1
|
Serreze DV, Dwyer JR, Racine JJ. Advancing Animal Models of Human Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041587. [PMID: 38886067 PMCID: PMC11444302 DOI: 10.1101/cshperspect.a041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.
Collapse
|
2
|
Hu Y, Huang J, Wang S, Sun X, Wang X, Yu H. Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing. Inflammation 2024:10.1007/s10753-024-02079-2. [PMID: 38914737 DOI: 10.1007/s10753-024-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.
Collapse
Affiliation(s)
- Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
| |
Collapse
|
3
|
Bass LE, Bonami RH. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies (Basel) 2024; 13:27. [PMID: 38651407 PMCID: PMC11036271 DOI: 10.3390/antib13020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells to promote T1D pathogenesis. Disrupting B cell APC function prevents T1D in mouse models and has shown promise in clinical trials. Autoantigen-specific B cells thus hold potential as sophisticated T1D biomarkers and therapeutic targets. B cell receptor (BCR) somatic hypermutation is a mechanism by which B cells increase affinity for islet autoantigen. High-affinity B and T cell responses are selected in protective immune responses, but immune tolerance mechanisms are known to censor highly autoreactive clones in autoimmunity, including T1D. Thus, different selection rules often apply to autoimmune disease settings (as opposed to protective host immunity), where different autoantigen affinity ceilings are tolerated based on variations in host genetics and environment. This review will explore what is currently known regarding B cell signaling, selection, and interaction with T cells to promote T1D pathogenesis.
Collapse
Affiliation(s)
- Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Boyles JS, Sadowski D, Potter S, Vukojicic A, Parker J, Chang WY, Ma YL, Chambers MG, Nelson J, Barmettler B, Smith EM, Kersjes K, Himes ER, Lin C, Lucchesi J, Brahmbhatt J, Sina R, Martin JA, Maestri E, Wiethoff CM, Dyas GL, Linnik MD, Na S, Witcher DR, Budelsky A, Rubtsova K. A nondepleting anti-CD19 antibody impairs B cell function and inhibits autoimmune diseases. JCI Insight 2023; 8:e166137. [PMID: 37427592 PMCID: PMC10371335 DOI: 10.1172/jci.insight.166137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.
Collapse
Affiliation(s)
- Jeffrey S. Boyles
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Dorota Sadowski
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Scott Potter
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Aleksandra Vukojicic
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - James Parker
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - William Y. Chang
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Yanfei L. Ma
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Mark G. Chambers
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - James Nelson
- Biotechnology Discovery Research, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Barbra Barmettler
- Biotechnology Discovery Research, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Eric M. Smith
- Biotechnology Discovery Research, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Kara Kersjes
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Evan R. Himes
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Chaohua Lin
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jonathan Lucchesi
- Immunology Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jaladhi Brahmbhatt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Ramtin Sina
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jennifer A. Martin
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Evan Maestri
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Christopher M. Wiethoff
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Gregory L. Dyas
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Matthew D. Linnik
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Songqing Na
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Derrick R. Witcher
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Alison Budelsky
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| | - Kira Rubtsova
- Immunology Discovery, Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, California, USA
| |
Collapse
|
5
|
Boldison J, Hopkinson JR, Davies J, Pearson JA, Leete P, Richardson S, Morgan NG, Wong FS. Gene expression profiling in NOD mice reveals that B cells are highly educated by the pancreatic environment during autoimmune diabetes. Diabetologia 2023; 66:551-566. [PMID: 36508037 PMCID: PMC9892163 DOI: 10.1007/s00125-022-05839-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS B cells play an important role in driving the development of type 1 diabetes; however, it remains unclear how they contribute to local beta cell destruction during disease progression. Here, we use gene expression profiling of B cell subsets identified in inflamed pancreatic tissue to explore their primary functional role during the progression of autoimmune diabetes. METHODS Transcriptional profiling was performed on FACS-sorted B cell subsets isolated from pancreatic islets and the pancreatic lymph nodes of NOD mice. RESULTS B cells are highly modified by the inflamed pancreatic tissue and can be distinguished by their transcriptional profile from those in the lymph nodes. We identified both a discrete and a core shared gene expression profile in islet CD19+CD138- and CD19+CD138+ B cell subsets, the latter of which is known to have enriched autoreactivity during diabetes development. On localisation to pancreatic islets, compared with CD138- B cells, CD138+ B cells overexpress genes associated with adhesion molecules and growth factors. Their shared signature consists of gene expression changes related to the differentiation of antibody-secreting cells and gene regulatory networks associated with IFN signalling pathways, proinflammatory cytokines and Toll-like receptor (TLR) activation. Finally, abundant TLR7 expression was detected in islet B cells and was enhanced specifically in CD138+ B cells. CONCLUSIONS/INTERPRETATION Our study provides a detailed transcriptional analysis of islet B cells. Specific gene signatures and interaction networks have been identified that point towards a functional role for B cells in driving autoimmune diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| | - Jessica R Hopkinson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - James A Pearson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Pia Leete
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Sarah Richardson
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Noel G Morgan
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
6
|
Hussain K, Liu R, Smith RCG, Müller KTJ, Ghorbani M, Macari S, Cleary KLS, Oldham RJ, Foxall RB, James S, Booth SG, Murray T, Dahal LN, Hargreaves CE, Kemp RS, Longley J, Douglas J, Markham H, Chee SJ, Stopforth RJ, Roghanian A, Carter MJ, Ottensmeier CH, Frendéus B, Cutress RI, French RR, Glennie MJ, Strefford JC, Thirdborough SM, Beers SA, Cragg MS. HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy. J Exp Clin Cancer Res 2022; 41:131. [PMID: 35392965 PMCID: PMC8988350 DOI: 10.1186/s13046-022-02294-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb. METHODS We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. RESULTS We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes. CONCLUSION Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.
Collapse
Affiliation(s)
- Khiyam Hussain
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Rena Liu
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Rosanna C G Smith
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Kri T J Müller
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Mohammadmersad Ghorbani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sofia Macari
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Kirstie L S Cleary
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Robert J Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Russell B Foxall
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Steven G Booth
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Tom Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Chantal E Hargreaves
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Robert S Kemp
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Jemma Longley
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - James Douglas
- University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, Hampshire, UK
| | - Hannah Markham
- University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, Hampshire, UK
| | - Serena J Chee
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Matthew J Carter
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Christian H Ottensmeier
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Bjorn Frendéus
- Preclinical Research, BioInvent International AB, Sölvegatan 41, 22370, Lund, Sweden
| | - Ramsey I Cutress
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Ruth R French
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stephen M Thirdborough
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
7
|
Ling Q, Shen L, Zhang W, Qu D, Wang H, Wang B, Liu Y, Lu J, Zhu D, Bi Y. Increased plasmablasts enhance T cell-mediated beta cell destruction and promote the development of type 1 diabetes. Mol Med 2022; 28:18. [PMID: 35123388 PMCID: PMC8818172 DOI: 10.1186/s10020-022-00447-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although type 1 diabetes (T1D) is typically described as a T cell-mediated autoimmune disease, increasing evidence for a role of B cells has emerged. However, the pivotal disease-relevant B cell subset and its contribution to islet autoimmunity remain elusive. METHODS The frequencies and phenotypic characteristics of circulating B cell subsets were analyzed using flow cytometry in individuals with new-onset T1D, long-term T1D, type 2 diabetes, and nondiabetic controls, and also in a prospective cohort of patients receiving mesenchymal stromal cell (MSC) transplantation. NOD mice and adoptive transfer assay were used to dissect the role of the certain B cell subset in disease progression. An in-vitro coculture system of islets with immune cells was established to examine the response against islets and the underlying mechanisms. RESULTS We identified that plasmablasts, a B cell subset at the antibody-secreting stage, were significantly increased and correlated with the deterioration of beta cell function in patients with new-onset T1D. Further, a fall of plasmablast number was associated with the preservation of beta cell function in patients who received MSC transplantation after 3 months of follow-up. Meanwhile, a gradual increase of plasmablasts in pancreatic lymph nodes during the natural progression of insulitis was observed in non-obese diabetic (NOD) mice; adoptive transfer of plasmablasts together with T cells from NOD mice accelerated diabetes onset in NOD/SCID recipients. CONCLUSIONS Our study revealed that plasmablasts may function as antigen-presenting cells and promote the activation and proinflammatory response of CD4+ T cells, further contributing to the T cell-mediated beta cell destruction. Our results provide insights into the pathogenic role of plasmablasts in islet autoimmunity and may offer new translational strategies for inhibiting T1D development.
Collapse
Affiliation(s)
- Qing Ling
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - DuoDuo Qu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bin Wang
- Clinical Stem Cell Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Liu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Lu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Kong X, Zeng D, Wu X, Wang B, Yang S, Song Q, Zhu Y, Salas M, Qin H, Nasri U, Haas KM, Riggs AD, Nakamura R, Martin PJ, Huang A, Zeng D. Tissue-resident PSGL1loCD4+ T cells promote B cell differentiation and chronic graft-versus-host disease-associated autoimmunity. J Clin Invest 2021; 131:135468. [PMID: 32931481 DOI: 10.1172/jci135468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
CD4+ T cell interactions with B cells play a critical role in the pathogenesis of systemic autoimmune diseases such as systemic lupus and chronic graft-versus-host disease (cGVHD). Extrafollicular CD44hiCD62LloPSGL1loCD4+ T cells (PSGL1loCD4+ T cells) are associated with the pathogenesis of lupus and cGVHD, but their causal role has not been established. With murine and humanized MHC-/-HLA-A2+DR4+ murine models of cGVHD, we showed that murine and human PSGL1loCD4+ T cells from GVHD target tissues have features of B cell helpers with upregulated expression of programmed cell death protein 1 (PD1) and inducible T cell costimulator (ICOS) and production of IL-21. They reside in nonlymphoid tissues without circulating in the blood and have features of tissue-resident memory T cells with upregulated expression of CD69. Murine PSGL1loCD4+ T cells from GVHD target tissues augmented B cell differentiation into plasma cells and production of autoantibodies via their PD1 interaction with PD-L2 on B cells. Human PSGL1loCD4+ T cells were apposed with memory B cells in the liver tissues of humanized mice and cGVHD patients. Human PSGL1loCD4+ T cells from humanized GVHD target tissues also augmented autologous memory B cell differentiation into plasma cells and antibody production in a PD1/PD-L2-dependent manner. Further preclinical studies targeting tissue-resident T cells to treat antibody-mediated features of autoimmune diseases are warranted.
Collapse
Affiliation(s)
- Xiaohui Kong
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Deye Zeng
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Department of Pathology at School of Basic Medical Sciences, Institute of Oncology and Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xiwei Wu
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Bixin Wang
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shijie Yang
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Department of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Qingxiao Song
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongping Zhu
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Martha Salas
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Hanjun Qin
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ryotaro Nakamura
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Aimin Huang
- Department of Pathology at School of Basic Medical Sciences, Institute of Oncology and Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
9
|
Long W, Zhang H, Yuan W, Lan G, Lin Z, Peng L, Dai H. The Role of Regulatory B cells in Kidney Diseases. Front Immunol 2021; 12:683926. [PMID: 34108975 PMCID: PMC8183681 DOI: 10.3389/fimmu.2021.683926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
B cells, commonly regarded as proinflammatory antibody-producing cells, are detrimental to individuals with autoimmune diseases. However, in recent years, several studies have shown that regulatory B (Breg) cells, an immunosuppressive subset of B cells, may exert protective effects against autoimmune diseases by secretion of inhibitory cytokines such as IL-10. In practice, Breg cells are identified by their production of immune-regulatory cytokines, such as IL-10, TGF-β, and IL-35, however, no specific marker or Breg cell-specific transcription factor has been identified. Multiple phenotypes of Breg cells have been found, whose functions vary according to their phenotype. This review summarizes the discovery, phenotypes, development, and function of Breg cells and highlights their potential therapeutic value in kidney diseases.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Graduate School of Medical and Dental Science, Department of Pathological Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
10
|
Boldison J, Thayer TC, Davies J, Wong FS. Natural Protection From Type 1 Diabetes in NOD Mice Is Characterized by a Unique Pancreatic Islet Phenotype. Diabetes 2021; 70:955-965. [PMID: 33531355 DOI: 10.2337/db20-0945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022]
Abstract
The NOD mouse develops spontaneous type 1 diabetes, with some features of disease that are very similar to the human disease. However, a proportion of NOD mice are naturally protected from developing diabetes, and currently, studies characterizing this cohort are very limited. Here, using both immunofluorescence and multiparameter flow cytometry, we focus on the pancreatic islet morphology and immune infiltrate observed in naturally protected NOD mice. We show that naturally protected NOD mice are characterized by an increased frequency of insulin-containing, smaller-sized, pancreatic islets. Although mice remain diabetes free, florid immune infiltrate remains. However, this immune infiltrate is skewed toward a regulatory phenotype in both T- and B-cell compartments. Pancreatic islets have an increased frequency of IL-10-producing B cells and associated cell surface markers. Resident memory CD69+CD8+ T cells show a significant shift toward reduced CD103 expression, while CD4+ T cells have increased FoxP3+CTLA4+ expression. These data indicate that naturally protected NOD mice have a unique islet signature and provide new insight into regulatory mechanisms within pancreatic islets.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K.
| | - Terri C Thayer
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, U.K
| |
Collapse
|
11
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Felton JL, Conway H, Bonami RH. B Quiet: Autoantigen-Specific Strategies to Silence Raucous B Lymphocytes and Halt Cross-Talk with T Cells in Type 1 Diabetes. Biomedicines 2021; 9:biomedicines9010042. [PMID: 33418839 PMCID: PMC7824835 DOI: 10.3390/biomedicines9010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Islet autoantibodies are the primary biomarkers used to predict type 1 diabetes (T1D) disease risk. They signal immune tolerance breach by islet autoantigen-specific B lymphocytes. T-B lymphocyte interactions that lead to expansion of pathogenic T cells underlie T1D development. Promising strategies to broadly prevent this T-B crosstalk include T cell elimination (anti-CD3, teplizumab), B cell elimination (anti-CD20, rituximab), and disruption of T cell costimulation/activation (CTLA-4/Fc fusion, abatacept). However, global disruption or depletion of immune cell subsets is associated with significant risk, particularly in children. Therefore, antigen-specific therapy is an area of active investigation for T1D prevention. We provide an overview of strategies to eliminate antigen-specific B lymphocytes as a means to limit pathogenic T cell expansion to prevent beta cell attack in T1D. Such approaches could be used to prevent T1D in at-risk individuals. Patients with established T1D would also benefit from such targeted therapies if endogenous beta cell function can be recovered or islet transplant becomes clinically feasible for T1D treatment.
Collapse
Affiliation(s)
- Jamie L. Felton
- Department of Pediatrics, Division of Pediatric Endocrinology and the Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA; (J.L.F.); (H.C.)
| | - Holly Conway
- Department of Pediatrics, Division of Pediatric Endocrinology and the Herman B. Wells Center for Pediatric Research, Indianapolis, IN 46202, USA; (J.L.F.); (H.C.)
| | - Rachel H. Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
13
|
Xiao Y, Deng C, Zhou Z. The Multiple Roles of B Lymphocytes in the Onset and Treatment of Type 1 Diabetes: Interactions between B Lymphocytes and T Cells. J Diabetes Res 2021; 2021:6581213. [PMID: 34778464 PMCID: PMC8580688 DOI: 10.1155/2021/6581213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023] Open
Abstract
Although type 1 diabetes is thought to be an organ-specific autoimmune disease, mediated by effective CD4+ and CD8+ T cells, it has recently become clear that B cells participate in the initiation and progress of this disease. Indeed, B cell deletion can prevent or reverse autoimmune diabetes in nonobese diabetic mice and even result in partially remaining β cell function in patients with new-onset type 1 diabetes. This review summarizes the dual role of B cells in this process not only of pathogenic effect but also of immunoregulatory function in type 1 diabetes. We focus on the impact that B cells have on regulating the activation, proliferation, and cytokine production of self-reactive T cells along with regulatory T cells, with the aim of providing a better understanding of the interactions between T and B cells in immunopathogenesis and improving the efficacy of interventions for clinical practice.
Collapse
Affiliation(s)
- Yangfan Xiao
- Clinical Nursing Teaching and Research Section, Department of Anesthesiology, and Anesthesia Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chao Deng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
14
|
Racine JJ, Chapman HD, Doty R, Cairns BM, Hines TJ, Tadenev ALD, Anderson LC, Green T, Dyer ME, Wotton JM, Bichler Z, White JK, Ettinger R, Burgess RW, Serreze DV. T Cells from NOD- PerIg Mice Target Both Pancreatic and Neuronal Tissue. THE JOURNAL OF IMMUNOLOGY 2020; 205:2026-2038. [PMID: 32938729 DOI: 10.4049/jimmunol.2000114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022]
Abstract
It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zoë Bichler
- The Jackson Laboratory, Bar Harbor, ME 04609
| | | | - Rachel Ettinger
- Viela Bio, Gaithersburg, MD 20878; and.,Respiratory, Inflammation, and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878
| | | | | |
Collapse
|
15
|
Boldison J, Da Rosa LC, Buckingham L, Davies J, Wen L, Wong FS. Phenotypically distinct anti-insulin B cells repopulate pancreatic islets after anti-CD20 treatment in NOD mice. Diabetologia 2019; 62:2052-2065. [PMID: 31444529 PMCID: PMC6805803 DOI: 10.1007/s00125-019-04974-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Autoreactive B cells escape immune tolerance and contribute to the pathogenesis of type 1 diabetes. While global B cell depletion is a successful therapy for autoimmune disease, the fate of autoreactive cells during this treatment in autoimmune diabetes is unknown. We aimed to identify and track anti-insulin B cells in pancreatic islets and understand their repopulation after anti-CD20 treatment. METHODS We generated a double transgenic system, the VH125.hCD20/NOD mouse. The VH125 transgenic mouse, expressing an increased frequency of anti-insulin B cells, was crossed with a human CD20 (hCD20) transgenic mouse, to facilitate B cell depletion using anti-CD20. B cells were analysed using multiparameter and ImageStream flow cytometry. RESULTS We demonstrated that anti-insulin B cells were recruited to the pancreas during disease progression in VH125.hCD20/NOD mice. We identified two distinct populations of anti-insulin B cells in pancreatic islets, based on CD19 expression, with both populations enriched in the CD138int fraction. Anti-insulin B cells were not identified in the plasma-cell CD138hi fraction, which also expressed the transcription factor Blimp-1. After anti-CD20 treatment, anti-insulin B cells repopulated the pancreatic islets earlier than non-specific B cells. Importantly, we observed that a CD138intinsulin+CD19- population was particularly enriched after B cell depletion, possibly contributing to the persistence of disease still observed in some mice after anti-CD20 treatment. CONCLUSIONS/INTERPRETATION Our observations may indicate why the loss of C-peptide is only temporarily delayed following anti-CD20 treatment in human type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Larissa C Da Rosa
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Lucy Buckingham
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK.
| |
Collapse
|
16
|
Wilson CS, Spaeth JM, Karp J, Stocks BT, Hoopes EM, Stein RW, Moore DJ. B lymphocytes protect islet β cells in diabetes prone NOD mice treated with imatinib. JCI Insight 2019; 5:125317. [PMID: 30964447 PMCID: PMC6538336 DOI: 10.1172/jci.insight.125317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/02/2019] [Indexed: 01/10/2023] Open
Abstract
Imatinib (Gleevec) reverses type 1 diabetes (T1D) in NOD mice and is currently in clinical trials in individuals with recent-onset disease. While research has demonstrated that imatinib protects islet β cells from the harmful effects of ER stress, the role the immune system plays in its reversal of T1D has been less well understood, and specific cellular immune targets have not been identified. In this study, we demonstrate that B lymphocytes, an immune subset that normally drives diabetes pathology, are unexpectedly required for reversal of hyperglycemia in NOD mice treated with imatinib. In the presence of B lymphocytes, reversal was linked to an increase in serum insulin concentration, but not an increase in islet β cell mass or proliferation. However, improved β cell function was reflected by a partial recovery of MafA transcription factor expression, a sensitive marker of islet β cell stress that is important to adult β cell function. Imatinib treatment was found to increase the antioxidant capacity of B lymphocytes, improving reactive oxygen species (ROS) handling in NOD islets. This study reveals a novel mechanism through which imatinib enables B lymphocytes to orchestrate functional recovery of T1D β cells.
Collapse
Affiliation(s)
- Christopher S. Wilson
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason M. Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jay Karp
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Blair T. Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emilee M. Hoopes
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel J. Moore
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Hillhouse EE, Thiant S, Moutuou MM, Lombard-Vadnais F, Parat R, Delisle JS, Ahmad I, Roy DC, Guimond M, Roy J, Lesage S. Double-Negative T Cell Levels Correlate with Chronic Graft-versus-Host Disease Severity. Biol Blood Marrow Transplant 2019; 25:19-25. [DOI: 10.1016/j.bbmt.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
|
18
|
Wilson CS, Chhabra P, Marshall AF, Morr CV, Stocks BT, Hoopes EM, Bonami RH, Poffenberger G, Brayman KL, Moore DJ. Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice. Diabetes 2018; 67:2349-2360. [PMID: 30131391 PMCID: PMC6198348 DOI: 10.2337/db18-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/12/2018] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation. Among these endogenous alternatives, naturally occurring Igs have been applied for inflammatory disorders but have lacked potency in antigen-specific autoimmunity. We hypothesized that naturally occurring polyclonal IgMs, which represent the majority of circulating, noninduced antibodies but are present only in low levels in therapeutic Ig preparations, possess the most potent capacity to restore immune homeostasis. Treatment of diabetes-prone NOD mice with purified IgM isolated from Swiss Webster (SW) mice (nIgMSW) reversed new-onset diabetes, eliminated autoreactive B lymphocytes, and enhanced regulatory T-cell (Treg) numbers both centrally and peripherally. Conversely, IgM from prediabetic NOD mice could not restore this endogenous regulation, which represents an unrecognized component of T1D pathogenesis. Of note, IgM derived from healthy human donors was similarly able to expand human CD4 Tregs in humanized mice and produced permanent diabetes protection in treated NOD mice. Overall, these studies demonstrate that a potent, endogenous regulatory mechanism, nIgM, is a promising option for reversing autoimmune T1D in humans.
Collapse
Affiliation(s)
- Christopher S Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Andrew F Marshall
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| | - Caleigh V Morr
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| | - Blair T Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Emilee M Hoopes
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Department of Medicine, Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Daniel J Moore
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Da Rosa LC, Boldison J, De Leenheer E, Davies J, Wen L, Wong FS. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model. Diabetologia 2018; 61:1397-1410. [PMID: 29594371 PMCID: PMC6449006 DOI: 10.1007/s00125-018-4597-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. METHODS Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. RESULTS There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4+ and CD8+ T cells. These CD8+ T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. CONCLUSIONS/INTERPRETATION Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.
Collapse
Affiliation(s)
- Larissa C Da Rosa
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Evy De Leenheer
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
- University of Sheffield, New Spring House, Sheffield, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
21
|
Racine JJ, Stewart I, Ratiu J, Christianson G, Lowell E, Helm K, Allocco J, Maser RS, Chen YG, Lutz CM, Roopenian D, Schloss J, DiLorenzo TP, Serreze DV. Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 2018; 67:923-935. [PMID: 29472249 PMCID: PMC5909999 DOI: 10.2337/db17-1467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023]
Abstract
Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.β2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.β2m-/--A2.1 mice were previously used to identify β-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.β2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.
Collapse
|
22
|
Mahmoud TI, Wang J, Karnell JL, Wang Q, Wang S, Naiman B, Gross P, Brohawn PZ, Morehouse C, Aoyama J, Wasserfall C, Carter L, Atkinson MA, Serreze DV, Braley-Mullen H, Mustelin T, Kolbeck R, Herbst R, Ettinger R. Autoimmune manifestations in aged mice arise from early-life immune dysregulation. Sci Transl Med 2017; 8:361ra137. [PMID: 27798262 DOI: 10.1126/scitranslmed.aag0367] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Abstract
Autoantibodies can be present years to decades before the onset of disease manifestations in autoimmunity. This finding suggests that the initial autoimmune trigger involves a peripheral lymphoid component, which ultimately drives disease pathology in local tissues later in life. We show that Sjögren's syndrome manifestations that develop in aged NOD.H-2h4 mice were driven by and dependent on peripheral dysregulation that arose in early life. Specifically, elimination of spontaneous germinal centers in spleens of young NOD.H-2h4 mice by transient blockade of CD40 ligand (CD40L) or splenectomy abolished Sjögren's pathology of aged mice. Strikingly, a single injection of anti-CD40L at 4 weeks of age prevented tertiary follicle neogenesis and greatly blunted the formation of key autoantibodies implicated in glandular pathology, including anti-muscarinic receptor antibodies. Microarray profiling of the salivary gland characterized the expression pattern of genes that increased with disease progression and showed that early anti-CD40L greatly repressed B cell function while having a broader effect on multiple biological pathways, including interleukin-12 and interferon signaling. A single prophylactic treatment with anti-CD40L also inhibited the development of autoimmune thyroiditis and diabetes in NOD.H-2h4 and nonobese diabetic mice, respectively, supporting a key role for CD40L in the pathophysiology of several autoimmune models. These results strongly suggest that early peripheral immune dysregulation gives rise to autoimmune manifestations later in life, and for diseases predated by autoantibodies, early prophylactic intervention with biologics may prove efficacious.
Collapse
Affiliation(s)
- Tamer I Mahmoud
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jingya Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jodi L Karnell
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Shu Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Brian Naiman
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Phillip Gross
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Philip Z Brohawn
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Chris Morehouse
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jordan Aoyama
- Translational Sciences-Pharmacogenomics, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Clive Wasserfall
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Laura Carter
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Tomas Mustelin
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Rachel Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
23
|
Elayeb R, Tamagne M, Pinheiro M, Ripa J, Djoudi R, Bierling P, Pirenne F, Vingert B. Anti-CD20 Antibody Prevents Red Blood Cell Alloimmunization in a Mouse Model. THE JOURNAL OF IMMUNOLOGY 2017; 199:3771-3780. [DOI: 10.4049/jimmunol.1700754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022]
|
24
|
Wang Q, Racine JJ, Ratiu JJ, Wang S, Ettinger R, Wasserfall C, Atkinson MA, Serreze DV. Transient BAFF Blockade Inhibits Type 1 Diabetes Development in Nonobese Diabetic Mice by Enriching Immunoregulatory B Lymphocytes Sensitive to Deletion by Anti-CD20 Cotherapy. THE JOURNAL OF IMMUNOLOGY 2017; 199:3757-3770. [PMID: 29055002 DOI: 10.4049/jimmunol.1700822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
In NOD mice and also likely humans, B lymphocytes play an important role as APC-expanding autoreactive T cell responses ultimately causing type 1 diabetes (T1D). Currently, humans at high future T1D risk can only be identified at late prodromal stages of disease indicated by markers such as insulin autoantibodies. When commenced in already insulin autoantibody+ NOD mice, continuous BAFFR-Fc treatment alone or in combination with anti-CD20 (designated combo therapy) inhibited T1D development. Despite eliciting broader B lymphocyte depletion, continuous combo therapy afforded no greater T1D protection than did BAFFR-Fc alone. As previously observed, late disease stage-initiated anti-CD20 monotherapy did not inhibit T1D, and in this study was additionally found to be associated with development of drug-blocking Abs. Promisingly, NOD mice given transient late disease stage BAFFR-Fc monotherapy were rendered T1D resistant. However, combo treatment abrogated the protective effect of transient BAFFR-Fc monotherapy. NOD mice receiving transient BAFF blockade were characterized by an enrichment of regulatory B lymphocytes that inhibit T1D development through IL-10 production, but this population is sensitive to deletion by anti-CD20 treatment. B lymphocytes from transient BAFFR-Fc-treated mice suppressed T cell proliferation to a greater extent than did those from controls. Proportions of B lymphocytes expressing CD73, an ecto-enzyme operating in a pathway converting proinflammatory ATP to anti-inflammatory adenosine, were also temporarily increased by transient BAFFR-Fc treatment, but not anti-CD20 therapy. These collective studies indicate transient BAFFR-Fc-mediated B lymphocyte depletion elicits long-term T1D protection by enriching regulatory B lymphocytes that are deleted by anti-CD20 cotherapy.
Collapse
Affiliation(s)
- Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111
| | | | | | - Shu Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878; and
| | - Rachel Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878; and
| | - Clive Wasserfall
- Department of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610
| | - Mark A Atkinson
- Department of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610
| | | |
Collapse
|
25
|
Yang M, Du C, Wang Y, Liu J. CD19 +CD24 hiCD38 hi regulatory B cells are associated with insulin resistance in type I Hashimoto's thyroiditis in Chinese females. Exp Ther Med 2017; 14:3887-3893. [PMID: 29042997 DOI: 10.3892/etm.2017.4925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2017] [Indexed: 01/11/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is typically associated with insulin resistance. The aim of the present study was to investigate the role of regulatory B cells (Bregs) in insulin resistance in patients with HT. A total of 52 female patients with type I HT and 35 matched healthy volunteers were enrolled. Demographic and laboratorial data were collected. A 75 g oral glucose tolerance test was performed on each subject. Flow cytometry was performed to evaluate the levels of CD19+CD24hiCD38hi Bregs in peripheral blood. Patients with HT exhibited significantly higher postprandial insulin levels (P<0.01), but normal glucose levels. The level of CD19+CD24hiCD38hi Bregs in patients with HT decreased significantly (P=0.0002) compared with the controls. Pearson's linear correlation model revealed a significant, negative association between anti-thyroid peroxidase antibodies (TPOAb) and homeostasis model assessment of β cell (r=-0.313, P=0.014). The same correlation model revealed a significant, negative association between TPOAb and the disposition index (DI; r=-0.305, P=0.017), and between anti-thyroglobulin antibodies and DI (r=-0.321, P=0.013). Patients with a decreased ratio of CD19+CD24hiCD38hi Bregs to CD19+ lymphocytes exhibited higher levels of total cholesterol and low-density lipoprotein cholesterol. A decrease in the ratio of CD19+CD24hiCD38hi Bregs to lymphocytes was a significant independent risk factor for hyperinsulinemia (odds ratio=1.372, P=0.035). A decrease in peripheral blood CD19+CD24hiCD38hi Bregs is associated with insulin resistance in HT patients, and was an independent risk factor for postprandial hyperinsulinemia. The present study provided a novel insight into the development of effective therapeutic strategies targeting immune mechanisms associated with HT.
Collapse
Affiliation(s)
- Min Yang
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Changji Du
- Department of Clinical Lab of Immunology, The DaoPei Hospital of Shanghai, Shanghai 200000, P.R. China
| | - Yinping Wang
- Department of Clinical Lab of Immunology, The DaoPei Hospital of Shanghai, Shanghai 200000, P.R. China
| | - Jun Liu
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
26
|
Morgan NG. Bringing the human pancreas into focus: new paradigms for the understanding of Type 1 diabetes. Diabet Med 2017; 34:879-886. [PMID: 28429491 DOI: 10.1111/dme.13365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes affects increasingly large numbers of people globally (including at least half a million children under the age of 14 years) and it remains an illness with life-long and often devastating consequences. It is surprising, therefore, that the underlying aetiology of Type 1 diabetes remains poorly understood. This is largely because the cellular and molecular processes leading to the loss of β cells in the pancreas have rarely been studied at, or soon after, the onset of disease. Where such studies have been undertaken, a number of surprises have emerged which serve to challenge conventional wisdom. In particular, it is increasingly understood that the process of islet inflammation (insulitis) is much less florid in humans than in certain animal models. Moreover, the profile of immune cells involved in the inflammatory attack on β cells is variable and this variation occurs at the level of individual patients. As a result, two distinct profiles of insulitis have now been defined that are differentially aggressive and that might, therefore, require specifically tailored therapeutic approaches to slow the progression of disease. In addition, the outcomes are also different in that the more aggressive form (termed 'CD20Hi') is associated with extensive β-cell loss and an early age of disease onset (<7 years), while the less aggressive profile (known as 'CD20Lo') is associated with later onset (>13 years) and the retention of a higher proportion of residual β cells. In the present review, these new findings are explained and their implications evaluated in terms of future therapies.
Collapse
Affiliation(s)
- N G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
27
|
Han H, Zhu J, Wang Y, Zhu Z, Chen Y, Lu L, Jin W, Yan X, Zhang R. Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction. J Pathol 2017; 241:80-90. [PMID: 27763657 PMCID: PMC6680279 DOI: 10.1002/path.4831] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/19/2016] [Accepted: 10/16/2016] [Indexed: 01/09/2023]
Abstract
Renal fibrosis is a significant threat to public health globally. Diverse primary aetiologies eventually result in chronic kidney disease (CKD) and immune cells influence this process. The roles of monocytes/macrophages, T cells, and mast cells have been carefully examined, whilst only a few studies have focused on the effect of B cells. We investigated B‐cell function in tubulointerstitial fibrosis induced by unilateral ureteral obstruction (UUO), using genetic B‐cell‐deficient μMT mice or CD20 antibody‐mediated B‐cell‐depleted mice. Obstructed kidneys of μMT and anti‐CD20‐treated mice showed lower levels of monocyte/macrophage infiltration and collagen deposition compared to wild‐type mice. Mechanistically, anti‐CD20 attenuated UUO‐induced alterations of renal tumour necrosis factor‐α (TNF‐α), vascular cell adhesion molecule 1 (VCAM‐1) pro‐inflammatory genes, and CC chemokine ligand‐2 (CCL2) essential for monocyte recruitment; B cells were one of the main sources of CCL2 in post‐UUO kidneys. Neutralization of CCL2 reduced monocyte/macrophage influx and fibrotic changes in obstructed kidneys. Therefore, early‐stage accumulation of B cells in the kidney accelerated monocyte/macrophage mobilization and infiltration, aggravating the fibrosis resulting from acutely induced kidney nephropathy. © 2016 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hui Han
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Zhengbin Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanjia Chen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lin Lu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wei Jin
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxiang Yan
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
28
|
Ratiu JJ, Racine JJ, Hasham MG, Wang Q, Branca JA, Chapman HD, Zhu J, Donghia N, Philip V, Schott WH, Wasserfall C, Atkinson MA, Mills KD, Leeth CM, Serreze DV. Genetic and Small Molecule Disruption of the AID/RAD51 Axis Similarly Protects Nonobese Diabetic Mice from Type 1 Diabetes through Expansion of Regulatory B Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2017; 198:4255-4267. [PMID: 28461573 DOI: 10.4049/jimmunol.1700024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/04/2017] [Indexed: 11/19/2022]
Abstract
B lymphocytes play a key role in type 1 diabetes (T1D) development by serving as a subset of APCs preferentially supporting the expansion of autoreactive pathogenic T cells. As a result of their pathogenic importance, B lymphocyte-targeted therapies have received considerable interest as potential T1D interventions. Unfortunately, the B lymphocyte-directed T1D interventions tested to date failed to halt β cell demise. IgG autoantibodies marking humans at future risk for T1D indicate that B lymphocytes producing them have undergone the affinity-maturation processes of class switch recombination and, possibly, somatic hypermutation. This study found that CRISPR/Cas9-mediated ablation of the activation-induced cytidine deaminase gene required for class switch recombination/somatic hypermutation induction inhibits T1D development in the NOD mouse model. The activation-induced cytidine deaminase protein induces genome-wide DNA breaks that, if not repaired through RAD51-mediated homologous recombination, result in B lymphocyte death. Treatment with the RAD51 inhibitor 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid also strongly inhibited T1D development in NOD mice. The genetic and small molecule-targeting approaches expanded CD73+ B lymphocytes that exert regulatory activity suppressing diabetogenic T cell responses. Hence, an initial CRISPR/Cas9-mediated genetic modification approach has identified the AID/RAD51 axis as a target for a potentially clinically translatable pharmacological approach that can block T1D development by converting B lymphocytes to a disease-inhibitory CD73+ regulatory state.
Collapse
Affiliation(s)
| | | | | | - Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111
| | | | | | - Jing Zhu
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061
| | | | | | | | - Clive Wasserfall
- Department of Pathology, University of Florida, Gainesville, FL 32610; and
| | - Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL 32610; and
| | | | - Caroline M Leeth
- Department of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061;
| | | |
Collapse
|
29
|
Ellis JS, Braley-Mullen H. Mechanisms by Which B Cells and Regulatory T Cells Influence Development of Murine Organ-Specific Autoimmune Diseases. J Clin Med 2017; 6:jcm6020013. [PMID: 28134752 PMCID: PMC5332917 DOI: 10.3390/jcm6020013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Experiments with B cell-deficient (B−/−) mice indicate that a number of autoimmune diseases require B cells in addition to T cells for their development. Using B−/− Non-obese diabetic (NOD) and NOD.H-2h4 mice, we demonstrated that development of spontaneous autoimmune thyroiditis (SAT), Sjogren’s syndrome and diabetes do not develop in B−/− mice, whereas all three diseases develop in B cell-positive wild-type (WT) mice. B cells are required early in life, since reconstitution of adult mice with B cells or autoantibodies did not restore their ability to develop disease. B cells function as important antigen presenting cells (APC) to initiate activation of autoreactive CD4+ effector T cells. If B cells are absent or greatly reduced in number, other APC will present the antigen, such that Treg are preferentially activated and effector T cells are not activated. In these situations, B−/− or B cell-depleted mice develop the autoimmune disease when T regulatory cells (Treg) are transiently depleted. This review focuses on how B cells influence Treg activation and function, and briefly considers factors that influence the effectiveness of B cell depletion for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| | - Helen Braley-Mullen
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
- Department of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
30
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
31
|
Leeth CM, Racine J, Chapman HD, Arpa B, Carrillo J, Carrascal J, Wang Q, Ratiu J, Egia-Mendikute L, Rosell-Mases E, Stratmann T, Verdaguer J, Serreze DV. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes 2016; 65:1977-1987. [PMID: 26961115 PMCID: PMC4915583 DOI: 10.2337/db15-1606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While the autoimmune destruction of pancreatic ß-cells underlying type 1 diabetes (1D) development is ultimately mediated by T-cells in NOD mice and also likely humans, B-lymphocytes play an additional key pathogenic role. It appears expression of plasma membrane bound immunoglobulin (Ig) molecules that efficiently capture ß-cell antigens allows autoreactive B-lymphocytes bypassing normal tolerance induction processes to be the subset of antigen presenting cells most efficiently activating diabetogenic T-cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or not (hen egg lysozyme; HEL) expressed by ß-cells have proven useful in dissecting the developmental basis of diabetogenic B-lymphocytes. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B-lymphocytes in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin autoreactive B-lymphocytes infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach.
Collapse
Affiliation(s)
- Caroline M Leeth
- The Jackson Laboratory, Bar Harbor, Maine, USA Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | - Berta Arpa
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida & IRBLleida, Lleida, Spain
| | - Jorge Carrillo
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida & IRBLleida, Lleida, Spain
| | - Jorge Carrascal
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida & IRBLleida, Lleida, Spain
| | - Qiming Wang
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | - Thomas Stratmann
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Joan Verdaguer
- Immunology Unit, Department of Experimental Medicine, Faculty of Medicine, University of Lleida & IRBLleida, Lleida, Spain
| | | |
Collapse
|
32
|
Deng C, Xiang Y, Tan T, Ren Z, Cao C, Huang G, Wen L, Zhou Z. Altered Peripheral B-Lymphocyte Subsets in Type 1 Diabetes and Latent Autoimmune Diabetes in Adults. Diabetes Care 2016; 39:434-40. [PMID: 26721817 PMCID: PMC4764037 DOI: 10.2337/dc15-1765] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/18/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE B lymphocytes play an important role in the immunopathogenesis of autoimmune diabetes. We hypothesized that the altered B-cell subset phenotype is associated with autoimmune diabetes. RESEARCH DESIGN AND METHODS Patients with type 1 diabetes (T1D) (n = 81), latent autoimmune diabetes in adults (LADA) (n = 82), or type 2 diabetes (T2D) (n = 95) and healthy control subjects (n = 218) with normal glucose tolerance (NGT) were recruited. We determined the percentage of circulating B-lymphocyte subsets, including CD19(+)CD23(-)CD21(+) (marginal zone B [MZB]), CD19(+)CD23(+)CD21(-) (follicular B [FoB]), and CD19(+)CD5(+)CD1d(hi) (interleukin-10-producing regulatory B [B10]) cells by flow cytometry. RESULTS Patients with T1D or LADA had increased percentages of MZB cells and decreased percentages of FoB cells compared with healthy control subjects with NGT and patients with T2D. Moreover, patients with T1D showed the lowest frequency of B10 cells compared with patients with LADA or T2D, whereas healthy control subjects expressed the highest frequency of B10 cells. Of note, the frequency of MZB cells was negatively associated and the frequency of FoB cells was positively associated with fasting C-peptide (FCP). The frequency of B10 cells was positively correlated with FCP and negatively correlated with hemoglobin A(1c). CONCLUSIONS The data show that patients with T1D or LADA express an altered frequency of B-cell subsets, which is associated with islet function and glycemia. These findings suggest that B lymphocytes may be involved in loss of self-tolerance and β-cell destruction and could be used as a biomarker and potential target for immunological intervention.
Collapse
Affiliation(s)
- Chao Deng
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yufei Xiang
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Tingting Tan
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhihui Ren
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Chuqing Cao
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Li Wen
- Section of Endocrinology, Yale School of Medicine, Yale University, New Haven, CT
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| |
Collapse
|
33
|
Hamad ARA, Ahmed R, Donner T, Fousteri G. B cell-targeted immunotherapy for type 1 diabetes: What can make it work? DISCOVERY MEDICINE 2016; 21:213-219. [PMID: 27115172 PMCID: PMC5266520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunotherapy has revolutionized treatment of cancers and autoimmune diseases. Bucking the trend, however, is type 1 diabetes (T1D), although it is one of best understood autoimmune diseases and individuals at genetic risk are identifiable with high certainty. Here we review the major obstacles associated with pan-B-cell-depletion using rituximab (RTX) and discuss the notion that B cell-directed therapy may be most effective as a preventive measure. We suggest that it will be more productive to aim at identifying and targeting autoreactive B cells rather than making adjustments to pan-B cell depletion and that non-conventional alternative therapies such as antibody blockade of FasL to bolster IL-10-producing Breg cells, which work successfully in mice, should be considered.
Collapse
Affiliation(s)
- Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Georgia Fousteri
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
34
|
Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E, Jelsing J. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice. J Diabetes Res 2016; 2016:7484601. [PMID: 26953152 PMCID: PMC4756207 DOI: 10.1155/2016/7484601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways.
Collapse
Affiliation(s)
| | | | - Niels Vrang
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
| | | | - Eva Steiness
- Serodus ASA, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jacob Jelsing
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
- *Jacob Jelsing:
| |
Collapse
|
35
|
Luan L, Xue R, Lu C, Cui A, Hou Y, Quan J, Xiang M, Wang X, Yuan W, Sun N, Meng D, Chen S. Anti-serum with anti-autoantibody activity decreases autoantibody-positive B lymphocytes and type 1 diabetes of female NOD mice. Autoimmunity 2015; 49:21-30. [PMID: 26334951 DOI: 10.3109/08916934.2015.1079819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by an autoimmune-mediated loss of insulin secreting β-cells. Each B lymphocyte clone that escapes immune tolerance produces a specific antibody. No specific treatment against autoantibodies is available for autoimmune diseases. We have developed a strategy to produce an antiserum against autoantibodies for the treatment of T1DM. Non-obese diabetic (NOD) but not Balb/c mouse serum contains autoantibodies. Antisera were produced by immunizing Balb/c mice with affinity-purified IgG from NOD or BALB/c mice along with the immune adjuvant (hereafter, NIgG or BIgG, respectively). A bolus administration of NIgG significantly reduced serum autoantibodies, autoantibody-positive B lymphocytes in the spleens of NOD mice, mortality and morbidity of diabetes, blood glucose and islet immune infiltration, whereas it increased islet mass in NOD mice for at least 26 weeks. NIgG antiserum treatment has no significant effect on CD3(+), CD4(+) or CD8(+) T cells and B220(+) or CD19(+) B cells. BIgG also imparted a moderate therapeutic effect, although it was considerably lower than that of NIgG. NIgG did not cross-react with allogeneic serum. NIgG showed no effect on Balb/c mice. The results show the feasibility of producing antiserum against autoantibodies to prevent and treat autoimmune-induced T1DM with a single bolus administration.
Collapse
Affiliation(s)
- Lijuan Luan
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Rong Xue
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Chao Lu
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Anfeng Cui
- b Department of Physiology , Ningxia Medical College , Yinchuan , Ningxia , China , and
| | - Yanqiang Hou
- c Department of Central Laboratory , Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Jing Quan
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Meng Xiang
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Xinhong Wang
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Wenjun Yuan
- b Department of Physiology , Ningxia Medical College , Yinchuan , Ningxia , China , and
| | - Ning Sun
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Dan Meng
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| | - Sifeng Chen
- a Department of Physiology and Pathophysiology , School of Basic Medical Sciences, Fudan University , Shanghai , China
| |
Collapse
|
36
|
Ellis JS, Braley-Mullen H. Regulatory T cells in B-cell-deficient and wild-type mice differ functionally and in expression of cell surface markers. Immunology 2015; 144:598-610. [PMID: 25318356 DOI: 10.1111/imm.12410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022] Open
Abstract
NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) with chronic inflammation of thyroids by T and B cells. B-cell deficient (B(-/-) ) mice are resistant to SAT but develop SAT if regulatory T (Treg) cells are transiently depleted. We established a transfer model using splenocytes from CD28(-/-) B(-/-) mice (effector cells and antigen-presenting cells) cultured with or without sorted Treg cells from Foxp3-GFP wild-type (WT) or B(-/-) mice. After transfer to mice lacking T cells, mice given Treg cells from B(-/-) mice had significantly lower SAT severity scores than mice given Treg cells from WT mice, indicating that Treg cells in B(-/-) mice are more effective suppressors of SAT than Treg cells in WT mice. Treg cells from B(-/-) mice differ from WT Treg cells in expression of CD27, tumour necrosis factor receptor (TNFR) II p75, and glucocorticoid-induced TNFR-related protein (GITR). After transient depletion using anti-CD25 or diphtheria toxin, the repopulating Treg cells in B(-/-) mice lack suppressor function, and expression of CD27, GITR and p75 is like that of WT Treg cells. If B(-/-) Treg cells develop with B cells in bone marrow chimeras, their phenotype is like that of WT Treg cells. Addition of B cells to cultures of B(-/-) Treg and T effector cells abrogates their suppressive function and their phenotype is like that of WT Treg cells. These results establish for the first time that Treg cells in WT and B(-/-) mice differ both functionally and in expression of particular cell surface markers. Both properties are altered after transient depletion and repopulation of B(-/-) Treg cells, and by the presence of B cells during Treg cell development or during interaction with effector T cells.
Collapse
Affiliation(s)
- Jason S Ellis
- Department of Medicine, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
37
|
Abstract
Studies over the past 35 years in the nonobese diabetic (NOD) mouse have shown that a number of agents can prevent or even reverse type 1 diabetes mellitus (T1DM); however, these successes have not been replicated in human clinical trials. Although some of these interventions have delayed disease onset or progression in subsets of participants, none have resulted in a complete cure. Even in the most robust responders, the treatments do not permanently preserve insulin secretion or stimulate the proliferation of β cells, as has been observed in mice. The shortfalls of translating NOD mouse studies into the clinic questions the value of using this model in preclinical studies. In this Perspectives, we suggest how immunological and genetic differences between NOD mice and humans might contribute to the differential outcomes and suggest ways in which the mouse model might be modified or applied as a tool to develop treatments and improve understanding of clinical trial outcomes.
Collapse
Affiliation(s)
- James C Reed
- Department of Immunobiology, 300 George Street, #353E, New Haven, CT 06520, USA
| | - Kevan C Herold
- Department of Immunobiology, Department of Internal Medicine, Yale University, 300 George Street, #353E, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Sarikonda G, Sachithanantham S, Miller JF, Pagni PP, Coppieters KT, von Herrath M. The Hsp60 peptide p277 enhances anti-CD3 mediated diabetes remission in non-obese diabetic mice. J Autoimmun 2015; 59:61-6. [PMID: 25772283 DOI: 10.1016/j.jaut.2015.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells leading to inadequate glycemic control. Trials with immunomodulatory monotherapies have shown that the disease course can in principle be altered. The observed preservation of endogenous insulin secretion however is typically transient and chronic treatment is often associated with significant side effects. Here we combined anti-CD3 with the Hsp60 peptide p277, two drugs that have been evaluated in Phase 3 trials, to test for enhanced efficacy. Female NOD mice with recent onset diabetes were given 5 μg anti-CD3 i.v., on three consecutive days in combination with 100 μg of p277 peptide in IFA s.c., once weekly for four weeks. Anti-CD3 alone restored normoglycemia in 44% of the mice while combination therapy with anti-CD3 and p277 induced stable remission in 83% of mice. The observed increase in protection occurred only in part through TLR2 signaling and was characterized by increased Treg numbers and decreased insulitis. These results have important implications for the design of combination therapies for the treatment of T1D.
Collapse
Affiliation(s)
- Ghanashyam Sarikonda
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | - Jacqueline F Miller
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Philippe P Pagni
- Type 1 Diabetes R&D Center, Novo Nordisk, Inc., Seattle, WA, USA
| | - Ken T Coppieters
- Type 1 Diabetes R&D Center, Novo Nordisk, Inc., Seattle, WA, USA
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Type 1 Diabetes R&D Center, Novo Nordisk, Inc., Seattle, WA, USA.
| |
Collapse
|
39
|
Braley-Mullen H, Yu S. NOD.H-2h4 mice: an important and underutilized animal model of autoimmune thyroiditis and Sjogren's syndrome. Adv Immunol 2015; 126:1-43. [PMID: 25727287 DOI: 10.1016/bs.ai.2014.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
NOD.H-2h4 mice express the K haplotype on the NOD genetic background. They spontaneously develop thyroiditis and Sjogren's syndrome, but they do not develop diabetes. Although autoimmune thyroid diseases and Sjogren's syndrome are highly prevalent autoimmune diseases in humans, there has been relatively little emphasis on the use of animal models of these diseases for understanding basic mechanisms involved in development and therapy of chronic organ-specific autoimmune diseases. The goal of this review is to highlight some of the advantages of NOD.H-2h4 mice for studying basic mechanisms involved in development of autoimmunity. NOD.H-2h4 mice are one of relatively few animal models that develop organ-specific autoimmune diseases spontaneously, i.e., without a requirement for immunization with antigen and adjuvant, and in both sexes in a relatively short period of time. Thyroiditis and Sjogren's syndrome in NOD.H-2h4 mice are chronic autoimmune diseases that develop relatively early in life and persist for the life of the animal. Because the animals do not become clinically ill, the NOD.H-2h4 mouse provides an excellent model to test therapeutic protocols over a long period of time. The availability of several mutant mice on this background provides a means to address the impact of particular cells and molecules on the autoimmune diseases. Moreover, to our knowledge, this is the only animal model in which the presence or absence of a single cytokine, IFN-γ, is sufficient to completely inhibit one autoimmune thyroid disease, with a completely distinct autoimmune thyroid disease developing when it is absent.
Collapse
Affiliation(s)
- Helen Braley-Mullen
- Departments of Medicine, Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri, USA.
| | - Shiguang Yu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
40
|
Kleffel S, Vergani A, Tezza S, Ben Nasr M, Niewczas MA, Wong S, Bassi R, D'Addio F, Schatton T, Abdi R, Atkinson M, Sayegh MH, Wen L, Wasserfall CH, O'Connor KC, Fiorina P. Interleukin-10+ regulatory B cells arise within antigen-experienced CD40+ B cells to maintain tolerance to islet autoantigens. Diabetes 2015; 64:158-71. [PMID: 25187361 PMCID: PMC4274804 DOI: 10.2337/db13-1639] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
Impaired regulatory B cell (Breg) responses are associated with several autoimmune diseases in humans; however, the role of Bregs in type 1 diabetes (T1D) remains unclear. We hypothesized that naturally occurring, interleukin-10 (IL-10)-producing Bregs maintain tolerance to islet autoantigens, and that hyperglycemic nonobese diabetic (NOD) mice and T1D patients lack these potent negative regulators. IgVH transcriptome analysis revealed that islet-infiltrating B cells in long-term normoglycemic (Lnglc) NOD, which are naturally protected from diabetes, are more antigen-experienced and possess more diverse B-cell receptor repertoires compared to those of hyperglycemic (Hglc) mice. Importantly, increased levels of Breg-promoting CD40(+) B cells and IL-10-producing B cells were found within islets of Lnglc compared to Hglc NOD. Likewise, healthy individuals showed increased frequencies of both CD40(+) and IL-10(+) B cells compared to T1D patients. Rituximab-mediated B-cell depletion followed by adoptive transfer of B cells from Hglc mice induced hyperglycemia in Lnglc human CD20 transgenic NOD mouse models. Importantly, both murine and human IL-10(+) B cells significantly abrogated T-cell-mediated responses to self- or islet-specific peptides ex vivo. Together, our data suggest that antigen-matured Bregs may maintain tolerance to islet autoantigens by selectively suppressing autoreactive T-cell responses, and that Hglc mice and individuals with T1D lack this population of Bregs.
Collapse
Affiliation(s)
- Sonja Kleffel
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Andrea Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA Transplant Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milano, Italy
| | - Sara Tezza
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Monika A Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, U.K
| | - Roberto Bassi
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA Transplant Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milano, Italy
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Reza Abdi
- Nephrology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Mohamed H Sayegh
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Li Wen
- Department of Immunology, Yale School of Medicine, New Haven, CT
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | | | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA Transplant Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
41
|
Abraham PM, Quan SH, Dukala D, Soliven B. CD19 as a therapeutic target in a spontaneous autoimmune polyneuropathy. Clin Exp Immunol 2014; 175:181-91. [PMID: 24116957 DOI: 10.1111/cei.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2013] [Indexed: 01/21/2023] Open
Abstract
Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knock-out non-obese diabetic (NOD) mice is mediated by myelin protein zero (P0)-reactive T helper type 1 (Th1) cells. In this study, we investigated the role of B cells in SAP, focusing on CD19 as a potential therapeutic target. We found that P0-specific plasmablasts and B cells were increased in spleens of SAP mice compared to wild-type NOD mice. Depletion of B cells and plasmablasts with anti-CD19 monoclonal antibody (mAb) led to attenuation of disease severity when administered at 5 months of age. This was accompanied by decreased serum immunoglobulin (Ig)G and IgM levels, depletion of P0-specific plasmablasts and B cells, down-regulation/internalization of surface CD19 and increased frequency of CD4(+) regulatory T cells in spleens. We conclude that B cells are crucial to the pathogenesis of SAP, and that CD19 is a promising B cell target for the development of disease-modifying agents in autoimmune neuropathies.
Collapse
Affiliation(s)
- P M Abraham
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
42
|
Racine JJ, Wang M, Zhang M, Zeng D. Induction of mixed chimerism depletes pre-existing and de novo-developed autoreactive B cells in autoimmune NOD mice. Diabetes 2014; 63:2051-62. [PMID: 24458357 DOI: 10.2337/db13-1532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Destruction of pancreatic islet β-cells in type 1 diabetes (T1D) is mainly mediated by autoimmune T and B lymphocytes. We reported that induction of major histocompatibility complex (MHC)-mismatched mixed chimerism reversed autoimmunity and reestablished thymic negative selection of autoreactive T cells in NOD mice, but it is still unclear how mixed chimerism tolerizes autoreactive B cells. The current studies were designed to reveal the mechanisms on how mixed chimerism tolerizes autoreactive B cells in T1D. Accordingly, mixed chimerism was induced in NOD mice through radiation-free nonmyeloablative anti-CD3/CD8 conditioning and infusion of donor CD4(+) T cell-depleted spleen and whole bone marrow (BM) cells or through myeloablative total body irradiation conditioning and reconstitution with T cell-depleted BM cells from donor and host. Kinetic analysis of percentage and yield of preplasma and plasma B cells, newly developed B-cell subsets, and their apoptosis was performed 30-60 days after transplantation. Induction of MHC-mismatched mixed chimerism results in depleting host-type pre-existing preplasma and plasma B cells as well as augmenting apoptosis of immature transitional T1 B cells, including insulin-specific B cells in a donor B cell-dependent manner. Therefore, induction of MHC-mismatched mixed chimerism depletes pre-existing and de novo-developed autoreactive B cells.
Collapse
Affiliation(s)
- Jeremy J Racine
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CADepartment of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CADepartment of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA
| | - Miao Wang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CADepartment of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA
| | - Mingfeng Zhang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CADepartment of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CADepartment of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CADepartment of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
43
|
Johnston HF, Xu Y, Racine JJ, Cassady K, Ni X, Wu T, Chan A, Forman S, Zeng D. Administration of anti-CD20 mAb is highly effective in preventing but ineffective in treating chronic graft-versus-host disease while preserving strong graft-versus-leukemia effects. Biol Blood Marrow Transplant 2014; 20:1089-103. [PMID: 24796279 DOI: 10.1016/j.bbmt.2014.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 12/15/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an autoimmune-like syndrome, and donor B cells play important roles in augmenting its pathogenesis. B cell-depleting anti-CD20 mAb has been administered before or after cGVHD onset for preventing or treating cGVHD in the clinic. Although administration before onset appeared to be more effective, the effect is variable and sometimes minimal. Here, we used 2 mouse cGVHD models to evaluate the preventive and therapeutic effect of anti-CD20 mAb. With the model of DBA/2 donor to MHC-matched BALB/c recipient, 1 intravenous injection of anti-CD20 mAb (40 mg/kg) the following day or on day 7 after hematopoietic cell transplantation when serum autoantibodies were undetectable effectively prevented induction of cGVHD and preserved a strong graft-versus-leukemia (GVL) effect. The separation of GVL effect from GVHD was associated with a significant reduction of donor CD4(+) T cell proliferation and expansion and protection of host thymic medullary epithelial cells. Anti-CD20 mAb administration also prevented expansion of donor T cells and induction of cGVHD in another mouse model of C57BL/6 donor to MHC-mismatched BALB/c recipients. In contrast, administration of anti-CD20 mAb after GVHD onset was not able to effectively deplete donor B cells or ameliorate cGVHD in either model. These results indicate that administration of anti-CD20 mAb before signs of cGVHD can prevent induction of autoimmune-like cGVHD while preserving a GVL effect; there is little effect if administered after cGVHD onset. This provides new insights into clinical prevention and therapy of cGVHD with B cell-depleting reagents.
Collapse
Affiliation(s)
- Heather F Johnston
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Yajing Xu
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jeremy J Racine
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Kaniel Cassady
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Xiong Ni
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Changhai Hospital, The Second Military Medical School, Shanghai, China
| | - Tao Wu
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Department of Hematology, Changhai Hospital, The Second Military Medical School, Shanghai, China
| | - Andrew Chan
- Department of Research Biology, Genentech, San Francisco, California
| | - Stephen Forman
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California
| | - Defu Zeng
- Departments of Diabetes Research and Hematology/Hematopoietic Cell Transplantation, Beckman Research Institute at City of Hope National Medical Center, Duarte, California; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute at City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
44
|
Berry GJ, Budgeon LR, Cooper TK, Christensen ND, Waldner H. The type 1 diabetes resistance locus B10 Idd9.3 mediates impaired B-cell lymphopoiesis and implicates microRNA-34a in diabetes protection. Eur J Immunol 2014; 44:1716-27. [PMID: 24752729 DOI: 10.1002/eji.201344116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/27/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
NOD.B10 Idd9.3 mice are congenic for the insulin-dependent diabetes (Idd) Idd9.3 locus, which confers significant type 1 diabetes (T1D) protection and encodes 19 genes, including microRNA (miR)-34a, from T1D-resistant C57BL/10 mice. B cells have been shown to play a critical role in the priming of autoantigen-specific CD4(+) T cells in T1D pathogenesis in non-obese diabetic (NOD) mice. We show that early B-cell development is impaired in NOD.B10 Idd9.3 mice, resulting in the profound reduction of transitional and mature splenic B cells as compared with NOD mice. Molecular analysis revealed that miR-34a expression was significantly higher in B-cell progenitors and marginal zone B cells from NOD.B10 Idd9.3 mice than in NOD mice. Furthermore, miR-34a expression in these cell populations inversely correlated with levels of Foxp1, an essential regulator of B-cell lymphopoiesis, which is directly repressed by miR-34a. In addition, we show that islet-specific CD4(+) T cells proliferated inefficiently when primed by NOD.B10 Idd9.3 B cells in vitro or in response to endogenous autoantigen in NOD.B10 Idd9.3 mice. Thus, Idd9.3-encoded miR-34a is a likely candidate in negatively regulating B-cell lymphopoiesis, which may contribute to inefficient expansion of islet-specific CD4(+) T cells and to T1D protection in NOD.B10 Idd9.3 mice.
Collapse
Affiliation(s)
- Gregory J Berry
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
45
|
Garabatos N, Alvarez R, Carrillo J, Carrascal J, Izquierdo C, Chapman HD, Presa M, Mora C, Serreze DV, Verdaguer J, Stratmann T. In vivo detection of peripherin-specific autoreactive B cells during type 1 diabetes pathogenesis. THE JOURNAL OF IMMUNOLOGY 2014; 192:3080-90. [PMID: 24610011 DOI: 10.4049/jimmunol.1301053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoreactive B cells are essential for the pathogenesis of type 1 diabetes. The genesis and dynamics of autoreactive B cells remain unknown. In this study, we analyzed the immune response in the NOD mouse model to the neuronal protein peripherin (PRPH), a target Ag of islet-infiltrating B cells. PRPH autoreactive B cells recognized a single linear epitope of this protein, in contrast to the multiple epitope recognition commonly observed during autoreactive B cell responses. Autoantibodies to this epitope were also detected in the disease-resistant NOR and C57BL/6 strains. To specifically detect the accumulation of these B cells, we developed a novel approach, octameric peptide display, to follow the dynamics and localization of anti-PRPH B cells during disease progression. Before extended insulitis was established, anti-PRPH B cells preferentially accumulated in the peritoneum. Anti-PRPH B cells were likewise detected in C57BL/6 mice, albeit at lower frequencies. As disease unfolded in NOD mice, anti-PRPH B cells invaded the islets and increased in number at the peritoneum of diabetic but not prediabetic mice. Isotype-switched B cells were only detected in the peritoneum. Anti-PRPH B cells represent a heterogeneous population composed of both B1 and B2 subsets. In the spleen, anti-PRPH B cell were predominantly in the follicular subset. Therefore, anti-PRPH B cells represent a heterogeneous population that is generated early in life but proliferates as diabetes is established. These findings on the temporal and spatial progression of autoreactive B cells should be relevant for our understanding of B cell function in diabetes pathogenesis.
Collapse
Affiliation(s)
- Nahir Garabatos
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Seleznik G, Graf R. Alternatives to steroids?! Beneficial effects of immunosuppressant drugs in autoimmune pancreatitis. Gut 2014; 63:376-7. [PMID: 23633291 DOI: 10.1136/gutjnl-2013-304768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Gitta Seleznik
- Division of Visceral & Transplantation Surgery, Swiss HPB (Hepato-pancreato-biliary) Center, , Zürich, Switzerland
| | | |
Collapse
|
47
|
Mariño E, Walters SN, Villanueva JE, Richards JL, Mackay CR, Grey ST. BAFF regulates activation of self-reactive T cells through B-cell dependent mechanisms and mediates protection in NOD mice. Eur J Immunol 2014; 44:983-93. [PMID: 24435807 DOI: 10.1002/eji.201344186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/22/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022]
Abstract
Targeting the BAFF/APRIL system has shown to be effective in preventing T-cell dependent autoimmune disease in the NOD mouse, a spontaneous model of type 1 diabetes. In this study we generated BAFF-deficient NOD mice to examine how BAFF availability would influence T-cell responses in vivo and the development of spontaneous diabetes. BAFF-deficient NOD mice which lack mature B cells, were protected from diabetes and showed delayed rejection of an allogeneic islet graft. Diabetes protection correlated with a failure to expand pathogenic IGRP-reactive CD8(+) T cells, which were maintained in the periphery at correspondingly low levels. Adoptive transfer of IGRP-reactive CD8(+) T cells with B cells into BAFF-deficient NOD mice enhanced IGRP-reactive CD8(+) T-cell expansion. Furthermore, when provoked with cyclophosphamide, or transferred to a secondary lymphopenic host, the latent pool of self-reactive T cells resident in BAFF-deficient NOD mice could elicit beta cell destruction. We conclude that lack of BAFF prevents the procurement of B-cell-dependent help necessary for the emergence of destructive diabetes. Indeed, treatment of NOD mice with the BAFF-blocking compound, BR3-Fc, resulted in a delayed onset and reduced incidence of diabetes.
Collapse
Affiliation(s)
- Eliana Mariño
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Centre of Immunology and Inflammation, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Hinman RM, Smith MJ, Cambier JC. B cells and type 1 diabetes ...in mice and men. Immunol Lett 2014; 160:128-32. [PMID: 24472603 DOI: 10.1016/j.imlet.2014.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/14/2014] [Indexed: 12/25/2022]
Abstract
Nearly 70% of newly produced B cells express autoreactive antigen receptors and must be silenced to prevent autoimmunity. Failure of silencing mechanisms is apparent in type 1 diabetes (T1D), where islet antigen-specific B cells appear critical for development of disease. Evidence for a B cell role in T1D includes success of B cell targeted anti-CD20 therapy, which delays T1D progression in both NOD mice and new onset patients. Demonstrating the importance of specificity, NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Finally, though not required for illness, high affinity insulin autoantibodies are often the first harbingers of T1D. B cell cytokine production and auto-antigen presentation to self-reactive T cells are likely important in pathogenesis. Here we review B cell function, as described above, in T1D in humans and the non-obese diabetic (NOD) mouse. We will discuss recent broad-based B cell depletion studies and how they may provide the basis for refinement of future treatments for the disorder.
Collapse
Affiliation(s)
- Rochelle M Hinman
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - Mia J Smith
- University of Colorado Denver and National Jewish Health, Denver, CO, United States.
| | - John C Cambier
- University of Colorado Denver and National Jewish Health, Denver, CO, United States; Department of Immunology, National Jewish Health, Rm 803A, Goodman Building, 1400 Jackson Street, Denver, CO 80206, United States.
| |
Collapse
|
49
|
Rovin BH, Parikh SV. Lupus nephritis: the evolving role of novel therapeutics. Am J Kidney Dis 2014; 63:677-90. [PMID: 24411715 DOI: 10.1053/j.ajkd.2013.11.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/15/2013] [Indexed: 11/11/2022]
Abstract
Immune complex accumulation in the kidney is the hallmark of lupus nephritis and triggers a series of events that result in kidney inflammation and injury. Cytotoxic agents and corticosteroids are standard of care for lupus nephritis treatment, but are associated with considerable morbidity and suboptimal outcomes. Recently, there has been interest in using novel biologic agents and small molecules to treat lupus nephritis. These therapies can be broadly categorized as anti-inflammatory (laquinamod, anti-tumor necrosis factor-like weak inducer of apotosis, anti-C5, and retinoids), antiautoimmunity (anti-CD20, anti-interferon α, and costimulatory blockers), or both (anti-interleukin 6 and proteasome inhibitors). Recent lupus nephritis clinical trials applied biologics or small molecules of any category to induction treatment, seeking short-term end points of complete renal response. These trials in general have not succeeded. When lupus nephritis comes to clinical attention during the inflammatory stage of the disease, the autoimmune stage leading to kidney inflammation will have been active for some time. The optimal approach for using novel therapies may be to initially target kidney inflammation to preserve renal parenchyma, followed by suppression of autoimmunity. In this review, we discuss novel lupus nephritis therapies and how they fit into a combinatorial treatment strategy based on the pathogenic stage.
Collapse
Affiliation(s)
- Brad H Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH.
| | - Samir V Parikh
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
50
|
Hong SH, Braley-Mullen H. Follicular B cells in thyroids of mice with spontaneous autoimmune thyroiditis contribute to disease pathogenesis and are targets of anti-CD20 antibody therapy. THE JOURNAL OF IMMUNOLOGY 2013; 192:897-905. [PMID: 24376265 DOI: 10.4049/jimmunol.1301628] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
B cells are required for development of spontaneous autoimmune thyroiditis (SAT) in NOD.H-2h4 mice where they function as important APCs for activation of CD4(+) T cells. Depletion of B cells using anti-CD20 effectively inhibits SAT development. The goals of this study were to characterize the B cells that migrate to thyroids in SAT, and to determine whether anti-CD20 effectively targets those B cells in mice with established SAT. The results showed that most thyroid-infiltrating B cells in mice with SAT are follicular (FO) B cells. Expression of CD80, CD86, and CD40 was significantly increased on FO, but not marginal zone, splenic B cells after SAT development. Thyroid-infiltrating and peripheral blood B cells had lower expresion of CD20 and CD24 compared with splenic and lymph node FO B cells. Despite reduced CD20 expression, anti-CD20 depleted most B cells in thyroids of mice with established SAT within 3 d. B cell depletion in thyroids of mice given anti-CD20 was more complete and longer lasting than in spleen and lymph nodes and was comparable to that in blood. Circulation of B cells was required for effective and rapid removal of B cells in thyroids because preventing lymphocyte egress by administration of FTY720 abrogated the effects of anti-CD20 on thyroid B cells. Therefore, the FO subset of B cells preferentially contributes to SAT development and persistence, and anti-CD20 targeting of FO B cells effectively eliminates B cells in the target organ even though thyroid B cells have decreased CD20 expression.
Collapse
Affiliation(s)
- So-Hee Hong
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO 65212
| | | |
Collapse
|