1
|
Dominici FP, Gironacci MM, Narvaez Pardo JA. Therapeutic opportunities in targeting the protective arm of the renin-angiotensin system to improve insulin sensitivity: a mechanistic review. Hypertens Res 2024:10.1038/s41440-024-01909-y. [PMID: 39363004 DOI: 10.1038/s41440-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
In recent years, the knowledge of the physiological and pathophysiological roles of the renin-angiotensin system (RAS) in glucose metabolism has advanced significantly. It is now well-established that blockade of the angiotensin AT1 receptor (AT1R) improves insulin sensitivity. Activation of the AT2 receptor (AT2R) and the MAS receptor are significant contributors to this beneficial effect. Elevated availability of angiotensin (Ang) II) for interaction with the AT2R and increased Ang-(1-7) formation during AT1R blockade mediate these effects. The ongoing development of selective AT2R agonists, such as compound 21 and the novel Ang III peptidomimetics, has significantly advanced the exploration of the role of AT2R in metabolism and its potential as a therapeutic target. These agents show promise, particularly when RAS inhibition is contraindicated. Additionally, other RAS peptides, including Ang IV, des-Asp-Ang I, Ang-(1-9), and alamandine, hold therapeutic capability for addressing metabolic disturbances linked to type 2 diabetes. The possibility of AT2R heteromerization with either AT1R or MAS receptor offers an exciting area for future research, particularly concerning therapeutic strategies to improve glycemic control. This review focuses on therapeutic opportunities to improve insulin sensitivity, taking advantage of the protective arm of the RAS.
Collapse
Affiliation(s)
- Fernando P Dominici
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mariela M Gironacci
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Narvaez Pardo
- Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Proença AB, Medeiros GR, Reis GDS, Losito LDF, Ferraz LM, Bargut TCL, Soares NP, Alexandre-Santos B, Campagnole-Santos MJ, Magliano DC, Nobrega ACLD, Santos RAS, Frantz EDC. Adipose tissue plasticity mediated by the counterregulatory axis of the renin-angiotensin system: Role of Mas and MrgD receptors. J Cell Physiol 2024; 239:e31265. [PMID: 38577921 DOI: 10.1002/jcp.31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Gabriela Rodrigues Medeiros
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Guilherme Dos Santos Reis
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza da França Losito
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza Mazzali Ferraz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Nícia Pedreira Soares
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Alexandre-Santos
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D'Angelo Carlo Magliano
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Szczepanska-Sadowska E. Interplay of Angiotensin Peptides, Vasopressin, and Insulin in the Heart: Experimental and Clinical Evidence of Altered Interactions in Obesity and Diabetes Mellitus. Int J Mol Sci 2024; 25:1310. [PMID: 38279313 PMCID: PMC10816525 DOI: 10.3390/ijms25021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart. Int J Mol Sci 2023; 24:ijms24043490. [PMID: 36834901 PMCID: PMC9967643 DOI: 10.3390/ijms24043490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque-Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload.
Collapse
|
5
|
Ma C, Shi T, Song L, Liu J, Yuan M. Angiotensin(1-7) attenuates visceral adipose tissue expansion and lipogenesis by suppression of endoplasmic reticulum stress via Mas receptor. Nutr Metab (Lond) 2022; 19:82. [PMID: 36527093 PMCID: PMC9758942 DOI: 10.1186/s12986-022-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND White adipose tissue can be classified based on its location as subcutaneous and visceral fat, and the latter accumulation is reported to be more detrimental to metabolism. Endoplasmic reticulum (ER) stress has been demonstrated to regulate lipogenesis. The peptide angiotensin(1-7) [Ang(1-7)], which can be produced from angiotensin II (AngII) by angiotensin-converting enzyme 2 (ACE2), plays its role through Mas receptor, also participates in the regulation of lipid metabolism in adipose tissue, however, whether ER stress is involved in the mechanism remains unclear. Therefore, we aimed to explore the role of Ang(1-7) pathway in regulating visceral adipose tissue expansion and ER stress. METHODS ACE2 knockout (KO), Mas KO and C57BL/6 J mice were fed with high fat diet. Db/db mice were treated with either normal saline, Ang(1-7) or Ang(1-7) combined with Mas receptor inhibitor A779 using mini osmotic pumps. Fat mass was weighted, fat distribution was evaluated by MRI, and lipid profile and adipokines in epididymal adipose tissue were measured by ELISA kits, and histology of epididymal adipose tissue was also analyzed in multiple animal models. Additionally, differentiated 3T3-L1 cells were pre-loaded with palmitic acid to induce ER stress, then treated with drugs as those administrated to db/db mice. ER stress and lipogenesis related proteins in mice adipose and differentiated 3T3L-1 cells were analyzed by Western blot. RESULTS ACE2 or Mas KO mice exhibited increased visceral adipose tissue, adipocyte size and protein expression of lipogenesis and ER stress related markers in epididymal adipose tissue compared to wild-type mice. Db/db mice treated with Ang(1-7) displayed decreased visceral fat mass, adipocyte size and protein expression of lipogenesis and ER stress markers in epididymal adipose tissue compared to those treated with normal saline, while A779 partly attenuated these effects. Additionally, Ang(1-7) improved ER stress and lipogenesis markers in differentiated 3T3-L1 cells pre-loaded with palmitic acid. CONCLUSIONS Our findings indicated that Ang(1-7) attenuated visceral adipose tissue expansion and lipogenesis by suppression of ER stress via Mas receptor. The present study provides a potential perspective for Ang(1-7) for the therapeutics of obesity and related disorders.
Collapse
Affiliation(s)
- Chifa Ma
- grid.411610.30000 0004 1764 2878Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| | - Tingting Shi
- grid.414373.60000 0004 1758 1243Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 China
| | - Lini Song
- grid.414373.60000 0004 1758 1243Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 China
| | - Jingyi Liu
- grid.414373.60000 0004 1758 1243Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 China
| | - Mingxia Yuan
- grid.411610.30000 0004 1764 2878Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| |
Collapse
|
6
|
Chrysin Attenuates Fructose-Induced Nonalcoholic Fatty Liver in Rats via Antioxidant and Anti-Inflammatory Effects: The Role of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9479456. [PMID: 35720181 PMCID: PMC9200559 DOI: 10.1155/2022/9479456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Aim Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, and if untreated, it may propagate into end-stage liver disease. The classical arm of the renin-angiotensin system (RAS) has a fundamental role in triggering oxidative stress and inflammation, which play potential roles in the pathogenesis of NAFLD. However, the nonclassical alternative axis of RAS, angiotensin- (Ang-) converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor, opposes the actions of the classical arm, mitigates the metabolic dysfunction, and improves hepatic lipid metabolism rendering it a promising protective target against NAFLD. The current study is aimed at investigating the impact of chrysin, a well-known antioxidant flavonoid, on this defensive RAS axis in NAFLD. Methods Rats were randomly distributed and treated daily for eight weeks as follows: the normal control, chrysin control (50 mg/kg, p.o), NAFLD group (received 20% fructose in drinking water), and treated groups (25 and 50 mg/kg chrysin given orally and concomitantly with fructose). Diminazene aceturate (DIZE) (15 mg/kg, s.c.) was used as a reference ACE2 activator. Key Findings. High fructose induced significant weight gain, hepatocyte degeneration with fat accumulation, and inflammatory cell infiltration (as examined by H&E staining). This was accompanied by a substantial increase in liver enzymes, glucose, circulating and hepatic triglycerides, lipid peroxides, inflammatory cytokines, and Ang II (the main component of classical RAS). At the same time, protein levels of ACE2, Ang (1-7), and Mas receptors were markedly reduced. Chrysin (25 and 50 mg/kg) significantly ameliorated these abnormalities, with a prominent effect of the dose of 50 mg/kg over DIZE and the lower dose in improving ACE2, Ang (1-7), and Mas. Significance. Chrysin is a promising efficient protective remedy against NAFLD; mechanisms include the activation of ACE2/Ang (1-7)/Mas axis.
Collapse
|
7
|
Monteiro BL, Santos RAS, Mario EG, Araujo TS, Savergnini SSQ, Santiago AF, Muzzi RAL, Castro IC, Teixeira LG, Botion LM, Marinho BM, Santos SHS, Porto LCJ. Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides 2022; 151:170764. [PMID: 35151766 DOI: 10.1016/j.peptides.2022.170764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin-(1-7) is a biologically active product of the renin-angiotensin system cascade and exerts inhibitory effects on inflammation, vascular and cellular growth mechanisms signaling through the G protein-coupled Mas receptor. The major purpose of the present study was to investigate the use of glucose and fatty acids by cardiac tissue in Mas knockout mice models. Serum levels of glucose, lipids, and insulin were measured in Mas-deficient and wild-type FVB/N mice. To investigate the cardiac use of lipids, the lipoprotein lipase, the gene expression of peroxisome proliferator-activated receptor alpha; carnitine palmitoyltransferase I and acyl-CoA oxidase were evaluated. To investigate the cardiac use of glucose, the insulin signaling through Akt/GLUT4 pathway, glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) glycolytic intermediates, in addition to ATP, lactate and the glycogen content were measured. Despite normal body weight, cholesterol and insulin, Mas-Knockout mice presented hyperglycemia and hypertriglyceridemia, impaired insulin signaling, through reduced phosphorylation of AKT and decreased translocation of GLUT4 in response to insulin, with subsequent decrease of the cardiac G-6-P and F-6-P. Lactate production and glycogen content were not altered in Mas-KO hearts. Mas-KO presented reduced cardiac lipoprotein lipase activity and decreased translocation of CD36 in response to insulin. The expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase I genes were lower in Mas-KO animals compared to wild-type animals. The ATP content of Mas-KO hearts was smaller than in wild-type. The present results suggest that genetic deletion of Mas produced a devastating effect on cardiac use of glucose and lipids, leading to lower energy efficiency in the heart.
Collapse
Affiliation(s)
- Brenda L Monteiro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Robson A S Santos
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Erica G Mario
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Thiago S Araujo
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Silvia S Q Savergnini
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Andrezza F Santiago
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Ruthnea A L Muzzi
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| | - Isabela C Castro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Lilian G Teixeira
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Leida M Botion
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Barbhara M Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Sergio H S Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Laura C J Porto
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil; Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Pioglitazone Synthetic Analogue Ameliorates Streptozotocin-Induced Diabetes Mellitus through Modulation of ACE 2/Angiotensin 1–7 via PI3K/AKT/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15030341. [PMID: 35337139 PMCID: PMC8955304 DOI: 10.3390/ph15030341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
The renin angiotensin aldosterone system has a localized key regulatory action, especially in liver and body circulation. Furthermore, it accomplishes a significant role in the downregulation of the PI3K/AKT/mTOR signaling pathway that is involved in type II diabetes mellitus pathogenesis. The current study aimed to evaluate the effect of a synthetic pioglitazone analogue (benzenesulfonamide derivative) compared to the standard pioglitazone hypoglycemic drug on enhancing liver insulin sensitivity via ACE 2/Ang (1–7)/PI3K/AKT/mTOR in experimental STZ-induced diabetes. After the model was established, rats were distributed into the normal control group, diabetic group, pioglitazone group (20 mg/kg), and a benzenesulfonamide derivative group (20 mg/kg), with the last 2 groups receiving oral treatment for 14 consecutive days. Our results suggested enhancing liver insulin sensitivity against the ACE2/Ang (1–7)/PI3K/AKT/mTOR pathway. Moreover, the synthetic compound produced a reduction in blood glucose levels, restored hyperinsulinemia back to normal, and enhanced liver glycogen deposition. In addition, it up regulated the ACE2/Ang (1–7)/PI3K/AKT/mTOR signaling pathway via increasing insulin receptor substrate 1 and 2 sensitivity to insulin, while it increased glucose transporter 2 expression in the rat pancreas. The study findings imply that the hypoglycemic effect of the benzenesulfonamide derivative is due to enhancing liver sensitivity to regulate blood glucose level via the ACE2/Ang (1–7)/PI3K/AKT/mTOR pathway.
Collapse
|
9
|
Wang L, Xu T, Wang R, Wang X, Wu D. Hypertriglyceridemia Acute Pancreatitis: Animal Experiment Research. Dig Dis Sci 2022; 67:761-772. [PMID: 33939144 DOI: 10.1007/s10620-021-06928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
In recent years, the number of acute pancreatitis cases caused by hypertriglyceridemia has increased gradually, which has caught the attention of the medical community. However, because the exact mechanism of hypertriglyceridemic acute pancreatitis (HTG-AP) is not clear, treatment and prevention in clinical practice face enormous challenges. Animal models are useful for elucidating the pathogenesis of diseases and developing and testing novel interventions. Therefore, animal experiments have become the key research means for us to understand and treat this disease. We searched almost all HTG-AP animal models by collecting many studies and finally collated common animals such as rats, mice and included some rare animals that are not commonly used, summarizing the methods to model spontaneous pancreatitis and induce pancreatitis. We sorted them on the basis of three aspects, including the selection of different animals, analyzed the characteristics of different animals, different approaches to establish hypertriglyceridemic pancreatitis and their relative advantages and disadvantages, and introduced the applications of these models in studies of pathogenesis and drug therapy. We hope this review can provide relevant comparisons and analyses for researchers who intend to carry out animal experiments and will help researchers to select and establish more suitable animal experimental models according to their own experimental design.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting Xu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruifeng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaobing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang XL, Zhao X, Wu Y, Huang WQ, Chen JJ, Hu P, Liu W, Chen YW, Hao J, Xie RR, Chan HC, Ruan YC, Chen H, Guo J. Angiotensin(1-7) activates MAS-1 and upregulates CFTR to promote insulin secretion in pancreatic β-cells: the association with type 2 diabetes. Endocr Connect 2022; 11:EC-21-0357. [PMID: 34825893 PMCID: PMC8789014 DOI: 10.1530/ec-21-0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The beneficial effect of angiotensin(1-7) (Ang(1-7)), via the activation of its receptor, MAS-1, has been noted in diabetes treatment; however, how Ang(1-7) or MAS-1 affects insulin secretion remains elusive and whether the endogenous level of Ang(1-7) or MAS-1 is altered in diabetic individuals remains unexplored. We recently identified an important role of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, in the regulation of insulin secretion. Here, we tested the possible involvement of CFTR in mediating Ang(1-7)'s effect on insulin secretion and measured the level of Ang(1-7), MAS-1 as well as CFTR in the blood of individuals with or without type 2 diabetes. METHODS Ang(1-7)/MAS-1/CFTR pathway was determined by specific inhibitors, gene manipulation, Western blotting as well as insulin ELISA in a pancreatic β-cell line, RINm5F. Human blood samples were collected from 333 individuals with (n = 197) and without (n = 136) type 2 diabetes. Ang(1-7), MAS-1 and CFTR levels in the human blood were determined by ELISA. RESULTS In RINm5F cells, Ang(1-7) induced intracellular cAMP increase, cAMP-response element binding protein (CREB) activation, enhanced CFTR expression and potentiated glucose-stimulated insulin secretion, which were abolished by a selective CFTR inhibitor, RNAi-knockdown of CFTR, or inhibition of MAS-1. In human subjects, the blood levels of MAS-1 and CFTR, but not Ang(1-7), were significantly higher in individuals with type 2 diabetes as compared to those in non-diabetic healthy subjects. In addition, blood levels of MAS-1 and CFTR were in significant positive correlation in type-2 diabetic but not non-diabetic subjects. CONCLUSION These results suggested that MAS-1 and CFTR as key players in mediating Ang(1-7)-promoted insulin secretion in pancreatic β-cells; MAS-1 and CFTR are positively correlated and both upregulated in type 2 diabetes.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinyi Zhao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yong Wu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-qing Huang
- Department of Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jun-jiang Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Correspondence should be addressed to H Chen or J Guo: or
| | - Peijie Hu
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Liu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi-Wen Chen
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to H Chen or J Guo: or
| | - Jin Hao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hui Chen
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence should be addressed to H Chen or J Guo: or
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
- Correspondence should be addressed to H Chen or J Guo: or
| |
Collapse
|
11
|
Albadrani H, Ammar T, Bader M, Renaud JM. Angiotensin 1-7 prevents the excessive force loss resulting from 14- and 28-day denervation in mouse EDL and soleus muscle. J Gen Physiol 2021; 153:212748. [PMID: 34739541 PMCID: PMC8576869 DOI: 10.1085/jgp.201912556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Denervation leads to muscle atrophy, which is described as muscle mass and force loss, the latter exceeding expectation from mass loss. The objective of this study was to determine the efficiency of angiotensin (Ang) 1–7 at reducing muscle atrophy in mouse extensor digitorum longus (EDL) and soleus following 14- and 28-d denervation periods. Some denervated mice were treated with Ang 1–7 or diminazene aceturate (DIZE), an ACE2 activator, to increase Ang 1–7 levels. Ang 1–7/DIZE treatment had little effect on muscle mass loss and fiber cross-sectional area reduction. Ang 1–7 and DIZE fully prevented the loss of tetanic force normalized to cross-sectional area and accentuated the increase in twitch force in denervated muscle. However, they did not prevent the shift of the force–frequency relationship toward lower stimulation frequencies. The Ang 1–7/DIZE effects on twitch and tetanic force were completely blocked by A779, a MasR antagonist, and were not observed in MasR−/− muscles. Ang 1–7 reduced the extent of membrane depolarization, fully prevented the loss of membrane excitability, and maintained the action potential overshoot in denervated muscles. Ang 1–7 had no effect on the changes in α-actin, myosin, or MuRF-1, atrogin-1 protein content or the content of total or phosphorylated Akt, S6, and 4EPB. This is the first study that provides evidence that Ang 1–7 maintains normal muscle function in terms of maximum force and membrane excitability during 14- and 28-d periods after denervation.
Collapse
Affiliation(s)
- Hind Albadrani
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Majmaah University, Department of Medical Laboratory Sciences, Al Majma'ah, Saudi Arabia
| | - T Ammar
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.,University of Lübeck, Institute for Biology, Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Jean-Marc Renaud
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Nonclassical Axis of the Renin-Angiotensin System and Neprilysin: Key Mediators That Underlie the Cardioprotective Effect of PPAR-Alpha Activation during Myocardial Ischemia in a Metabolic Syndrome Model. PPAR Res 2020; 2020:8894525. [PMID: 33354204 PMCID: PMC7737465 DOI: 10.1155/2020/8894525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activation of the renin-angiotensin system (RAS) participates in the development of metabolic syndrome (MetS) and in heart failure. PPAR-alpha activation by fenofibrate reverts some of the effects caused by these pathologies. Recently, nonclassical RAS components have been implicated in the pathogenesis of hypertension and myocardial dysfunction; however, their cardiac functions are still controversial. We evaluated if the nonclassical RAS signaling pathways, directed by angiotensin III and angiotensin-(1-7), are involved in the cardioprotective effect of fenofibrate during ischemia in MetS rats. Control (CT) and MetS rats were divided into the following groups: (a) sham, (b) vehicle-treated myocardial infarction (MI-V), and (c) fenofibrate-treated myocardial infarction (MI-F). Angiotensin III and angiotensin IV levels and insulin increased the aminopeptidase (IRAP) expression and decreased the angiotensin-converting enzyme 2 (ACE2) expression in the hearts from MetS rats. Ischemia activated the angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin receptor 1 (AT1R) and angiotensin III/angiotensin IV/angiotensin receptor 4 (AT4R)-IRAP axes. Fenofibrate treatment prevented the damage due to ischemia in MetS rats by favoring the angiotensin-(1-7)/angiotensin receptor 2 (AT2R) axis and inhibiting the angiotensin III/angiotensin IV/AT4R-IRAP signaling pathway. Additionally, fenofibrate downregulated neprilysin expression and increased bradykinin production. These effects of PPAR-alpha activation were accompanied by a reduction in the size of the myocardial infarct and in the activity of serum creatine kinase. Thus, the regulation of the nonclassical axis of RAS forms part of a novel protective effect of fenofibrate in myocardial ischemia.
Collapse
|
13
|
Verma A, Zhu P, Xu K, Du T, Liao S, Liang Z, Raizada MK, Li Q. Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Transl Vis Sci Technol 2020; 9:20. [PMID: 33344064 PMCID: PMC7735952 DOI: 10.1167/tvst.9.13.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose A multitude of animal studies substantiates the beneficial effects of Ang-(1-7), a peptide hormone in the protective axis of the renin angiotensin system, in diabetes and its associated complications including diabetic retinopathy (DR). However, the clinical application of Ang-(1-7) is limited due to unfavorable pharmacological properties. As emerging evidence implicates gut dysbiosis in pathogenesis of diabetes and supports beneficial effects of probiotics, we sought to develop probiotics-based expression and delivery system to enhance Ang-(1-7) and evaluate the efficacy of engineered probiotics expressing Ang-(1-7) in attenuation of DR in animal models. Methods Ang-(1-7) was expressed in the Lactobacillus species as a secreted fusion protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the effects of Ang-(1-7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS-/- and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1-7) (LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively. Results Ang-(1-7) is efficiently expressed from different Lactobacillus species and secreted into circulation in mice fed with LP-A. Oral administration of LP-A significantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory cytokine expression in both diabetic eNOS-/- and Akita mice. Conclusions These results provide proof-of-concept for feasibility and efficacy of using engineered probiotic species as live vector for delivery of Ang-(1-7) with enhanced bioavailability. Translational Relevance Probiotics-based delivery of Ang-(1-7) may hold important therapeutic potential for the treatment of DR and other diabetic complications.
Collapse
Affiliation(s)
- Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kang Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tao Du
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shengquan Liao
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhibing Liang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K. Raizada
- Physiology & Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Dhaundiyal A, Kumari P, Jawalekar SS, Chauhan G, Kalra S, Navik U. Is highly expressed ACE 2 in pregnant women "a curse" in times of COVID-19 pandemic? Life Sci 2020; 264:118676. [PMID: 33129880 PMCID: PMC7598563 DOI: 10.1016/j.lfs.2020.118676] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE 2) is a membrane-bound enzyme that cleaves angiotensin II (Ang II) into angiotensin (1-7). It also serves as an important binding site for SARS-CoV-2, thereby, facilitating viral entry into target host cells. ACE 2 is abundantly present in the intestine, kidney, heart, lungs, and fetal tissues. Fetal ACE 2 is involved in myocardium growth, lungs and brain development. ACE 2 is highly expressed in pregnant women to compensate preeclampsia by modulating angiotensin (1-7) which binds to the Mas receptor, having vasodilator action and maintain fluid homeostasis. There are reports available on Zika, H1N1 and SARS-CoV where these viruses have shown to produce fetal defects but very little is known about SARS-CoV-2 involvement in pregnancy, but it might have the potential to interact with fetal ACE 2 and enhance COVID-19 transmission to the fetus, leading to fetal morbidity and mortality. This review sheds light on a path of SARS-CoV-2 transmission risk in pregnancy and its possible link with fetal ACE 2.
Collapse
Affiliation(s)
- Ankit Dhaundiyal
- Senior Data Analyst at Private Organization, Gurugram, Haryana 122001,M.S. (Pharma) in Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160 062, India
| | - Puja Kumari
- Principal Research Analyst at Private Organization Jaipur, Rajasthan 302021, M.S. (Pharma) in Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160 062, India
| | - Snehal Sainath Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160 062, India
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico
| | - Sourav Kalra
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punj, ab-160 062, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punj, ab-151001, India.
| |
Collapse
|
15
|
Srivastava P, Badhwar S, Chandran DS, Jaryal AK, Jyotsna VP, Deepak KK. Improvement in Angiotensin 1-7 precedes and correlates with improvement in Arterial stiffness and endothelial function following Renin-Angiotensin system inhibition in type 2 diabetes with newly diagnosed hypertension. Diabetes Metab Syndr 2020; 14:1253-1263. [PMID: 32688242 DOI: 10.1016/j.dsx.2020.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Studies in cell cultures and animal models have revealed the possible pathophysiological factors associated with vascular endothelial dysfunction. However, the same in human subjects has not been clearly established. The current study uses a novel approach to identify the factors associated with endothelial function and arterial function by altering these vascular parameters using Angiotensin-Converting-Enzyme (ACE) inhibition. METHODS Diabetic patients with newly diagnosed hypertension (n = 60) were recruited for the study. Flow-mediated-dilation (FMD), carotid-femoral (cf), carotid-radial (cr) Pulse-wave-velocity (PWV), Augmentation-Index, Carotid-Intima-Media-Thickness (CIMT), serum levels of Renin, Angiotensin II (AngII), Angiotensin-Converting-Enzyme2 (ACE2), Angiotensin1-7 (Ang1-7), E-selectin, Vascular-Cell-Adhesion-Molecule-1 (VCAM-1), Highly-sensitive-C-Reactive-Protein (hsCRP) and Interleukin-10 were measured at baseline (V1), after 1 week (V2) and 3 months (V3) of ACE inhibition in patients of diabetes with newly diagnosed hypertension. The amplitude of change after 1 week (V2-V1) and 3 months (V3-V1) for the clinical and various parameters were correlated with the change in endothelial function and arterial stiffness. RESULTS Carotid radial-PWVV2-V1 (p = 0.001) and Ang1-7V2-V1 (p = 0.01) emerged as independent predictors of FMDV2-V1. ReninV2-V1 and VCAM-1V2-V1 independently predicted E-selectinV2-V1 [(p = 0.01) and (p = 0.001), respectively]. ACE 2V2-V1 was the only independent predictor of cf-PWVV2-V1. The same parameters remained as independent predictors of the respective vascular factors after 3 months of ACE inhibition. CONCLUSION The study highlights the role of AngII/Ang1-7 balance in alteration of endothelial function and central arterial stiffness in humans in addition to identifying the interrelationship between the renin-angiotensin-aldosterone-system components and clinically ascertainable parameters.
Collapse
Affiliation(s)
- Prachi Srivastava
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Smriti Badhwar
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Dinu S Chandran
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Kumar Jaryal
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Kishore Kumar Deepak
- Autonomic & Vascular Function Lab, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
16
|
Barbosa MA, Barbosa CM, Lima TC, dos Santos RAS, Alzamora AC. The Novel Angiotensin-(1-7) Analog, A-1317, Improves Insulin Resistance by Restoring Pancreatic β-Cell Functionality in Rats With Metabolic Syndrome. Front Pharmacol 2020; 11:1263. [PMID: 32982727 PMCID: PMC7476374 DOI: 10.3389/fphar.2020.01263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
In previous studies we have shown that oral Ang-(1-7) has a beneficial therapeutic effect on cardiometabolic disturbances present in metabolic syndrome (MetS). Based on the fact that Ang-(1-7) acts through release of nitric oxide (NO), a new peptide, A-1317 was engineered adding the amino acid L-Arginine, the NO precursor, to the N-terminal portion of the Ang-(1-7). Therefore, in a single molecule the substrate and the activator of NO are combined. In the present study, we evaluated the effect of A-1317 oral treatment on liver-glucose metabolism in MetS induced by high fat (HF) diet in rats. Rats were subjected to control (AIN-93M, CT) or HF diets for 15 weeks to induce MetS and treated with A-1317, Ang-(1-7) included into hydroxypropyl-β-cyclodextrin (HPβCD) or empty HPβCD (E), in the last 7 weeks. At the end of 15 weeks, hemodynamic, biometric, and biochemical parameters, redox process, and qRT-PCR gene expression of NO synthase and RAS components were evaluated in the liver. HF/E rats increased body mass gain, adiposity index, despite the reduction in food intake, increased plasma leptin, total cholesterol, triglycerides, ALT, fasting blood glucose, OGTT and insulin, HOMA-IR and MAP and HR. Furthermore, the MetS rats presented increased in liver angiotensinogen, AT1R, ACE mRNA gene expression and concentration of MDA and carbonylated protein. Both Ang-(1-7) and A-1317 oral treatment in MetS rats reverted most of these alterations. However, A-1317 was more efficient in reducing body mass gain, ALT, AST, total cholesterol, insulin, fasting blood glucose, ameliorating β cell capacity by increasing HOMA-β and QUICKI, whereas Ang-(1-7) reduced HOMA-β and QUICKI. In addition, Ang-(1-7) increased Mas and AKT liver mRNA gene expression, while A-1317 increased both Mas and MRGD and AMPK liver mRNA gene expression, suggesting a distinct pathway of action of Ang-(1-7) and A-1317 in MetS rats. Taken together, our data showed that treatment with A-1317 was able to ameliorate MetS disorders and suggested that this effect was mainly via MRGD via activation of AMPK and increasing β cell function.
Collapse
Affiliation(s)
- Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Claudiane Maria Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Taynara Carolina Lima
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Andréia Carvalho Alzamora
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Ouro Preto, Brazil
| |
Collapse
|
17
|
Angiotensin-(1-7) Improves Integrated Cardiometabolic Function in Aged Mice. Int J Mol Sci 2020; 21:ijms21145131. [PMID: 32698498 PMCID: PMC7403973 DOI: 10.3390/ijms21145131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 01/07/2023] Open
Abstract
Angiotensin (Ang)-(1-7) is a beneficial renin–angiotensin system (RAS) hormone that elicits protective cardiometabolic effects in young animal models of hypertension, obesity, and metabolic syndrome. The impact of Ang-(1-7) on cardiovascular and metabolic outcomes during aging, however, remains unexplored. This study tested the hypothesis that Ang-(1-7) attenuates age-related elevations in blood pressure and insulin resistance in mice. Young adult (two-month-old) and aged (16-month-old) male C57BL/6J mice received Ang-(1-7) (400 ng/kg/min) or saline for six-weeks via a subcutaneous osmotic mini-pump. Arterial blood pressure and metabolic function indices (body composition, insulin sensitivity, and glucose tolerance) were measured at the end of treatment. Adipose and cardiac tissue masses and cardiac RAS, sympathetic and inflammatory marker gene expression were also measured. We found that chronic Ang-(1-7) treatment decreased systolic and mean blood pressure, with a similar trend for diastolic blood pressure. Ang-(1-7) also improved insulin sensitivity in aged mice to levels in young mice, without effects on glucose tolerance or body composition. The blood pressure–lowering effects of Ang-(1-7) in aged mice were associated with reduced sympathetic outflow to the heart. These findings suggest Ang-(1-7) may provide a novel pharmacological target to improve age-related cardiometabolic risk.
Collapse
|
18
|
Kim M, Do GY, Kim I. Activation of the renin-angiotensin system in high fructose-induced metabolic syndrome. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:319-328. [PMID: 32587126 PMCID: PMC7317175 DOI: 10.4196/kjpp.2020.24.4.319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
High fructose intake induces hyperglycemia and hypertension. However, the mechanism by which fructose induces metabolic syndrome is largely unknown. We hypothesized that high fructose intake induces activation of the renin-angiotensin system (RAS), resulting in hypertension and metabolic syndrome. We provided 11-week-old Sprague–Dawley rats with drinking water, with or without 20% fructose, for two weeks. We measured serum renin, angiotensin II (Ang II), and aldosterone (Aldo) using ELISA kits. The expression of RAS genes was determined by quantitative reverse transcription polymerase chain reaction. High fructose intake increased body weight and water retention, regardless of food intake or urine volume. After two weeks, fructose intake induced glucose intolerance and hypertension. High fructose intake increased serum renin, Ang II, triglyceride, and cholesterol levels, but not Aldo levels. High fructose intake increased the expression of angiotensinogen in the liver; angiotensin-converting enzyme in the lungs; and renin, angiotensin II type 1a receptor (AT1aR), and angiotensin II type 1b receptor (AT1bR) in the kidneys. However, expression of AT1aR and AT1bR in the adrenal glands did not increase in rats given fructose. Taken together, these results indicate that high fructose intake induces activation of RAS, resulting in hypertension and metabolic syndrome.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Ga Young Do
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
19
|
Cerri GC, Motta-Santos D, Andrade JMO, Rezende LFD, Santos RASD, Santos SHS. Maternal obesity modulates both the renin-angiotensin system in mice dams and fetal adiposity. J Nutr Biochem 2020; 84:108413. [PMID: 32619905 DOI: 10.1016/j.jnutbio.2020.108413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/25/2020] [Accepted: 05/02/2020] [Indexed: 12/29/2022]
Abstract
Obesity is a chronic multifactorial disease and is currently a public health problem. Maternal obesity during pregnancy is more dangerous as it impairs the health of the mother and future generations. Obesity leads to several metabolic disorders. Since white adipose tissue is an endocrine tissue, obesity often leads to disordered secretion of inflammatory, glycemic, lipid and renin-angiotensin system (RAS) components. The RAS represents a link between obesity and its metabolic consequences. Therefore, our goal was to evaluate the possible changes caused by a high-fat diet in RAS-related receptor expression in the uterus and placenta of pregnant mice and determine the underlying effects of these changes in the fetuses' body composition. Breeding groups were formed after obesity induction by high-fat (HF) diet. Dams and fetuses were euthanized on the 19th day of the gestational period. The HF diet effectively induced obesity, glucose intolerance and insulin resistance in mice. Fetuses born from HF dams showed increased body weight and adiposity. Both results were accompanied by increased AT1R expression in placenta and uterus together with increased angiotensin-converting enzyme expression in the uterus and a decreased expression of MAS1 in placenta of HF dams. These results suggest a link between RAS, maternal obesity induced by HF diet and the fetuses' body adiposity. This new path now can be more thoroughly explored.
Collapse
Affiliation(s)
- Gabriela Cavazza Cerri
- Department of Pharmacology and Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Department of Pharmacology and Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Laboratory of Health Science, Montes Claros State University, Montes Claros, Minas Gerais, Brazil; Department of Nursing, Center of Halth and Biological Sciences, Montes Claros State University, Montes Claros, Minas Gerais, Brazil
| | - Luiz Fernando de Rezende
- Laboratory of Health Science, Montes Claros State University, Montes Claros, Minas Gerais, Brazil; Department of Physiopathology, Center of Health and Biological Sciences, Montes Claros State University, Montes Claros, Minas Gerais, Brazil
| | - Robson Augusto Souza Dos Santos
- Department of Pharmacology and Physiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Montes Claros State University, Montes Claros, Minas Gerais, Brazil; Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil, Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Yang M, Ma X, Xuan X, Deng H, Chen Q, Yuan L. Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Front Pharmacol 2020; 11:432. [PMID: 32322207 PMCID: PMC7156971 DOI: 10.3389/fphar.2020.00432] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and represents a potential therapeutic target for NAFLD. Glucagon-like peptide-1 (GLP-1) signaling has been shown to regulate the RAS within various local tissues. In this study, we aimed to investigate the functional relationship between GLP-1 and the local RAS in the liver during NAFLD. Wild-type and ACE2 knockout mice were used to establish a high-fat-induced NAFLD model. After the mice were treated with liraglutide (a GLP-1 analogue) for 4 weeks, the key RAS component genes were up-regulated in the liver of NAFLD mice. Liraglutide treatment regulated the RAS balance, preventing a reduction in fatty acid oxidation gene expression and increasing gluconeogenesis and the expression of inflammation-related genes caused by NAFLD, which were impaired in ACE2 knockout mice. Liraglutide-treated HepG2 cells exhibited activation of the ACE2/Ang1-7/Mas axis, increased fatty acid oxidation gene expression, and decreased inflammation, which could be reversed by A779 and AngII. These results indicate that the local RAS in the liver becomes overactivated in response to NAFLD. Moreover, ACE2 knockout increases the severity of liver steatosis. Liraglutide has a negative and antagonistic effect on the ACE/AngII/AT1R axis, a positive impact on the ACE2/Ang1-7/Mas axis, and is mediated through the PI3K/AKT pathway. This may represent a potential new mechanism by which liraglutide improves NAFLD.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyi Ma
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuping Xuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Kawabe Y, Mori J, Morimoto H, Yamaguchi M, Miyagaki S, Ota T, Tsuma Y, Fukuhara S, Nakajima H, Oudit GY, Hosoi H. ACE2 exerts anti-obesity effect via stimulating brown adipose tissue and induction of browning in white adipose tissue. Am J Physiol Endocrinol Metab 2019; 317:E1140-E1149. [PMID: 31638856 DOI: 10.1152/ajpendo.00311.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The angiotensin II (ANG II)-ANG II type 1 receptor (AT1R) axis is a key player in the pathophysiology of obesity. Angiotensin-converting enzyme 2 (ACE2) counteracts the ANG II/AT1R axis via converting ANG II to angiotensin 1-7 (Ang 1-7), which is known to have an anti-obesity effect. In this study, we hypothesized that ACE2 exerts a strong anti-obesity effect by increasing Ang 1-7 levels. We injected intraperitoneally recombinant human ACE2 (rhACE2, 2.0 mg·kg-1·day-1) for 28 days to high-fat diet (HFD)-induced obesity mice. rhACE2 treatment decreased body weight and improved glucose metabolism. Furthermore, rhACE2 increased oxygen consumption and upregulated thermogenesis in HFD-fed mice. In the rhACE2 treatment group, brown adipose tissue (BAT) mass increased, accompanied with ameliorated insulin signaling and increased protein levels of uncoupling protein-1 (UCP-1) and PRD1-BF1-RIZ1 homologous domain containing 16. Importantly, subcutaneous white adipose tissue (sWAT) mass decreased, concomitant with browning, which was established by the increase of UCP-1 expression. The browning is the result of increased H3K27 acetylation via the downregulation of histone deacetylase 3 and increased H3K9 acetylation via upregulation of GCN5 and P300/CBP-associated factor. These results suggest that rhACE2 exerts anti-obesity effects by stimulating BAT and inducing browning in sWAT. ACE2 and the Ang 1-7 axis represent a potential therapeutic approach to prevent the development of obesity.
Collapse
Affiliation(s)
- Yasuhiro Kawabe
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mihoko Yamaguchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Miyagaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ota
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Tsuma
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Gavin Y Oudit
- Department of Physiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
White MC, Miller AJ, Loloi J, Bingaman SS, Shen B, Wang M, Silberman Y, Lindsey SH, Arnold AC. Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice. Biol Sex Differ 2019; 10:36. [PMID: 31315689 PMCID: PMC6637512 DOI: 10.1186/s13293-019-0251-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background Angiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis. Previous studies have shown that in high-fat diet (HFD)-induced obese male mice, circulating angiotensin-(1-7) levels are reduced and chronic restoration of this hormone reverses diet-induced insulin resistance; however, this has yet to be examined in female mice. We hypothesized angiotensin-(1-7) would improve insulin sensitivity and glucose tolerance in obese female mice, to a similar extent as previously observed in male mice. Methods Five-week-old male and female C57BL/6J mice (8–12/group) were placed on control diet or HFD (16% or 59% kcal from fat, respectively) for 11 weeks. After 8 weeks of diet, mice were implanted with an osmotic pump for 3-week subcutaneous delivery of angiotensin-(1-7) (400 ng/kg/min) or saline vehicle. During the last week of treatment, body mass and composition were measured and intraperitoneal insulin and glucose tolerance tests were performed to assess insulin sensitivity and glucose tolerance, respectively. Mice were euthanized at the end of the study for blood and tissue collection. Results HFD increased body mass and adiposity in both sexes. Chronic angiotensin-(1-7) infusion significantly decreased body mass and adiposity and increased lean mass in obese mice of both sexes. While both sexes tended to develop mild hyperglycemia in response to HFD, female mice developed less marked hyperinsulinemia. There was no effect of angiotensin-(1-7) on fasting glucose or insulin levels among diet and sex groups. Male and female mice similarly developed insulin resistance and glucose intolerance in response to HFD feeding. Angiotensin-(1-7) improved insulin sensitivity in both sexes but corrected glucose intolerance only in obese female mice. There were no effects of sex or angiotensin-(1-7) treatment on any of the study outcomes in control diet-fed mice. Conclusions This study provides new evidence for sex differences in the impact of chronic angiotensin-(1-7) in obese mice, with females having greater changes in glucose tolerance with treatment. These findings improve understanding of sex differences in renin-angiotensin mechanisms in obesity and illustrate the potential for targeting angiotensin-(1-7) for treatment of this condition.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Amanda J Miller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Justin Loloi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah S Bingaman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Biyi Shen
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, 1430 Tulane Avenue, New Orleans, LA, #8683, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
23
|
Antioxidant Effects of Oral Ang-(1-7) Restore Insulin Pathway and RAS Components Ameliorating Cardiometabolic Disturbances in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5868935. [PMID: 31396301 PMCID: PMC6664692 DOI: 10.1155/2019/5868935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 12/30/2022]
Abstract
In prevention studies of metabolic syndrome (MetS), Ang-(1-7) has shown to improve the insulin signaling. We evaluated the HPβCD/Ang-(1-7) treatment on lipid metabolism, renin-angiotensin system (RAS) components, oxidative stress, and insulin pathway in the liver and gastrocnemius muscle and hepatic steatosis in rats with established MetS. After 7 weeks of high-fat (FAT) or control (CT) diets, rats were treated with cyclodextrin (HPβCD) or HPβCD/Ang-(1-7) in the last 6 weeks. FAT-HPβCD/empty rats showed increased adiposity index and body mass, gene expression of ACE/ANG II/AT1R axis, and oxidative stress. These results were accompanied by imbalances in the insulin pathway, worsening of liver function, hyperglycemia, and dyslipidemia. Oral HPβCD/Ang-(1-7) treatment decreased ACE and AT1R, increased ACE2 gene expression in the liver, and restored thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD), insulin receptor substrate (Irs-1), glucose transporter type 4 (GLUT4), and serine/threonine kinase 2 (AKT-2) gene expression in the liver and gastrocnemius muscle improving hepatic function, cholesterol levels, and hyperglycemia in MetS rats. Overall, HPβCD/Ang-(1-7) treatment restored the RAS components, oxidative stress, and insulin signaling in the liver and gastrocnemius muscle contributing to the establishment of blood glucose and lipid homeostasis in MetS rats.
Collapse
|
24
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
25
|
Lelis DDF, Freitas DFD, Machado AS, Crespo TS, Santos SHS. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism 2019; 95:36-45. [PMID: 30905634 DOI: 10.1016/j.metabol.2019.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Nowadays the adipose tissue is recognized as one of the most critical endocrine organs releasing many adipokines that regulate metabolism, inflammation and body homeostasis. There are several described adipokines, including the renin-angiotensin system (RAS) components that are especially activated in some diseases with increased production of angiotensin II and several pro-inflammatory hormones. On the other hand, RAS also expresses angiotensin-(1-7), which is now recognized as the main peptide on counteracting Ang II effects. New studies have shown that increased activation of ACE2/Ang-(1-7)/MasR arm can revert and prevent local and systemic dysfunctions improving lipid profile and insulin resistance by modulating insulin actions, and reducing inflammation. In this context, the present review shows the interaction and relevance of Ang-(1-7) effects on regulating adipokines, and as one adipokine itself, modulating body homeostasis, with emphasis on its anti-inflammatory properties, especially in the context of metabolic disorders with focus on obesity and type 2 diabetes mellitus pandemic.
Collapse
Affiliation(s)
- Deborah de Farias Lelis
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Daniela Fernanda de Freitas
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Amanda Souto Machado
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Thaísa Soares Crespo
- Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Sciences, Post Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Rubio-Ruiz ME, Guarner-Lans V, Pérez-Torres I, Soto ME. Mechanisms Underlying Metabolic Syndrome-Related Sarcopenia and Possible Therapeutic Measures. Int J Mol Sci 2019; 20:ijms20030647. [PMID: 30717377 PMCID: PMC6387003 DOI: 10.3390/ijms20030647] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Although there are several reviews that report the interrelationship between sarcopenia and obesity and insulin resistance, the relation between sarcopenia and the other signs that compose the metabolic syndrome (MetS) has not been extensively revised. Here, we review the mechanisms underlying MetS-related sarcopenia and discuss the possible therapeutic measures proposed. A vicious cycle between the loss of muscle and the accumulation of intramuscular fat might be associated with MetS via a complex interplay of factors including nutritional intake, physical activity, body fat, oxidative stress, proinflammatory cytokines, insulin resistance, hormonal changes, and mitochondrial dysfunction. The enormous differences in lipid storage capacities between the two genders and elevated amounts of endogenous fat having lipotoxic effects that lead to the loss of muscle mass are discussed. The important repercussions of MetS-related sarcopenia on other illnesses that lead to increased disability, morbidity, and mortality are also addressed. Additional research is needed to better understand the pathophysiology of MetS-related sarcopenia and its consequences. Although there is currently no consensus on the treatment, lifestyle changes including diet and power exercise seem to be the best options.
Collapse
Affiliation(s)
- María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
27
|
Yildirim OG, Sumlu E, Aslan E, Koca HB, Pektas MB, Sadi G, Akar F. High-fructose in drinking water initiates activation of inflammatory cytokines and testicular degeneration in rat. Toxicol Mech Methods 2019; 29:224-232. [DOI: 10.1080/15376516.2018.1543745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Onur Gökhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Esra Sumlu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Esra Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Halit Buğra Koca
- Department of Medical Biochemistry, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mehmet Bilgehan Pektas
- Department of Medical Pharmacology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
28
|
Dai C, Ma J, Li M, Wu W, Xia X, Zhang J. Diversity-oriented submonomer synthesis of azapeptides mediated by the Mitsunobu reaction. Org Chem Front 2019. [DOI: 10.1039/c9qo00296k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach featuring the Mitsunobu reaction for the convenient synthesis of azapeptides on a solid support.
Collapse
Affiliation(s)
- Chuan Dai
- Innovative Drug Research Centre (IDRC)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
| | - Jun Ma
- Innovative Drug Research Centre (IDRC)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
| | - Min Li
- Innovative Drug Research Centre (IDRC)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
| | - Wen Wu
- Innovative Drug Research Centre (IDRC)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
| | - Xuefeng Xia
- Innovative Drug Research Centre (IDRC)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC)
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
| |
Collapse
|
29
|
Barbosa MA, de Sousa GG, de Castro UGM, Carneiro CM, Figueiredo VP, Guerra de Sá R, Santos RASD, Alzamora AC. Oral Ang-(1-7) treatment improves white adipose tissue remodeling and hypertension in rats with metabolic syndrome. Nutrition 2019; 67-68S:100004. [PMID: 34332714 DOI: 10.1016/j.nutx.2019.100004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/01/2019] [Accepted: 10/05/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Angiotensin (Ang)-(1-7) has preventive effects on metabolic syndrome (MetS). The aim of this study was to evaluate the therapeutic effect of oral Ang-(1-7) on mean arterial pressure (MAP), insulin resistance (IR), inflammatory process, and remodeling of white adipose tissue (WAT) in rats with established MetS. METHODS Rats were subjected to control (CT; AIN-93M) or high-fat (HF) diets for 13 wk to induce MetS and treated with Ang-(1-7) or vehicle (V) for the last 6 wk. At the end of 13 wk, MAP, biochemical and histological parameters, and uncoupling protein (UCP) and inflammatory gene expression were determined by quantitative reverse transcription polymerase chain reaction. RESULTS HF-V rats showed increased visceral fat deposition, inflammatory cytokine expression, hyperplasia, and hypertrophy in retroperitoneal (WAT) and brown adipose tissue (BAT). Additionally, the gastrocnemius muscle reduced UCP-3 and increased the UCP-1 expression in BAT. HF-V also elevated levels of plasma insulin, glucose, homeostatic model assessment (HOMA) of IR and HOMA-β, and increased body mass, adiposity, and MAP. Ang-(1-7) treatment in rats with MetS [HF-Ang-(1-7)] reduced WAT area, number of adipocytes, and expression of proinflammatory adipokines in WAT and BAT and increased UCP-3 in gastrocnemius muscle and UCP-1 expression in BAT compared with the HF-V group. These events prevented body mass gain, reduced adiposity, and normalized fasting plasma glucose, insulin levels, HOMA-IR, HOMA-β, and MAP. CONCLUSION Data from the present study demonstrated that oral Ang-(1-7) treatment is effective in restoring biochemical parameters and hypertension in established MetS by improving hypertrophy and hyperplasia in WAT and inflammation in adipose tissue, and regulating metabolic processes in the gastrocnemius muscle and BAT.
Collapse
Affiliation(s)
- Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, MG, Brazil
| | | | | | | | | | - Renata Guerra de Sá
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, MG, Brazil; Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas Ouro Preto, MG, Brazil
| | | | - Andréia Carvalho Alzamora
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, MG, Brazil; Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas Ouro Preto, MG, Brazil.
| |
Collapse
|
30
|
Maslov LN, Naryzhnaya NV, Boshchenko AA, Popov SV, Ivanov VV, Oeltgen PR. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 15:1-5. [PMID: 30479968 PMCID: PMC6240632 DOI: 10.1016/j.jcte.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
Abstract
Metabolic syndrome is accompanied by oxidative stress in animals and humans. The main source of ROS in experimental metabolic syndrome is NADPH oxidase and possibly adipocyte mitochondria. It is now documented that oxidative stress induces insulin resistance of adipocytes and increases secretion of leptin, MCP-1, IL-6, and TNF-α by adipocytes. It was established that oxidative stress induces a decrease in adiponectin production by adipocytes. It has also been shown that obesity itself can induce oxidative stress. Oxidative stress can cause an alteration of intracellular signaling in adipocytes that apparently leads to the formation of insulin resistance of adipocytes. Chronic stress, glucocorticoids, mineralocorticoids, angiotensin-II, TNF-α also play an important role in the pathogenesis of oxidative stress of adipocytes. Oxidative stress is not only a consequence of metabolic syndrome, but also a reason and a foundational link in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
31
|
Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci (Lond) 2018; 132:1487-1507. [PMID: 30037837 DOI: 10.1042/cs20180276] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Overactivation of the renin-angiotensin (Ang) system (RAS) increases the classical arm (Ang-converting enzyme (ACE)/Ang II/Ang type 1 receptor (AT1R)) to the detriment of the protective arm (ACE2/Ang 1-7/Mas receptor (MasR)). The components of the RAS are present locally in white adipose tissue (WAT) and skeletal muscle, which act co-operatively, through specific mediators, in response to pathophysiological changes. In WAT, up-regulation of the classical arm promotes lipogenesis and reduces lipolysis and adipogenesis, leading to adipocyte hypertrophy and lipid storage, which are related to insulin resistance and increased inflammation. In skeletal muscle, the classical arm promotes protein degradation and increases the inflammatory status and oxidative stress, leading to muscle wasting. Conversely, the protective arm plays a counter-regulatory role by opposing the effect of Ang II. The accumulation of adipose tissue and muscle mass loss is associated with a higher risk of morbidity and mortality, which could be related, in part, to overactivation of the RAS. On the other hand, exercise training (ExT) shifts the balance of the RAS towards the protective arm, promoting the inhibition of the classical arm in parallel with the stimulation of the protective arm. Thus, fat mobilization and maintenance of muscle mass and function are facilitated. However, the mechanisms underlying exercise-induced changes in the RAS remain unclear. In this review, we present the RAS as a key mechanism of WAT and skeletal muscle metabolic dysfunction. Furthermore, we discuss the interaction between the RAS and exercise and the possible underlying mechanisms of the health-related aspects of ExT.
Collapse
|
32
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 722] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
33
|
Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N. Regulation and Functions of the Renin-Angiotensin System in White and Brown Adipose Tissue. Compr Physiol 2017; 7:1137-1150. [PMID: 28915321 DOI: 10.1002/cphy.c160031] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The renin angiotensin system (RAS) is a major regulator of blood pressure, fluid, and electrolyte homeostasis. RAS precursor angiotensinogen (Agt) is cleaved into angiotensin I (Ang I) and II (Ang II) by renin and angiotensin converting enzyme (ACE), respectively. Major effects of Ang II, the main bioactive peptide of this system, is mediated by G protein coupled receptors, Angiotensin Type 1 (AGTR1, AT1R) and Type 2 (AGTR2, AT2R) receptors. Further, the discovery of additional RAS peptides such as Ang 1-7 generated by the action of another enzyme ACE2 identified novel functions of this complex system. In addition to the systemic RAS, several local RAS exist in organs such as the brain, kidney, pancreas, and adipose tissue. The expression and regulation of various components of RAS in adipose tissue prompted extensive research into the role of adipose RAS in metabolic diseases. Indeed, animal studies have shown that adipose-derived Agt contributes to circulating RAS, kidney, and blood pressure regulation. Further, mice overexpressing Agt have high blood pressure and increased adiposity characterized by inflammation, adipocyte hypertrophy, and insulin resistance, which can be reversed at least in part by RAS inhibition. These findings highlight the importance of this system in energy homeostasis, especially in the context of obesity. This overview article discusses the depot-specific functions of adipose RAS, genetic and pharmacological manipulations of RAS, and its applications to adipogenesis, thermogenesis, and overall energy homeostasis. © 2017 American Physiological Society. Compr Physiol 7:1137-1150, 2017.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Nishan S Kalupahana
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA.,Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
34
|
Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade. Biochem Pharmacol 2017; 144:90-99. [PMID: 28789938 DOI: 10.1016/j.bcp.2017.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Hyperglycemia up-regulates intracellular angiotensin II (ANG-II) production in cardiac myocytes. This study investigated the hemodynamic and metabolic effects of azilsartan (AZL) treatment in a mouse model of diabetic cardiomyopathy and whether the cardioprotective effects of AZL are mediated by the angiotensin converting enzyme (ACE)-2/ANG 1-7/Mas receptor (R) cascade. Control db/+ and db/db mice (n=5 per group) were treated with vehicle or AZL (1 or 3mg/kg/d oral gavage) from the age of 8 to 16weeks. Echocardiography was then performed and myocardial protein levels of ACE-2, Mas R, AT1R, AT2R, osteopontin, connective tissue growth factor (CTGF), atrial natriuretic peptide (ANP) and nitrotyrosine were measured by Western blotting. Oxidative DNA damage and inflammatory markers were assessed by immunofluorescence of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor (TNF)-α and interleukin 6 (IL-6). Compared with db/+ mice, the vehicle-treated db/db mice developed obesity, hyperglycemia, hyperinsulinemia and diastolic dysfunction along with cardiac hypertrophy and fibrosis. AZL treatment lowered blood pressure, fasting blood glucose and reduced peak plasma glucose during an oral glucose tolerance test. AZL-3 treatment resulted in a significant decrease in the expression of cytokines, oxidative DNA damage and cardiac dysfunction. Moreover, AZL-3 treatment significantly abrogated the downregulation of ACE-2 and Mas R protein levels in db/db mice. Furthermore, AZL treatment significantly reduced cardiac fibrosis, hypertrophy and their marker molecules (osteopontin, CTGF, TGF-β1 and ANP). Short-term treatment with AZL-3 reversed abnormal cardiac structural remodeling and partially improved glucose metabolism in db/db mice by modulating the ACE-2/ANG 1-7/Mas R pathway.
Collapse
|
35
|
Tan X, Jiao PL, Wang YK, Wu ZT, Zeng XR, Li ML, Wang WZ. The phosphoinositide-3 kinase signaling is involved in neuroinflammation in hypertensive rats. CNS Neurosci Ther 2017; 23:350-359. [PMID: 28191736 DOI: 10.1111/cns.12679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
AIMS It has been demonstrated that neuroinflammation is associated with cardiovascular dysfunction. The phosphoinositide-3 kinase (PI3K) signaling in the rostral ventrolateral medulla (RVLM), a key region for sympathetic outflow, is upregulated and contributes to increased blood pressure (BP) and sympathetic outflow in hypertension. This study was designed to determine the role of the PI3K signaling in neuroinflammation in the RVLM of hypertension. METHODS The normotensive WKY rats were performed by intracisternal infusion of lipopolysaccharide (LPS) or angiotensin II (Ang II) for inducing neuroinflammation. Elisa was used to determine the level of proinflammatory cytokines. Western blot was employed to detect the protein expression of PI3K signaling pathway. Gene silencing of PI3K p110δ subunit and overexpression of angiotensin-converting enzyme 2 (ACE2) were realized by injecting related lentivirus into the RVLM. RESULTS In the spontaneously hypertensive rats (SHR), the PI3K signaling in the RVLM was upregulated compared with WKY, gene silencing of PI3K in the RVLM significantly reduced BP and renal sympathetic nerve activity (RSNA), but also decreased the levels of proinflammatory cytokines. In the WKY rats, central infusion of LPS and Ang II significantly elevated BP and RSNA, but also increased the levels of proinflammatory cytokines and PI3K signaling activation in the RVLM. These changes in the Ang II-induced hypertension were effectively prevented by gene silencing of PI3K in the RVLM. Furthermore, overexpression of ACE2 in the RVLM significantly attenuated high BP and neuroinflammation, as well as decreased the activation of PI3K signaling in hypertensive rats. CONCLUSION This study suggests that the PI3K signaling in the RVLM is involved in neuroinflammation in hypertension and plays an important role in the renin-angiotensin system-mediated changes in neuroinflammation in the RVLM.
Collapse
Affiliation(s)
- Xing Tan
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Pei-Lei Jiao
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Yang-Kai Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Zhao-Tang Wu
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Xiao-Rong Zeng
- Institute of Cardiovascular Medical Research, West-South Medical University, Luzhou, China
| | - Miao-Ling Li
- Institute of Cardiovascular Medical Research, West-South Medical University, Luzhou, China
| | - Wei-Zhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| |
Collapse
|
36
|
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017; 127:43-54. [PMID: 28045398 DOI: 10.1172/jci88880] [Citation(s) in RCA: 412] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance.
Collapse
|
37
|
Tang A, Li C, Zou N, Zhang Q, Liu M, Zhang X. Angiotensin-(1-7) improves non-alcoholic steatohepatitis through an adiponectin-independent mechanism. Hepatol Res 2017; 47:116-122. [PMID: 26992300 DOI: 10.1111/hepr.12707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/15/2016] [Accepted: 03/11/2016] [Indexed: 01/12/2023]
Abstract
AIM Recent evidence suggests that angiotensin-(1-7) [Ang-(1-7)] could improve non-alcoholic steatohepatitis (NASH) through an adiponectin-dependent mechanism. This study aimed to investigate whether and how Ang-(1-7) influences NASH without adiponectin. METHODS Adiponectin knockout mice were fed with a high fat diet (HFD) or normal chow for 6 months, and were subsequently infused with Ang-(1-7) or saline for 2 weeks. RESULTS We found that HFD-fed mice showed obesity, hyperlipidemia, NASH, and significantly increased levels of serum Ang-(1-7). Chronic infusion of Ang-(1-7) could reduce body weight, absolute and relative liver weight, and serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol in HFD-fed mice. In addition, Ang-(1-7) treatment could attenuate hepatocellular inflammation, steatosis, and ballooning with activation of the hepatic AMP-activated protein kinase signaling pathway in HFD-fed knockout mice. CONCLUSIONS These results showed the protective role of Ang-(1-7) in the development of NASH through an adiponectin-independent mechanism, which may be partially attributed to the activation of hepatic AMP-activated protein kinase pathway.
Collapse
Affiliation(s)
- Ailian Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meiling Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade. PLoS One 2016; 11:e0167704. [PMID: 27992452 PMCID: PMC5167230 DOI: 10.1371/journal.pone.0167704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023] Open
Abstract
Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.
Collapse
|
39
|
Slamkova M, Zorad S, Krskova K. Alternative renin-angiotensin system pathways in adipose tissue and their role in the pathogenesis of obesity. Endocr Regul 2016; 50:229-240. [DOI: 10.1515/enr-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Adipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.
Collapse
Affiliation(s)
- M Slamkova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - S Zorad
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - K Krskova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
40
|
Shefer G, Marcus Y, Knoll E, Dolkart O, Foichtwanger S, Nevo N, Limor R, Stern N. Angiotensin 1-7 Is a Negative Modulator of Aldosterone Secretion In Vitro and In Vivo. Hypertension 2016; 68:378-84. [PMID: 27245181 DOI: 10.1161/hypertensionaha.116.07088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
Abstract
Angiotensin (1-7) [Ang 1-7] is a 7 amino acid peptide generated predominantly from Ang II by the action of Ang-converting enzyme 2. We previously showed that Ang 1-7 reduced plasma aldosterone and plasma renin activity in high fructose-fed rats, and that the reduction in circulating aldosterone seemed to accord a parallel reduction in plasma renin activity. Here, we tested the possibility that Ang 1-7 affects aldosterone secretion acting directly in glomerulosa cells. First, as detected by immunofluorescence, the receptor for Ang 1-7, Mas1 is localized predominantly at the rat adrenal subcapsular region. Second, in isolated rat glomerulosa cells incubates, Ang 1-7 attenuated the aldosterone response to Ang II, with the strongest effect seen on Ang II (10(-9) M) (control 22±2.5 pg/10(5) cells; Ang II [10(-9) M] 189±11 pg/10(5) cells; Ang II [10(-9) M]+Ang 1-7 [10(-6) M] 33±3.6 pg/10(5) cells; P<0.001) and the largest effect on adrenocorticotropic hormone (10(-8) M) (control 30±3.4 pg/10(5) cells; ACTH [10(-8) M] 409±32.5 pg/10(5) cells; ACTH [10(-8) M]+Ang 1-7 [10(-6) M] 280±12.5 pg/10(5) cells; P<0.001). In contrast, Ang 1-7 did not affect the aldosterone response to potassium (K(+)). In rats subjected to a low-salt diet for 7 days, continuous infusion of Ang 1-7 (576 μg/kg per day) resulted in a lesser rise in aldosterone (salt deplete+Ang 1-7, 16.4±4.8 ng/dL) compared with rats receiving vehicle (salt deplete+vehicle, 27.6±5.3 ng/dL; P<0.01) but did not modify plasma renin activity. Taken together, these results indicate that Ang 1-7 can act as a negative modulator of aldosterone secretion in vitro and in vivo.
Collapse
Affiliation(s)
- Gabi Shefer
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Yonit Marcus
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Esther Knoll
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Oleg Dolkart
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Shulamit Foichtwanger
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Nava Nevo
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Rona Limor
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.)
| | - Naftali Stern
- From the Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel (G.S., Y.M., E.K., S.F., R.L., N.S.); Division of Orthopedic Surgery, Shoulder Unit, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel (O.D.); and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (N.N.).
| |
Collapse
|
41
|
Bundalo MM, Zivkovic MD, Romic SD, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst 2016; 17:1470320316642915. [PMID: 27121972 PMCID: PMC5843877 DOI: 10.1177/1470320316642915] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/22/2016] [Indexed: 01/14/2023] Open
Abstract
Introduction: The cardiovascular renin–angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Materials and methods: Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. Results: In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats’ aortae, while only AT1R was upregulated in the FRD female rats’ aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. Conclusions: The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies.
Collapse
Affiliation(s)
- Maja M Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja D Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snjezana Dj Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana N Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Goran B Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Tamara M Djuric
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra D Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
42
|
Williams IM, Otero YF, Bracy DP, Wasserman DH, Biaggioni I, Arnold AC. Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure. Hypertension 2016; 67:983-91. [PMID: 26975707 DOI: 10.1161/hypertensionaha.115.06935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Angiotensin-(1-7) improves glycemic control in animal models of cardiometabolic syndrome. The tissue-specific sites of action and blood pressure dependence of these metabolic effects, however, remain unclear. We hypothesized that Ang-(1-7) improves insulin sensitivity by enhancing peripheral glucose delivery. Adult male C57BL/6J mice were placed on standard chow or 60% high-fat diet for 11 weeks. Ang-(1-7) (400 ng/kg per minute) or saline was infused subcutaneously during the last 3 weeks of diet, and hyperinsulinemic-euglycemic clamps were performed at the end of treatment. High-fat fed mice exhibited modest hypertension (systolic blood pressure: 137 ± 3 high fat versus 123 ± 5 mm Hg chow;P=0.001), which was not altered by Ang-(1-7) (141 ± 4 mm Hg;P=0.574). Ang-(1-7) did not alter body weight or fasting glucose and insulin in chow or high-fat fed mice. Ang-(1-7) increased the steady-state glucose infusion rate needed to maintain euglycemia in high-fat fed mice (31 ± 5 Ang-(1-7) versus 16 ± 1 mg/kg per minute vehicle;P=0.017) reflecting increased whole-body insulin sensitivity, with no effect in chow-fed mice. The improved insulin sensitivity in high-fat fed mice was because of an enhanced rate of glucose disappearance (34 ± 5 Ang-(1-7) versus 20 ± 2 mg/kg per minute vehicle;P=0.049). Ang-(1-7) enhanced glucose uptake specifically into skeletal muscle by increasing translocation of glucose transporter 4 to the sarcolemma. Our data suggest that Ang-(1-7) has direct insulin-sensitizing effects on skeletal muscle, independent of changes in blood pressure. These findings provide new insight into mechanisms by which Ang-(1-7) improves insulin action, and provide further support for targeting this peptide in cardiometabolic disease.
Collapse
Affiliation(s)
- Ian M Williams
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Yolanda F Otero
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Deanna P Bracy
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - David H Wasserman
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Italo Biaggioni
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.)
| | - Amy C Arnold
- From the Department of Molecular Physiology and Biophysics (I.M.W., Y.F.O., D.P.B., D.H.W.) and Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (I.B., A.C.A.).
| |
Collapse
|
43
|
|
44
|
Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, Parajuli N, Penninger JM, Grant MB, Lopaschuk GD, Oudit GY. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016; 65. [PMID: 26224885 PMCID: PMC4686955 DOI: 10.2337/db15-0399] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Mori
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Brent A McLean
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tharmarajan Ramprasath
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nirmal Parajuli
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria B Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada Department of Physiology, University of Alberta, Edmonton, Alberta, Canada Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Bader M, Alenina N, Andrade-Navarro MA, Santos RA. MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol Rev 2015; 66:1080-105. [PMID: 25244929 DOI: 10.1124/pr.113.008136] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Mas-related G protein-coupled receptors (Mrgprs or Mas-related genes) comprise a subfamily of receptors named after the first discovered member, Mas. For most Mrgprs, pruriception seems to be the major function based on the following observations: 1) they are relatively promiscuous in their ligand specificity with best affinities for itch-inducing substances; 2) they are expressed in sensory neurons and mast cells in the skin, the main cellular components of pruriception; and 3) they appear in evolution first in tetrapods, which have arms and legs necessary for scratching to remove parasites or other noxious substances from the skin before they create harm. Because parasites coevolved with hosts, each species faced different parasitic challenges, which may explain another striking observation, the multiple independent duplication and expansion events of Mrgpr genes in different species as a consequence of parallel adaptive evolution. Their predominant expression in dorsal root ganglia anticipates additional functions of Mrgprs in nociception. Some Mrgprs have endogenous ligands, such as β-alanine, alamandine, adenine, RF-amide peptides, or salusin-β. However, because the functions of these agonists are still elusive, the physiologic role of the respective Mrgprs needs to be clarified. The best studied Mrgpr is Mas itself. It was shown to be a receptor for angiotensin-1-7 and to exert mainly protective actions in cardiovascular and metabolic diseases. This review summarizes the current knowledge about Mrgprs, their evolution, their ligands, their possible physiologic functions, and their therapeutic potential.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Miguel A Andrade-Navarro
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| | - Robson A Santos
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B., N.A., M.A.A.-N.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Lübeck, Germany (M.B.); and Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (M.B., N.A., R.A.S.)
| |
Collapse
|
46
|
Antagonism of angiotensin 1-7 prevents the therapeutic effects of recombinant human ACE2. J Mol Med (Berl) 2015; 93:1003-13. [PMID: 25874965 DOI: 10.1007/s00109-015-1285-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED Activation of the angiotensin 1-7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1-7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1-7 action. Wild type male C57BL/6 mice (10-12 weeks old) were infused with Ang II (1.5 mg/kg/d) and treated with rhACE2 (2 mg/kg/d). The Ang 1-7 antagonist, A779 (200 ng/kg/min), was administered to a parallel group of mice. rhACE2 prevented Ang II-induced hypertrophy and diastolic dysfunction while A779 prevented these beneficial effects and precipitated systolic dysfunction. rhACE2 effectively antagonized Ang II-mediated myocardial fibrosis which was dependent on the action of Ang 1-7. Myocardial oxidative stress and matrix metalloproteinase 2 activity was further increased by Ang 1-7 inhibition even in the presence of rhACE2. Activation of Akt and endothelial nitric oxide synthase (eNOS) by rhACE2 were suppressed by the antagonism of Ang 1-7 while the activation of pathological signaling pathways was maintained. Blocking Ang 1-7 action prevents the therapeutic effects of rhACE2 in the setting of elevated Ang II culminating in systolic dysfunction. These results highlight a key cardioprotective role of Ang 1-7, and increased Ang 1-7 action represents a potential therapeutic strategy for cardiovascular diseases. KEY MESSAGES Activation of the renin-angiotensin system (RAS) plays a key pathogenic role in cardiovascular disease. ACE2, a monocarboxypeptidase, negatively regulates pathological effects of Ang II. Antagonizing Ang 1-7 prevents the therapeutic effects of recombinant human ACE2. Our results highlight a key protective role of Ang 1-7 in cardiovascular disease.
Collapse
|
47
|
Andrade JMO, Lemos FDO, da Fonseca Pires S, Millán RDS, de Sousa FB, Guimarães ALS, Qureshi M, Feltenberger JD, de Paula AMB, Neto JTM, Lopes MTP, Andrade HMD, Santos RAS, Santos SHS. Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1-7). Peptides 2014; 60:56-62. [PMID: 25102447 DOI: 10.1016/j.peptides.2014.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 02/06/2023]
Abstract
Angiotensin-(1-7) has been described as a new potential therapeutic tool for the treatment and prevention of metabolic disorders by regulating several pathways in visceral white adipose tissue (vWAT). The aim of this study was to access the proteins differentially regulated by Ang-(1-7) using proteomic analysis of visceral adipose tissue. Male mice were divided into three groups and fed for 60 days, with each group receiving one of the following diets: standard diet+HPβCD (ST), high fat diet+HPβCD (HFD) and high fat diet+Ang-(1-7)/HPβCD (HFD+Ang-(1-7)). Body weight, fat weight and food intake were measured. At the end of treatment, Ang-(1-7) induced a decrease in body and fat weight. Differential proteomic analysis using two-dimensional electrophoresis (2-DE) combined with mass spectrometry were performed. Results of protein mapping of mesenteric adipose tissue using 2-DE revealed the presence of about 450 spots in each gel (n=3/treatment) with great reproducibility (>70%). Image analysis and further statistical analysis allowed the detection and identification of eight proteins whose expression was modulated in response to HFD when compared to ST. Among these, two proteins showed a sensitive response to Ang-(1-7) treatment (eno1 and aldehyde dehydrogenase). In addition, three proteins were expressed statistically different between HFD+Ang-(1-7) and HFD groups, and four proteins were modulated compared to standard diet. In conclusion, comparative proteomic analysis of a mice model of diet-induced obesity allowed us to outline possible pathways involved in the response to Ang-(1-7), suggesting that Ang-(1-7) may be a useful tool for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- João Marcus Oliveira Andrade
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil; Nursing Department, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Fernanda de Oliveira Lemos
- Pharmacology Department, Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Simone da Fonseca Pires
- Parasitology Department, Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Frederico Barros de Sousa
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Mahboob Qureshi
- Touro University Nevada College of Osteopathic Medicine, Las Vegas, NV, United States
| | | | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Jaime Tolentino Miranda Neto
- Physical Training School, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Miriam Teresa Paz Lopes
- Pharmacology Department, Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Hélida Monteiro de Andrade
- Parasitology Department, Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Robson Augusto Souza Santos
- National Institute of Science and Technology (INCT-NanoBiofar), Physiology Department, Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil; Pharmacology Department, Biological Sciences Institute (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
48
|
Santos SHS, Andrade JMO. Angiotensin 1-7: a peptide for preventing and treating metabolic syndrome. Peptides 2014; 59:34-41. [PMID: 25017239 DOI: 10.1016/j.peptides.2014.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/14/2022]
Abstract
Angiotensin-(1-7) is one of the most important active peptides of the renin-angiotensin system (RAS) with recognized cardiovascular relevance; however several studies have shown the potential therapeutic role of Ang-(1-7) on treating and preventing metabolic disorders as well. This peptide achieves a special importance considering that in the last few decades obesity and metabolic syndrome (MS) have become a growing worldwide health problem. Angiotensin (Ang) II is the most studied component of RAS and is increased during obesity, diabetes and dyslipidemia (MS); some experimental evidence has shown that Ang II modulates appetite and metabolism as well as mechanisms that induce adipose tissue growth and metabolism in peripheral organs. Recent articles demonstrated that Ang-(1-7)/Mas axis modulates lipid and glucose metabolism and counterregulates the effects of Ang II. Based on these data, angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas pathway activation have been advocated as a new tool for treating metabolic diseases. This review summarizes the new evidence from animal and human experiments indicating the use of Ang-(1-7) in prevention and treatment of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Sérgio Henrique Sousa Santos
- Pharmacology Department, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil.
| | - João Marcus Oliveira Andrade
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
49
|
Rubio-Ruíz ME, Del Valle-Mondragón L, Castrejón-Tellez V, Carreón-Torres E, Díaz-Díaz E, Guarner-Lans V. Angiotensin II and 1-7 during aging in Metabolic Syndrome rats. Expression of AT1, AT2 and Mas receptors in abdominal white adipose tissue. Peptides 2014; 57:101-8. [PMID: 24819472 DOI: 10.1016/j.peptides.2014.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
Abstract
Renin-Angiotensin System (RAS) plays an important role in the development of Metabolic Syndrome (MS) and in aging. Angiotensin 1-7 (Ang 1-7) has opposite effects to Ang II. All of the components of RAS are expressed locally in adipose tissue and there is over-activation of adipose RAS in obesity and hypertension. We determined serum and abdominal adipose tissue Ang II and Ang 1-7 in control and MS rats during aging and the expression of AT1, AT2 and Mas in white adipose tissue. MS was induced by sucrose ingestion during 6, 12 and 18 months. During aging, an increase in body weight, abdominal fat and dyslipidemia were found but increases in aging MS rats were higher. Control and MS concentrations of serum Ang II from 6-month old rats were similar. Aging did not modify Ang II seric concentration in control rats but decreased it in MS rats. Ang II levels increased in WAT from both groups of rats. Serum and adipose tissue Ang 1-7 increased during aging in MS rats. Western blot analysis revealed that AT1 expression increased in the control group during aging while AT2 and Mas remained unchanged. In MS rats, AT1 and AT2 expression decreased significantly in aged rats. The high concentration of Ang 1-7 and adiponectin in old MS rats might be associated to an increased expression of PPAR-γ. PPAR-γ was increased in adipose tissue from MS rats. It decreased with aging in control rats and showed no changes during aging in MS rats. Ang 1-7/Mas axis was the predominant pathway in WAT from old MS animals and could represent a potential target for therapeutical strategies in the treatment of MS during aging.
Collapse
Affiliation(s)
- M E Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico D.F., Mexico
| | - L Del Valle-Mondragón
- Department of Pharmacology, Instituto Nacional de Cardiología ``Ignacio Chávez'' Mexico D.F., Mexico
| | - V Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico D.F., Mexico
| | - E Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología ``Ignacio Chávez'' Mexico D.F., Mexico
| | - E Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubirán", Mexico D.F., Mexico
| | - V Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico D.F., Mexico.
| |
Collapse
|
50
|
Chronic oral administration of Ang-(1-7) improves skeletal muscle, autonomic and locomotor phenotypes in muscular dystrophy. Clin Sci (Lond) 2014; 127:101-9. [PMID: 24502705 DOI: 10.1042/cs20130602] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Muscular dystrophies are a group of heterogeneous genetic disorders that cause progressive muscle weakness and wasting, dilated cardiomyopathy and early mortality. There are different types of muscular dystrophies with varying aetiologies but they all have a common hallmark of myofibre degeneration, atrophy and decreased mobility. Mutation in Sgcd (sarcoglycan-δ), a subunit of dystrophin glycoprotein complex, causes LGMD2F (limb girdle muscular dystrophy 2F). Previously, we have reported that Sgcd-deficient (Sgcd-/-) mice exhibit AngII (angiotensin II)-induced autonomic and skeletal muscle dysfunction at a young age, which contributes to onset of dilated cardiomyopathy and mortality at older ages. Two counter-regulatory RAS (renin-angiotensin system) pathways have been identified: deleterious actions of AngII acting on the AT1R (AngII type 1 receptor) compared with the protective actions of Ang-(1-7) [angiotensin-(1-7)] acting on the receptor Mas. We propose that the balance between the AngII/AT1R and Ang-(1-7)/Mas axes is disturbed in Sgcd-/- mice. Control C57BL/6J and Sgcd-/- mice were treated with Ang-(1-7) included in hydroxypropyl β-cyclodextrin (in drinking water) for 8-9 weeks beginning at 3 weeks of age. Ang-(1-7) treatment restored the AngII/AT1R compared with Ang-(1-7)/Mas balance, decreased oxidative stress and fibrosis in skeletal muscle, increased locomotor activity, and prevented autonomic dysfunction without lowering blood pressure in Sgcd-/- mice. Our results suggest that correcting the early autonomic dysregulation by administering Ang-(1-7) or enhancing its endogenous production may provide a novel therapeutic approach in muscular dystrophy.
Collapse
|