.1289/ehp13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Maternal cigarette smoking during pregnancy (MSDP) is associated with numerous adverse health outcomes in infants and children with potential lifelong consequences. Negative effects of MSDP on placental DNA methylation (DNAm), placental structure, and function are well established. OBJECTIVE Our aim was to develop biomarkers of MSDP using DNAm measured in placentas (N = 96 ), collected as part of the Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function double-blind, placebo-controlled randomized clinical trial conducted between 2012 and 2016. We also aimed to develop a digital polymerase chain reaction (PCR) assay for the top ranking cytosine-guanine dinucleotide (CpG) so that large numbers of samples can be screened for exposure at low cost. METHODS We compared the ability of four machine learning methods [logistic least absolute shrinkage and selection operator (LASSO) regression, logistic elastic net regression, random forest, and gradient boosting machine] to classify MSDP based on placental DNAm signatures. We developed separate models using the complete EPIC array dataset and on the subset of probes also found on the 450K array so that models exist for both platforms. For comparison, we developed a model using CpGs previously associated with MSDP in placenta. For each final model, we used model coefficients and normalized beta values to calculate placental smoking index (PSI) scores for each sample. Final models were validated in two external datasets: the Extremely Low Gestational Age Newborn observational study, N = 426 ; and the Rhode Island Children's Health Study, N = 237 . RESULTS Logistic LASSO regression demonstrated the highest performance in cross-validation testing with the lowest number of input CpGs. Accuracy was greatest in external datasets when using models developed for the same platform. PSI scores in smokers only (n = 72 ) were moderately correlated with maternal plasma cotinine levels. One CpG (cg27402634), with the largest coefficient in two models, was measured accurately by digital PCR compared with measurement by EPIC array (R 2 = 0.98 ). DISCUSSION To our knowledge, we have developed the first placental DNAm-based biomarkers of MSDP with broad utility to studies of prenatal disease origins. https://doi.org/10.1289/EHP13838.
Collapse
Affiliation(s)
- Lyndsey E. Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Brett Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Health & Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Annette Vu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cynthia D. Morris
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
- MIND Institute, School of Medicine, University of California Davis, Davis, California, USA
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Robert S. Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cindy T. McEvoy
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Eliot R. Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
14
|
Huang BZ, Binder AM, Quon B, Patel YM, Lum-Jones A, Tiirikainen M, Murphy SE, Loo L, Maunakea AK, Haiman CA, Wilkens LR, Koh WP, Cai Q, Aldrich MC, Siegmund KD, Hecht SS, Yuan JM, Blot WJ, Stram DO, Le Marchand L, Park SL. Epigenome-wide association study of total nicotine equivalents in multiethnic current smokers from three prospective cohorts. Am J Hum Genet 2024; 111:456-472. [PMID: 38367619 PMCID: PMC10940014 DOI: 10.1016/j.ajhg.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.
Collapse
Affiliation(s)
- Brian Z Huang
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Alexandra M Binder
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA; Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon Quon
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yesha M Patel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Annette Lum-Jones
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Maarit Tiirikainen
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lenora Loo
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lynne R Wilkens
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda C Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sungshim L Park
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
15
|
Choudhary P, Monasso GS, Karhunen V, Ronkainen J, Mancano G, Howe CG, Niu Z, Zeng X, Guan W, Dou J, Feinberg JI, Mordaunt C, Pesce G, Baïz N, Alfano R, Martens DS, Wang C, Isaevska E, Keikkala E, Mustaniemi S, Thio CHL, Fraszczyk E, Tobi EW, Starling AP, Cosin-Tomas M, Urquiza J, Röder S, Hoang TT, Page C, Jima DD, House JS, Maguire RL, Ott R, Pawlow X, Sirignano L, Zillich L, Malmberg A, Rauschert S, Melton P, Gong T, Karlsson R, Fore R, Perng W, Laubach ZM, Czamara D, Sharp G, Breton CV, Schisterman E, Yeung E, Mumford SL, Fallin MD, LaSalle JM, Schmidt RJ, Bakulski KM, Annesi-Maesano I, Heude B, Nawrot TS, Plusquin M, Ghantous A, Herceg Z, Nisticò L, Vafeiadi M, Kogevinas M, Vääräsmäki M, Kajantie E, Snieder H, Corpeleijn E, Steegers-Theunissen RPM, Yang IV, Dabelea D, Fossati S, Zenclussen AC, Herberth G, Magnus M, Håberg SE, London SJ, Munthe-Kaas MC, Murphy SK, Hoyo C, Ziegler AG, Hummel S, Witt SH, Streit F, Frank J, Räikkönen K, Lahti J, Huang RC, Almqvist C, Hivert MF, Jaddoe VWV, Järvelin MR, Kantomaa M, Felix JF, Sebert S. Maternal educational attainment in pregnancy and epigenome-wide DNA methylation changes in the offspring from birth until adolescence. Mol Psychiatry 2024; 29:348-358. [PMID: 38052982 PMCID: PMC11116099 DOI: 10.1038/s41380-023-02331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.
| | - Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ville Karhunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Research Unit of Mathematical Sciences, Faculty of Science, University of Oulu, Oulu, Finland
| | - Justiina Ronkainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Giulia Mancano
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Zhongzheng Niu
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
| | - Charles Mordaunt
- Department of Medical Micriobiology and Immunology, University of California Davis, Davis, CA, USA
| | - Giancarlo Pesce
- Epidemiology of Allergic and Respiratory Diseases (EPAR) team, Faculté de Médecine Saint-Antoine, Institute Pierre Louis d'Epidemiologie et Sante Publique (IPLESP), Sorbonne Université and INSERM, Paris, France
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health (CESP), INSERM, Villejuif, France
| | - Nour Baïz
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Elina Keikkala
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Finnish Institute for Health and Welfare, Population Health Unit, Public Health and Welfare, Helsinki and Oulu, Finland
| | - Sanna Mustaniemi
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Finnish Institute for Health and Welfare, Population Health Unit, Public Health and Welfare, Helsinki and Oulu, Finland
| | - Chris H L Thio
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eliza Fraszczyk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elmar W Tobi
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, 3000 CA, Rotterdam, the Netherlands
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marta Cosin-Tomas
- ISGlobal (Barcelona Institute for Global Health), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- ISGlobal (Barcelona Institute for Global Health), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Stefan Röder
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Thanh T Hoang
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christian Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Section for Research Support, Oslo University Hospital, Oslo, Norway
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27606, USA
| | - John S House
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27606, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, 27709, USA
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Raffael Ott
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes eV, Neuherberg, Germany
| | - Xenia Pawlow
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes eV, Neuherberg, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Phillip Melton
- Menzies Institute of Medical Research, University of Tasmania, Hobart, TAS, Australia
- University of Western Australia, School of Population and Global Health, Perth, WA, Australia
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ruby Fore
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Wei Perng
- Department of Epidemiology and the Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary M Laubach
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
| | - Gemma Sharp
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School Population Health Sciences, University of Bristol, Bristol, UK
- School of Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Carrie V Breton
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Enrique Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20817, USA
| | - Sunni L Mumford
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20817, USA
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
| | - Janine M LaSalle
- Department of Medical Micriobiology and Immunology, University of California Davis, Davis, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Barbara Heude
- Université de Paris Cité, Inserm, INRAE, Centre of Research in Epidemiology and StatisticS (CRESS), F-75004, Paris, France
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Lorenza Nisticò
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédicaen Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marja Vääräsmäki
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Finnish Institute for Health and Welfare, Population Health Unit, Public Health and Welfare, Helsinki and Oulu, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Population Health Unit, Public Health and Welfare, Helsinki and Oulu, Finland
- Clinical Medicine Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Regine P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, 3000 CA, Rotterdam, the Netherlands
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Serena Fossati
- ISGlobal (Barcelona Institute for Global Health), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana C Zenclussen
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Gunda Herberth
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| | - Maria Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Monica Cheng Munthe-Kaas
- Department of Pediatrics, Oncology and Hematology, Oslo University Hospital, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes eV, Neuherberg, Germany
- Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Sandra Hummel
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes eV, Neuherberg, Germany
- Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rae-Chi Huang
- Telethon Kids Institute, Perth, WA, Australia
- Edith Cowan University, School of Medicine and Health Sciences, Joondalup, WA, Australia
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjo-Riitta Järvelin
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Marko Kantomaa
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| |
Collapse
|
16
|
Domínguez-Barragán J, Fernández-Sanlés A, Hernáez Á, Llauradó-Pont J, Marrugat J, Robinson O, Tzoulaki I, Elosua R, Lassale C. Blood DNA methylation signature of diet quality and association with cardiometabolic traits. Eur J Prev Cardiol 2024; 31:191-202. [PMID: 37793095 PMCID: PMC10809172 DOI: 10.1093/eurjpc/zwad317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
AIMS Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. Our aims were to identify cytosine-phosphate-guanine (CpG) dinucleotides associated with diet quality by conducting an epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure (SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD). METHODS AND RESULTS Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores (exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated CpGs associated with dietary scores (P < 1.08 × 10-7; Bonferroni correction), of which 12 were previously associated with cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in inflammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methylation levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 (SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk. CONCLUSION Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic health.
Collapse
Affiliation(s)
- Jorge Domínguez-Barragán
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
| | - Alba Fernández-Sanlés
- MRC Unit for Lifelong Health and Ageing, University College London, London WC1E 7HB, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Álvaro Hernáez
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0463, Norway
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
| | - Joana Llauradó-Pont
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Jaume Marrugat
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- μedical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Centre for Systems Biology, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Roberto Elosua
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic—Central University of Catalunya, Ctra. de Roda, 70, 08500 Vic, Spain
| | - Camille Lassale
- Hospital del Mar Research Institute (IMIM), Programme of Epidemiology and Public Health, Dr Aiguader, 88, 08003 Barcelona, Spain
- Consortium for Biomedical Research—Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 08029 Madrid, Spain
- Barcelona Institute of Global Health (ISGlobal), Dr Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
17
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Clark SL, van den Oord EJCG, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23300238. [PMID: 38293028 PMCID: PMC10827272 DOI: 10.1101/2024.01.17.23300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International
| | | | - Caryn Willis
- GenOmics and Translational Research Center, RTI International
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International
| | | | - Ran Tao
- Lieber Institute for Brain Development (LIBD)
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University
| | | | | | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International
- Fellow Program, RTI International
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International
| |
Collapse
|
18
|
Huang Y, Chen Q, Wang Z, Wang Y, Lian A, Zhou Q, Zhao G, Xia K, Tang B, Li B, Li J. Risk factors associated with age at onset of Parkinson's disease in the UK Biobank. NPJ Parkinsons Dis 2024; 10:3. [PMID: 38167894 PMCID: PMC10762149 DOI: 10.1038/s41531-023-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Substantial evidence shown that the age at onset (AAO) of Parkinson's disease (PD) is a major determinant of clinical heterogeneity. However, the mechanisms underlying heterogeneity in the AAO remain unclear. To investigate the risk factors with the AAO of PD, a total of 3156 patients with PD from the UK Biobank were included in this study. We evaluated the effects of polygenic risk scores (PRS), nongenetic risk factors, and their interaction on the AAO using Mann-Whitney U tests and regression analyses. We further identified the genes interacting with nongenetic risk factors for the AAO using genome-wide environment interaction studies. We newly found physical activity (P < 0.0001) was positively associated with AAO and excessive daytime sleepiness (P < 0.0001) was negatively associated with AAO, and reproduced the positive associations of smoking and non-steroidal anti-inflammatory drug intake and the negative association of family history with AAO. In the dose-dependent analyses, smoking duration (P = 1.95 × 10-6), coffee consumption (P = 0.0150), and tea consumption (P = 0.0008) were positively associated with AAO. Individuals with higher PRS had younger AAO (P = 3.91 × 10-5). In addition, we observed a significant interaction between the PRS and smoking for AAO (P = 0.0316). Specifically, several genes, including ANGPT1 (P = 7.17 × 10-7) and PLEKHA6 (P = 4.87 × 10-6), may influence the positive relationship between smoking and AAO. Our data suggests that genetic and nongenetic risk factors are associated with the AAO of PD and that there is an interaction between the two.
Collapse
Affiliation(s)
- Yuanfeng Huang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Qian Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zheng Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yijing Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Guihu Zhao
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Beisha Tang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Bin Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
19
|
Jayanetti WT, Sikdar S. Empirically adjusted fixed-effects meta-analysis methods in genomic studies. Stat Appl Genet Mol Biol 2024; 23:sagmb-2023-0041. [PMID: 39340124 DOI: 10.1515/sagmb-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
In recent years, meta-analyzing summary results from multiple studies has become a common practice in genomic research, leading to a significant improvement in the power of statistical detection compared to an individual genomic study. Meta analysis methods that combine statistical estimates across studies are known to be statistically more powerful than those combining statistical significance measures. An approach combining effect size estimates based on a fixed-effects model, called METAL, has gained extreme popularity to perform the former type of meta-analysis. In this article, we discuss the limitations of METAL due to its dependence on the theoretical null distribution, leading to incorrect significance testing results. Through various simulation studies and real genomic data application, we show how modifying the z-scores in METAL, using an empirical null distribution, can significantly improve the results, especially in presence of hidden confounders. For the estimation of the null distribution, we consider two different approaches, and we highlight the scenarios when one null estimation approach outperforms the other. This article will allow researchers to gain an insight into the importance of using an empirical null distribution in the fixed-effects meta-analysis as well as in choosing the appropriate empirical null distribution estimation approach.
Collapse
Affiliation(s)
- Wimarsha T Jayanetti
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Sinjini Sikdar
- Department of Mathematics and Statistics, 6042 Old Dominion University , Norfolk, VA 23529, USA
| |
Collapse
|
20
|
Vassilopoulou E, Rallis D, Milani GP, Agostoni C, Feketea G, Lithoxopoulou M, Stefanaki E, Ladomenou F, Douladiris N, Cronin C, Popescu CA, Pop RM, Bocsan IC, Tsabouri S. Nurturing Infants to Prevent Atopic Dermatitis and Food Allergies: A Longitudinal Study. Nutrients 2023; 16:21. [PMID: 38201851 PMCID: PMC10780847 DOI: 10.3390/nu16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) at a young age often precedes the development of food allergies. Although AD affects millions of infants worldwide, prenatal and postnatal risk factors, and their association with the development of food allergies later on, are not fully elucidated. This study seeks to investigate AD epidemiology in infancy and its risk factors, examining early-life factors (both prenatal and postnatal) that could contribute to the later development of food allergies. METHODS Between January 2019 and December 2019, 501 infants were included in this prospective cohort study. Longitudinal data collection was performed through maternal interviews, the first one conducted within three days after the delivery and the second within 24 to 36 months after the delivery, encompassing variables such as demographics, family history of atopy, maternal smoking, antibiotic use during pregnancy, the mode of delivery, breastfeeding history, food practices, and greenness exposure within 3 days from delivery, while they were still in the hospital. RESULTS Maternal smoking during pregnancy (p = 0.001) and an older sibling atopy history (p = 0.03) was significantly linked to AD incidence. Cesarean section delivery (p = 0.04) was associated with a higher risk of food allergies in infants with AD. Having a garden at home correlated with a higher likelihood of AD (p = 0.01), and food elimination without medical guidance (p = 0.02) due to AD correlated with an elevated risk of food allergies. CONCLUSIONS Encouraging timely allergenic food introduction while promoting dietary diversity, rich in plant-based foods, maternal smoking cessation, and professional dietary guidance may help minimize AD and food allergy risk. Future studies should address the role of greenness in the development of AD and food allergies.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.P.M.); (C.A.)
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (D.R.); (S.T.)
| | - Gregorio Paolo Milani
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.P.M.); (C.A.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Carlo Agostoni
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.P.M.); (C.A.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gavriela Feketea
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (G.F.); (R.M.P.); (I.C.B.)
- Pediatric Allergy Outpatient Clinic, Department of Pediatrics, “Karamandaneio” Children’s Hospital of Patra, 26331 Patras, Greece
| | - Maria Lithoxopoulou
- 2nd Department of Neonatology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital of Thessaloniki, 56403 Thessaloniki, Greece;
| | - Evangelia Stefanaki
- Pediatric Allergy Outpatient Clinic, Department of Pediatrics, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece;
| | - Fani Ladomenou
- Pediatric Infectious Unit, Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Nikolaos Douladiris
- Allergy Unit, 2nd Pediatric Clinic, University of Athens, 11527 Athens, Greece;
| | - Caoimhe Cronin
- Department of Paediatrics and Child Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Codruta Alina Popescu
- Department of Abilities Human Sciences, Iuliu Hatieganu University of Medicine and Pharmacy, 40012 Cluj-Napoca, Romania;
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (G.F.); (R.M.P.); (I.C.B.)
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (G.F.); (R.M.P.); (I.C.B.)
| | - Sophia Tsabouri
- Neonatal Intensive Care Unit, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece; (D.R.); (S.T.)
| |
Collapse
|
21
|
Awada Z, Cahais V, Cuenin C, Akika R, Silva Almeida Vicente AL, Makki M, Tamim H, Herceg Z, Khoueiry Zgheib N, Ghantous A. Waterpipe and cigarette epigenome analysis reveals markers implicated in addiction and smoking type inference. ENVIRONMENT INTERNATIONAL 2023; 182:108260. [PMID: 38006773 PMCID: PMC10716859 DOI: 10.1016/j.envint.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 11/27/2023]
Abstract
Waterpipe smoking is frequent in the Middle East and Africa with emerging prevalence worldwide. The epigenome acts as a molecular sensor to exposures and a crucial driver in several diseases. With the widespread use of waterpipe smoking, it is timely to investigate its epigenomic markers and their role in addiction, as a central player in disease prevention and therapeutic strategies. DNA methylome-wide profiling was performed on an exposure-rich population from the Middle East, constituting of 216 blood samples split equally between never, cigarette-only and waterpipe-only smokers. Waterpipe smokers showed predominantly distinct epigenetic markers from cigarette smokers, even though both smoking forms are tobacco-based. Moreover, each smoking form could be accurately (∼90 %) inferred from the DNA methylome using machine learning. Top markers showed dose-response relationship with extent of smoking and were validated using independent technologies and additional samples (total N = 284). Smoking markers were enriched in regulatory regions and several biological pathways, primarily addiction. The epigenetically altered genes were not associated with genetic etiology of tobacco use, and the methylation levels of addiction genes, in particular, were more likely to reverse after smoking cessation. In contrast, other epigenetic markers continued to feature smoking exposure after cessation, which may explain long-term health effects observed in former smokers. This study reports, for the first time, blood epigenome-wide markers of waterpipe smokers and reveals new markers of cigarette smoking, with implications in mechanisms of addiction and the capacity to discriminate between different smoking types. These markers may offer actionable targets to reverse the epigenetic memory of addiction and can guide future prevention strategies for tobacco smoking as the most preventable cause of illnesses worldwide.
Collapse
Affiliation(s)
- Zainab Awada
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Anna Luiza Silva Almeida Vicente
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Maha Makki
- Clinical Research Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hani Tamim
- Clinical Research Institute, American University of Beirut Medical Center, Beirut, Lebanon; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nathalie Khoueiry Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
22
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
23
|
Herrera-Luis E, Rosa-Baez C, Huntsman S, Eng C, Beckman KB, LeNoir MA, Rodriguez-Santana JR, Villar J, Laprise C, Borrell LN, Ziv E, Burchard EG, Pino-Yanes M. Novel insights into the whole-blood DNA methylome of asthma in ethnically diverse children and youth. Eur Respir J 2023; 62:2300714. [PMID: 37802634 PMCID: PMC10841414 DOI: 10.1183/13993003.00714-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The epigenetic mechanisms of asthma remain largely understudied in African Americans and Hispanics/Latinos, two populations disproportionately affected by asthma. We aimed to identify markers, regions and processes with differential patterns of DNA methylation (DNAm) in whole blood by asthma status in ethnically diverse children and youth, and to assess their functional consequences. METHODS DNAm levels were profiled with the Infinium MethylationEPIC or HumanMethylation450 BeadChip arrays among 1226 African Americans or Hispanics/Latinos and assessed for differential methylation per asthma status at the CpG and region (differentially methylated region (DMR)) level. Novel associations were validated in blood and/or nasal epithelium from ethnically diverse children and youth. The functional and biological implications of the markers identified were investigated by combining epigenomics with transcriptomics from study participants. RESULTS 128 CpGs and 196 DMRs were differentially methylated after multiple testing corrections, including 92.3% and 92.8% novel associations, respectively. 41 CpGs were replicated in other Hispanics/Latinos, prioritising cg17647904 (NCOR2) and cg16412914 (AXIN1) as asthma DNAm markers. Significant DNAm markers were enriched in previous associations for asthma, fractional exhaled nitric oxide, bacterial infections, immune regulation or eosinophilia. Functional annotation highlighted epigenetically regulated gene networks involved in corticosteroid response, host defence and immune regulation. Several implicated genes are targets for approved or experimental drugs, including TNNC1 and NDUFA12. Many differentially methylated loci previously associated with asthma were validated in our study. CONCLUSIONS We report novel whole-blood DNAm markers for asthma underlying key processes of the disease pathophysiology and confirm the transferability of previous asthma DNAm associations to ethnically diverse populations.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Scott Huntsman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael A LeNoir
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Bay Area Pediatrics, Oakland, CA, USA
| | - Jose R Rodriguez-Santana
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Centro de Neumología Pediátrica, San Juan, Puerto Rico
| | - Jesús Villar
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, ON, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Spain
- These authors contributed equally as senior authors
| |
Collapse
|
24
|
Carreras-Gallo N, Dwaraka VB, Cáceres A, Smith R, Mendez TL, Went H, Gonzalez JR. Impact of tobacco, alcohol, and marijuana on genome-wide DNA methylation and its relationship with hypertension. Epigenetics 2023; 18:2214392. [PMID: 37216580 DOI: 10.1080/15592294.2023.2214392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.
Collapse
Affiliation(s)
| | | | - Alejandro Cáceres
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | | - Juan R Gonzalez
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Chen J, Gatev E, Everson T, Conneely KN, Koen N, Epstein MP, Kobor MS, Zar HJ, Stein DJ, Hüls A. Pruning and thresholding approach for methylation risk scores in multi-ancestry populations. Epigenetics 2023; 18:2187172. [PMID: 36908043 PMCID: PMC10026878 DOI: 10.1080/15592294.2023.2187172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Recent efforts have focused on developing methylation risk scores (MRS), a weighted sum of the individual's DNA methylation (DNAm) values of pre-selected CpG sites. Most of the current MRS approaches that utilize Epigenome-wide association studies (EWAS) summary statistics only include genome-wide significant CpG sites and do not consider co-methylation. New methods that relax the p-value threshold to include more CpG sites and account for the inter-correlation of DNAm might improve the predictive performance of MRS. We paired informed co-methylation pruning with P-value thresholding to generate pruning and thresholding (P+T) MRS and evaluated its performance among multi-ancestry populations. Through simulation studies and real data analyses, we demonstrated that pruning provides an improvement over simple thresholding methods for prediction of phenotypes. We demonstrated that European-derived summary statistics can be used to develop P+T MRS among other populations such as African populations. However, the prediction accuracy of P+T MRS may differ across multi-ancestry population due to environmental/cultural/social differences.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Evan Gatev
- Institute of Molecular Biology "Acad. Roumen Tsanev", Sofia, Bulgaria
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Todd Everson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA USA
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA USA
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA USA
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
26
|
Nidey N, Bowers K, Ding L, Ji H, Ammerman RT, Yolton K, Mahabee-Gittens EM, Folger AT. Neonatal AVPR1a Methylation and In-Utero Exposure to Maternal Smoking. TOXICS 2023; 11:855. [PMID: 37888705 PMCID: PMC10611161 DOI: 10.3390/toxics11100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
(1) Introduction: Epigenetic changes have been proposed as a biologic link between in-utero exposure to maternal smoking and health outcomes. Therefore, we examined if in-utero exposure to maternal smoking was associated with infant DNA methylation (DNAm) of cytosine-phosphate-guanine dinucleotides (CpG sites) in the arginine vasopressin receptor 1A AVPR1a gene. The AVPR1a gene encodes a receptor that interacts with the arginine vasopressin hormone and may influence physiological stress regulation, blood pressure, and child development. (2) Methods: Fifty-two infants were included in this cohort study. Multivariable linear models were used to examine the effect of in-utero exposure to maternal smoking on the mean DNAm of CpG sites located at AVPR1a. (3) Results: After adjusting the model for substance use, infants with in-utero exposure to maternal smoking had a reduction in DNAm at AVPR1a CpG sites by -0.02 (95% CI -0.03, -0.01) at one month of age. In conclusion, in-utero exposure to tobacco smoke can lead to differential patterns of DNAm of AVPR1a among infants. Conclusions: Future studies are needed to identify how gene expression in response to early environmental exposures contributes to health outcomes.
Collapse
Affiliation(s)
- Nichole Nidey
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA 52242, USA;
| | - Katherine Bowers
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (K.B.); (L.D.)
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (K.B.); (L.D.)
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Robert T. Ammerman
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA;
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA;
| | - E. Melinda Mahabee-Gittens
- Division of Emergency Medicine, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA;
| | - Alonzo T. Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (K.B.); (L.D.)
| |
Collapse
|
27
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
29
|
Nakamura A, Broséus L, Tost J, Vaiman D, Martins S, Keyes K, Bonello K, Fekom M, Strandberg-Larsen K, Sutter-Dallay AL, Heude B, Melchior M, Lepeule J. Epigenome-Wide Associations of Placental DNA Methylation and Behavioral and Emotional Difficulties in Children at 3 Years of Age. Int J Mol Sci 2023; 24:11772. [PMID: 37511531 PMCID: PMC10380531 DOI: 10.3390/ijms241411772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The placenta is a key organ for fetal and brain development. Its epigenome can be regarded as a biochemical record of the prenatal environment and a potential mechanism of its association with the future health of the fetus. We investigated associations between placental DNA methylation levels and child behavioral and emotional difficulties, assessed at 3 years of age using the Strengths and Difficulties Questionnaire (SDQ) in 441 mother-child dyads from the EDEN cohort. Hypothesis-driven and exploratory analyses (on differentially methylated probes (EWAS) and regions (DMR)) were adjusted for confounders, technical factors, and cell composition estimates, corrected for multiple comparisons, and stratified by child sex. Hypothesis-driven analyses showed an association of cg26703534 (AHRR) with emotional symptoms, and exploratory analyses identified two probes, cg09126090 (intergenic region) and cg10305789 (PPP1R16B), as negatively associated with peer relationship problems, as well as 33 DMRs, mostly positively associated with at least one of the SDQ subscales. Among girls, most associations were seen with emotional difficulties, whereas in boys, DMRs were as much associated with emotional than behavioral difficulties. This study provides the first evidence of associations between placental DNA methylation and child behavioral and emotional difficulties. Our results suggest sex-specific associations and might provide new insights into the mechanisms of neurodevelopment.
Collapse
Affiliation(s)
- Aurélie Nakamura
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), University Grenoble Alpes, INSERM, 38700 La Tronche, France;
| | - Lucile Broséus
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), University Grenoble Alpes, INSERM, 38700 La Tronche, France;
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA—Institut de Biologie François Jacob, University Paris Saclay, 91057 Evry, France;
| | - Daniel Vaiman
- From Gametes to Birth, Institut Cochin, U1016 INSERM, UMR 8104 CNRS, Paris Cité University, 75014 Paris, France;
| | - Silvia Martins
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (S.M.); (K.K.)
| | - Katherine Keyes
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA; (S.M.); (K.K.)
| | - Kim Bonello
- Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, INSERM, 75571 Paris, France; (K.B.); (M.F.); (M.M.)
- Department of General Practice, School of Medicine, Sorbonne University, 75013 Paris, France
| | - Mathilde Fekom
- Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, INSERM, 75571 Paris, France; (K.B.); (M.F.); (M.M.)
| | - Katrine Strandberg-Larsen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Anne-Laure Sutter-Dallay
- Bordeaux Population Health, Bordeaux University, INSERM, UMR 1219, 33076 Bordeaux, France;
- University Department of Child and Adolescent Psychiatry, Charles Perrens Hospital, 33000 Bordeaux, France
| | - Barbara Heude
- Center for Research in Epidemiology and Statistics (CRESS), Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, 75004 Paris, France;
| | - Maria Melchior
- Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Equipe de Recherche en Epidémiologie Sociale (ERES), Sorbonne Université, INSERM, 75571 Paris, France; (K.B.); (M.F.); (M.M.)
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences (IAB), University Grenoble Alpes, INSERM, 38700 La Tronche, France;
| |
Collapse
|
30
|
Ventham NT, Kennedy NA, Kalla R, Adams AT, Noble A, Ennis H, Mowat C, Dunlop MG, Satsangi J. Genome-Wide Methylation Profiling in 229 Patients With Crohn's Disease Requiring Intestinal Resection: Epigenetic Analysis of the Trial of Prevention of Post-operative Crohn's Disease (TOPPIC). Cell Mol Gastroenterol Hepatol 2023; 16:431-450. [PMID: 37331566 PMCID: PMC10372903 DOI: 10.1016/j.jcmgh.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND & AIMS DNA methylation alterations may provide important insights into gene-environment interaction in cancer, aging, and complex diseases, such as inflammatory bowel disease (IBD). We aim first to determine whether the circulating DNA methylome in patients requiring surgery may predict Crohn's disease (CD) recurrence following intestinal resection; and second to compare the circulating methylome seen in patients with established CD with that we had reported in a series of inception cohorts. METHODS TOPPIC was a placebo-controlled, randomized controlled trial of 6-mercaptopurine at 29 UK centers in patients with CD undergoing ileocolic resection between 2008 and 2012. Genomic DNA was extracted from whole blood samples from 229 of the 240 patients taken before intestinal surgery and analyzed using 450KHumanMethylation and Infinium Omni Express Exome arrays (Illumina, San Diego, CA). Coprimary objectives were to determine whether methylation alterations may predict clinical disease recurrence; and to assess whether the epigenetic alterations previously reported in newly diagnosed IBD were present in the patients with CD recruited into the TOPPIC study. Differential methylation and variance analysis was performed comparing patients with and without clinical evidence of recurrence. Secondary analyses included investigation of methylation associations with smoking, genotype (MeQTLs), and chronologic age. Validation of our previously published case-control observation of the methylome was performed using historical control data (CD, n = 123; Control, n = 198). RESULTS CD recurrence in patients following surgery is associated with 5 differentially methylated positions (Holm P < .05), including probes mapping to WHSC1 (P = 4.1 × 10-9, Holm P = .002) and EFNA3 (P = 4.9 × 10-8, Holm P = .02). Five differentially variable positions are demonstrated in the group of patients with evidence of disease recurrence including a probe mapping to MAD1L1 (P = 6.4 × 10-5). DNA methylation clock analyses demonstrated significant age acceleration in CD compared with control subjects (GrimAge + 2 years; 95% confidence interval, 1.2-2.7 years), with some evidence for accelerated aging in patients with CD with disease recurrence following surgery (GrimAge +1.04 years; 95% confidence interval, -0.04 to 2.22). Significant methylation differences between CD cases and control subjects were seen by comparing this cohort in conjunction with previously published control data, including validation of our previously described differentially methylated positions (RPS6KA2 P = 1.2 × 10-19, SBNO2 = 1.2 × 10-11) and regions (TXK [false discovery rate, P = 3.6 × 10-14], WRAP73 [false discovery rate, P = 1.9 × 10-9], VMP1 [false discovery rate, P = 1.7 × 10-7], and ITGB2 [false discovery rate, P = 1.4 × 10-7]). CONCLUSIONS We demonstrate differential methylation and differentially variable methylation in patients developing clinical recurrence within 3 years of surgery. Moreover, we report replication of the CD-associated methylome, previously characterized only in adult and pediatric inception cohorts, in patients with medically refractory disease needing surgery.
Collapse
Affiliation(s)
- Nicholas T Ventham
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom.
| | - Nicholas A Kennedy
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Rahul Kalla
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Alex T Adams
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Alexandra Noble
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Holly Ennis
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Craig Mowat
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Malcolm G Dunlop
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Jack Satsangi
- Centre for Genomic and Experimental Medicine, The University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
31
|
Morin A, Thompson EE, Helling BA, Shorey-Kendrick LE, Faber P, Gebretsadik T, Bacharier LB, Kattan M, O'Connor GT, Rivera-Spoljaric K, Wood RA, Barnes KC, Mathias RA, Altman MC, Hansen K, McEvoy CT, Spindel ER, Hartert T, Jackson DJ, Gern JE, McKennan CG, Ober C. A functional genomics pipeline to identify high-value asthma and allergy CpGs in the human methylome. J Allergy Clin Immunol 2023; 151:1609-1621. [PMID: 36754293 PMCID: PMC10859971 DOI: 10.1016/j.jaci.2022.12.828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Pieter Faber
- Genomics Core, University of Chicago, Chicago, Ill
| | - Tebeb Gebretsadik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Mass
| | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | | | | | - Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute Systems, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash
| | - Kasper Hansen
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Ore
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Tina Hartert
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Chris G McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pa.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
32
|
Wang X, Campbell MR, Cho HY, Pittman GS, Martos SN, Bell DA. Epigenomic profiling of isolated blood cell types reveals highly specific B cell smoking signatures and links to disease risk. Clin Epigenetics 2023; 15:90. [PMID: 37231515 PMCID: PMC10211291 DOI: 10.1186/s13148-023-01507-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 nonsmokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays. RESULTS Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance (p < 1.2 × 10-7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease risks, and other traits. CONCLUSIONS We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrating genome-wide datasets, we identified their potential links to disease risks and health traits.
Collapse
Affiliation(s)
- Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Michelle R Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Hye-Youn Cho
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Gary S Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Suzanne N Martos
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
33
|
Hahn J, Bressler J, Domingo-Relloso A, Chen MH, McCartney DL, Teumer A, van Dongen J, Kleber ME, Aïssi D, Swenson BR, Yao J, Zhao W, Huang J, Xia Y, Brown MR, Costeira R, de Geus EJC, Delgado GE, Dobson DA, Elliott P, Grabe HJ, Guo X, Harris SE, Huffman JE, Kardia SLR, Liu Y, Lorkowski S, Marioni RE, Nauck M, Ratliff SM, Sabater-Lleal M, Spector TD, Suchon P, Taylor KD, Thibord F, Trégouët DA, Wiggins KL, Willemsen G, Bell JT, Boomsma DI, Cole SA, Cox SR, Dehghan A, Greinacher A, Haack K, März W, Morange PE, Rotter JI, Sotoodehnia N, Tellez-Plaza M, Navas-Acien A, Smith JA, Johnson AD, Fornage M, Smith NL, Wolberg AS, Morrison AC, de Vries PS. DNA methylation analysis is used to identify novel genetic loci associated with circulating fibrinogen levels in blood. J Thromb Haemost 2023; 21:1135-1147. [PMID: 36716967 PMCID: PMC11556295 DOI: 10.1016/j.jtha.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Fibrinogen plays an essential role in blood coagulation and inflammation. Circulating fibrinogen levels may be determined based on interindividual differences in DNA methylation at cytosine-phosphate-guanine (CpG) sites and vice versa. OBJECTIVES To perform an EWAS to examine an association between blood DNA methylation levels and circulating fibrinogen levels to better understand its biological and pathophysiological actions. METHODS We performed an epigenome-wide association study of circulating fibrinogen levels in 18 037 White, Black, American Indian, and Hispanic participants, representing 14 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Circulating leukocyte DNA methylation was measured using the Illumina 450K array in 12 904 participants and using the EPIC array in 5133 participants. In each study, an epigenome-wide association study of fibrinogen was performed using linear mixed models adjusted for potential confounders. Study-specific results were combined using array-specific meta-analysis, followed by cross-replication of epigenome-wide significant associations. We compared models with and without CRP adjustment to examine the role of inflammation. RESULTS We identified 208 and 87 significant CpG sites associated with fibrinogen levels from the 450K (p < 1.03 × 10-7) and EPIC arrays (p < 5.78 × 10-8), respectively. There were 78 associations from the 450K array that replicated in the EPIC array and 26 vice versa. After accounting for overlapping sites, there were 83 replicated CpG sites located in 61 loci, of which only 4 have been previously reported for fibrinogen. The examples of genes located near these CpG sites were SOCS3 and AIM2, which are involved in inflammatory pathways. The associations of all 83 replicated CpG sites were attenuated after CRP adjustment, although many remained significant. CONCLUSION We identified 83 CpG sites associated with circulating fibrinogen levels. These associations are partially driven by inflammatory pathways shared by both fibrinogen and CRP.
Collapse
Affiliation(s)
- Julie Hahn
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Statistics and Operations Research, University of Valencia, Burjassot, Spain
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Teumer
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Dylan Aïssi
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Molecular Epidemiology of Vascular and Brain Disorders, Bordeaux, France
| | - Brenton R Swenson
- Cardiovascular Health Research Unit, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jie Yao
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Yujing Xia
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dre'Von A Dobson
- Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, London, United Kingdom; British Heart Foundation Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Xiuqing Guo
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongmei Liu
- Medicine, Cardiology, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Unit, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain; Department of Medicine, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Pierre Suchon
- Center for CardioVascular and Nutrition research (C2VN), INSERM 1263, INRAE 1260, Hematology Laboratory, La Timone University Hospital of Marseille, Aix-Marseille University, Marseille, France
| | - Kent D Taylor
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Florian Thibord
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - David-Alexandre Trégouët
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Molecular Epidemiology of Vascular and Brain Disorders, Bordeaux, France
| | - Kerri L Wiggins
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Pierre-Emmanuel Morange
- Cardiovascular and Nutrition Reserach Center (C2VN), INSERM, INRAE, Aix-Marseille University, Marseille, France
| | - Jerome I Rotter
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Nona Sotoodehnia
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA; Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nicholas L Smith
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
| | - Alisa S Wolberg
- Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
34
|
Yaskolka Meir A, Huang W, Cao T, Hong X, Wang G, Pearson C, Adams WG, Wang X, Liang L. Umbilical cord DNA methylation is associated with body mass index trajectories from birth to adolescence. EBioMedicine 2023; 91:104550. [PMID: 37088033 PMCID: PMC10141503 DOI: 10.1016/j.ebiom.2023.104550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) in cord blood has been associated with various prenatal factors and birth outcomes. This study sought to fill an important knowledge gap: the link of cord DNAm with child postnatal growth trajectories from birth to age 18 years (y). METHODS Using data from a US predominantly urban, low-income, multi-ethnic birth cohort (N = 831), we first applied non-parametric methods to identify body-mass-index percentile (BMIPCT) trajectories from birth to age 18 y (the outcome); then, conducted epigenome-wide association study (EWAS) of the outcome, interrogating over 700,000 CpG sites profiled by the Illumina Infinium MethylationEPIC BeadChip. Multivariate linear regression models and likelihood ratio tests (LRT) were applied to examine the DNAm-outcome association in the overall sample and sex strata. FINDINGS We identified four distinct patterns of BMIPCT trajectories: normal weight (NW), Early overweight or obesity (OWO), Late OWO, and normal to very late OWO. DNAm at CpG18582997 annotated to TPGS1, CpG15241084 of TLR7, and cg24350936 of RAB31 were associated with BMIPCT at birth-to-3 y, 10 y, and 14 y, respectively (LRT FDR < 0.05 for all). INTERPRETATION In this prospective birth cohort study, we identified 4 distinct and robust patterns of growth trajectories from birth to 18 y, which were associated with variations in cord blood DNAm at genes implicated in inflammation induction pathways. These findings, if further replicated, raise the possibility that these DNAm markers along with early assessment of BMIPCT trajectories may help identify young children at high-risk for obesity later in life. FUNDING Detailed in the Acknowledgements section.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 2nd Floor, Boston, MA 02115, USA
| | - Wanyu Huang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Civil and Systems Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Tingyi Cao
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 4th Floor, Boston, MA 02115, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118, USA
| | - William G Adams
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, John Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 2nd Floor, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, 4th Floor, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Shirvaliloo M. LncRNA H19 promotes tumor angiogenesis in smokers by targeting anti-angiogenic miRNAs. Epigenomics 2023; 15:61-73. [PMID: 36802727 DOI: 10.2217/epi-2022-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
A key concept in drug discovery is the identification of candidate therapeutic targets such as long noncoding RNAs (lncRNAs) because of their extensive involvement in neoplasms, and impressionability by smoking. Induced by exposure to cigarette smoke, lncRNA H19 targets and inactivates miR-29, miR-30a, miR-107, miR-140, miR-148b, miR-199a and miR-200, which control the rate of angiogenesis by inhibiting BiP, DLL4, FGF7, HIF1A, HIF1B, HIF2A, PDGFB, PDGFRA, VEGFA, VEGFB, VEGFC, VEGFR1, VEGFR2 and VEGFR3. Nevertheless, these miRNAs are often dysregulated in bladder cancer, breast cancer, colorectal cancer, glioma, gastric adenocarcinoma, hepatocellular carcinoma, meningioma, non-small-cell lung carcinoma, oral squamous cell carcinoma, ovarian cancer, prostate adenocarcinoma and renal cell carcinoma. As such, the present perspective article seeks to establish an evidence-based hypothetical model of how a smoking-related lncRNA known as H19 might aggravate angiogenesis by interfering with miRNAs that would otherwise regulate angiogenesis in a nonsmoking individual.
Collapse
Affiliation(s)
- Milad Shirvaliloo
- Infectious & Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran.,Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
36
|
Coppedè F. Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers (Basel) 2023; 15:cancers15041019. [PMID: 36831363 PMCID: PMC9953779 DOI: 10.3390/cancers15041019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cancer has traditionally been viewed as a genetic disorder resulting from the accumulation of gene mutations, chromosomal rearrangements, and aneuploidies in somatic cells [...].
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; ; Tel.: +39-050-2218544
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
37
|
Crider KS, Wang A, Ling H, Potischman N, Bailey RL, Lichen Y, Pfeiffer CM, Killian JK, Rose C, Sampson J, Zhu L, Berry RJ, Linet M, Yu W, Su LJ. Maternal Periconceptional Folic Acid Supplementation and DNA Methylation Patterns in Adolescent Offspring. J Nutr 2023; 152:2669-2676. [PMID: 36196007 PMCID: PMC9839994 DOI: 10.1093/jn/nxac184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Folate, including the folic acid form, is a key component of the one-carbon metabolic pathway used for DNA methylation. Changes in DNA methylation patterns during critical development periods are associated with disease outcomes and are associated with changes in nutritional status in pregnancy. The long-term impact of periconceptional folic acid supplementation on DNA methylation patterns is unknown. OBJECTIVES To determine the long-term impact of periconceptional folic acid supplementation on DNA methylation patterns, we examined the association of the recommended dosage (400 μg/d) and time period (periconceptional before pregnancy through first trimester) of folic acid supplementation with the DNA methylation patterns in the offspring at age 14-17 y compared with offspring with no supplementation. METHODS Two geographic sites in China from the 1993-1995 Community Intervention Program of folic acid supplementation were selected for the follow-up study. DNA methylation at 402,730 CpG sites was assessed using saliva samples from 89 mothers and 179 adolescents (89 male). The mean age at saliva collection was 40 y among mothers (range: 35-54 y) and 15 y among adolescents (range: 14-17 y). Epigenome-wide analyses were conducted to assess the interactions of periconceptional folic acid exposure, the 5,10-methylenetetrahydrofolate reductase (MTHFR)-C677T genotype, and epigenome-wide DNA methylation controlling for offspring sex, geographic region, and background cell composition in the saliva. RESULTS In the primary outcome, no significant differences were observed in epigenome-wide methylation patterns between adolescents exposed and those non-exposed to maternal periconceptional folic acid supplementation after adjustment for potential confounders [false discovery rate (FDR) P values < 0.05]. The MTHFR-C677T genotype did not modify this lack of association (FDR P values < 0.05). CONCLUSIONS Overall, there were no differences in DNA methylation between adolescents who were exposed during the critical developmental window and those not exposed to the recommended periconceptional/first-trimester dosage of folic acid.
Collapse
Affiliation(s)
- Krista S Crider
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Arick Wang
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Hao Ling
- US CDC China Office, Beijing, China
| | | | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Yang Lichen
- National Center for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Christine M Pfeiffer
- Division of Laboratory Sciences, National Center for Environmental Health, US CDC, Atlanta, GA, USA
| | - J Keith Killian
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles Rose
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Li Zhu
- School of Public Health, Peking University Health Science Center, Beijing, China (retired)
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, US CDC, Atlanta, GA, USA
| | - Martha Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wang Yu
- Director General (former), Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Joseph Su
- Cancer Prevention and Population Sciences Program, Division of Epidemiology, University of Arkansas, Little Rock, AR, USA
| |
Collapse
|
38
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
39
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Elliott HR, Burrows K, Min JL, Tillin T, Mason D, Wright J, Santorelli G, Davey Smith G, Lawlor DA, Hughes AD, Chaturvedi N, Relton CL. Characterisation of ethnic differences in DNA methylation between UK-resident South Asians and Europeans. Clin Epigenetics 2022; 14:130. [PMID: 36243740 PMCID: PMC9571473 DOI: 10.1186/s13148-022-01351-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ethnic differences in non-communicable disease risk have been described between individuals of South Asian and European ethnicity that are only partially explained by genetics and other known risk factors. DNA methylation is one underexplored mechanism that may explain differences in disease risk. Currently, there is little knowledge of how DNA methylation varies between South Asian and European ethnicities. This study characterised differences in blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based cohorts: Southall and Brent Revisited and Born in Bradford. DNA methylation differences between ethnicities were widespread throughout the genome (n = 16,433 CpG sites, 3.4% sites tested). Specifically, 76% of associations were attributable to ethnic differences in cell composition with fewer effects attributable to smoking and genetic variation. Ethnicity-associated CpG sites were enriched for EWAS Catalog phenotypes including metabolites. This work highlights the need to consider ethnic diversity in epigenetic research.
Collapse
Affiliation(s)
- Hannah R. Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Therese Tillin
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford, UK
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alun D. Hughes
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Nishi Chaturvedi
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
41
|
Abrishamcar S, Chen J, Feil D, Kilanowski A, Koen N, Vanker A, Wedderburn CJ, Donald KA, Zar HJ, Stein DJ, Hüls A. DNA methylation as a potential mediator of the association between prenatal tobacco and alcohol exposure and child neurodevelopment in a South African birth cohort. Transl Psychiatry 2022; 12:418. [PMID: 36180424 PMCID: PMC9525659 DOI: 10.1038/s41398-022-02195-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
Prenatal tobacco exposure (PTE) and prenatal alcohol exposure (PAE) have been associated with an increased risk of delayed neurodevelopment in children as well as differential newborn DNA methylation (DNAm). However, the biological mechanisms connecting PTE and PAE, DNAm, and neurodevelopment are largely unknown. Here we aim to determine whether differential DNAm mediates the association between PTE and PAE and neurodevelopment at 6 (N = 112) and 24 months (N = 184) in children from the South African Drakenstein Child Health Study. PTE and PAE were assessed antenatally using urine cotinine measurements and the ASSIST questionnaire, respectively. Cord blood DNAm was measured using the EPIC and 450 K BeadChips. Neurodevelopment (cognitive, language, motor, adaptive behavior, socioemotional) was measured using the Bayley Scales of Infant and Toddler Development, Third Edition. We constructed methylation risk scores (MRS) for PTE and PAE and conducted causal mediation analysis (CMA) with these MRS as mediators. Next, we conducted a high-dimensional mediation analysis to identify individual CpG sites as potential mediators, followed by a CMA to estimate the average causal mediation effects (ACME) and total effect (TE). PTE and PAE were associated with neurodevelopment at 6 but not at 24 months. PTE MRS reached a prediction accuracy (R2) of 0.23 but did not significantly mediate the association between PTE and neurodevelopment. PAE MRS was not predictive of PAE (R2 = 0.006). For PTE, 31 CpG sites and eight CpG sites were identified as significant mediators (ACME and TE P < 0.05) for the cognitive and motor domains at 6 months, respectively. For PAE, 16 CpG sites and 1 CpG site were significant mediators for the motor and adaptive behavior domains at 6 months, respectively. Several of the associated genes, including MAD1L1, CAMTA1, and ALDH1A2 have been implicated in neurodevelopmental delay, suggesting that differential DNAm may partly explain the biological mechanisms underlying the relationship between PTE and PAE and child neurodevelopment.
Collapse
Affiliation(s)
- Sarina Abrishamcar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dakotah Feil
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anna Kilanowski
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kirsten A Donald
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Zou R, Boer OD, Felix JF, Muetzel RL, Franken IHA, Cecil CAM, El Marroun H. Association of Maternal Tobacco Use During Pregnancy With Preadolescent Brain Morphology Among Offspring. JAMA Netw Open 2022; 5:e2224701. [PMID: 35913739 PMCID: PMC9344360 DOI: 10.1001/jamanetworkopen.2022.24701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Maternal tobacco use during pregnancy has been associated with various health consequences, including suboptimal neurodevelopment in offspring. However, the effect of prenatal exposure to maternal smoking on child brain development has yet to be elucidated. OBJECTIVE To investigate the association between maternal smoking during pregnancy and offspring brain development in preadolescence as well as the mediating pathways. DESIGN, SETTING, AND PARTICIPANTS This prospective, population-based cohort study was embedded in the Generation R Study, Rotterdam, the Netherlands. The Generation R Study was launched in 2002, with follow-up ongoing. Child brain morphology was assessed at 9 to 11 years of age (ie, 10-12 years between exposure and outcome assessment). Data analysis was performed from March 1, 2021, to February 28, 2022, and at the time of manuscript revision. Participants included the singleton children of pregnant women residing in the study area with an expected date of delivery between April 1, 2002, and January 31, 2006; 2704 children with information on maternal smoking during pregnancy and structural neuroimaging at 9 to 11 years of age were included. A subsample of 784 children with data on DNA methylation at birth was examined in the mediation analysis. EXPOSURES Information on maternal smoking during pregnancy was collected via a questionnaire in each trimester. As a contrast, paternal smoking was assessed at recruitment. MAIN OUTCOMES AND MEASURES Brain morphology, including brain volumes and surface-based cortical measures (thickness, surface area, and gyrification), was assessed with magnetic resonance imaging. For mediation analysis, DNA methylation at birth was quantified by a weighted methylation risk score. RESULTS The 2704 participating children (1370 [50.7%] girls and 1334 [49.3%] boys) underwent brain imaging assessment at a mean (SD) age of 10.1 (0.6) years. Compared with nonexposed children (n = 2102), exposure to continued maternal smoking during pregnancy (n = 364) was associated with smaller total brain volume (volumetric difference [b] = -14.5 [95% CI, -25.1 to -4.0] cm3), cerebral gray matter volume (b = -7.8 [95% CI, -13.4 to -2.3] cm3), cerebral white matter volume (b = -5.9 [95% CI, -10.7 to -1.0] cm3), and surface area and less gyrification. These associations were not explained by paternal smoking nor mediated by smoking-associated DNA methylation patterns at birth. Children exposed to maternal smoking only in the first trimester (n = 238) showed no differences in brain morphology compared with nonexposed children. CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that continued maternal tobacco use during pregnancy was associated with lower brain volumes and suboptimal cortical traits of offspring in preadolescence, which seemed to be independent of shared family factors. Tobacco cessation before pregnancy, or as soon as pregnancy is known, should be recommended to women for optimal brain development of their offspring.
Collapse
Affiliation(s)
- Runyu Zou
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Olga D. Boer
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryan L. Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ingmar H. A. Franken
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A. M. Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal Maternal Smoke, DNA Methylation, and Multi-omics of Tissues and Child Health. Curr Environ Health Rep 2022; 9:502-512. [PMID: 35670920 PMCID: PMC9363403 DOI: 10.1007/s40572-022-00361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Maternal tobacco smoking during pregnancy is of public health concern, and understanding the biological mechanisms can help to promote smoking cessation campaigns. This non-systematic review focuses on the effects of maternal smoking during pregnancy on offspring's epigenome, consistent in chemical modifications of the genome that regulate gene expression. RECENT FINDINGS Recent meta-analyses of epigenome-wide association studies have shown that maternal smoking during pregnancy is consistently associated with offspring's DNA methylation changes, both in the placenta and blood. These studies indicate that effects on blood DNA methylation can persist for years, and that the longer the duration of the exposure and the higher the dose, the larger the effects. Hence, DNA methylation scores have been developed to estimate past exposure to maternal smoking during pregnancy as biomarkers. There is robust evidence for DNA methylation alterations associated with maternal smoking during pregnancy; however, the role of sex, ethnicity, and genetic background needs further exploration. Moreover, there are no conclusive studies about exposure to low doses or during the preconception period. Similarly, studies on tissues other than the placenta and blood are scarce, and cell-type specificity within tissues needs further investigation. In addition, biological interpretation of DNA methylation findings requires multi-omics data, poorly available in epidemiological settings. Finally, although several mediation analyses link DNA methylation changes with health outcomes, they do not allow causal inference. For this, a combination of data from multiple study designs will be essential in the future to better address this topic.
Collapse
Affiliation(s)
- Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,CIBER Epidemiología Y Salud Pública, Madrid, Spain.
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología Y Salud Pública, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología Y Salud Pública, Madrid, Spain
| |
Collapse
|
44
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
45
|
Miller CL. The Epigenetics of Psychosis: A Structured Review with Representative Loci. Biomedicines 2022; 10:561. [PMID: 35327363 PMCID: PMC8945330 DOI: 10.3390/biomedicines10030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The evidence for an environmental component in chronic psychotic disorders is strong and research on the epigenetic manifestations of these environmental impacts has commenced in earnest. In reviewing this research, the focus is on three genes as models for differential methylation, MCHR1, AKT1 and TDO2, each of which have been investigated for genetic association with psychotic disorders. Environmental factors associated with psychotic disorders, and which interact with these model genes, are explored in depth. The location of transcription factor motifs relative to key methylation sites is evaluated for predicted gene expression results, and for other sites, evidence is presented for methylation directing alternative splicing. Experimental results from key studies show differential methylation: for MCHR1, in psychosis cases versus controls; for AKT1, as a pre-existing methylation pattern influencing brain activation following acute administration of a psychosis-eliciting environmental stimulus; and for TDO2, in a pattern associated with a developmental factor of risk for psychosis, in all cases the predicted expression impact being highly dependent on location. Methylation induced by smoking, a confounding variable, exhibits an intriguing pattern for all three genes. Finally, how differential methylation meshes with Darwinian principles is examined, in particular as it relates to the "flexible stem" theory of evolution.
Collapse
|
46
|
Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. The Exposome and Toxicology: A Win-Win Collaboration. Toxicol Sci 2022; 186:1-11. [PMID: 34878125 PMCID: PMC9019839 DOI: 10.1093/toxsci/kfab149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Collapse
Affiliation(s)
- Robert Barouki
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, Paris, France
| | - Karine Audouze
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Christel Becker
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Spyros Karakitsios
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
- Faculty of Sports Studies, Masaryk University, Brno 62500, Czech Republic
| | - Denis Sarigiannis
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| |
Collapse
|
47
|
Ozcelik HS, Arslan D, Deniz CD, Gunenc O, Vatansev H, Uysal C. Evaluation of Plasma Asymmetric Dimethylarginine Levels and Abdominal Aortic Intima-Media Thickness in Infants of Smoker Mothers. Am J Perinatol 2021; 38:1494-1499. [PMID: 32683669 DOI: 10.1055/s-0040-1713816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Smoking during pregnancy has harmful effects on the fetus and infant. Although some studies suggest that exposure to fetal-maternal smoking adversely affects both fetal growth and cardiovascular development, the mechanisms and biochemical consequences of smoking in pregnancy and newborns are not yet fully understood. We aimed to investigate whether maternal smoking during pregnancy causes fetal cardiovascular effect by measuring serum asymmetric dimethylarginine (ADMA) level and abdominal aortic intima-media thickness (aIMT). STUDY DESIGN This prospective study was conducted in newborns of smoking mothers and never-smoker control mothers during their pregnancies. The babies were evaluated echocardiographically on the first day following birth. In two-dimensional mode, abdominal aIMT measurements were performed. ADMA was measured in umbilical cord blood at birth. RESULTS There were 25 mothers in the study group and 25 mothers in the control group. Serum ADMA levels were 0.459 ± 0.119 μmol/L in the study group and 0.374 ± 0.1127 μmol/L in the control group (p = 0.034). The aIMT value in the study group was 0.84 ± 0.026 mm and the aIMT value in the control group was 0.63 ± 0.011 mm (p = 0.005). CONCLUSION We found that both the serum ADMA and the aIMT significantly increased in the group with newborns of smoker mothers compared with the group of the newborns of never-smoker mothers. It may also be suggested that exposure to fetal-maternal smoking adversely affects cardiovascular development. KEY POINTS · It is a known fact that smoking during pregnancy has harmful effects on the development of the fetus and infant.. · We found that both the serum ADMA and aIMT were significantly higher in the group of infants of smoker mothers..
Collapse
Affiliation(s)
- Huseyin Samet Ozcelik
- Department of Pediatrics, Dr. Ali Kemal Belviranli Obstetrics and Gynecology Hospital, Konya, Turkey
| | - Derya Arslan
- Department of Pediatric Cardiology, University of Health Sciences Turkey, Konya Training and Research Hospital, Konya, Turkey
| | - Cigdem Damla Deniz
- Department of Biochemistry, Konya Training and Research Hospital, Konya, Turkey
| | - Oguzhan Gunenc
- Department of Obstetrics, University of Health Sciences Turkey, Konya Training and Research Hospital, Konya, Turkey
| | - Husamettin Vatansev
- Department of Biochemistry, Selcuk University Medical Faculty, Konya, Turkey
| | - Celil Uysal
- Department of Pediatrics, Patnos State Hospital, Agri, Turkey
| |
Collapse
|
48
|
Goodrich JM, Calkins MM, Caban-Martinez AJ, Stueckle T, Grant C, Calafat AM, Nematollahi A, Jung AM, Graber JM, Jenkins T, Slitt AL, Dewald A, Botelho JC, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Burgess JL. Per- and polyfluoroalkyl substances, epigenetic age and DNA methylation: a cross-sectional study of firefighters. Epigenomics 2021; 13:1619-1636. [PMID: 34670402 PMCID: PMC8549684 DOI: 10.2217/epi-2021-0225] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Per- and polyfluoroalkyl substances (PFASs) are persistent chemicals that firefighters encounter. Epigenetic modifications, including DNA methylation, could serve as PFASs toxicity biomarkers. Methods: With a sample size of 197 firefighters, we quantified the serum concentrations of nine PFASs, blood leukocyte DNA methylation and epigenetic age indicators via the EPIC array. We examined the associations between PFASs with epigenetic age, site- and region-specific DNA methylation, adjusting for confounders. Results: Perfluorohexane sulfonate, perfluorooctanoate (PFOA) and the sum of branched isomers of perfluorooctane sulfonate (Sm-PFOS) were associated with accelerated epigenetic age. Branched PFOA, linear PFOS, perfluorononanoate, perfluorodecanoate and perfluoroundecanoate were associated with differentially methylated loci and regions. Conclusion: PFASs concentrations are associated with accelerated epigenetic age and locus-specific DNA methylation. The implications for PFASs toxicity merit further investigation.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Miriam M Calkins
- National Institute for Occupational Safety & Health, Centers for Disease Control & Prevention, Cincinnati, OH 45226, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Todd Stueckle
- National Institute for Occupational Safety & Health, Centers for Disease Control & Prevention, Morgantown, WV 26505, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA 02169, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control & Prevention, Atlanta, GA 30341, USA
| | - Amy Nematollahi
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Alesia M Jung
- Department of Epidemiology & Biostatistics, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Judith M Graber
- Department of Biostatistics & Epidemiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Timothy Jenkins
- Department of Cell Biology & Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Angela L Slitt
- Department of Biomedical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI 02881, USA
| | - Alisa Dewald
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control & Prevention, Atlanta, GA 30341, USA
| | - Shawn Beitel
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | - Sally Littau
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA 92602, USA
| | | | - Jefferey L Burgess
- Department of Community, Environment & Policy, University of Arizona Mel & Enid Zuckerman College of Public Health, Tucson, AZ 85724, USA
| |
Collapse
|
49
|
Do WL, Gohar J, McCullough LE, Galaviz KI, Conneely KN, Narayan KMV. Examining the association between adiposity and DNA methylation: A systematic review and meta-analysis. Obes Rev 2021; 22:e13319. [PMID: 34278703 DOI: 10.1111/obr.13319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Obesity is associated with widespread differential DNA methylation (DNAm) patterns, though there have been limited overlap in the obesity-associated cytosine-guanine nucleotide pair (CpG) sites that have been identified in the literature. We systematically searched four databases for studies published until January 2020. Eligible studies included cross-sectional, longitudinal, or intervention studies examining adiposity and genome-wide DNAm in non-pregnant adults aged 18-75 in all tissue types. Study design and results were extracted in the descriptive review. Blood-based DNAm results in body mass index (BMI) and waist circumference (WC) were meta-analyzed using weighted sum of Z-score meta-analysis. Of the 10,548 studies identified, 46 studies were included in the systematic review with 18 and nine studies included in the meta-analysis of BMI and WC, respectively. In the blood, 77 and four CpG sites were significant in three or more studies of BMI and WC, respectively. Using a genome-wide threshold for significance, 52 blood-based CpG sites were significantly associated with BMI. These sites have previously been associated with many obesity-related diseases including type 2 diabetes, cardiovascular disease, Crohn's disease, and depression. Our study shows that DNAm at 52 CpG sites represent potential mediators of obesity-associated chronic diseases and may be novel intervention or therapeutic targets to protect against obesity-associated chronic diseases.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jazib Gohar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karla I Galaviz
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Odintsova VV, Rebattu V, Hagenbeek FA, Pool R, Beck JJ, Ehli EA, van Beijsterveldt CEM, Ligthart L, Willemsen G, de Geus EJC, Hottenga JJ, Boomsma DI, van Dongen J. Predicting Complex Traits and Exposures From Polygenic Scores and Blood and Buccal DNA Methylation Profiles. Front Psychiatry 2021; 12:688464. [PMID: 34393852 PMCID: PMC8357987 DOI: 10.3389/fpsyt.2021.688464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
We examined the performance of methylation scores (MS) and polygenic scores (PGS) for birth weight, BMI, prenatal maternal smoking exposure, and smoking status to assess the extent to which MS could predict these traits and exposures over and above the PGS in a multi-omics prediction model. MS may be seen as the epigenetic equivalent of PGS, but because of their dynamic nature and sensitivity of non-genetic exposures may add to complex trait prediction independently of PGS. MS and PGS were calculated based on genotype data and DNA-methylation data in blood samples from adults (Illumina 450 K; N = 2,431; mean age 35.6) and in buccal samples from children (Illumina EPIC; N = 1,128; mean age 9.6) from the Netherlands Twin Register. Weights to construct the scores were obtained from results of large epigenome-wide association studies (EWASs) based on whole blood or cord blood methylation data and genome-wide association studies (GWASs). In adults, MSs in blood predicted independently from PGSs, and outperformed PGSs for BMI, prenatal maternal smoking, and smoking status, but not for birth weight. The largest amount of variance explained by the multi-omics prediction model was for current vs. never smoking (54.6%) of which 54.4% was captured by the MS. The two predictors captured 16% of former vs. never smoking initiation variance (MS:15.5%, PGS: 0.5%), 17.7% of prenatal maternal smoking variance (MS:16.9%, PGS: 0.8%), 11.9% of BMI variance (MS: 6.4%, PGS 5.5%), and 1.9% of birth weight variance (MS: 0.4%, PGS: 1.5%). In children, MSs in buccal samples did not show independent predictive value. The largest amount of variance explained by the two predictors was for prenatal maternal smoking (2.6%), where the MSs contributed 1.5%. These results demonstrate that blood DNA MS in adults explain substantial variance in current smoking, large variance in former smoking, prenatal smoking, and BMI, but not in birth weight. Buccal cell DNA methylation scores have lower predictive value, which could be due to different tissues in the EWAS discovery studies and target sample, as well as to different ages. This study illustrates the value of combining polygenic scores with information from methylation data for complex traits and exposure prediction.
Collapse
Affiliation(s)
- Veronika V. Odintsova
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Valerie Rebattu
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Fiona A. Hagenbeek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - René Pool
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeffrey J. Beck
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Catharina E. M. van Beijsterveldt
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|