1
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025:10.1038/s12276-024-01380-2. [PMID: 39741186 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Hahm J, Thirunavukarasu B, Gadoo R, Andrade JAF, Dalton T, Arany E, Hill DJ. Alpha- to Beta-Cell Transdifferentiation in Neonatal Compared with Adult Mouse Pancreas in Response to a Modest Reduction in Beta-Cells Using Streptozotocin. Int J Mol Sci 2024; 25:11152. [PMID: 39456933 PMCID: PMC11508719 DOI: 10.3390/ijms252011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Following the near-total depletion of pancreatic beta-cells with streptozotocin (STZ), a partial recovery of beta-cell mass (BCM) can occur, in part due to the alpha- to beta-cell transdifferentiation with an intermediary insulin/glucagon bi-hormonal cell phenotype. However, human type 2 diabetes typically involves only a partial reduction in BCM and it is not known if recovery after therapeutic intervention involves islet cell transdifferentiation, or how this varies with age. Here, we used transgenic mouse models to examine if islet cell transdifferentiation contributes to BCM recovery following only a partial depletion of BCM. Cell lineage tracing was employed using Glucagon-Cre/yellow fluorescent protein (YFP) transgenic mice treated with STZ (25 mg/kg-neonates; 70 mg/kg-adults) or vehicle alone on 3 consecutive days. Mice were euthanized 2-30 days later with a prior glucose tolerance test on day 30, and immunofluorescence histology performed on the pancreata. Beta-cell abundance was reduced by 30-40% two days post STZ in both neonates and adults, and subsequently partially recovered in adult but not neonatal mice. Glucose tolerance recovered in adult females, but not in males or neonates. Bi-hormonal cell abundance increased 2-3-fold in STZ-treated mice vs. controls in both neonates and adults, as did transdifferentiated cells expressing insulin and the YFP lineage tag, but not glucagon. Transdifferentiated cell presence was an order of magnitude lower than that of bi-hormonal cells. We conclude that alpha- to beta-cell transdifferentiation occurs in mice following only a moderate depletion in BCM, and that this was accompanied by a partial recovery of BCM in adults.
Collapse
Affiliation(s)
- Jiwon Hahm
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Bavina Thirunavukarasu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Reva Gadoo
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Faculty of Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Juan Andres Fernandez Andrade
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Tyler Dalton
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
| | - Edith Arany
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - David J. Hill
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (J.H.); (B.T.); (J.A.F.A.); (T.D.)
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON N6A 4V2, Canada; (R.G.); (E.A.)
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
3
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Chernysheva МB, Ruchko ЕS, Karimova МV, Vorotelyak ЕA, Vasiliev АV. Development, regeneration, and physiological expansion of functional β-cells: Cellular sources and regulators. Front Cell Dev Biol 2024; 12:1424278. [PMID: 39045459 PMCID: PMC11263198 DOI: 10.3389/fcell.2024.1424278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Pancreatic regeneration is a complex process observed in both normal and pathological conditions. The aim of this review is to provide a comprehensive understanding of the emergence of a functionally active population of insulin-secreting β-cells in the adult pancreas. The renewal of β-cells is governed by a multifaceted interaction between cellular sources of genetic and epigenetic factors. Understanding the development and heterogeneity of β-cell populations is crucial for functional β-cell regeneration. The functional mass of pancreatic β-cells increases in situations such as pregnancy and obesity. However, the specific markers of mature β-cell populations and postnatal pancreatic progenitors capable of increasing self-reproduction in these conditions remain to be elucidated. The capacity to regenerate the β-cell population through various pathways, including the proliferation of pre-existing β-cells, β-cell neogenesis, differentiation of β-cells from a population of progenitor cells, and transdifferentiation of non-β-cells into β-cells, reveals crucial molecular mechanisms for identifying cellular sources and inducers of functional cell renewal. This provides an opportunity to identify specific cellular sources and mechanisms of regeneration, which could have clinical applications in treating various pathologies, including in vitro cell-based technologies, and deepen our understanding of regeneration in different physiological conditions.
Collapse
Affiliation(s)
- М. B. Chernysheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Е. S. Ruchko
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - М. V. Karimova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
- Department of Biology and Biotechnologies Charles Darwin, The Sapienza University of Rome, Rome, Italy
| | - Е. A. Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| | - А. V. Vasiliev
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Moscow, Russia
| |
Collapse
|
5
|
Dahiya S, Saleh M, Rodriguez UA, Rajasundaram D, R Arbujas J, Hajihassani A, Yang K, Sehrawat A, Kalsi R, Yoshida S, Prasadan K, Lickert H, Hu J, Piganelli JD, Gittes GK, Esni F. Acinar to β-like cell conversion through inhibition of focal adhesion kinase. Nat Commun 2024; 15:3740. [PMID: 38702347 PMCID: PMC11068907 DOI: 10.1038/s41467-024-47972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Insufficient functional β-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing β-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore β-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.
Collapse
Affiliation(s)
- Shakti Dahiya
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Mohamed Saleh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Uylissa A Rodriguez
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jorge R Arbujas
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arian Hajihassani
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kaiyuan Yang
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anuradha Sehrawat
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ranjeet Kalsi
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shiho Yoshida
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Krishna Prasadan
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Jing Hu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jon D Piganelli
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - George K Gittes
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- School of Medicine, Technical University of Munich, Munich, Germany.
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Kasinathan D, Guo Z, Sarver DC, Wong GW, Yun S, Michels AW, Yu L, Sona C, Poy MN, Golson ML, Fu D. Cell-Surface ZnT8 Antibody Prevents and Reverses Autoimmune Diabetes in Mice. Diabetes 2024; 73:806-818. [PMID: 38387059 PMCID: PMC11043063 DOI: 10.2337/db23-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pathogenic lymphocytes target autoantigens expressed in pancreatic islets, leading to the destruction of insulin-producing β-cells. Zinc transporter 8 (ZnT8) is a major autoantigen abundantly present on the β-cell surface. This unique molecular target offers the potential to shield β-cells against autoimmune attacks in T1D. Our previous work showed that a monoclonal antibody (mAb43) against cell-surface ZnT8 could home in on pancreatic islets and prevent autoantibodies from recognizing β-cells. This study demonstrates that mAb43 binds to exocytotic sites on the β-cell surface, masking the antigenic exposure of ZnT8 and insulin after glucose-stimulated insulin secretion. In vivo administration of mAb43 to NOD mice selectively increased the proportion of regulatory T cells in the islet, resulting in complete and sustained protection against T1D onset as well as reversal of new-onset diabetes. The mAb43-induced self-tolerance was reversible after treatment cessation, and no adverse effects were exhibited during long-term monitoring. Our findings suggest that mAb43 masking of the antigenic exposure of β-cells suppresses the immunological cascade from B-cell antigen presentation to T cell-mediated β-cell destruction, providing a novel islet-targeted and antigen-specific immunotherapy to prevent and reverse clinical T1D. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Devi Kasinathan
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Zheng Guo
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - G. William Wong
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Shumei Yun
- Office of Graduate Medical Education, University of Maryland Medical System, Largo, MD
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO
| | - Chandan Sona
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Institute for Fundamental Biomedical Research, Johns Hopkins School of Medicine, St. Petersburg, FL
| | - Matthew N. Poy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Institute for Fundamental Biomedical Research, Johns Hopkins School of Medicine, St. Petersburg, FL
| | - Maria L. Golson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Azad A, Altunbas HA, Manguoglu AE. From islet transplantation to beta-cell regeneration: an update on beta-cell-based therapeutic approaches in type 1 diabetes. Expert Rev Endocrinol Metab 2024; 19:217-227. [PMID: 38693782 DOI: 10.1080/17446651.2024.2347263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hasan Ali Altunbas
- Department of Endocrinology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayse Esra Manguoglu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
McCarty SM, Clasby MC, Sexton JZ. High-Throughput Methods for the Discovery of Small Molecule Modulators of Pancreatic Beta-Cell Function and Regeneration. Assay Drug Dev Technol 2024; 22:148-159. [PMID: 38526231 PMCID: PMC11236284 DOI: 10.1089/adt.2023.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
The progression of type II diabetes (T2D) is characterized by a complex and highly variable loss of beta-cell mass, resulting in impaired insulin secretion. Many T2D drug discovery efforts aimed at discovering molecules that can protect or restore beta-cell mass and function have been developed using limited beta-cell lines and primary rodent/human pancreatic islets. Various high-throughput screening methods have been used in the context of drug discovery, including luciferase-based reporter assays, glucose-stimulated insulin secretion, and high-content screening. In this context, a cornerstone of small molecule discovery has been the use of immortalized rodent beta-cell lines. Although insightful, this usage has led to a more comprehensive understanding of rodent beta-cell proliferation pathways rather than their human counterparts. Advantages gained in enhanced physiological relevance are offered by three-dimensional (3D) primary islets and pseudoislets in contrast to monolayer cultures, but these approaches have been limited to use in low-throughput experiments. Emerging methods, such as high-throughput 3D islet imaging coupled with machine learning, aim to increase the feasibility of integrating 3D microtissue structures into high-throughput screening. This review explores the current methods used in high-throughput screening for small molecule modulators of beta-cell mass and function, a potentially pivotal strategy for diabetes drug discovery.
Collapse
Affiliation(s)
- Sean M. McCarty
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, Michigan, USA
| | - Martin C. Clasby
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Wal P, Aziz N, Prajapati H, Soni S, Wal A. Current Landscape of Various Techniques and Methods of Gene Therapy through CRISPR Cas9 along with its Pharmacological and Interventional Therapies in the Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 20:e201023222414. [PMID: 37867274 DOI: 10.2174/0115733998263079231011073803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is frequently referred to as a "lifestyle illness". In 2000, India (31.7 million) had the greatest global prevalence of diabetes mellitus, followed by China (20.8 million), the United States (17.7 million), and other countries. In recent years, the treatment of gene therapy (T2DM) has attracted intensive interest. OBJECTIVE We aimed to critically review the literature on the various techniques and methods, which may be a possible novel approach through the gene therapy CRISPR Cas9 and some other gene editing techniques for T2DM. Interventional and pharmacological approaches for the treatment of T2DM were also included to identify novel therapies for its treatment. METHOD An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer. CONCLUSION It can be concluded from the study that recent advancements in gene-editing technologies, such as CRISPR Cas9, have opened new avenues for the development of novel therapeutic approaches for T2DM. CRISPR Cas9 is a powerful tool that enables precise and targeted modifications of the genome.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Harshit Prajapati
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Shashank Soni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| |
Collapse
|
10
|
So WY, Liao Y, Liu WN, Rutter GA, Han W. Paired box 6 gene delivery preserves beta cells and improves islet transplantation efficacy. EMBO Mol Med 2023; 15:e17928. [PMID: 37933577 DOI: 10.15252/emmm.202317928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023] Open
Abstract
Loss of pancreatic beta cells is the central feature of all forms of diabetes. Current therapies fail to halt the declined beta cell mass. Thus, strategies to preserve beta cells are imperatively needed. In this study, we identified paired box 6 (PAX6) as a critical regulator of beta cell survival. Under diabetic conditions, the human beta cell line EndoC-βH1, db/db mouse and human islets displayed dampened insulin and incretin signalings and reduced beta cell survival, which were alleviated by PAX6 overexpression. Adeno-associated virus (AAV)-mediated PAX6 overexpression in beta cells of streptozotocin-induced diabetic mice and db/db mice led to a sustained maintenance of glucose homeostasis. AAV-PAX6 transduction in human islets reduced islet graft loss and improved glycemic control after transplantation into immunodeficient diabetic mice. Our study highlights a previously unappreciated role for PAX6 in beta cell survival and raises the possibility that ex vivo PAX6 gene transfer into islets prior to transplantation might enhance islet graft function and transplantation outcome.
Collapse
Affiliation(s)
- Wing Yan So
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yilie Liao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong, 510530, China
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guy A Rutter
- Centre de Recherche du CHUM, Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Lee Kong Chian Imperial Medical School, Nanyang Technological University, Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
11
|
Stamateris RE, Landa-Galvan HV, Sharma RB, Darko C, Redmond D, Rane SG, Alonso LC. Noncanonical CDK4 signaling rescues diabetes in a mouse model by promoting β cell differentiation. J Clin Invest 2023; 133:e166490. [PMID: 37712417 PMCID: PMC10503800 DOI: 10.1172/jci166490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Expanding β cell mass is a critical goal in the fight against diabetes. CDK4, an extensively characterized cell cycle activator, is required to establish and maintain β cell number. β cell failure in the IRS2-deletion mouse type 2 diabetes model is, in part, due to loss of CDK4 regulator cyclin D2. We set out to determine whether replacement of endogenous CDK4 with the inhibitor-resistant mutant CDK4-R24C rescued the loss of β cell mass in IRS2-deficient mice. Surprisingly, not only β cell mass but also β cell dedifferentiation was effectively rescued, despite no improvement in whole body insulin sensitivity. Ex vivo studies in primary islet cells revealed a mechanism in which CDK4 intervened downstream in the insulin signaling pathway to prevent FOXO1-mediated transcriptional repression of critical β cell transcription factor Pdx1. FOXO1 inhibition was not related to E2F1 activity, to FOXO1 phosphorylation, or even to FOXO1 subcellular localization, but rather was related to deacetylation and reduced FOXO1 abundance. Taken together, these results demonstrate a differentiation-promoting activity of the classical cell cycle activator CDK4 and support the concept that β cell mass can be expanded without compromising function.
Collapse
Affiliation(s)
- Rachel E. Stamateris
- MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Huguet V. Landa-Galvan
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Rohit B. Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| | - David Redmond
- Hartman Institute for Therapeutic Regenerative Medicine, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sushil G. Rane
- Integrative Cellular Metabolism Section, Diabetes, Endocrinology and Obesity Branch, National Institute for Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Laura C. Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Joan and Sanford I. Weill Center for Metabolic Health and
| |
Collapse
|
12
|
Dallatana A, Cremonesi L, Trombetta M, Fracasso G, Nocini R, Giacomello L, Innamorati G. G Protein-Coupled Receptors and the Rise of Type 2 Diabetes in Children. Biomedicines 2023; 11:1576. [PMID: 37371671 DOI: 10.3390/biomedicines11061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The human genome counts hundreds of GPCRs specialized to sense thousands of different extracellular cues, including light, odorants and nutrients in addition to hormones. Primordial GPCRs were likely glucose transporters that became sensors to monitor the abundance of nutrients and direct the cell to switch from aerobic metabolism to fermentation. Human β cells express multiple GPCRs that contribute to regulate glucose homeostasis, cooperating with many others expressed by a variety of cell types and tissues. These GPCRs are intensely studied as pharmacological targets to treat type 2 diabetes in adults. The dramatic rise of type 2 diabetes incidence in pediatric age is likely correlated to the rapidly evolving lifestyle of children and adolescents of the new century. Current pharmacological treatments are based on therapies designed for adults, while youth and puberty are characterized by a different hormonal balance related to glucose metabolism. This review focuses on GPCRs functional traits that are relevant for β cells function, with an emphasis on aspects that could help to differentiate new treatments specifically addressed to young type 2 diabetes patients.
Collapse
Affiliation(s)
- Alessia Dallatana
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Linda Cremonesi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Maddalena Trombetta
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37124 Verona, Italy
| | - Giulio Fracasso
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| |
Collapse
|
13
|
Tan C, Ding M, Zheng YW. The Values and Perspectives of Organoids in the Field of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24098125. [PMID: 37175830 PMCID: PMC10179392 DOI: 10.3390/ijms24098125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome (MetS) has become a global health problem, and the prevalence of obesity at all stages of life makes MetS research increasingly important and urgent. However, as a comprehensive and complex disease, MetS has lacked more appropriate research models. The advent of organoids provides an opportunity to address this issue. However, it should be noted that organoids are still in their infancy. The main drawbacks are a lack of maturity, complexity, and the inability to standardize large-scale production. Could organoids therefore be a better choice for studying MetS than other models? How can these limitations be overcome? Here, we summarize the available data to present current progress on pancreatic and hepatobiliary organoids and to answer these open questions. Organoids are of human origin and contain a variety of human cell types necessary to mimic the disease characteristics of MetS in their development. Taken together with the discovery of hepatobiliary progenitors in situ, the dedifferentiation of beta cells in diabetes, and studies on hepatic macrophages, we suggest that promoting endogenous regeneration has the potential to prevent the development of end-stage liver and pancreatic lesions caused by MetS and outline the direction of future research in this field.
Collapse
Affiliation(s)
- Chen Tan
- Institute of Regenerative Medicine, Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Min Ding
- Institute of Regenerative Medicine, Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
14
|
Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofo H, Charles B, Collombat P. Wnt Pathway in Pancreatic Development and Pathophysiology. Cells 2023; 12:cells12040565. [PMID: 36831232 PMCID: PMC9954665 DOI: 10.3390/cells12040565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The pancreas is an abdominal gland that serves 2 vital purposes: assist food processing by secreting digestive enzymes and regulate blood glucose levels by releasing endocrine hormones. During embryonic development, this gland originates from epithelial buds located on opposite sites of the foregut endoderm. Pancreatic cell specification and maturation are coordinated by a complex interplay of extrinsic and intrinsic signaling events. In the recent years, the canonical Wnt/β-catenin pathway has emerged as an important player of pancreas organogenesis, regulating pancreatic epithelium specification, compartmentalization and expansion. Importantly, it has been suggested to regulate proliferation, survival and function of adult pancreatic cells, including insulin-secreting β-cells. This review summarizes recent work on the role of Wnt/β-catenin signaling in pancreas biology from early development to adulthood, emphasizing on its relevance for the development of new therapies for pancreatic diseases.
Collapse
Affiliation(s)
| | | | - Chaïma Ayachi
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | | | - Hugo Fofo
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
- Correspondence:
| |
Collapse
|
15
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
16
|
Abstract
Exosomes are a class of extracellular vesicles with a diameter of 50-100 nm secreted by various cells. They are generated through complex intracellular production mechanisms before being secreted to the extracellular environment. Due to their inclusion of proteins, lipids, and nucleic acids, exosomes play an important role in intercellular communication. Pancreatic β-cells play an irreplaceable role in the body's glucose metabolism. Their dysfunction is one of the causes of diabetes. Exosomes of various cells regulate the function of β-cells by regulating autoimmunity, delivering non-coding RNAs, or directly regulating intracellular signal pathways. This communication between β-cells and other cells plays an important role in the pathogenesis and development of diabetes, and has potential for clinical application. This paper reviews the biological sources and functions of exosomes, as well as intercellular crosstalk between β-cells and other cells that is involved in β-cell failure and regeneration.
Collapse
Affiliation(s)
- Yu Wu
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shizhong Bu
- Diabetes Research Center, Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Betatrophin and Insulin Resistance. Metabolites 2022; 12:metabo12100925. [PMID: 36295827 PMCID: PMC9610572 DOI: 10.3390/metabo12100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022] Open
Abstract
Betatrophin (angiopoietin-like protein 8 (ANGPTL8)) is a hormone that was recently discovered in the human liver. Multiple homologous sequences have been detected in mammalian liver, white adipose, and brown adipose tissues. Betatrophin is crucial for the development of type 2 diabetes (T2D), insulin resistance, and lipid metabolism. Similar to the intake of insulin, thyroid hormones, irisin, and calories, betatrophin expression in the organism is usually attributed to energy consumption or heat generation. It can mediate the activity of lipoprotein lipase (LPL), which is the key enzyme of lipoprotein lipolysis. Due to its association with metabolic markers and the roles of glucose and lipid, the physiological function of betatrophin in glucose homeostasis and lipid metabolism can be more comprehensively understood. Betatrophin was also shown to facilitate pancreatic β-cell proliferation in a mouse model of insulin resistance. There are also reports that demonstrate that betatrophin regulates triglycerides (TGs) in the liver. Therefore, the process of regulating the physiological function by betatrophin is complicated, and its exact biological significance remains elusive. This study provides a comprehensive review of the current research, and it discusses the possible physiological functions of betatrophin, and specifically the mechanism of betatrophin in regulating blood glucose and blood lipids.
Collapse
|
18
|
Jain C, Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab 2022; 4:1097-1108. [PMID: 36131204 DOI: 10.1038/s42255-022-00618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Insulin is a life-saving drug for patients with type 1 diabetes; however, even today, no pharmacotherapy can prevent the loss or dysfunction of pancreatic insulin-producing β cells to stop or reverse disease progression. Thus, pancreatic β cells have been a main focus for cell-replacement and regenerative therapies as a curative treatment for diabetes. In this Review, we highlight recent advances toward the development of diabetes therapies that target β cells to enhance proliferation, redifferentiation and protection from cell death and/or enable selective killing of senescent β cells. We describe currently available therapies and their mode of action, as well as insufficiencies of glucagon-like peptide 1 (GLP-1) and insulin therapies. We discuss and summarize data collected over the last decades that support the notion that pharmacological targeting of β cell insulin signalling might protect and/or regenerate β cells as an improved treatment of patients with diabetes.
Collapse
Affiliation(s)
- Chirag Jain
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Sara Bilekova
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair of β-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, München, Germany.
| |
Collapse
|
19
|
Pylaev TE, Smyshlyaeva IV, Popyhova EB. Regeneration of β-cells of the islet apparatus of the pancreas. Literature review. DIABETES MELLITUS 2022. [DOI: 10.14341/dm12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes of both type 1 and type 2 is characterized by a progressive loss of β-cell mass, which contributes to the disruption of glucose homeostasis. The optimal antidiabetic therapy would be simple replacement of lost cells, but at present, many researchers have shown that the pancreas (PZ) of adults has a limited regenerative potential. In this regard, significant efforts of researchers are directed to methods of inducing the proliferation of β-cells, stimulating the formation of β-cells from alternative endogenous sources and/or the generation of β-cells from pluripotent stem cells. Factors that regulate β-cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways and potential pharmaceuticals, are also being intensively studied. In this review, we consider recent scientific studies carried out in the field of studying the development and regeneration of insulin-producing cells obtained from exogenous and endogenous sources and their use in the treatment of diabetes. The literature search while writing this review was carried out using the databases of the RSIC, CyberLeninka, Scopus, Web of Science, MedLine, PubMed for the period from 2005 to 2021. using the following keywords: diabetes mellitus, pancreas, regeneration, β-cells, stem cells, diabetes therapy.
Collapse
|
20
|
Ge Q, Xie X, Chen X, Huang R, Rui CX, Zhen Q, Hu R, Wu M, Xiao X, Li X. Circulating exosome-like vesicles of humans with nondiabetic obesity impaired islet β-cell proliferation, which was associated with decreased Omentin-1 protein cargo. Genes Dis 2022; 9:1099-1113. [PMID: 35685466 PMCID: PMC9170582 DOI: 10.1016/j.gendis.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 12/05/2022] Open
Abstract
The regulation of β-cell mass in the status of nondiabetic obesity remains not well understood. We aimed to investigate the role of circulating exosome-like vesicles (ELVs) isolated from humans with simple obesity in the regulation of islet β-cell mass. Between June 2017 and July 2019, 81 subjects with simple obesity and 102 healthy volunteers with normal weight were recruited. ELVs were isolated by ultra-centrifugation. The proliferations of β-cells and islets were measured by 5-ethynl-2′-deoxyuridine (EdU). Protein components in ELVs were identified by Quantitative Proteomic Analysis and verified by Western blot and ELISA. The role of specific exosomal protein was analyzed by gain-of-function approach in ELVs released by 3T3-L1 preadipocytes. Circulating ELVs from subjects with simple obesity inhibited β-cell proliferation in vitro without affecting its apoptosis, secretion, and inflammation. The protein levels of Rictor and Omentin-1 were downregulated in circulating ELVs from subjects with simple obesity and associated with the obesity-linked pathologic conditions. The ELV-carried Omentin-1 and Omentin-1 protein per se were validated to increase β-cell proliferation and activate Akt signaling pathway. Moreover, Omentin-1 in ELVs was downregulated by insulin. The circulating ELVs may act as a negative regulator for β-cell mass in nondiabetic obesity through inhibiting β-cell proliferation. This effect was associated with downregulated Omentin-1 protein in ELVs. This newly identified ELV-carried protein could be a mediator linking insulin resistance to impaired β-cell proliferation and a new potential target for increasing β-cell mass in obesity and T2DM.
Collapse
Affiliation(s)
- Qian Ge
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xinxin Xie
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Rongfeng Huang
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Cheng-Xue Rui
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, PR China.,de Duve Institute, Catholic University of Louvain, Brussels 1200, Belgium
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Renzhi Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Min Wu
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Xi Li
- The Biology Science Institutes, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
21
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
22
|
Glucagon-receptor-antagonism-mediated β-cell regeneration as an effective anti-diabetic therapy. Cell Rep 2022; 39:110872. [PMID: 35649369 DOI: 10.1016/j.celrep.2022.110872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and β-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce β-cell regeneration in humans. Here, we discover the β-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of β-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of β-cell mass. We demonstrate that both β-cell proliferation and α- to β-cell transdifferentiation contribute to anti-GcgR-induced β-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from β-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced β-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases β-cell mass in a mouse model of autoimmune diabetes.
Collapse
|
23
|
Collares-Buzato CB, Carvalho CP. Is type 2 diabetes mellitus another intercellular junction-related disorder? Exp Biol Med (Maywood) 2022; 247:743-755. [PMID: 35466731 DOI: 10.1177/15353702221090464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is nowadays a worldwide epidemic and has become a major challenge for health systems around the world. It is a multifactorial disorder, characterized by a chronic state of hyperglycemia caused by defects in the production as well as in the peripheral action of insulin. This minireview highlights the experimental and clinical evidence that supports the novel idea that intercellular junctions (IJs)-mediated cell-cell contacts play a role in the pathogenesis of T2D. It focuses on IJs repercussion for endocrine pancreas, intestinal barrier, and kidney dysfunctions that contribute to the onset and evolution of this metabolic disorder.
Collapse
Affiliation(s)
- Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, CEP 13083-970, Brazil
| | - Carolina Pf Carvalho
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, CEP 11015-020, Brazil
| |
Collapse
|
24
|
Roles of mTOR in the Regulation of Pancreatic β-Cell Mass and Insulin Secretion. Biomolecules 2022; 12:biom12050614. [PMID: 35625542 PMCID: PMC9138643 DOI: 10.3390/biom12050614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2022] Open
Abstract
Pancreatic β-cells are the only type of cells that can control glycemic levels via insulin secretion. Thus, to explore the mechanisms underlying pancreatic β-cell failure, many reports have clarified the roles of important molecules, such as the mechanistic target of rapamycin (mTOR), which is a central regulator of metabolic and nutrient cues. Studies have uncovered the roles of mTOR in the function of β-cells and the progression of diabetes, and they suggest that mTOR has both positive and negative effects on pancreatic β-cells in the development of diabetes.
Collapse
|
25
|
Eguchi N, Toribio AJ, Alexander M, Xu I, Whaley DL, Hernandez LF, Dafoe D, Ichii H. Dysregulation of β-Cell Proliferation in Diabetes: Possibilities of Combination Therapy in the Development of a Comprehensive Treatment. Biomedicines 2022; 10:biomedicines10020472. [PMID: 35203680 PMCID: PMC8962301 DOI: 10.3390/biomedicines10020472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia as a result of insufficient insulin levels and/or impaired function as a result of autoimmune destruction or insulin resistance. While Type 1 DM (T1DM) and Type 2 DM (T2DM) occur through different pathological processes, both result in β-cell destruction and/or dysfunction, which ultimately lead to insufficient β-cell mass to maintain normoglycemia. Therefore, therapeutic agents capable of inducing β-cell proliferation is crucial in treating and reversing diabetes; unfortunately, adult human β-cell proliferation has been shown to be very limited (~0.2% of β-cells/24 h) and poorly responsive to many mitogens. Furthermore, diabetogenic insults result in damage to β cells, making it ever more difficult to induce proliferation. In this review, we discuss β-cell mass/proliferation pathways dysregulated in diabetes and current therapeutic agents studied to induce β-cell proliferation. Furthermore, we discuss possible combination therapies of proliferation agents with immunosuppressants and antioxidative therapy to improve overall long-term outcomes of diabetes.
Collapse
|
26
|
Desentis-Desentis MF. Regenerative approaches to preserve pancreatic β-cell mass and function in diabetes pathogenesis. Endocrine 2022; 75:338-350. [PMID: 34825343 DOI: 10.1007/s12020-021-02941-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/07/2021] [Indexed: 01/21/2023]
Abstract
In both type 1 diabetes (T1D) and type 2 diabetes (T2D), there is a substantial β-cell mass loss. Residual β-cell mass is susceptible to cellular damage because of specific pancreatic β-cell characteristics. β cells have a low proliferation rate, being in human adults almost zero and a low antioxidant system that makes β cells susceptible to oxidative stress and increases their vulnerability to cell destruction. Different strategies have been addressed to preserve pancreatic β-cell residual mass and function in patients with diabetes. However, the effect of many compounds proposed in rodent models to trigger β-cell replication has different results in human β cells. In this review, scientific evidence of β-cell of two major regenerative approaches has been gathered. Regeneration proceedings for pancreatic β cells are promising and could improve β-cell proliferation capacity and contribute to the conservation of mature β-cell phenotypic characteristics. This evidence supports the notion that regenerative medicine could be a helpful strategy to yield amelioration of T1D and T2D pathogenesis.
Collapse
Affiliation(s)
- Maria Fernanda Desentis-Desentis
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Jalisco, Mexico.
| |
Collapse
|
27
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
28
|
Title AC, Karsai M, Mir-Coll J, Grining ÖY, Rufer C, Sonntag S, Forschler F, Jawurek S, Klein T, Yesildag B. Evaluation of the Effects of Harmine on β-cell Function and Proliferation in Standardized Human Islets Using 3D High-Content Confocal Imaging and Automated Analysis. Front Endocrinol (Lausanne) 2022; 13:854094. [PMID: 35860702 PMCID: PMC9289187 DOI: 10.3389/fendo.2022.854094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Restoration of β-cell mass through the induction of proliferation represents an attractive therapeutic approach for the treatment of diabetes. However, intact and dispersed primary islets suffer from rapidly deteriorating viability and function ex vivo, posing a significant challenge for their experimental use in proliferation studies. Here, we describe a novel method for the assessment of compound effects on β-cell proliferation and count using reaggregated primary human islets, or islet microtissues (MTs), which display homogeneous size and tissue architecture as well as robust and stable functionality and viability for 4 weeks in culture. We utilized this platform to evaluate the dose-dependent short- and long-term effects of harmine on β-cell proliferation and function. Following compound treatment and EdU incorporation, islet MTs were stained and confocal-imaged for DAPI (nuclear marker), NKX6.1 (β-cell marker), and EdU (proliferation marker), allowing automated 3D-analysis of number of total cells, β-cells, and proliferating β- and non-β-cells per islet MT. In parallel, insulin secretion, intracellular insulin and ATP contents, and Caspase 3/7 activity were analyzed to obtain a comprehensive overview of islet MT function and viability. We observed that 4-day harmine treatment increased β- and non-β-cell proliferation, NKX6.1 expression, and basal and stimulated insulin secretion in a dose-dependent manner, while fold-stimulation of secretion peaked at intermediate harmine doses. Interestingly, 15-day harmine treatment led to a general reduction in harmine's proliferative effects as well as altered dose-dependent trends. The described methodology provides a unique tool for in vitro high-throughput evaluation of short- and long-term changes in human β-cell proliferation, count and fraction along with a variety of functional parameters, in a representative 3D human islet model.
Collapse
Affiliation(s)
| | - Maria Karsai
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | - Joan Mir-Coll
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | | | - Chantal Rufer
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | | | | | - Sayro Jawurek
- Diabetes Research, InSphero AG, Schlieren, Switzerland
| | - Thomas Klein
- Department of Cardio-Metabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Burcak Yesildag
- Diabetes Research, InSphero AG, Schlieren, Switzerland
- *Correspondence: Burcak Yesildag,
| |
Collapse
|
29
|
Pahlavanneshan S, Behmanesh M, Tahamtani Y, Hajizadeh-Saffar E, Basiri M, Baharvand H. Induction of ß Cell Replication by Small Molecule-Mediated Menin Inhibition and Combined PKC Activation and TGF‑ß Inhibition as Revealed by A Refined Primary Culture Screening. CELL JOURNAL 2021; 23:633-639. [PMID: 34939756 PMCID: PMC8665985 DOI: 10.22074/cellj.2021.7437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/04/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Pancreatic β cells are recognized as central players in the pathogenesis of types 1 and 2 diabetes. Efficient and robust primary culture methods are required to interrogate β cell biology and screen potential anti-diabetic therapeutics. The aim of this study was to refine monolayer culture of beta cells and to investigate potential inducers of beta cell proliferation. MATERIALS AND METHODS In this experimental study, we compared different culture methods to optimize conditions required for a monolayer culture of rat pancreatic islet cells in order to facilitate image analysis-based assays. We also used the refined culture method to screen a group of rationally selected candidate small molecules and their combinations to determine their potential proliferative effects on the β cells. RESULTS Ham's F10 medium supplemented with 2% foetal bovine serum (FBS) in the absence of any surface coating provided a superior monolayer β cell culture, while other conditions induced fibroblast-like cell growth or multilayer cell aggregation over two weeks. Evaluation of candidate small molecules showed that a menin inhibitor MI-2 and a combination of transforming growth factor-β (TGF-β) inhibitor SB481542 and protein kinase C (PKC) activator indolactam V (IndV) significantly induced replication of pancreatic β cells. CONCLUSION Overall, our optimized culture condition provided a convenient approach to study the cultured pancreatic islet cells and enabled us to detect the proliferative effect of menin inhibition and combined TGF-β inhibition and PKC activation, which could be considered as potential strategies for inducing β cell proliferation and regeneration.
Collapse
Affiliation(s)
- Saghar Pahlavanneshan
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,P.O.Box: 14115-154Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIranP.O.Box: 16635-148Department of Stem Cells and Developmental BiologyCell Science Research CentreRoyan Institute for Stem Cell Biology
and TechnologyACECRTehranIran
Emails: ,
| | - Yaser Tahamtani
- . Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran
| | - Mohsen Basiri
- . Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- . Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and
Technology, ACECR, Tehran, Iran,Department of Developmental Biology, University of Science and Culture, Tehran, Iran,P.O.Box: 14115-154Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIranP.O.Box: 16635-148Department of Stem Cells and Developmental BiologyCell Science Research CentreRoyan Institute for Stem Cell Biology
and TechnologyACECRTehranIran
Emails: ,
| |
Collapse
|
30
|
Zhu C, Xu R, Li Y, Andrade M, Yin DP. Gastric bypass prevents diabetes in genetically modified mice and chemically induced diabetic mice. PLoS One 2021; 16:e0258942. [PMID: 34673835 PMCID: PMC8530305 DOI: 10.1371/journal.pone.0258942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/09/2021] [Indexed: 01/09/2023] Open
Abstract
Obese subjects have increase probabilities of developing type 2 diabetes (T2D). In this study, we sought to determine whether gastric bypass prevents the progression of prediabetes to overt diabetes in genetically modified mice and chemically induced diabetic mice. Roux-en-Y gastric bypass (RYGB) was performed in C57BL/KsJ-db/db null (BKS-db/db,) mice, high-fat diet (HFD)-fed NONcNZO10/LtJ (NZO) mice, C57BL/6 db/db null (B6-db/db) mice and streptozotocin (STZ)-induced diabetic mice. Food consumption, body weight, fat mass, fast blood glucose level, circulating insulin and adiponectin and glucose tolerance test were analyzed. The liver and pancreatic tissues were subjected to H&E and immunohistochemistry staining and islet cells to flow cytometry for apoptotic analysis. RYGB resulted in sustained normoglycemia and improved glucose tolerance in young prediabetic BKS-db/db mice (at the age of 6 weeks with hyperglycemia and normal insulinemia) and HFD-fed NZO and B6-db/db mice. Remarkably, RYGB improved liver steatosis, preserved the pancreatic β-cells and reduced β-cell apoptosis with increases in circulating insulin and adiponectin in young prediabetic BKS-db/db mice. However, RYGB neither reversed hyperglycemia in adult diabetic BKS-db/db mice (12 weeks old) nor attenuated hyperglycemia in STZ-induced diabetic mice. These results demonstrate that gastric bypass improves hyperglycemia in genetically modified prediabetic mice; however, it should be performed prior to β-cells exhaustion.
Collapse
Affiliation(s)
- Chenyu Zhu
- The First College of Clinical Medical Science, CTGU, and Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Rui Xu
- The First College of Clinical Medical Science, CTGU, and Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Yuxin Li
- The Department of Surgery at University of Chicago, Chicago, Illinois United States of America
| | - Michael Andrade
- The Department of Surgery at University of Chicago, Chicago, Illinois United States of America
| | - Deng Ping Yin
- The Department of Surgery at University of Chicago, Chicago, Illinois United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Adipose Tissue Macrophages Modulate Obesity-Associated β Cell Adaptations through Secreted miRNA-Containing Extracellular Vesicles. Cells 2021; 10:cells10092451. [PMID: 34572101 PMCID: PMC8472266 DOI: 10.3390/cells10092451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity induces an adaptive expansion of β cell mass and insulin secretion abnormality. Expansion of adipose tissue macrophages (ATMs) is a hallmark of obesity. Here, we assessed a novel role of ATMs in mediating obesity-induced β cell adaptation through the release of miRNA-containing extracellular vesicles (EVs). In both in vivo and in vitro experiments, we show that ATM EVs derived from obese mice notably suppress insulin secretion and enhance β cell proliferation. We also observed similar phenotypes from human islets after obese ATM EV treatment. Importantly, depletion of miRNAs blunts the effects of obese ATM EVs, as evidenced by minimal effects of obese DicerKO ATM EVs on β cell responses. miR-155 is a highly enriched miRNA within obese ATM EVs and miR-155 overexpressed in β cells impairs insulin secretion and enhances β cell proliferation. In contrast, knockout of miR-155 attenuates the regulation of obese ATM EVs on β cell responses. We further demonstrate that the miR-155-Mafb axis plays a critical role in controlling β cell responses. These studies show a novel mechanism by which ATM-derived EVs act as endocrine vehicles delivering miRNAs and subsequently mediating obesity-associated β cell adaptation and dysfunction.
Collapse
|
33
|
Aitken TJ, Crabtree JE, Jensen DM, Hess KH, Leininger BR, Tessem JS. Decreased proliferation of aged rat beta cells corresponds with enhanced expression of the cell cycle inhibitor p27 KIP1. Biol Cell 2021; 113:507-521. [PMID: 34523154 DOI: 10.1111/boc.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over 400 million people are diabetic. Type 1 and type 2 diabetes are characterized by decreased functional β-cell mass and, consequently, decreased glucose-stimulated insulin secretion. A potential intervention is transplantation of β-cell containing islets from cadaveric donors. A major impediment to greater application of this treatment is the scarcity of transplant-ready β-cells. Therefore, inducing β-cell proliferation ex vivo could be used to expand functional β-cell mass prior to transplantation. Various molecular pathways are sufficient to induce proliferation of young β-cells; however, aged β-cells are refractory to these proliferative signals. Given that the majority of cadaveric donors fit an aged demographic, defining the mechanisms that impede aged β-cell proliferation is imperative. RESULTS We demonstrate that aged rat (5-month-old) β-cells are refractory to mitogenic stimuli that otherwise induce young rat (5-week-old) β-cell proliferation. We hypothesized that this change in proliferative capacity could be due to differences in cyclin-dependent kinase inhibitor expression. We measured levels of p16INK4a , p15INK4b , p18INK4c , p19INK4d , p21CIP1 , p27KIP1 and p57KIP2 by immunofluorescence analysis. Our data demonstrates an age-dependent increase of p27KIP1 in rat β-cells by immunofluorescence and was validated by increased p27KIP1 protein levels by western blot analysis. Interestingly, HDAC1, which modulates the p27KIP1 promoter acetylation state, is downregulated in aged rat islets. These data demonstrate increased p27KIP1 protein levels at 5 months of age, which may be due to decreased HDAC1 mediated repression of p27KIP1 expression. SIGNIFICANCE As the majority of transplant-ready β-cells come from aged donors, it is imperative that we understand why aged β-cells are refractory to mitogenic stimuli. Our findings demonstrate that increased p27KIP1 expression occurs early in β-cell aging, which corresponds with impaired β-cell proliferation. Furthermore, the correlation between HDAC1 and p27 levels suggests that pathways that activate HDAC1 in aged β-cells could be leveraged to decrease p27KIP1 levels and enhance β-cell proliferation.
Collapse
Affiliation(s)
- Talon J Aitken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Des Moines University, Des Moines, IA, 50312, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Daelin M Jensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Biomedical Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Kavan H Hess
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Brennan R Leininger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Dental Education Program, UCLA School of Dentistry, Los Angeles, CA, 90024, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
34
|
Iorio C, Rourke JL, Wells L, Sakamaki JI, Moon E, Hu Q, Kin T, Screaton RA. Silencing the G-protein coupled receptor 3-salt inducible kinase 2 pathway promotes human β cell proliferation. Commun Biol 2021; 4:907. [PMID: 34302056 PMCID: PMC8302759 DOI: 10.1038/s42003-021-02433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Loss of pancreatic β cells is the hallmark of type 1 diabetes, for which provision of insulin is the standard of care. While regenerative and stem cell therapies hold the promise of generating single-source or host-matched tissue to obviate immune-mediated complications, these will still require surgical intervention and immunosuppression. Here we report the development of a high-throughput RNAi screening approach to identify upstream pathways that regulate adult human β cell quiescence and demonstrate in a screen of the GPCRome that silencing G-protein coupled receptor 3 (GPR3) leads to human pancreatic β cell proliferation. Loss of GPR3 leads to activation of Salt Inducible Kinase 2 (SIK2), which is necessary and sufficient to drive cell cycle entry, increase β cell mass, and enhance insulin secretion in mice. Taken together, our data show that targeting the GPR3-SIK2 pathway is a potential strategy to stimulate the regeneration of β cells.
Collapse
Affiliation(s)
| | - Jillian L Rourke
- Sunnybrook Research Institute, Toronto, Canada
- Mount Allison University, Sackville, NB, Canada
| | - Lisa Wells
- Sunnybrook Research Institute, Toronto, Canada
| | - Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Emily Moon
- Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Queenie Hu
- Sunnybrook Research Institute, Toronto, Canada
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, Canada
| | - Robert A Screaton
- Sunnybrook Research Institute, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
A new shortened protocol to obtain islet-like cells from hESC-derived ductal cells. In Vitro Cell Dev Biol Anim 2021; 57:587-597. [PMID: 34212340 DOI: 10.1007/s11626-021-00580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Conventional methods for obtaining pancreatic β cells are based on simulating the embryonic development phase of endocrine cells via hierarchical differentiation of pluripotent stem cells (PSCs). Accordingly, we attempted to modify the protocols for obtaining insulin-secreting cells (ISCs) by sequential differentiation of a human embryonic stem cell (hESC), using the HS181 cell line. Furthermore, we hypothesize that actual pancreatic endocrine cells may arise from trans-differentiation of mature ductal cells after the embryonic developmental stage and throughout the rest of life. According to the hypothesis, ductal cells are trans-differentiated into endocrine and exocrine cells, undergoing a partial epithelial to mesenchymal transition (EMT). To address this issue, we developed two new protocols based on hESC differentiation to obtain ductal cells and then induce EMT in cells to obtain hormone-secreting islet-like cells (HSCs). The ductal (pre-EMT exocrine) cells were then induced to undergo partial EMT by treating with Wnt3a and activin A, in hypoxia. The cell derived from the latter method significantly expressed the main endocrine cell-specific markers and also β cells, in particular. These experiments not only support our hypothetical model but also offer a promising approach to develop new methods to compensate β cell depletion in patients with type 1 diabetes mellitus (T1DM). Although this protocol of generating islet-like cells from ductal cells has a potential to treat T1DM, this strategy may be exploited to optimize the function of these cells in an animal model and future clinical applications.
Collapse
|
36
|
Salinno C, Büttner M, Cota P, Tritschler S, Tarquis-Medina M, Bastidas-Ponce A, Scheibner K, Burtscher I, Böttcher A, Theis FJ, Bakhti M, Lickert H. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab 2021; 49:101188. [PMID: 33582383 PMCID: PMC7932895 DOI: 10.1016/j.molmet.2021.101188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Islets of Langerhans contain heterogeneous populations of insulin-producing β-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study β-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature β-cells. METHODS We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-βH1 β-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. RESULTS We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in β-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of β-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of β-cells from different diabetic mouse models and in vitro β-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated β-cells. Similarly, CD81 was upregulated and marked stressed human β-cells in vitro. CONCLUSIONS We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated β-cells in the adult mouse and human islets. This novel surface marker will allow us to better study β-cell heterogeneity in healthy subjects and diabetes progression.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany.
| |
Collapse
|
37
|
Satin LS, Soleimanpour SA, Walker EM. New Aspects of Diabetes Research and Therapeutic Development. Pharmacol Rev 2021; 73:1001-1015. [PMID: 34193595 DOI: 10.1124/pharmrev.120.000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both type 1 and type 2 diabetes mellitus are advancing at exponential rates, placing significant burdens on health care networks worldwide. Although traditional pharmacologic therapies such as insulin and oral antidiabetic stalwarts like metformin and the sulfonylureas continue to be used, newer drugs are now on the market targeting novel blood glucose-lowering pathways. Furthermore, exciting new developments in the understanding of beta cell and islet biology are driving the potential for treatments targeting incretin action, islet transplantation with new methods for immunologic protection, and the generation of functional beta cells from stem cells. Here we discuss the mechanistic details underlying past, present, and future diabetes therapies and evaluate their potential to treat and possibly reverse type 1 and 2 diabetes in humans. SIGNIFICANCE STATEMENT: Diabetes mellitus has reached epidemic proportions in the developed and developing world alike. As the last several years have seen many new developments in the field, a new and up to date review of these advances and their careful evaluation will help both clinical and research diabetologists to better understand where the field is currently heading.
Collapse
Affiliation(s)
- Leslie S Satin
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.) ; ;
| | - Scott A Soleimanpour
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.)
| | - Emily M Walker
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.) ; ;
| |
Collapse
|
38
|
Maachi H, Ghislain J, Tremblay C, Poitout V. Pronounced proliferation of non-beta cells in response to beta-cell mitogens in isolated human islets of Langerhans. Sci Rep 2021; 11:11283. [PMID: 34050242 PMCID: PMC8163757 DOI: 10.1038/s41598-021-90643-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
The potential to treat diabetes by increasing beta-cell mass is driving a major effort to identify beta-cell mitogens. Demonstration of mitogen activity in human beta cells is frequently performed in ex vivo assays. However, reported disparities in the efficacy of beta-cell mitogens led us to investigate the sources of this variability. We studied 35 male (23) and female (12) human islet batches covering a range of donor ages and BMI. Islets were kept intact or dispersed into single cells and cultured in the presence of harmine, glucose, or heparin-binding epidermal growth factor-like growth factor (HB-EGF), and subsequently analyzed by immunohistochemistry or flow cytometry. Proliferating cells were identified by double labeling with EdU and Ki67 and glucagon, c-peptide or Nkx6.1, and cytokeratin-19 to respectively label alpha, beta, and ductal cells. Harmine and HB-EGF stimulated human beta-cell proliferation, but the effect of glucose was dependent on the assay and the donor. Harmine potently stimulated alpha-cell proliferation and both harmine and HB-EGF increased proliferation of insulin- and glucagon-negative cells, including cytokeratin 19-positive cells. Given the abundance of non-beta cells in human islet preparations, our results suggest that assessment of beta-cell mitogens requires complementary approaches and rigorous identification of cell identity using multiple markers.
Collapse
Affiliation(s)
- Hasna Maachi
- Montreal Diabetes Research Center, CRCHUM, 900 rue St Denis, Montreal, QC, H2X 0A9, Canada.,Department of Pharmacology and Physiology, University of Montreal, Montreal, QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, 900 rue St Denis, Montreal, QC, H2X 0A9, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, CRCHUM, 900 rue St Denis, Montreal, QC, H2X 0A9, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, 900 rue St Denis, Montreal, QC, H2X 0A9, Canada. .,Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
39
|
Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication 2021; 13. [PMID: 34075893 DOI: 10.1088/1758-5090/ac00c3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
In vitroresearch for the study of type 2 diabetes (T2D) is frequently limited by the availability of a functional model for islets of Langerhans. To overcome the limitations of obtaining pancreatic islets from different sources, such as animal models or human donors, immortalized cell lines as the insulin-producing INS1Eβ-cells have appeared as a valid alternative to model insulin-related diseases. However, immortalized cell lines are mainly used in flat surfaces or monolayer distributions, not resembling the spheroid-like architecture of the pancreatic islets. To generate islet-like structures, the use of scaffolds appeared as a valid tool to promote cell aggregations. Traditionally-used hydrogel encapsulation methods do not accomplish all the requisites for pancreatic tissue engineering, as its poor nutrient and oxygen diffusion induces cell death. Here, we use cryogelation technology to develop a more resemblance scaffold with the mechanical and physical properties needed to engineer pancreatic tissue. This study shows that carboxymethyl cellulose (CMC) cryogels prompted cells to generateβ-cell clusters in comparison to gelatin-based scaffolds, that did not induce this cell organization. Moreover, the high porosity achieved with CMC cryogels allowed us to create specific range pseudoislets. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 d and a better response to glucose over conventional monolayer cultures. Overall, our results demonstrate that CMC-scaffolds can be used to control the organization and function of insulin-producingβ-cells, representing a suitable technique to generateβ-cell clusters to study pancreatic islet function.
Collapse
Affiliation(s)
- Ferran Velasco-Mallorquí
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, Barcelona 08028, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Szlachcic WJ, Ziojla N, Kizewska DK, Kempa M, Borowiak M. Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:629212. [PMID: 33996792 PMCID: PMC8116659 DOI: 10.3389/fcell.2021.629212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by β-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to β-cell loss, or a pancreatic dysfunction. The restoration of a functional β-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human β-cells de novo, in vitro, or in vivo. The efficient generation of functional β-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.
Collapse
Affiliation(s)
- Wojciech J. Szlachcic
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Ziojla
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Dorota K. Kizewska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcelina Kempa
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
41
|
Saunders DC, Aamodt KI, Richardson TM, Hopkirk AJ, Aramandla R, Poffenberger G, Jenkins R, Flaherty DK, Prasad N, Levy SE, Powers AC, Brissova M. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med 2021; 6:22. [PMID: 33824346 PMCID: PMC8024255 DOI: 10.1038/s41536-021-00129-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Endogenous β cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that β cell recovery following hypervascularization-induced β cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during β cell loss, and recruited MΦs are essential for β cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during β cell recovery and leads to increased β cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of β cells, ECs, and MΦs reveals that β cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in β cells. Collectively, these findings suggest a new β cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate β cell self-renewal.
Collapse
Affiliation(s)
- Diane C Saunders
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristie I Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Tiffany M Richardson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alexander J Hopkirk
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Radhika Aramandla
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Greg Poffenberger
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Regina Jenkins
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David K Flaherty
- Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nripesh Prasad
- Hudson Alpha Institute of Biotechnology, Huntsville, AL, USA
| | - Shawn E Levy
- Hudson Alpha Institute of Biotechnology, Huntsville, AL, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
- VA Tennessee Valley Healthcare, Nashville, TN, USA.
| | - Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
42
|
Docherty FM, Sussel L. Islet Regeneration: Endogenous and Exogenous Approaches. Int J Mol Sci 2021; 22:ijms22073306. [PMID: 33804882 PMCID: PMC8037662 DOI: 10.3390/ijms22073306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.
Collapse
|
43
|
Sui L, Xin Y, Du Q, Georgieva D, Diedenhofen G, Haataja L, Su Q, Zuccaro MV, Kim J, Fu J, Xing Y, He Y, Baum D, Goland RS, Wang Y, Oberholzer J, Barbetti F, Arvan P, Kleiner S, Egli D. Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size. JCI Insight 2021; 6:141553. [PMID: 33529174 PMCID: PMC8022502 DOI: 10.1172/jci.insight.141553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Limitations in cell proliferation are important for normal function of differentiated tissues and essential for the safety of cell replacement products made from pluripotent stem cells, which have unlimited proliferative potential. To evaluate whether these limitations can be established pharmacologically, we exposed pancreatic progenitors differentiating from human pluripotent stem cells to small molecules that interfere with cell cycle progression either by inducing G1 arrest or by impairing S phase entry or S phase completion and determined growth potential, differentiation, and function of insulin-producing endocrine cells. We found that the combination of G1 arrest with a compromised ability to complete DNA replication promoted the differentiation of pancreatic progenitor cells toward insulin-producing cells and could substitute for endocrine differentiation factors. Reduced replication fork speed during differentiation improved the stability of insulin expression, and the resulting cells protected mice from diabetes without the formation of cystic growths. The proliferative potential of grafts was proportional to the reduction of replication fork speed during pancreatic differentiation. Therefore, a compromised ability to enter and complete S phase is a functionally important property of pancreatic endocrine differentiation, can be achieved by reducing replication fork speed, and is an important determinant of cell-intrinsic limitations of growth.
Collapse
Affiliation(s)
- Lina Sui
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Qian Du
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Daniela Georgieva
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Giacomo Diedenhofen
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Bambino Gesù Children's Hospital, Rome, Italy
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Michael V Zuccaro
- PhD program in the Department of Physiology and Cellular Biophysics, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Jiayu Fu
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Danielle Baum
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Robin S Goland
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Fabrizio Barbetti
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Peter Arvan
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Dieter Egli
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA.,Department of Pediatrics, Department of Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia Irving Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
44
|
Gesmundo I, Pardini B, Gargantini E, Gamba G, Birolo G, Fanciulli A, Banfi D, Congiusta N, Favaro E, Deregibus MC, Togliatto G, Zocaro G, Brizzi MF, Luque RM, Castaño JP, Bocchiotti MA, Arolfo S, Bruno S, Nano R, Morino M, Piemonti L, Ong H, Matullo G, Falcón-Pérez JM, Ghigo E, Camussi G, Granata R. Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic β cells. JCI Insight 2021; 6:141962. [PMID: 33539327 PMCID: PMC8021102 DOI: 10.1172/jci.insight.141962] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are implicated in the crosstalk between adipocytes and other metabolic organs, and an altered biological cargo has been observed in EVs from human obese adipose tissue (AT). Yet, the role of adipocyte-derived EVs in pancreatic β cells remains to be determined. Here, we explored the effects of EVs released from adipocytes isolated from both rodents and humans and human AT explants on survival and function of pancreatic β cells and human pancreatic islets. EVs from healthy 3T3-L1 adipocytes increased survival and proliferation and promoted insulin secretion in INS-1E β cells and human pancreatic islets, both those untreated or exposed to cytokines or glucolipotoxicity, whereas EVs from inflamed adipocytes caused β cell death and dysfunction. Human lean adipocyte-derived EVs produced similar beneficial effects, whereas EVs from obese AT explants were harmful for human EndoC-βH3 β cells. We observed differential expression of miRNAs in EVs from healthy and inflamed adipocytes, as well as alteration in signaling pathways and expression of β cell genes, adipokines, and cytokines in recipient β cells. These in vitro results suggest that, depending on the physiopathological state of AT, adipocyte-derived EVs may influence β cell fate and function.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, Turin, Italy.,Candiolo Cancer Institute, FPO Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| | - Eleonora Gargantini
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giacomo Gamba
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Alessandro Fanciulli
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Noemi Congiusta
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrica Favaro
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Gaia Zocaro
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba, and Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba, and Reina Sofia University Hospital, Córdoba, Spain
| | | | - Simone Arolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Mario Morino
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Huy Ong
- Faculty of Pharmacy, University of Montréal, Montréal, Québec, Canada
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Juan M Falcón-Pérez
- Exosomes Laboratory and.,Metabolomics Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, and.,Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
45
|
Gao R, Fu Q, Jiang HM, Shen M, Zhao RL, Qian Y, He YQ, Xu KF, Xu XY, Chen H, Zhang Q, Yang T. Temporal metabolic and transcriptomic characteristics crossing islets and liver reveal dynamic pathophysiology in diet-induced diabetes. iScience 2021; 24:102265. [PMID: 33817571 PMCID: PMC8008187 DOI: 10.1016/j.isci.2021.102265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the molecular mechanisms underlying islet dysfunction and insulin resistance in diet-induced diabetes, we conducted temporal RNA sequencing of tissues responsible for insulin secretion (islets) and action (liver) every 4 weeks in mice on high-fat (HFD) or chow diet for 24 weeks, linking to longitudinal profile of metabolic characteristics. The diverse responses of α, β, and δ cells to glucose and palmitate indicated HFD-induced dynamic deterioration of islet function from dysregulation to failure. Insulin resistance developed with variable time course in different tissues. Weighted gene co-expression network analysis and Ingenuity Pathway Analysis implicated islets and liver jointly programmed β-cell compensatory adaption via cell proliferation at early phase and irreversible islet dysfunction by inappropriate immune response at later stage, and identified interconnected molecules including growth differentiation factor 15. Frequencies of T cell subpopulation showed an early decrement in Tregs followed by increases in Th1 and Th17 cells during progression to diabetes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX37LE, UK
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - He-Min Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui-Ling Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Qian
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun-Qiang He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kuan-Feng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin-Yu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX37LE, UK
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
46
|
Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Front Endocrinol (Lausanne) 2021; 12:722250. [PMID: 34421829 PMCID: PMC8378310 DOI: 10.3389/fendo.2021.722250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| |
Collapse
|
47
|
Tenenbaum M, Plaisance V, Boutry R, Pawlowski V, Jacovetti C, Sanchez-Parra C, Ezanno H, Bourry J, Beeler N, Pasquetti G, Gmyr V, Dalle S, Kerr-Conte J, Pattou F, Hirai SI, Regazzi R, Bonnefond A, Froguel P, Abderrahmani A. The Map3k12 (Dlk)/JNK3 signaling pathway is required for pancreatic beta-cell proliferation during postnatal development. Cell Mol Life Sci 2021; 78:287-298. [PMID: 32189007 PMCID: PMC11072213 DOI: 10.1007/s00018-020-03499-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Unveiling the key pathways underlying postnatal beta-cell proliferation can be instrumental to decipher the mechanisms of beta-cell mass plasticity to increased physiological demand of insulin during weight gain and pregnancy. Using transcriptome and global Serine Threonine Kinase activity (STK) analyses of islets from newborn (10 days old) and adult rats, we found that highly proliferative neonatal rat islet cells display a substantially elevated activity of the mitogen activated protein 3 kinase 12, also called dual leucine zipper-bearing kinase (Dlk). As a key upstream component of the c-Jun amino terminal kinase (Jnk) pathway, Dlk overexpression was associated with increased Jnk3 activity and was mainly localized in the beta-cell cytoplasm. We provide the evidence that Dlk associates with and activates Jnk3, and that this cascade stimulates the expression of Ccnd1 and Ccnd2, two essential cyclins controlling postnatal beta-cell replication. Silencing of Dlk or of Jnk3 in neonatal islet cells dramatically hampered primary beta-cell replication and the expression of the two cyclins. Moreover, the expression of Dlk, Jnk3, Ccnd1 and Ccnd2 was induced in high replicative islet beta cells from ob/ob mice during weight gain, and from pregnant female rats. In human islets from non-diabetic obese individuals, DLK expression was also cytoplasmic and the rise of the mRNA level was associated with an increase of JNK3, CCND1 and CCND2 mRNA levels, when compared to islets from lean and obese patients with diabetes. In conclusion, we find that activation of Jnk3 signalling by Dlk could be a key mechanism for adapting islet beta-cell mass during postnatal development and weight gain.
Collapse
Affiliation(s)
- Mathie Tenenbaum
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France.
| | - Valérie Plaisance
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, 59000, Lille, France
| | - Raphael Boutry
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, 59000, Lille, France
| | - Cécile Jacovetti
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Clara Sanchez-Parra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Hélène Ezanno
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
| | - Julien Bourry
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
| | - Nicole Beeler
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
| | - Gianni Pasquetti
- Univ. Lille, Inserm, CHU Lille, U1190-EGID, 59000, Lille, France
| | - Valery Gmyr
- Univ. Lille, Inserm, CHU Lille, U1190-EGID, 59000, Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Montpellier University, Montpellier, France
| | - Julie Kerr-Conte
- Univ. Lille, Inserm, CHU Lille, U1190-EGID, 59000, Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190-EGID, 59000, Lille, France
| | - Syu-Ichi Hirai
- Départment of Biology, Wakayama University, Wakayama, Japan
| | - Romano Regazzi
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Amélie Bonnefond
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
- Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London, UK
| | - Philippe Froguel
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France
- Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London, UK
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8199-EGID, 59000, Lille, France.
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, 59000, Lille, France.
- Department of Medicine, Section of Genomics of Common Disease, Imperial College London, London, UK.
| |
Collapse
|
48
|
Jia YF, Jeeva S, Xu J, Heppelmann CJ, Jang JS, Slama MQ, Tapadar S, Oyelere AK, Kang SM, Matveyenko AV, Peterson QP, Shin CH. TBK1 regulates regeneration of pancreatic β-cells. Sci Rep 2020; 10:19374. [PMID: 33168920 PMCID: PMC7653919 DOI: 10.1038/s41598-020-76600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Small-molecule inhibitors of non-canonical IκB kinases TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) have shown to stimulate β-cell regeneration in multiple species. Here we demonstrate that TBK1 is predominantly expressed in β-cells in mammalian islets. Proteomic and transcriptome analyses revealed that genetic silencing of TBK1 increased expression of proteins and genes essential for cell proliferation in INS-1 832/13 rat β-cells. Conversely, TBK1 overexpression decreased sensitivity of β-cells to the elevation of cyclic AMP (cAMP) levels and reduced proliferation of β-cells in a manner dependent on the activity of cAMP-hydrolyzing phosphodiesterase 3 (PDE3). While the mitogenic effect of (E)3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA) is derived from inhibition of TBK1, PIAA augmented glucose-stimulated insulin secretion (GSIS) and expression of β-cell differentiation and proliferation markers in human embryonic stem cell (hESC)-derived β-cells and human islets. TBK1 expression was increased in β-cells upon diabetogenic insults, including in human type 2 diabetic islets. PIAA enhanced expression of cell cycle control molecules and β-cell differentiation markers upon diabetogenic challenges, and accelerated restoration of functional β-cells in streptozotocin (STZ)-induced diabetic mice. Altogether, these data suggest the critical function of TBK1 as a β-cell autonomous replication barrier and present PIAA as a valid therapeutic strategy augmenting functional β-cells.
Collapse
Affiliation(s)
- Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subbiah Jeeva
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Xu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Jin Sung Jang
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Q Slama
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chong Hyun Shin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. .,Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
49
|
Mortlock RD, Georgia SK, Finley SD. Dynamic Regulation of JAK-STAT Signaling Through the Prolactin Receptor Predicted by Computational Modeling. Cell Mol Bioeng 2020; 14:15-30. [PMID: 33633812 PMCID: PMC7878662 DOI: 10.1007/s12195-020-00647-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction The expansion of insulin-producing beta cells during pregnancy is critical to maintain glucose homeostasis in the face of increasing insulin resistance. Prolactin receptor (PRLR) signaling is one of the primary mediators of beta cell expansion during pregnancy, and loss of PRLR signaling results in reduced beta cell mass and gestational diabetes. Harnessing the proliferative potential of prolactin signaling to expand beta cell mass outside of the context of pregnancy requires quantitative understanding of the signaling at the molecular level. Methods A mechanistic computational model was constructed to describe prolactin-mediated JAK-STAT signaling in pancreatic beta cells. The effect of different regulatory modules was explored through ensemble modeling. A Bayesian approach for likelihood estimation was used to fit the model to experimental data from the literature. Results Including receptor upregulation, with either inhibition by SOCS proteins, receptor internalization, or both, allowed the model to match experimental results for INS-1 cells treated with prolactin. The model predicts that faster dimerization and nuclear import rates of STAT5B compared to STAT5A can explain the higher STAT5B nuclear translocation. The model was used to predict the dose response of STAT5B translocation in rat primary beta cells treated with prolactin and reveal possible strategies to modulate STAT5 signaling. Conclusions JAK-STAT signaling must be tightly controlled to obtain the biphasic response in STAT5 activation seen experimentally. Receptor up-regulation, combined with SOCS inhibition, receptor internalization, or both is required to match experimental data. Modulating reactions upstream in the signaling can enhance STAT5 activation to increase beta cell survival. Electronic supplementary material The online version of this article (10.1007/s12195-020-00647-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryland D Mortlock
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA USA
| | - Senta K Georgia
- Departments of Pediatrics and Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Stacey D Finley
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
50
|
Lytrivi M, Ghaddar K, Lopes M, Rosengren V, Piron A, Yi X, Johansson H, Lehtiö J, Igoillo-Esteve M, Cunha DA, Marselli L, Marchetti P, Ortsäter H, Eizirik DL, Cnop M. Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genomics 2020; 21:590. [PMID: 32847508 PMCID: PMC7448506 DOI: 10.1186/s12864-020-07003-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged exposure to elevated free fatty acids induces β-cell failure (lipotoxicity) and contributes to the pathogenesis of type 2 diabetes. In vitro exposure of β-cells to the saturated free fatty acid palmitate is a valuable model of lipotoxicity, reproducing features of β-cell failure observed in type 2 diabetes. In order to map the β-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate. RESULTS Crossing transcriptome and proteome of palmitate-treated β-cells revealed 85 upregulated and 122 downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways. Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and β-oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate but this induction did not contribute to β-cell demise. To unravel critical mediators of lipotoxicity upstream of the palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the metabolic and oxidative stress responses to palmitate. CONCLUSIONS This is the first study to combine transcriptomic and sensitive time course proteomic profiling of palmitate-exposed β-cells. Our results provide comprehensive insight into gene and protein expression changes, corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the β-cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Kassem Ghaddar
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Victoria Rosengren
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Piron
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Henrik Johansson
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, 171 21, Solna, Sweden
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Henrik Ortsäter
- Diabetes Research Unit, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium. .,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|