1
|
Badii M, Nica V, Straton AR, Kischkel B, Gaal O, Cabău G, Klück V, Hotea I, Novakovic B, Pamfil C, Rednic S, Netea MG, Popp RA, Joosten LAB, Crișan TO. Downregulation of type I interferon signalling pathway by urate in primary human PBMCs. Immunology 2025; 174:100-112. [PMID: 39354748 DOI: 10.1111/imm.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Type I interferons (IFN1s) mediate innate responses to microbial stimuli and regulate interleukin (IL)-1 and IL-1 receptor antagonist (Ra) production in human cells. This study explores interferon-stimulated gene (ISG) alterations in the transcriptome of patients with gout and stimulated human primary cells in vitro in relation to serum urate concentrations. Peripheral blood mononuclear cells (PBMCs) and monocytes of patients with gout were primed in vitro with soluble urate, followed by lipopolysaccharide (LPS) stimulation. Separately, PBMCs were stimulated with various toll-like receptor (TLR) ligands. RNA sequencing and IL-1Ra cytokine measurement were performed. STAT1 phosphorylation was assessed in urate-treated monocytes. Cytokine responses to IFN-β were evaluated in PBMCs cultured with or without urate and restimulated with LPS and monosodium urate (MSU) crystals. Transcriptomics revealed suppressed IFN-related signalling pathways in urate-exposed PBMCs or monocytes which was supported by diminishment of phosphorylated STAT1. The stimulation of PBMCs with IFN-β did not modify the urate-induced inflammation. Interestingly, in vivo, serum urate concentrations were inversely correlated to in vitro ISG expression upon stimulations with TLR ligands. These findings support a deficient IFN1 signalling in the presence of elevated serum urate concentrations, which could translate to increased susceptibility to infections.
Collapse
Affiliation(s)
- Medeea Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Valentin Nica
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuța R Straton
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Brenda Kischkel
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Orsolya Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Georgiana Cabău
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Viola Klück
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ioana Hotea
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Cristina Pamfil
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Rednic
- Department of Rheumatology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Radu A Popp
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine and Research Institute for Medical Innovation, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Yang Y, Wang TT, Xie HA, Hu PP, Li P. Experimental cell models of insulin resistance: overview and appraisal. Front Endocrinol (Lausanne) 2024; 15:1469565. [PMID: 39749015 PMCID: PMC11693592 DOI: 10.3389/fendo.2024.1469565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Insulin resistance, a key factor in the development of type 2 diabetes mellitus (T2DM), is defined as a defect in insulin-mediated control of glucose metabolism in tissues such as liver, fat and muscle. Insulin resistance is a driving force behind various metabolic diseases, such as T2DM, hyperlipidemia, hypertension, coronary heart disease and fatty liver. Therefore, improving insulin sensitivity can be considered as an effective strategy for the prevention and treatment of these complex metabolic diseases. Cell-based models are extensively employed for the study of pathological mechanisms and drug screening, particularly in relation to insulin resistance in T2DM. Currently, numerous methods are available for the establishment of in vitro insulin resistance models, a comprehensive review of these models is required and can serve as an excellent introduction or understanding for researchers undertaking studies in this filed. This review examines and discusses the primary methods for establishing and evaluating insulin resistance cell models. Furthermore, it highlights key issues and suggestions on cell selection, establishment, evaluation and drug screening of insulin resistance, thereby providing valuable references for the future research efforts.
Collapse
Affiliation(s)
- Ying Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ting-ting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hu-ai Xie
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Ping Ping Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Research Laboratory for Drug Metabolism, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Li Y, Zeng Q, Peng D, Hu P, Luo J, Zheng K, Yin Y, Si R, Xiao J, Li S, Fu J, Liu J, Huang Y. Association of remnant cholesterol with insulin resistance and type 2 diabetes: mediation analyses from NHANES 1999-2020. Lipids Health Dis 2024; 23:404. [PMID: 39695677 DOI: 10.1186/s12944-024-02393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Previous studies have established a correlation between elevated levels of remnant cholesterol (RC) and the occurrence of type 2 diabetes mellitus (T2D) as well as insulin resistance (IR); however, the precise nature of these associations remains incompletely elucidated. This study aimed to evaluate the relationships between RC and IR, as well as RC and T2D, and to determine the extent to which IR mediated the relationship between RC and T2D. METHODS This was an observational study that utilized cross-sectional methods to examine the general population in the National Health and Nutrition Examination Survey (NHANES) 1999-2020. The participants were divided into 4 groups according to the RC quartiles. The outcome was the prevalence of IR and T2D. Survey-weighted binary logistic regression analysis was used to analyze the associations, and the restricted cubic spline (RCS) curve was used to further analyze the nonlinear relationship. Receiver operating characteristic (ROC) curves were generated to evaluate the diagnostic performance, and the areas under the curves (AUC) of RC, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) were compared using the DeLong test. The mediating effect of IR on the relationship between RC and T2D was evaluated through mediation analysis. RESULTS A total of 23,755 participants (46.02 ± 18.48 years, 48.8% male) were included in our study. Higher RC levels were significantly associated with increased prevalence of both IR and T2D. After adjusting for potential confounders, logistic regression analysis showed that higher RC quartiles were associated with the increased prevalence of IR [Quartile 4 vs. Quartile 1: odds ratio (OR) (95% confidence interval, CI): 1.65 (1.41-1.94), p < 0.001] and T2D [Quartile 4 vs. Quartile 1: OR (95% CI): 1.24 (1.03-1.50), p = 0.024]. RCS analysis revealed two distinct nonlinear relationships: one between RC levels and the prevalence of IR (nonlinear p < 0.001), and another between RC levels and the prevalence of T2D (nonlinear p < 0.001). ROC curve analysis demonstrated that RC had the highest discriminative ability, significantly outperforming LDL-C, HDL-C, and TG in predicting both IR and T2D risk (all P < 0.001 by DeLong test). Mediation analysis revealed that IR significantly mediated the relationship between RC and T2D, with approximately 54.1% of the effect of RC on T2D being indirect through IR. CONCLUSIONS Higher RC level was associated with increased prevalence of IR and T2D. IR mediated 54.1% of the association between RC and T2D, suggesting that managing IR could be crucial in reducing the risk of T2D in individuals with elevated RC levels.
Collapse
Affiliation(s)
- Yuying Li
- School of Basic Medical Sciences, Capital medical university, Beijing, China
| | - Qiao Zeng
- School of Medical Technology and Nursing, Ji'an College, Ji'an, Jiangxi, China
| | - Danping Peng
- Department of Endocrinology, Ji'an Central Hospital, Ji'an, Jiangxi, China
| | - Pingsheng Hu
- Department of Respiratory and Critical Care Medicine, Ji'an Central Hospital, Ji'an, Jiangxi, China
| | - Jiahua Luo
- Department of Neurology, Ji'an Central Hospital, Ji'an, Jiangxi, China
| | - Keyang Zheng
- Department of General Practice, Beijing Nuclear Industry Hospital, Beijing, China
| | - Yuzhe Yin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rite Si
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, National Clinical Research Center for Mental Disorders &National Center for Mental Disorders, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jingyi Xiao
- The Sixth Clinical Medical School, Capital Medical University, Beijing, China
| | - Shaofen Li
- Department of Laboratory, Ji'an Central Hospital, Ji'an, Jiangxi, China
| | - Jinxiang Fu
- Department of Endocrinology, Ji'an Central Hospital, Ji'an, Jiangxi, China
| | - Jinping Liu
- Department of Endocrinology, Ji'an Central Hospital, Ji'an, Jiangxi, China
| | - Yuqing Huang
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, No.1,Quanshuiyan Road,Jizhou District, Ji'an City, 343000, Jiangxi Province, China.
| |
Collapse
|
4
|
Maloberti A, Tognola C, Garofani I, Algeri M, Shkodra A, Bellantonio V, Le Van M, Pedroli S, Campana M, Toscani G, Bombelli M, Giannattasio C. Uric acid and metabolic syndrome: Importance of hyperuricemia cut-off. Int J Cardiol 2024; 417:132527. [PMID: 39244097 DOI: 10.1016/j.ijcard.2024.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The relationship between HyperUricemia (HU) and Metabolic Sindrome (MS) and if Uric Acid (UA) should be inserted into MS definitions is a matter of debate. Aim of our study was to evaluate the correlation between UA and HU with Insulin Resistance (IR) and MS in a population of hypertensive patients. HU was defined with two cut-offs (the classic one of ≥6 mg/dL for women and ≥ 7 for men; the newly proposed URRAH one with ≥5.6 mg/dL for both sexes). METHODS We enrolled 473 Hypertensive patients followed by the Hypertension Unit of San Gerardo Hospital (Monza, Italy). IR was defined through TG/HDL ratio and NCEP-ATP-III criteria were used for MS diagnosis. RESULTS MS was found in 33.6 % while HU affected 14.8 % of subjects according to the traditional cut-off and 35.9 % with the URRAH cut-off. 9.7 % (traditional cut-off) and 17.3 % (URRAH's threshold) of the subjects had both HU and MS. UA level was significantly higher in MS group (5.7 vs 4.9 mg/dL, p < 0.0001) as well as for HU (29.0 vs 7.6 % and 51.6 vs 28.0 %, for classic and URRAH cut-off respectively, p < 0.0001 for both comparison). Logistic multivariable regression models showed that UA is related to MS diagnosis (OR = 1.608 for each 1 mg/dL), as well as HU with both cut-off (OR = 5.532 and OR = 3.379, p < 0.0001 for all comparison, for the classic cut-off and the URRAH one respectively). CONCLUSIONS The main finding of our study is that UA and HU significantly relate to IR and MS. The higher the values of UA and the higher the cut-off used, the higher the strength of the relationship.
Collapse
Affiliation(s)
- Alessandro Maloberti
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy; Cardiology 4, "A.De Gasperis" Cardio Center, ASST GOM Niguarda Ca' Granda, Milan, Italy.
| | - Chiara Tognola
- Cardiology 4, "A.De Gasperis" Cardio Center, ASST GOM Niguarda Ca' Granda, Milan, Italy
| | - Ilaria Garofani
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy
| | - Michela Algeri
- Cardiology 4, "A.De Gasperis" Cardio Center, ASST GOM Niguarda Ca' Granda, Milan, Italy
| | - Atea Shkodra
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy
| | | | - Marco Le Van
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy
| | - Stefano Pedroli
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy
| | - Marta Campana
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy
| | - Giorgio Toscani
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy
| | - Michele Bombelli
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy; Internal Medicine, Pio XI Hospital of Desio, ASST Brianza, Desio, Italy
| | - Cristina Giannattasio
- School of Medicine and surgery, University of Milano-Bicocca, Milan, Italy; Cardiology 4, "A.De Gasperis" Cardio Center, ASST GOM Niguarda Ca' Granda, Milan, Italy
| |
Collapse
|
5
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Gong Z, Zhang L, Shi Y. The potential role of uric acid in women with polycystic ovary syndrome. Gynecol Endocrinol 2024; 40:2323725. [PMID: 39718393 DOI: 10.1080/09513590.2024.2323725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 12/25/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder among women of reproductive age and is associated with a variety of multi-system complications. The prevailing treatment strategy for PCOS is to individualize the interventions based on individual symptoms and patient complaints. However, optimal efficacy in treatment necessitates a focus on addressing the underlying pathogenic mechanisms. Uric acid (UA), the end product of purine metabolism, has been suggested to be involved in the development of several diseases, including PCOS. However, the precise mechanisms by which UA may affect PCOS remain incompletely understood. This literature review aims to investigate the correlation between UA and the various clinical presentations of PCOS, such as hyperandrogenism, insulin resistance (IR), ovulation disorders, obesity, and other related manifestations, through the analysis of epidemiological and clinical studies. The purpose of this study is to improve our comprehension of how UA contributes to each aspect of PCOS and their interrelationship, thus identifying the potential role of UA as a facilitator of PCOS. Furthermore, we explore potential pathways linking UA and PCOS, and propose therapeutic interventions based on these findings to optimize the management of this condition.
Collapse
Affiliation(s)
- Zhentao Gong
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Lingshan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yingli Shi
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
7
|
Kearns ML, Reynolds CM. The impact of non-nutritive sweeteners on fertility, maternal and child health outcomes: a review of human and animal studies. Proc Nutr Soc 2024; 83:280-292. [PMID: 38433591 DOI: 10.1017/s0029665124000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
There is significant evidence that an unhealthy diet greatly increases the risk of complications during pregnancy and predisposes offspring to metabolic dysfunction and obesity. While fat intake is typically associated with the onset of obesity and its comorbidities, there is increasing evidence linking sugar, particularly high fructose corn syrup, to the global rise in obesity rates. Furthermore, the detrimental effects of added sugar intake during pregnancy on mother and child have been clearly outlined. Guidelines advising pregnant women to avoid food and beverages with high fat and sugar have led to an increase in consumption of 'diet' or 'light' options. Examination of some human birth cohort studies shows that heavy consumption (at least one beverage a day) of non-nutritive sweetener (NNS) containing beverages has been associated with increased risk of preterm birth and increased weight/BMI in male offspring independent of maternal weight, which appears to be offset by breastfeeding for 6 months. Rodent models have shown that NNS exposure during pregnancy can impact maternal metabolic health, adipose tissue function, gut microbiome profiles and taste preference. However, the mechanisms underlying these effects are multifaceted and further research, particularly in a translational setting is required to fully understand the effects of NNS on maternal and infant health during pregnancy. Therefore, this review examines maternal sweetener intakes and their influence on fertility, maternal health outcomes and offspring outcomes in human cohort studies and rodent models.
Collapse
Affiliation(s)
- Michelle L Kearns
- School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - Clare M Reynolds
- School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
8
|
Wang WR, Yang YZ, Xing Y, Zhou ZA, Jiang QY, Huang LY, Kong LD, Zhang DM. The trans-differentiation promotion of parietal epithelial cells by magnesium isoglycyrrhizinate to improve podocyte injury induced by high fructose consumption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156242. [PMID: 39566408 DOI: 10.1016/j.phymed.2024.156242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Podocytes have limited proliferative capacity, which leads to irreversible glomerular injury in diverse kidney diseases. Magnesium isoglycyrrhizinate (MgIG), a hepatoprotective agent in clinic, has been reported to improve glomerular podocyte injury. However, the underlying mechanism of MgIG in ameliorating podocyte injury remains unclear. PURPOSE Glomerular parietal epithelial cells (PECs) are recognized as podocyte progenitors and play a pivotal role in the recovery following glomerular injury. This work aims to investigate the protective mechanisms of MgIG in mitigating glomerular injury by promoting PEC trans-differentiation. STUDY DESIGN A rat model of progressive glomerular podocyte injury, and in vitro models using the primary podocytes and primary PECs, were established to further explore the pharmacological mechanism of MgIG. METHODS Four-week-old male Sprague-Dawley (SD) rats were fed a 10 % fructose solution for 3, 6, 9 and 12 weeks to induce glomerular injury. The effects of MgIG on the progressive changes in podocytes and PECs, and the correlation between PEC density and podocyte loss, were analyzed. The mechanism of MgIG in triggering PEC trans-differentiation was investigated, by examining adenosine secretion in injured podocytes, as well as the expression of cluster of differentiation 44 (CD44), nephrin, adenosine receptor A2B (ARA2B) and glucocorticoid receptor (GR) in PECs both in vivo and in vitro. RESULTS Rats fed a high fructose diet exhibited progressive changes in glomerular PECs, including increased cell density and a preference for trans-differentiation. A positive correlation was observed between PEC density and podocyte loss. Co-culture experiments demonstrated that extracellular adenosine accumulation from injured podocytes induced by high fructose exposure promoted PEC trans-differentiation via ARA2B. MgIG significantly improved podocyte injury and exhibited effects similar to dexamethasone on nephrin upregulation and CD44 inhibition. Moreover, the effect of MgIG on PEC ARA2B activation was more effective than that of dexamethasone. The co-expression of paired box 2 (PAX2)+-Nephrin+ in glomeruli indicated that MgIG induced PEC trans-differentiation and podocyte regeneration in model rats. Accordingly, podocyte loss and increased urine albumin-to-creatinine ratio (UACR) were also alleviated. Moreover, MgIG, which acts as a GR agonist to activate GR, reversed the upregulation of CD44 and decreased ARA2B induced by tumor necrosis factor-α (TNF-α) in primary PECs. The siRNA interference experiment manifested that MgIG exhibited a more pronounced enhancement of GR upregulation, in contrast to ARA2B activation, to promote PEC trans-differentiation. CONCLUSION This work reports for the first time that PECs respond to the accumulation of extracellular adenosine from injured podocytes via activating ARA2B and focuses on the role of adenosine and adenosine receptors in the trans-differentiation of PECs. Furthermore, this study provides the first evidence that MgIG may promote podocyte regeneration by enhancing PEC trans-differentiation through GR activation, providing a research basis for investigating the glucocorticoid-like activity of MgIG in ameliorating glomerular podocyte injury.
Collapse
Affiliation(s)
- Wan-Ru Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Ying-Zhi Yang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Yu Xing
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Zi-Ang Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Qiao-Yun Jiang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Lu-Yi Huang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Ling-Dong Kong
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Dong-Mei Zhang
- School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
9
|
Masand M, Sharma S, Kumari S, Pal P, Majeed A, Singh G, Sharma RK. High-quality haplotype-resolved chromosome assembly provides evolutionary insights and targeted steviol glycosides (SGs) biosynthesis in Stevia rebaudiana Bertoni. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3262-3277. [PMID: 39283816 PMCID: PMC11606428 DOI: 10.1111/pbi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/28/2024] [Accepted: 07/26/2024] [Indexed: 11/27/2024]
Abstract
Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of S. rebaudiana. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in S. rebaudiana.
Collapse
Affiliation(s)
- Mamta Masand
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shikha Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sangeeta Kumari
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Poonam Pal
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aasim Majeed
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Gopal Singh
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ram Kumar Sharma
- CSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
10
|
Xu C, Wu M, Yu W, Xie D, Wang Q, Chen B, Xi Y, Yu L, Yan Y, Yamamoto T, Koyama H, Zhao H, Cheng J. High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling. Antioxid Redox Signal 2024; 41:1134-1149. [PMID: 39113539 DOI: 10.1089/ars.2023.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aims: High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. Results: We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). N-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. Innovation: We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. Conclusions: Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. Antioxid. Redox Signal. 41, 1134-1149.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764 Neuherberg, Bavaria, Germany
| | - Mengni Wu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Linqian Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunbo Yan
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Tetsuya Yamamoto
- Department of Diabetes, Endocrinology, and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology, and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Department of Diabetes, Endocrinology, and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
11
|
Tao Y, Wang T, Zhou W, Zhu L, Yu C, Bao H, Li J, Cheng X. Threshold effect of atherogenic index of plasma on type 2 diabetes mellitus and modification by uric acid in normal-weight adults with hypertension. Front Endocrinol (Lausanne) 2024; 15:1495340. [PMID: 39665019 PMCID: PMC11631599 DOI: 10.3389/fendo.2024.1495340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Background The association between atherogenic index of plasma (AIP) and type 2 diabetes mellitus (T2DM) in normal-weight individuals with hypertension remains unclear. This study seeks to elucidate this relationship in normal-weight adults with hypertension. Methods This cross-sectional study included 8,258 normal-weight adults with hypertension from the China Hypertension Registry Study. The AIP was calculated as log10 (triglycerides/high-density lipoprotein cholesterol). The multivariate logistic regression, generalized additive model, smooth fitting curve, sensitivity analyses, two-part logistic regression, and subgroup analyses were conducted to detect the correlation between AIP and T2DM. Results The mean age of the study population was 64.89 ± 8.97 years, with an overall prevalence of T2DM of 15.55%. Multivariate logistic regression analyses indicated that there was a positive and independent relationship between AIP and T2DM (OR: 3.73; 95% CI: 2.82, 4.94). Threshold effect analysis identified a J-shaped association between AIP and T2DM, with an inflection point at 0. Additionally, an interaction between hyperuricemia and AIP was observed (P for interaction = 0.034). Conclusions In normal-weight adults with hypertension, there was a J-shaped association between AIP and T2DM, with an inflection point at 0. the correlation between AIP and T2DM was more pronounced in individuals with hyperuricemia compared to those with normal uric acid.
Collapse
Affiliation(s)
- Yu Tao
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
| | - Tao Wang
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Zhou
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lingjuan Zhu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Yu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Ji W, Li H, Qi Y, Zhou W, Chang Y, Xu D, Wei Y. Association between neutrophil-percentage-to-albumin ratio (NPAR) and metabolic syndrome risk: insights from a large US population-based study. Sci Rep 2024; 14:26646. [PMID: 39496695 PMCID: PMC11535182 DOI: 10.1038/s41598-024-77802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of conditions that increase the risk of cardiovascular disease and diabetes. This study aimed to investigate the association between Neutrophil-Percentage-to-Albumin Ratio (NPAR) and MetS in a large, nationally representative US population. We analyzed data from 28,178 participants in the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Logistic regression models were used to evaluate the association between NPAR and MetS. Restricted cubic spline (RCS) models were employed to assess the dose-response relationship. Mediation analyses were conducted to explore potential mediating effects of serum uric acid and triglyceride-glucose (TyG) index. After adjusting for confounders, participants in the highest NPAR quartile had a 14% higher risk of MetS compared to those in the lowest quartile (OR 1.14, 95%CI 1.03-1.27, P = 0.010). RCS models revealed a monotonic increasing trend between NPAR and MetS risk (P for overall association = 0.002). Mediation analyses showed that serum uric acid and TyG index mediated 14.93% and 29.45% of the total effect of NPAR on MetS, respectively. Subgroup analyses indicated that the positive association between NPAR and MetS was more pronounced in Mexican Americans, individuals aged 20-65 years, those with lower income, males, current smokers, and moderate drinkers. Higher NPAR is associated with increased risk of MetS in the US adult population. This association is partially mediated by serum uric acid and TyG index. These findings suggest that NPAR may serve as a novel biomarker for MetS risk assessment and provide insights into potential mechanisms linking inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Wei Ji
- The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130012, China
| | - Hongwei Li
- The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130012, China
| | - Yue Qi
- The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130012, China
| | - Wenshuo Zhou
- The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130012, China
| | - Yu Chang
- The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130012, China
| | - Dongsheng Xu
- The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130012, China.
| | - Yuxi Wei
- Pharmacy Department of Medical Security Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
13
|
İlhan İ, Ascı H, Buyukbayram Hİ, Imeci OB, Sevuk MA, Erol Z, Aksoy F, Milletsever A. The Impact of the High-Fructose Corn Syrup on Cardiac Damage via SIRT1/PGC1-α Pathway: Potential Ameliorative Effect of Selenium. Biol Trace Elem Res 2024; 202:5166-5176. [PMID: 38305829 PMCID: PMC11442503 DOI: 10.1007/s12011-024-04081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
High-fructose corn syrup (HFCS) has been a subject of intense debate due to its association with cardiovascular risks. This study investigates the potential protective effects of selenium (Se) supplementation against cardiac damage induced by HFCS. Thirty-two male Wistar albino rats were divided into four equal groups: control, CS (20%-HFCS), CS with Se (20%-HFCS, 0.3 mg/kg-Se), and Se (0.3 mg/kg-Se) only. After a 6-week period, heart and aorta tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analyses. HFCS consumption led to severe cardiac pathologies, increased oxidative stress, and altered gene expressions associated with inflammation, apoptosis, and antioxidant defenses. In the CS group, pronounced oxidative stress within the cardiac tissue was concomitant with elevated Bcl-2-associated X protein (Bax) expression and diminished expressions of B-cell-lymphoma-2 (Bcl-2), nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), and silenced information regulator 1 (SIRT1). Se supplementation mitigated these effects, showing protective properties. Immunohistochemical analysis supported these findings, demonstrating decreased expressions of caspase-3, tumor necrosis factor-alpha (TNF-α), IL-1β, and vascular endothelial growth factor (VEGF) in the CS + Se group compared to the CS group. The study suggests that Se supplementation exerts anti-inflammatory, antioxidant, and antiapoptotic effects, potentially attenuating HFCS-induced cardiovascular toxicity. These findings highlight the importance of dietary considerations and selenium supplementation in mitigating cardiovascular risks associated with HFCS consumption.
Collapse
Affiliation(s)
- İlter İlhan
- Faculty of Medicine, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Ascı
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | | | - Orhan Berk Imeci
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Abdulkadir Sevuk
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Zeki Erol
- Faculty of Veterinary, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Fatih Aksoy
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
- Faculty of Medicine, Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Adem Milletsever
- Faculty of Veterinary, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
14
|
Myers JW, Park WY, Eddie AM, Shinde AB, Prasad P, Murphy AC, Leonard MZ, Pinette JA, Rampy JJ, Montufar C, Shaikh Z, Hickman TT, Reynolds GN, Winn NC, Lantier L, Peck SH, Coate KC, Stein RW, Carrasco N, Calipari ES, McReynolds MR, Zaganjor E. Systemic inhibition of de novo purine biosynthesis prevents weight gain and improves metabolic health by increasing thermogenesis and decreasing food intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620705. [PMID: 39553975 PMCID: PMC11566042 DOI: 10.1101/2024.10.28.620705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective Obesity is a major health concern, largely because it contributes to type 2 diabetes mellitus (T2DM), cardiovascular disease, and various malignancies. Increase in circulating amino acids and lipids, in part due to adipose dysfunction, have been shown to drive obesity-mediated diseases. Similarly, elevated purines and uric acid, a degradation product of purine metabolism, are found in the bloodstream and in adipose tissue. These metabolic changes are correlated with metabolic syndrome, but little is known about the physiological effects of targeting purine biosynthesis. Methods To determine the effects of purine biosynthesis on organismal health we treated mice with mizoribine, an inhibitor of inosine monophosphate dehydrogenase 1 and 2 (IMPDH1/2), key enzymes in this pathway. Mice were fed either a low-fat (LFD; 13.5% kcal from fat) or a high-fat (HFD; 60% kcal from fat) diet for 30 days during drug or vehicle treatment. We ascertained the effects of mizoribine on weight gain, body composition, food intake and absorption, energy expenditure, and overall metabolic health. Results Mizoribine treatment prevented mice on a HFD from gaining weight, but had no effect on mice on a LFD. Body composition analysis demonstrated that mizoribine significantly reduced fat mass but did not affect lean mass. Although mizoribine had no effect on lipid absorption, food intake was reduced. Furthermore, mizoribine treatment induced adaptive thermogenesis in skeletal muscle by upregulating sarcolipin, a regulator of muscle thermogenesis. While mizoribine-treated mice exhibited less adipose tissue than controls, we did not observe lipotoxicity. Rather, mizoribine-treated mice displayed improved glucose tolerance and reduced ectopic lipid accumulation. Conclusions Inhibiting purine biosynthesis prevents mice on a HFD from gaining weight, and improves their metabolic health, to a significant degree. We also demonstrated that the purine biosynthesis pathway plays a previously unknown role in skeletal muscle thermogenesis. A deeper mechanistic understanding of how purine biosynthesis promotes thermogenesis and decreases food intake may pave the way to new anti-obesity therapies. Crucially, given that many purine inhibitors have been FDA-approved for use in treating various conditions, our results indicate that they may benefit overweight or obese patients.
Collapse
Affiliation(s)
- Jacob W. Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander M. Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abhijit B. Shinde
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael Z. Leonard
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Julia A. Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jessica J. Rampy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tara T. Hickman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Garrett N. Reynolds
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, USA
| | - Sun H. Peck
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Katie C. Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Feng D, Wang X, Song J, Yang H, Peng Y, Wang X, Chen W, Li P, Fang Y, Shi B, Li D. Association of uric acid and fructose levels in polycystic ovary syndrome. Hum Reprod 2024; 39:2575-2586. [PMID: 39380170 DOI: 10.1093/humrep/deae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
STUDY QUESTION Is there a relationship between serum uric acid and fructose levels in polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Elevated serum uric acid levels in women with PCOS positively correlate with serum fructose levels, and elevated serum fructose levels are an independent risk factor for hyperuricemia in women with PCOS. WHAT IS KNOWN ALREADY Our previous study suggested a link between elevated serum fructose levels and PCOS. Fructose is unique as it generates uric acid during metabolism, and high uric acid levels are associated with metabolic disorders and an increased risk of anovulation. However, the relationship between serum uric acid and fructose levels in women with PCOS remains unclear. STUDY DESIGN, SIZE, DURATION In a case-control study of 774 women (482 controls and 292 patients with PCOS) between May and October 2020 at the Shengjing Hospital of China Medical University, the relationship between uric acid and fructose levels in women with PCOS was examined. Participants were divided into subgroups based on various factors, including BMI, insulin resistance, dyslipidemia, metabolic syndrome, and hyperuricemia. PARTICIPANTS/MATERIALS, SETTING, METHODS Serum uric acid concentrations were measured using enzymatic assays, and serum fructose levels were determined using a fluorescent enzyme immunoassay. Dietary fructose data were collected through a validated food-frequency questionnaire of 81 food items. We applied restricted cubic splines to a flexibly model and visualized the linear/nonlinear relationships between serum uric acid and fructose levels in PCOS. Multivariate logistic analysis was executed to assess the association between serum fructose levels and hyperuricemia in PCOS. Human granulosa cell and oocyte mRNA profile sequencing data were downloaded for mapping uric acid and fructose metabolism genes in PCOS. Further downstream analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interactions were then carried out on the differentially expressed genes (DEGs). The correlation between uric acid and fructose metabolism genes was calculated using the Pearson correlation coefficient. The GeneCards database was used to identify DEGs related to uric acid and fructose metabolism in PCOS, and then several DEGs were confirmed by quantitative real-time PCR. MAIN RESULTS AND THE ROLE OF CHANCE Both serum fructose and uric acid levels were significantly increased in women with PCOS compared with the control women (P < 0.001), and there was no statistically significant difference in dietary fructose intake between PCOS and controls, regardless of metabolic status. There was a positive linear correlation between serum uric acid and fructose levels in women with PCOS (Poverall < 0.001, Pnon-linear = 0.30). In contrast, no correlation was found in control women (Poverall = 0.712, Pnon-linear = 0.43). Additionally, a non-linear association was observed in the obese subgroup of patients with PCOS (Poverall < 0.001, Pnon-linear = 0.02). Serum uric acid levels were linearly and positively associated with serum fructose levels in patients with PCOS with insulin resistance, dyslipidemia, and metabolic syndrome. Furthermore, even after adjusting for confounding factors, elevated serum fructose levels were an independent risk factor for hyperuricemia in patients with PCOS (P = 0.001; OR, 1.380; 95% CI, 1.207-1.577). There were 28 uric acid and 25 fructose metabolism genes which showed a significant correlation in PCOS. Seven upregulated genes (CAT, CRP, CCL2, TNF, MMP9, GCG, and APOB) related to uric acid and fructose metabolism in PCOS ovarian granulosa cells were ultimately successfully validated using quantitative real-time PCR. LIMITATIONS, REASONS FOR CAUTION Due to limited conditions, more possible covariates (such as smoking and ethnicity) were not included, and the underlying molecular mechanism between fructose and uric acid levels in women with PCOS remains to be further investigated. WIDER IMPLICATIONS OF THE FINDINGS The results of this study and our previous research indicate that the high uric acid status of PCOS may be mediated by fructose metabolism disorders, highlighting the importance of analyzing fructose metabolism, and especially its metabolic byproduct uric acid, during the clinical diagnosis of PCOS. These results suggest the adverse effects of high uric acid in PCOS, and the importance of taking early interventions regarding uric acid levels to reduce the occurrence and development of further clinical signs, such as metabolic disorders in women with PCOS. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by: the National Natural Science Foundation of China (No. 82371647, No. 82071607, and No. 32100691); LiaoNing Revitalization Talents Program (No. XLYC1907071); Fok Ying Tung Education Foundation (No. 151039); and Outstanding Scientific Fund of Shengjing Hospital (No. 202003). No competing interests were declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Di Feng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Education Center for Clinical Skills Practice, China Medical University, Shenyang, China
| | - Xiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Jiahui Song
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hongyue Yang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Peng
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinmei Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Wanting Chen
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Peiyu Li
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, China Medical University, Shenyang, China
| | - Bei Shi
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Callanan S, Talaei M, Delahunt A, Shaheen SO, McAuliffe FM. Low glycaemic index diet in pregnancy and child asthma: follow-up of the ROLO trial. Br J Nutr 2024:1-11. [PMID: 39466114 DOI: 10.1017/s0007114524001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological evidence suggests that a higher intake of sugar during pregnancy is associated with a higher risk of childhood asthma and atopy. However, randomised trial evidence supporting such a link is lacking. This study aimed to examine whether a low glycaemic index (GI) dietary intervention during pregnancy decreases the risk of childhood asthma and eczema. This is a secondary analysis of 514 children from the ROLO trial. Healthy women were randomised to receive an intervention of low GI dietary advice or routine care from early pregnancy. Mothers reported current doctor-diagnosed eczema in their children at 2 years (n 271) and current doctor-diagnosed asthma and eczema in their children at 5 (n 357) and 9-11 years (n 391) of age. Multivariable logistic regression models were used test the effect of the intervention on child outcomes overall and stratified by maternal education. There was a suggestion of a reduction in asthma at 5 years of age in children whose mothers received the low GI dietary intervention during pregnancy compared with usual care (adjusted OR 0·46 (95 % CI 0·19, 1·09); P = 0·08). In stratified adjusted analyses, the intervention was associated with a reduced risk of asthma at 5 years of age in children born to mothers with incomplete tertiary level education but not in those with complete tertiary level education (OR 0·14 (95 % CI 0·02, 0·69); P = 0·010 and OR 1·03 (95 % CI 0·34, 3·13); P = 0·94, respectively). A low GI diet in pregnancy may reduce the risk of developing asthma in childhood, particularly amongst children born to mothers with lower educational attainment.
Collapse
Affiliation(s)
- Sophie Callanan
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Republic of Ireland
| | - Mohammad Talaei
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Delahunt
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Republic of Ireland
| | - Seif O Shaheen
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Republic of Ireland
| |
Collapse
|
17
|
Song Q, Kikumoto A, Sun S, Mochizuki S, Oda H. High fat intake aggravates hyperlipidemia and suppresses fatty liver symptoms induced by a high-sucrose diet in rats. Food Funct 2024; 15:10516-10526. [PMID: 39365248 DOI: 10.1039/d4fo00863d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Overconsumption of sucrose or fat is widely acknowledged as a prominent feature of unhealthy dietary patterns. Both factors commonly co-occur and are recognized as hallmarks of the Western diet, which is an important contributor to non-communicative diseases. In this study, we investigated the hazards of high sucrose or fat intake, either alone or in combination. Wistar rats were divided into four groups and fed a control starch diet, high-sucrose diet, high-fat diet, or high-sucrose/fat diet for 30 days. High fat intake increased body weight and visceral and subcutaneous adipose tissue weights. Both high-sucrose and -fat diets were associated with increased plasma triglyceride and glucose levels, and high sucrose also elevated plasma cholesterol levels. The combination of high sucrose and fat synergistically elevated plasma triglyceride levels. The high-sucrose diet increased liver weight and hepatic total lipid and triglyceride levels, whereas this increase was suppressed by the high-fat diet. The high sucrose increased the mRNA levels of hepatic genes involved in fatty acid synthesis and transport (ACLY, ACACA, FAS, ELOVL6, SCD1, SREBP1, and CD36), whereas the high fat suppressed the high sucrose-induced expression of these genes. We observed that high sucrose and fat contents differently exerted their effects on hyperlipidemia and fatty liver. Furthermore, high fat aggravated hyperlipidemia and suppressed fatty liver induced by high sucrose.
Collapse
Affiliation(s)
- Qi Song
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| | - Akari Kikumoto
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| | - Shumin Sun
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
18
|
Westerbeke FHM, Attaye I, Rios-Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2024. [PMID: 39359099 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, The Netherlands
| |
Collapse
|
19
|
Bai J, Zhou C, Liu Y, Ding M, Zhang Z, Chen Z, Feng P, Song J. Relationship between serum uric acid levels and periodontitis-A cross-sectional study. PLoS One 2024; 19:e0310243. [PMID: 39331593 PMCID: PMC11432880 DOI: 10.1371/journal.pone.0310243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVES Whether there is an association between serum uric acid level (sUA) and periodontitis remains unclear. The aim of this study was to investigate the association between moderate/severe periodontitis and sUA in US adults. MATERIALS AND METHODS A total of 3398 participants were included in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2014. The independent variable was sUA and the dependent variable was periodontitis. SUA for continuous variables, periodontitis as classification variables. Covariate including social demographic variables, life style, systemic diseases, etc. Multiple linear regression models were used to investigate the distribution of differences in covariates between different independent groups. To investigate the association between serum uric acid levels and moderate/severe periodontitis, three models were used (Model 1: unadjusted model; Model 2: adjusted for age, sex, and race/ethnicity; Model 3: adjusted for age, sex, race/ethnicity, education, household income/poverty ratio, smoking behavior, alcohol consumption, dental floss frequency, obesity, hypertension, diabetes, high cholesterol, hyperlipidemia, and sleep disorders). RESULTS Among the 3398 patients, 42.5% had moderate/severe periodontitis. Multivariate logistic regression analysis showed that sUA was significantly associated with moderate/severe periodontitis (OR = 1.10, 95%CI: (1.03, 1.16), P = 0.0020) after adjusting for potential confounding factors. In addition, it may vary by race/ethnicity and gender. The association between sUA levels and the prevalence ofperiodontitis was U-shaped in women and non-Hispanic blacks. CONCLUSION sUA level is associated with moderate to severe periodontitis. However, the association between sUA levels and the occurrence of periodontitis in women and non-Hispanic blacks followed a U-shaped curve. CLINICAL RELEVANCE sUA may directly or indirectly contribute to the global burden of periodontal disease, but there is little evidence that sUA is directly related to periodontitis.This study further supports that high uric acid levels are closely related to periodontitis and may contribute to the control of periodontitis. It also provides new insights into whether it can be used as an indicator to assess the risk or progression of periodontitis. More studies are needed to confirm the relationship between sUA and periodontitis.
Collapse
Affiliation(s)
- Jingjing Bai
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chenying Zhou
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ye Liu
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming Ding
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhonghua Zhang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhu Chen
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endodontics and Dentistry, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
| | - Ping Feng
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jukun Song
- Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Ren S, Chen S, Huang J, Yu R, Wu Y, Peng XE. Association Between Serum Uric Acid Levels and Metabolic-Associated Fatty Liver Disease in Southeast China: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2024; 17:3343-3354. [PMID: 39268333 PMCID: PMC11390830 DOI: 10.2147/dmso.s476045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Objective This study aimed to explore the association between serum uric acid (sUA) levels and metabolic-associated fatty liver disease (MAFLD) in Southeast China. Methods We performed a cross-sectional study of 2605 subjects who underwent physical examination between 2015 and 2017 in Southeast China. To explore the association between sUA levels and the risk of MAFLD, we employed logistic regression, restricted cubic spline (RCS), subgroups and multiplicative interaction analysis. Results Logistic regression analysis showed a positive association between sUA and MAFLD [aOR total population (95% CI)= 1.90 (1.49 ~ 2.42)], [aOR male (95% CI)= 2.01 (1.54 ~ 2.62)], [aOR female (95% CI)= 1.15 (0.62 ~ 2.11)], respectively. The RCS plot presented a significant nonlinear dose-response relationship between sUA levels and MAFLD risk, and the risk of MAFLD increased significantly when sUA> 5.56 mg/dL (P nonlinear< 0.001). Subgroups analysis revealed that the positive association between sUA and MAFLD was consistent across strata of gender, age, BMI, drinking status, smoking status and tea drinking status. Significant associations between sUA and MAFLD were not only found in males but also existed in subjects whose age ≤60, BMI ≥24 kg/m2, drinkers, smokers and tea-drinkers. Adjusted ORs were estimated to be 2.01, 1.95, 2.11, 2.29, 2.64 and 2.20, respectively. Multiplicative interactions were not observed between gender, age, drinking status, smoking status, tea drinking status and sUA (all P interaction> 0.05). Conclusion According to our study, sUA was positively associated with the risk of MAFLD. Additionally, the risk of MAFLD increased significantly when sUA levels exceeded 5.56 mg/dL. Our study may help clarify whether sUA plays a diagnostic role in MAFLD.
Collapse
Affiliation(s)
- Shutong Ren
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Siyu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361104, People's Republic of China
| | - Jingru Huang
- Department of Clinical Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Rong Yu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Yunli Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, People's Republic of China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, People's Republic of China
| |
Collapse
|
21
|
Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus 2024; 16:e70095. [PMID: 39355469 PMCID: PMC11444807 DOI: 10.7759/cureus.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Excessive fructose consumption, primarily through processed foods and beverages, has become a significant public health concern due to its association with various metabolic disorders. This review examines the impact of fructose on human health, focusing on its role in obesity, insulin resistance, hyperglycemia, type 2 diabetes, uric acid production, and oxidative stress. Fructose metabolism, distinct from glucose, predominantly occurs in the liver, where it bypasses normal insulin regulation, leading to increased fat synthesis through de novo lipogenesis. This process contributes to the development of non-alcoholic fatty liver disease and elevates the risk of cardiovascular disease. Furthermore, fructose-induced adenosine triphosphate depletion activates purine degradation, increasing uric acid levels and exacerbating hyperuricemia. The overproduction of reactive oxygen species during fructose metabolism also drives oxidative stress, promoting inflammation and cellular damage. By synthesizing recent findings, this review underscores the importance of regulating fructose intake, implementing public health policies, and adopting lifestyle changes to mitigate these adverse effects.
Collapse
|
22
|
Abdel KA, Kalluvya SE, Sadiq AM, Ashir A, Masikini PI. Prevalence of Hyperuricemia and Associated Factors Among Patients With Type 2 Diabetes Mellitus in Northwestern Tanzania: A Cross-Sectional Study. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241274694. [PMID: 39220387 PMCID: PMC11365026 DOI: 10.1177/11795514241274694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background There has been increasing evidence of the association between hyperuricemia and diabetes mellitus (DM). In the general population, hyperuricemia has been associated with pre-diabetes. In DM patients, hyperuricemia has been associated with poor outcomes. Objectives The objective was to determine the proportion of hyperuricemia and associated factors among patients with type 2 DM in Mwanza, Tanzania. Design This was a cross-sectional study. Methods This study was conducted from January to March 2023 among patients with type 2 DM attending clinic at Bugando Medical Centre, Mwanza. Data was obtained from a structured questionnaire. Serum uric acid, HbA1c, lipid profile, and renal functions were analyzed. Analysis was done via STATA version 17. The primary outcome was the proportion of hyperuricemia among patients with type 2 DM, and logistic regression models were used to analyze associated factors. Results Out of 360 patients, 59.7% were female. The median age was 61 years [IQR 57-68], and the median duration of DM was 5 years [IQR 3-9]. The mean HbA1c was 8.2 ± 2.5%, with 60% of patients having poor control. Most patients had hypertension (78.9%) and were overweight or obese (81.9%). The proportion of patients with DM and hyperuricemia was 44.4%, with mean serum uric acid levels among males and females of 410 ± 137 and 385 ± 119 µmol/L, respectively. We found that being female (P = .001), overweight (P = .021), or obese (P = .007), and having chronic kidney disease (P < .001) was associated with hyperuricemia among patients with type 2 DM. Conclusion The burden of hyperuricemia among type 2 DM patients is quite high, and it is associated with female gender, high body mass index, lipids, and chronic kidney disease. This calls for regular screening of hyperuricemia in the population, and more studies are needed to establish the outcomes associated with hyperuricemia and create a treatment guideline.
Collapse
Affiliation(s)
- Kulthum A. Abdel
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Samuel E. Kalluvya
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Internal Medicine, Bugando Medical Centre, Mwanza, Tanzania
| | - Abid M. Sadiq
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Abdel Ashir
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Peter I. Masikini
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Internal Medicine, Bugando Medical Centre, Mwanza, Tanzania
| |
Collapse
|
23
|
Faienza MF, Cognetti E, Farella I, Antonioli A, Tini S, Antoniotti V, Prodam F. Dietary fructose: from uric acid to a metabolic switch in pediatric metabolic dysfunction-associated steatotic liver disease. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39157959 DOI: 10.1080/10408398.2024.2392150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Fructose consumption in pediatric subjects is rising, as the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Despite increasing evidence supporting the detrimental effects of fructose in the development of Metabolic Syndrome (MetS) and its related comorbidities, the association between fructose intake and liver disease remains unclear, mainly in youths. The current narrative review aims to illustrate the correlation between fructose metabolism and liver functions besides its impact on obesity and MASLD in pediatrics. Fructose metabolism is involved in the liver through the classical lipogenic pathway via de novo lipogenesis (DNL) or in the alternative pathway via uric acid accumulation. Hyperuricemia is one of the main features of MALSD patients, underlining how uric acid is growing interest as a new marker of disease. Observational and interventional studies conducted in children and adolescents, who consumed large amounts of fructose and glucose in their diet, were included. Most of these studies emphasized the association between high fructose intake and weight gain, dyslipidemia, insulin resistance, and MASLD/MASH, even in normal-weight children. Conversely, reducing fructose intake ameliorates liver fat accumulation, lipid profile, and weight. In conclusion, fructose seems a potent inducer of both insulin resistance and hepatic fat accumulation.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Eleonora Cognetti
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Precision and Regenerative Medicine and Ionian Area, Clinica Medica "A. Murri", University of Bari "Aldo Moro", Bari, Italy
| | | | - Sabrina Tini
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
| | | | - Flavia Prodam
- Department of Health Science, University of Piemonte Orientale, Novara, Italy
- Unit of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Damir HA, Ali MA, Adem MA, Amir N, Ali OM, Tariq S, Adeghate E, Greenwood MP, Lin P, Alvira-Iraizoz F, Gillard B, Murphy D, Adem A. Effects of long-term dehydration and quick rehydration on the camel kidney: pathological changes and modulation of the expression of solute carrier proteins and aquaporins. BMC Vet Res 2024; 20:367. [PMID: 39148099 PMCID: PMC11328374 DOI: 10.1186/s12917-024-04215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Recurrent dehydration causes chronic kidney disease in humans and animal models. The dromedary camel kidney has remarkable capacity to preserve water and solute during long-term dehydration. In this study, we investigated the effects of dehydration and subsequent rehydration in the camel's kidney histology/ultrastructure and changes in aquaporin/solute carrier proteins along with gene expression. RESULTS In light microscopy, dehydration induced few degenerative and necrotic changes in cells of the cortical tubules with unapparent or little effect on medullary cells. The ultrastructural changes encountered in the cortex were infrequent during dehydration and included nuclear chromatin condensation, cytoplasmic vacuolization, mitochondrial swelling, endoplasmic reticulum/ lysosomal degeneration and sometimes cell death. Some mRNA gene expressions involved in cell stability were upregulated by dehydration. Lesions in endothelial capillaries, glomerular membranes and podocyte tertiary processes in dehydrated camels indicated disruption of glomerular filtration barrier which were mostly corrected by rehydration. The changes in proximal tubules brush borders after dehydration, were accompanied by down regulation of ATP1A1 mRNA involved in Na + /K + pump that were corrected by rehydration. The increased serum Na, osmolality and vasopressin were paralleled by modulation in expression level for corresponding SLC genes with net Na retention in cortex which were corrected by rehydration. Medullary collecting ducts and interstitial connective tissue were mostly unaffected during dehydration. CKD, a chronic nephropathy induced by recurrent dehydration in human and animal models and characterized by interstitial fibrosis and glomerular sclerosis, were not observed in the dehydrated/rehydrated camel kidneys. The initiating factors, endogenous fructose, AVP/AVPR2 and uric acid levels were not much affected. TGF-β1 protein and TGF-β1gene expression showed no changes by dehydration in cortex/medulla to mediate fibrosis. KCNN4 gene expression level was hardly detected in the dehydrated camel's kidney; to encode for Ca + + -gated KCa3.1 channel for Ca + + influx to instigate TGF-β1. Modulation of AQP 1, 2, 3, 4, 9 and SLC protein and/or mRNAs expression levels during dehydration/rehydration was reported. CONCLUSIONS Long-term dehydration induces reversible or irreversible ultrastructural changes in kidney cortex with minor effects in medulla. Modulation of AQP channels, SLC and their mRNAs expression levels during dehydration/rehydration have a role in water conservation. Cortex and medulla respond differently to dehydration/rehydration.
Collapse
Affiliation(s)
- Hassan Abu Damir
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muna A Adem
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osman M Ali
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, Emirates University, Al-Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, Emirates University, Al-Ain, United Arab Emirates
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Fernando Alvira-Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Benjamin Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK.
| | - Abdu Adem
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, PO. Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
25
|
Prabhakar AP, Lopez-Candales A. Uric acid and cardiovascular diseases: a reappraisal. Postgrad Med 2024; 136:615-623. [PMID: 38973128 DOI: 10.1080/00325481.2024.2377952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Serum uric acid (SUA) has garnered an increased interest in recent years as an important determinant of cardiovascular disease. Uric acid, a degradation product of purine metabolism, is affected by several inheritable and acquired factors, such as genetic mutation, metabolic syndrome, chronic kidney disease, and medication interactions. Even though elevated SUA have been commonly associated with the development of gout, it has significant impact in the development of hypertension, metabolic syndrome, and cardiovascular disease. Uric acid, in both crystalline and soluble forms, plays a key role in the induction of inflammatory cascade and development of atherosclerotic diseases. This concise reappraisal emphasizes key features about the complex and challenging role of uric acid in the development and progression of atherosclerosis and cardiovascular disease. It explores the pathogenesis and historical significance of uric acid, highlights the complex interplay between uric acid and components of metabolic syndrome, focuses on the pro-inflammatory and pro-atherogenic effects of uric acid, as well as discusses the role of urate lowering therapies in mitigating the risk of cardiovascular disease while providing the latest evidence to the healthcare professionals focusing on the clinical importance of SUA levels with regards to cardiovascular disease.
Collapse
Affiliation(s)
- Akruti Patel Prabhakar
- Department of Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Angel Lopez-Candales
- Cardiology Service and Department of Medicine, Dayton Veteran Affairs Medical Center, Dayton, OH, USA
| |
Collapse
|
26
|
Gómez-de-Tejada-Romero MJ, Murias-Henríquez C, Saavedra-Santana P, Sablón-González N, Abreu DR, Sosa-Henríquez M. Influence of serum uric acid on bone and fracture risk in postmenopausal women. Aging Clin Exp Res 2024; 36:156. [PMID: 39085733 PMCID: PMC11291523 DOI: 10.1007/s40520-024-02819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
AIMS Uric acid has been associated with several metabolic conditions, including bone diseases. Our objective here was to consider the relationship between serum uric acid levels and various bone parameters (bone mineral density, ultrasonographic parameters, vitamin D, PTH and serum calcium), as well as the prevalence and risk of fragility fracture. METHODS An observational and cross-sectional study carried out on 679 postmenopausal women, classified into 3 groups according to their serum uric acid levels, in whom bone densitometry, calcaneus ultrasounds, PTH, vitamin D and serum calcium analysis were done. Bone fractures were collected through the clinical history and lateral spinal X-ray. RESULTS Higher uric acid levels were found in women with older age, high BMI, diabetes, and high blood pressure. Higher levels of PTH and serum calcium were also observed, but did not effect on vitamin D. Serum uric acid was positively related to densitometric and ultrasonic parameters and negatively associated with vertebral fractures. CONCLUSIONS In the population of postmenopausal women studied, sUA levels were correlated with BMD, BUA, and QUI-Stiffness, and this correlation was independent of age and BMI. In addition, sUA was associated with a decrease in vertebral fractures. These results imply a beneficial influence of sUA on bone metabolism, with both a quantitative and qualitative positive effect, reflected in the lower prevalence of vertebral fractures.
Collapse
Affiliation(s)
| | - Carmen Murias-Henríquez
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Pedro Saavedra-Santana
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Nery Sablón-González
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Delvys Rodríguez Abreu
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain
| | - Manuel Sosa-Henríquez
- University of Las Palmas de Gran Canaria, Osteoporosis and Mineral Metabolism Research Group. Las Palmas de Gran Canaria, Canaria, Spain.
- Canary Health Service, Insular University Hospital, Bone Metabolic Unit, Las Palmas de Gran Canaria, Canaria, Spain.
| |
Collapse
|
27
|
Ahmed AS, Mathew LS, Mona MM, Docmac OK, Ibrahim HA, Elshamy AM, Hantash EM, Elsisy RA. Exercise protects the hypothalamus morphology from the deleterious effects of high sucrose diet consumption. J Mol Histol 2024; 55:481-490. [PMID: 38777994 DOI: 10.1007/s10735-024-10206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
A growing body of evidence suggests that elevated sucrose intake may contribute to the development of neurological disorders. Recognizing that regular exercise has the potential to reduce the occurrence of neuromuscular disorders, the present research investigated the impact of exercise on the redox status of the hypothalamus in mitigating the adverse effects associated with high sucrose intake. Forty Wistar albino rats were subjected to a high sucrose diet, with some groups engaging in exercise for a duration of 3 months. The exercise regimen was found to sustain the redox balance in the hypothalamus. In summary, the consumption of a high sucrose diet resulted in the disturbance of the histological morphology of the hypothalamus, accompanied by an increased percentage of caspase-3 positive cells. Additionally, the high sucrose diet disrupted the oxidant/antioxidant ratio in favor of oxidants, leading to elevated levels of AOPPs and AGEP. Conversely, exercise was effective in restoring most of these values to levels approximating the control group, indicating a potential protective effect of regular exercise against the detrimental impacts of high sucrose dietary consumption on the hypothalamus. Graphical abstract.
Collapse
Affiliation(s)
- Ahmed S Ahmed
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt.
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Liju S Mathew
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates
| | - Marwa M Mona
- Medical Biochemistry and Molecular Biology Department, College of Medicine, kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Omaima K Docmac
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry and Molecular Biology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Amira M Elshamy
- Medical Biochemistry and Molecular Biology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Ehab M Hantash
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Rasha A Elsisy
- Anatomy and Embryology Department, College of Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
28
|
Genovesi S, Vania A, Caroli M, Orlando A, Lieti G, Parati G, Giussani M. Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity. Nutrients 2024; 16:2497. [PMID: 39125377 PMCID: PMC11314452 DOI: 10.3390/nu16152497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In younger generations, excess weight has reached very alarming levels. Excess weight in adults is associated with increased mortality and morbidity from cardiovascular disease. However, it is not easy to distinguish to what extent these effects are the result of obesity itself or how much is due to the various cardiovascular risk factors that often accompany excess weight. Several risk factors, such as hypertension, dyslipidemia, hyperuricemia, glucose intolerance, and type 2 diabetes mellitus, are already present in pediatric age. Therefore, early intervention with the goal of correcting and/or eliminating them is particularly important. In the child and adolescent with obesity, the first approach to achieve weight reduction and correct the risk factors associated with severe excess weight should always be non-pharmacologic and based on changing poor eating habits and unhealthy lifestyles. The purpose of this review is to give an update on non-pharmacological interventions to be implemented for cardiovascular prevention in children and adolescents with obesity, and their effectiveness. In particular, interventions targeting each individual cardiovascular risk factor will be discussed.
Collapse
Affiliation(s)
- Simonetta Genovesi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy;
- Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy; (A.O.); (M.G.)
| | | | | | - Antonina Orlando
- Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy; (A.O.); (M.G.)
| | - Giulia Lieti
- UO Nefrologia e Dialisi, ASST-Rhodense, 20024 Garbagnate Milanese, Italy;
| | - Gianfranco Parati
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy;
- Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy; (A.O.); (M.G.)
| | - Marco Giussani
- Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy; (A.O.); (M.G.)
| |
Collapse
|
29
|
Song S, Cai X, Hu J, Zhu Q, Shen D, Ma H, Zhang Y, Ma R, Zhou P, Yang W, Hong J, Zhang D, Li N. Plasma aldosterone concentrations elevation in hypertensive patients: the dual impact on hyperuricemia and gout. Front Endocrinol (Lausanne) 2024; 15:1424207. [PMID: 39140032 PMCID: PMC11319118 DOI: 10.3389/fendo.2024.1424207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Background Prior research has highlighted the association between uric acid (UA) and the activation of the renin-angiotensin-aldosterone system (RAAS). However, the specific relationship between aldosterone, the RAAS's end product, and UA-related diseases remains poorly understood. This study aims to clarify the impact of aldosterone on the development and progression of hyperuricemia and gout in hypertensive patients. Methods Our study involved 34534 hypertensive participants, assessing plasma aldosterone concentration (PAC)'s role in UA-related diseases, mainly hyperuricemia and gout. We applied multiple logistic regression to investigate the impact of PAC and used restricted cubic splines (RCS) for examining the dose-response relationship between PAC and these diseases. To gain deeper insights, we conducted threshold analyses, further clarifying the nature of this relationship. Finally, we undertook subgroup analyses to evaluate PAC's effects across diverse conditions and among different subgroups. Results Multivariate logistic regression analysis revealed a significant correlation between the occurrence of hyperuricemia and gout and the elevation of PAC levels. Compared to the first quartile (Q1) group, groups Q2, Q3, and Q4 all exhibited a significantly increased risk of occurrence. Moreover, the conducted RCS analysis demonstrated a significant nonlinear dose-response relationship, especially when PAC was greater than 14 ng/dL, with a further increased risk of hyperuricemia and gout. Finally, comprehensive subgroup analyses consistently reinforced these findings. Conclusion This study demonstrates a close association between elevated PAC levels and the development of UA-related diseases, namely hyperuricemia and gout, in hypertensive patients. Further prospective studies are warranted to confirm and validate this relationship.
Collapse
Affiliation(s)
- Shuaiwei Song
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Xintian Cai
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Junli Hu
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Qing Zhu
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Di Shen
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Huimin Ma
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Yingying Zhang
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Rui Ma
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Pan Zhou
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Wenbo Yang
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Jing Hong
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Delian Zhang
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Nanfang Li
- Key Laboratory of Xinjiang Uygur Autonomous Region “Hypertension Research Laboratory”, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
- NHC Key Laboratory of Hypertension Clinical Research, Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| |
Collapse
|
30
|
Liu X, Wu Y, Bennett S, Zou J, Xu J, Zhang L. The Effects of Different Dietary Patterns on Bone Health. Nutrients 2024; 16:2289. [PMID: 39064732 PMCID: PMC11280484 DOI: 10.3390/nu16142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bone metabolism is a process in which osteoclasts continuously clear old bone and osteoblasts form osteoid and mineralization within basic multicellular units, which are in a dynamic balance. The process of bone metabolism is affected by many factors, including diet. Reasonable dietary patterns play a vital role in the prevention and treatment of bone-related diseases. In recent years, dietary patterns have changed dramatically. With the continuous improvement in the quality of life, high amounts of sugar, fat and protein have become a part of people's daily diets. However, people have gradually realized the importance of a healthy diet, intermittent fasting, calorie restriction, a vegetarian diet, and moderate exercise. Although these dietary patterns have traditionally been considered healthy, their true impact on bone health are still unclear. Studies have found that caloric restriction and a vegetarian diet can reduce bone mass, the negative impact of a high-sugar and high-fat dietary (HSFD) pattern on bone health is far greater than the positive impact of the mechanical load, and the relationship between a high-protein diet (HPD) and bone health remains controversial. Calcium, vitamin D, and dairy products play an important role in preventing bone loss. In this article, we further explore the relationship between different dietary patterns and bone health, and provide a reference for how to choose the appropriate dietary pattern in the future and for how to prevent bone loss caused by long-term poor dietary patterns in children, adolescents, and the elderly. In addition, this review provides dietary references for the clinical treatment of bone-related diseases and suggests that health policy makers should consider dietary measures to prevent and treat bone loss.
Collapse
Affiliation(s)
- Xiaohua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Yangming Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
31
|
Zhao W, Gao L, Wu Z, Qin M. Association between dietary patterns and the risk of all-cause mortality among old adults with obstructive sleep apnea. BMC Geriatr 2024; 24:569. [PMID: 38956519 PMCID: PMC11218104 DOI: 10.1186/s12877-024-05126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) was associated with the increased cardiovascular events and all-cause mortality. And anti-inflammatory dietary has potential to improve the prognosis of OSA. This study aimed to investigate the association of anti-inflammatory dietary patterns with all-cause mortality among individuals with OSA. METHODS This retrospective cohort study involved 1522 older adults with OSA from 2005 to 2008 in the National Health and Nutrition Examinations Survey (NHANES). Mortality status was determined by routine follow-up through December 31, 2019, using the National Death Index. Anti-inflammatory dietary patterns included Alternate Mediterranean Diet Score (aMED), Healthy Eating Index-2015 (HEI-2015), and Alternate Healthy Eating Index-2010 (AHEI-2010). Weighted Cox proportional hazard regression models were performed to investigate the association between anti-inflammatory dietary pattern and all-cause mortality. RESULTS After a median follow-up of 131 months, 604 participants were recorded all-cause mortality. The mean age of OSA patients was 68.99 years old, of whom 859 were male (52.34%). Higher adherence of aMED (HR = 0.61, 95%CI: 0.48 to 0.78) and HEI-2015 (HR = 0.75, 95%CI: 0.60 to 0.95) were associated with lower all-cause mortality risk in the elderly with OSA. Conversely, no association was found between AHEI-2010 dietary pattern and all-cause mortality in individuals with OSA. In the component analysis of aMED, it was found that a higher intake of vegetables and olive oil potentially contributes to the reduction all-cause mortality risk in the elderly with OSA (HR = 0.60, 95%CI: 0.48 to 0.76; HR = 0.67, 95%CI: 0.63 to 0.71). CONCLUSION Higher adherence to the aMED and the HEI-2015 was associated with a lower risk of all-cause mortality in OSA. Future interventions in the elderly with OSA should considering adopting anti-inflammatory dietary patterns.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.
| | - Lu Gao
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Zhiyuan Wu
- Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, United States
| | - Mingzhao Qin
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| |
Collapse
|
32
|
Chiu DT, Hamlat EJ, Zhang J, Epel ES, Laraia BA. Essential Nutrients, Added Sugar Intake, and Epigenetic Age in Midlife Black and White Women: NIMHD Social Epigenomics Program. JAMA Netw Open 2024; 7:e2422749. [PMID: 39073813 PMCID: PMC11287388 DOI: 10.1001/jamanetworkopen.2024.22749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/29/2024] [Indexed: 07/30/2024] Open
Abstract
Importance Nutritive compounds play critical roles in DNA replication, maintenance, and repair, and also serve as antioxidant and anti-inflammatory agents. Sufficient dietary intakes support genomic stability and preserve health. Objective To investigate the associations of dietary patterns, including intakes of essential nutrients and added sugar, and diet quality scores of established and new nutrient indices with epigenetic age in a diverse cohort of Black and White women at midlife. Design, Setting, and Participants This cross-sectional study included analyses (2021-2023) of past women participants of the 1987-1997 National Heart, Lung, and Blood Institute Growth and Health Study (NGHS), which examined cardiovascular health in a community cohort of Black and White females aged between 9 and 19 years. Of these participants who were recruited between 2015 and 2019 from NGHS's California site, 342 females had valid completed diet and epigenetic assessments. The data were analyzed from October 2021 to November 2023. Exposure Diet quality scores of established nutrient indices (Alternate Mediterranean Diet [aMED], Alternate Healthy Eating Index [AHEI]-2010); scores for a novel, a priori-developed Epigenetic Nutrient Index [ENI]; and mean added sugar intake amounts were derived from 3-day food records. Main Outcomes and Measures GrimAge2, a second-generation epigenetic clock marker, was calculated from salivary DNA. Hypotheses were formulated after data collection. Healthier diet indicators were hypothesized to be associated with younger epigenetic age. Results A total of 342 women composed the analytic sample (mean [SD] age, 39.2 [1.1] years; 171 [50.0%] Black and 171 [50.0%] White participants). In fully adjusted models, aMED (β, -0.41; 95% CI, -0.69 to -0.13), AHEI-2010 (β, -0.05; 95% CI, -0.08 to -0.01), and ENI (β, -0.17; 95% CI, -0.29 to -0.06) scores, and added sugar intake (β, 0.02; 95% CI, 0.01-0.04) were each significantly associated with GrimAge2 in expected directions. In combined analyses, the aforementioned results with GrimAge2 were preserved with the association estimates for aMED and added sugar intake retaining their statistical significance. Conclusions and Relevance In this cross-sectional study, independent associations were observed for both healthy diet and added sugar intake with epigenetic age. To our knowledge, these are among the first findings to demonstrate associations between added sugar intake and epigenetic aging using second-generation epigenetic clocks and one of the first to extend analyses to a diverse population of Black and White women at midlife. Promoting diets aligned with chronic disease prevention recommendations and replete with antioxidant or anti-inflammatory and pro-epigenetic health nutrients while emphasizing low added sugar consumption may support slower cellular aging relative to chronological age, although longitudinal analyses are needed.
Collapse
Affiliation(s)
- Dorothy T. Chiu
- Community Health Sciences Division, School of Public Health, University of California, Berkeley
- Osher Center for Integrative Health, University of California, San Francisco
| | - Elissa June Hamlat
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Joshua Zhang
- Department of Human Genetics, University of California, Los Angeles
| | - Elissa S. Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Barbara A. Laraia
- Community Health Sciences Division, School of Public Health, University of California, Berkeley
| |
Collapse
|
33
|
Domański I, Kozieł A, Kuderska N, Wójcik P, Dudzik Ł, Dudzik T. Hyperuricemia - consequences of not initiating therapy. Benefits and drawbacks of treatment. Reumatologia 2024; 62:207-213. [PMID: 39055725 PMCID: PMC11267652 DOI: 10.5114/reum/189998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Hyperuricemia, characterized by elevated levels of uric acid in the body, is associated with several health risks, including gout, urolithiasis and cardiovascular disease. Although treatment options are available, they can lead to hypersensitivity reactions, particularly with allopurinol therapy. This paper provides a comprehensive review of the consequences of hyperuricemia, the need for treatment and the potential adverse effects of allopurinol, illustrated by a case study. The study highlights the importance of careful consideration before initiating therapy, particularly in patients with comorbidities and concomitant medication. It emphasizes the need for vigilant monitoring and individualized treatment approaches to reduce adverse effects. In addition, genetic factors, particularly HLA-B*5801, play an important role in determining susceptibility to allopurinol hypersensitivity reactions. This paper highlights the importance of informed decision making in the management of hyperuricemia to optimize patient outcomes while minimizing the risks associated with treatment.
Collapse
Affiliation(s)
- Igor Domański
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Family Medicine Practice, Wroclaw, Poland
| | - Aleksandra Kozieł
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | | | - Paulina Wójcik
- J. Gromkowski Specialist Regional Hospital, Wroclaw, Poland
| | | | | |
Collapse
|
34
|
Zhuo LB, Yang Y, Xiao C, Li F, Lin L, Xi Y, Fu Y, Zheng JS, Chen YM. Gut microbiota-bile acid axis mediated the beneficial associations between dietary lignans and hyperuricemia: a prospective study. Food Funct 2024; 15:6438-6449. [PMID: 38775706 DOI: 10.1039/d4fo00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background: The escalating prevalence of hyperuricemia is emerging as a significant public health concern. The association between dietary lignans and hyperuricemia is yet to be fully elucidated. Our study aims to evaluate the relationships between dietary lignan intake and hyperuricemia among middle-aged and elderly Chinese individuals, with an additional focus on investigating the underlying mechanisms. Methods: Dietary lignan intake was measured using a validated Food Frequency Questionnaire in 3801 participants at the baseline. Among them, 2552 participants were included in the longitudinal study with a median follow-up of 10.5 years. The gut microbiota was analyzed by shotgun metagenome sequencing in 1789 participants, and the targeted fecal metabolome was determined in 987 participants using UPLC-MS/MS at the midpoint of follow-up. Results: The multivariable-adjusted HRs (95% CIs) for hyperuricemia incidence in the highest quartile (vs. the lowest quartile) of dietary intake of total lignans, matairesinol, pinoresinol, and secoisolariciresinol were 0.93 (0.78-1.10), 0.77 (0.66-0.90), 0.83 (0.70-0.97), and 0.85 (0.73-1.00), respectively. The gut microbial and fecal metabolic compositions were significantly different across the dietary lignan groups and the hyperuricemia groups. The beneficial associations between dietary lignans and hyperuricemia might be mediated by several gut microbes (e.g., Fusobacterium mortiferum and Blautia sp. CAG-257) and the downstream bile acid products (e.g., NorCA, glycochenodeoxycholic acid, and glycoursodeoxycholic acid). Conclusion: We found that dietary lignans were inversely associated with hyperuricemia incidence, and the gut microbiota-bile acid axis might mediate this association. Our findings provide new perspectives on precise therapeutic targets and underlying mechanisms for conditions associated with elevated uric acid.
Collapse
Affiliation(s)
- Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Congmei Xiao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou 310030, China.
- Shenzhen Bao'an Center for Chronic Diseases Control, Shenzhen, China
| | - Fanqin Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Lishan Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Xi
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuanqing Fu
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou 310030, China.
- Shenzhen Bao'an Center for Chronic Diseases Control, Shenzhen, China
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, School of Medicine and School of Life Sciences, Westlake University, Hangzhou 310030, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
Gasper WC, Gardner S, Ross A, Oppelt SA, Allen KN, Tolan DR. Michaelis-like complex of mouse ketohexokinase isoform C. Acta Crystallogr D Struct Biol 2024; 80:377-385. [PMID: 38805243 DOI: 10.1107/s2059798324003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Over the past forty years there has been a drastic increase in fructose-related diseases, including obesity, heart disease and diabetes. Ketohexokinase (KHK), the first enzyme in the liver fructolysis pathway, catalyzes the ATP-dependent phosphorylation of fructose to fructose 1-phosphate. Understanding the role of KHK in disease-related processes is crucial for the management and prevention of this growing epidemic. Molecular insight into the structure-function relationship in ligand binding and catalysis by KHK is needed for the design of therapeutic inhibitory ligands. Ketohexokinase has two isoforms: ketohexokinase A (KHK-A) is produced ubiquitously at low levels, whereas ketohexokinase C (KHK-C) is found at much higher levels, specifically in the liver, kidneys and intestines. Structures of the unliganded and liganded human isoforms KHK-A and KHK-C are known, as well as structures of unliganded and inhibitor-bound mouse KHK-C (mKHK-C), which shares 90% sequence identity with human KHK-C. Here, a high-resolution X-ray crystal structure of mKHK-C refined to 1.79 Å resolution is presented. The structure was determined in a complex with both the substrate fructose and the product of catalysis, ADP, providing a view of the Michaelis-like complex of the mouse ortholog. Comparison to unliganded structures suggests that KHK undergoes a conformational change upon binding of substrates that places the enzyme in a catalytically competent form in which the β-sheet domain from one subunit rotates by 16.2°, acting as a lid for the opposing active site. Similar kinetic parameters were calculated for the mouse and human enzymes and indicate that mice may be a suitable animal model for the study of fructose-related diseases. Knowledge of the similarity between the mouse and human enzymes is important for understanding preclinical efforts towards targeting this enzyme, and this ground-state, Michaelis-like complex suggests that a conformational change plays a role in the catalytic function of KHK-C.
Collapse
Affiliation(s)
- William C Gasper
- Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sarah Gardner
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Adam Ross
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Sarah A Oppelt
- Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Karen N Allen
- Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Dean R Tolan
- Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
36
|
Su Y, Sun J, Zhou Y, Sun W. The Relationship of Waist Circumference with the Morbidity of Cardiovascular Diseases and All-Cause Mortality in Metabolically Healthy Individuals: A Population-Based Cohort Study. Rev Cardiovasc Med 2024; 25:212. [PMID: 39076338 PMCID: PMC11270058 DOI: 10.31083/j.rcm2506212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 07/31/2024] Open
Abstract
Background This study explores the relationship between waist circumference and morbidity of cardiovascular diseases (CVD) and all-cause mortality in metabolically healthy individuals. Methods A cohort of 5775 metabolically healthy participants from the 2001-2014 US National Health and Nutrition Examination Survey and National Death Index database was tracked over a median period of 81 months. These participants were divided into quartiles (Q1, Q2, Q3, Q4) based on increasing waist circumference. To compensate for missing covariates, multivariate multiple imputation methods were used. Adjusted logistic regression models were employed to examine the correlation between waist circumference and cardiovascular disease prevalence. Furthermore, Kaplan-Meier curves and multivariable Cox regression analysis were utilized to evaluate the association between waist circumference and all-cause mortality, both qualitatively and quantitatively. Results The adjusted logistic regression model indicated that a 10 cm increase in waist circumference was associated with a 1.45 times higher prevalence of CVD. As a categorical variable, there was a significant upward trend in CVD incidence across quartiles of waist circumference. The adjusted odds ratios (95% confidence intervals) were 2.41 (1.13-5.53) for Q2, 2.65 (1.18-6.39) for Q3, and 2.53 (0.9-7.44) for Q4, compared to Q1. Notably, individuals with high waist circumference showed significantly poorer survival compared to those with low waist circumference (p = 0.008). The Cox regression analysis revealed that each 10 cm increase in waist circumference contributed to an ~8% increase in all-cause mortality. Conclusions This study underscores a positive correlation between waist circumference and both CVD morbidity and all-cause mortality in metabolically healthy individuals. The findings highlight the significance of routinely monitoring waist circumference for effective CVD risk management, regardless of metabolic health status.
Collapse
Affiliation(s)
- Yue Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Jinyu Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Ying Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Distefano JK, Gerhard GS. Effects of dietary sugar restriction on hepatic fat in youth with obesity. Minerva Pediatr (Torino) 2024; 76:439-448. [PMID: 37284808 PMCID: PMC11229704 DOI: 10.23736/s2724-5276.23.07209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in children. Like adults, children can develop the progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), which is characterized by hepatic inflammation, often in the presence of fibrosis. Children with NAFLD are at higher risk of liver-related complications, metabolic dysfunction, and cardiovascular disease in adulthood. Many factors contribute to the escalating prevalence of NAFLD in the pediatric population, among which are an array of dietary patterns such as overnutrition, poor diet quality, and heavy consumption of fat and sugar, including fructose. Findings from an increasing number of epidemiological studies support a connection between high habitual sugar consumption and NAFLD, especially within the context of obesity, but these studies are not able to demonstrate whether sugar is a contributing factor or instead an indicator of an overall poor diet (or lifestyle) quality. To date, only four randomized controlled dietary interventions assessing the effects of sucrose/fructose restriction on hepatic fat fraction in youth with obesity have been published. The objectives of this review are to summarize the key findings from these dietary interventions to achieve a better understanding of the strength of the relationship between dietary sugar restriction and liver fat reduction, despite their inherent limitations, and to discuss the potential impact of weight loss and fat mass reduction on improvement in hepatic steatosis.
Collapse
Affiliation(s)
- Johanna K Distefano
- Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA -
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Yao T, Wang H, Lin K, Wang R, Guo S, Chen P, Wu H, Liu T, Wang R. Exercise-induced microbial changes in preventing type 2 diabetes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:892-899. [PMID: 36795181 DOI: 10.1007/s11427-022-2272-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The metabolic benefits associated with long-term physical activity are well appreciated and growing evidence suggests that it involves the gut microbiota. Here we re-evaluated the link between exercise-induced microbial changes and those associated with prediabetes and diabetes. We found that the relative abundances of substantial amounts of diabetes-associated metagenomic species associated negatively with physical fitness in a Chinese athlete students cohort. We additionally showed that those microbial changes correlated more with handgrip strength, a simple but valuable biomarker suggestive of the diabetes states, than maximum oxygen intake, one of the key surrogates for endurance training. Moreover, the causal relationships among exercise, risks for diabetes, and gut microbiota were explored based on mediation analysis. We propose that the protective roles of exercise against type 2 diabetes are mediated, at least partly, by the gut microbiota.
Collapse
Affiliation(s)
- Ting Yao
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Medicine, Xi'an, 710061, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200433, China
| | - Kaiqing Lin
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shanshan Guo
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan Microbiome Center, and Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Tiemin Liu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Human Phenome Institute, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
39
|
Zhang QZ, Zhang JR, Li X, Yin JL, Jin LM, Xun ZR, Xue H, Yang WQ, Zhang H, Qu J, Xing ZK, Wang XM. Fangyukangsuan granules ameliorate hyperuricemia and modulate gut microbiota in rats. Front Immunol 2024; 15:1362642. [PMID: 38745649 PMCID: PMC11091346 DOI: 10.3389/fimmu.2024.1362642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Collapse
Affiliation(s)
- Qing-zheng Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Ji-rui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-long Yin
- Department of Food Science and Engineering, Jilin Business and Technology College, Changchun, Jilin, China
| | - Li-ming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian, China
| | - Zhuo-ran Xun
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hao Xue
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Wan-qi Yang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Hua Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Jingyong Qu
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Zhi-kai Xing
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| | - Xu-min Wang
- College of Life Sciences, Yantai University, Yantai, Shandong, China
| |
Collapse
|
40
|
He X, Zhang X, Si C, Feng Y, Zhu Q, Li S, Shu L. Ultra-processed food consumption and chronic kidney disease risk: a systematic review and dose-response meta-analysis. Front Nutr 2024; 11:1359229. [PMID: 38606016 PMCID: PMC11007045 DOI: 10.3389/fnut.2024.1359229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BackgroundHigh intake of ultra-processed food (UPF) has been associated with increased risk of chronic kidney disease(CKD), but the results remain inconsistent. We therefore performed this systematic review and dose–response meta-analysis of observational studies that shed light on the association between UPF consumption and the risk of CKD.MethodsA systematic literature search of PubMed, Embase, Web of Science, Scopus and China National Knowledge Infrastructure (CNKI) databases was carried out to find the eligible articles published up to October 31, 2023. Random-effects or fixed-effects models were used to pool the relative risks(RRs) and their 95% confidence intervals (CIs).The potential sources of heterogeneity across studies were examined using the Cochran’s Q test and I-square(I2). Publication bias was examined using the visual inspection of asymmetry in funnel plots and quantified by Begg’s and Egger’s tests.ResultsEight studies (six cohort and two cross-sectional studies) exploring the association between UPF consumption and risk of CKD, were included in the final analysis. The pooled analyses revealed that high consumption of UPF was associated with an increased risk of CKD (RR = 1.25; 95%CI: 1.09–1.42, p < 0.0001). Moreover, a 10% increase of UPF consumption was associated with a 7% higher risk of CKD (RR = 1.07; 95%CI: 1.04–1.10, p < 0.001). Dose–response analysis of all included studies showed a linear association between UPF consumption and the risk of CKD (RR = 1.02; 95%CI:0.99–1.05, Pdose–response = 0.178, Pnonlinearity = 0.843).ConclusionOur findings indicate that high consumption of UPF is significantly associated with an increased risk of CKD. Future research with prospective design is required to confirm this positive association.Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023478483, PROSPERO identifier CRD42023478483.
Collapse
Affiliation(s)
- Xingzhen He
- Department of Digestion, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xiaoyan Zhang
- Department of Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Caijuan Si
- Department of Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yuliang Feng
- Department of Digestion, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Qin Zhu
- Department of Digestion, Zhejiang Hospital, Hangzhou, Zhejiang, China
- Department of Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Long Shu
- Department of Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Benchoula K, Serpell CJ, Mediani A, Albogami A, Misnan NM, Ismail NH, Parhar IS, Ogawa S, Hwa WE. 1H NMR metabolomics insights into comparative diabesity in male and female zebrafish and the antidiabetic activity of DL-limonene. Sci Rep 2024; 14:3823. [PMID: 38360784 PMCID: PMC10869695 DOI: 10.1038/s41598-023-45608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 02/17/2024] Open
Abstract
Zebrafish have been utilized for many years as a model animal for pharmacological studies on diabetes and obesity. High-fat diet (HFD), streptozotocin and alloxan injection, and glucose immersion have all been used to induce diabetes and obesity in zebrafish. Currently, studies commonly used both male and female zebrafish, which may influence the outcomes since male and female zebrafish are biologically different. This study was designed to investigate the difference between the metabolites of male and female diabetic zebrafish, using limonene - a natural product which has shown several promising results in vitro and in vivo in treating diabetes and obesity-and provide new insights into how endogenous metabolites change following limonene treatment. Using HFD-fed male and female zebrafish, we were able to develop an animal model of T2D and identify several endogenous metabolites that might be used as diagnostic biomarkers for diabetes. The endogenous metabolites in males and females were different, even though both genders had high blood glucose levels and a high BMI. Treatment with limonene prevented high blood glucose levels and improved in diabesity zebrafish by limonene, through reversal of the metabolic changes caused by HFD in both genders. In addition, limonene was able to reverse the elevated expression of AKT during HFD.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University, 65779-7738, Alaqiq, Saudi Arabia
| | - Norazlan Mohmad Misnan
- Institute for Medical Research Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, UiTM Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
42
|
Martínez-Magaña JJ, Genis-Mendoza AD, Gallegos-Silva I, López-Narváez ML, Juárez-Rojop IE, Diaz-Zagoya JC, Tovilla-Zárate CA, González-Castro TB, Nicolini H, Solis-Medina A. Differential Alterations of Expression of the Serotoninergic System Genes and Mood-Related Behavior by Consumption of Aspartame or Potassium Acesulfame in Rats. Nutrients 2024; 16:490. [PMID: 38398814 PMCID: PMC10892058 DOI: 10.3390/nu16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The use of aspartame (ASP) and potassium acesulfame (ACK) to reduce weight gain is growing; however, contradictory effects in body mass index control and neurobiological alterations resulting from artificial sweeteners consumption have been reported. This study aimed to evaluate the impact of the chronic consumption of ASP and ACK on mood-related behavior and the brain expression of serotonin genes in male Wistar rats. Mood-related behaviors were evaluated using the swim-forced test and defensive burying at two time points: 45 days (juvenile) and 95 days (adult) postweaning. Additionally, the mRNA expression of three serotoninergic genes (Slc6a4, Htr1a, and Htr2c) was measured in the brain areas (prefrontal cortex, hippocampus, and hypothalamus) involved in controlling mood-related behaviors. In terms of mood-related behaviors, rats consuming ACK exhibited anxiety-like behavior only during the juvenile stage. In contrast, rats consuming ASP showed a reduction in depressive-like behavior during the juvenile stage but an increase in the adult stage. The expression of Slc6a4 mRNA increased in the hippocampus of rats consuming artificial sweeteners during the juvenile stage. In the adult stage, there was an upregulation in the relative expression of Slc6a4 and Htr1a in the hypothalamus, while Htr2c expression decreased in the hippocampus of rats consuming ASP. Chronic consumption of ASP and ACK appears to have differential effects during neurodevelopmental stages in mood-related behavior, potentially mediated by alterations in serotoninergic gene expression.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Ileana Gallegos-Silva
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - María Lilia López-Narváez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Juan C. Diaz-Zagoya
- División de Investigación, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Carlos Alfonso Tovilla-Zárate
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Anayelly Solis-Medina
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| |
Collapse
|
43
|
Xu Q, Fan X, Chen G, Ma J, Ye W, Ai S, Wang L, Zheng K, Qin Y, Chen L, Li M, Li X. New-onset metabolic syndrome is associated with accelerated renal function decline partially through elevated uric acid: an epidemiological cohort study. Front Endocrinol (Lausanne) 2024; 15:1328404. [PMID: 38370360 PMCID: PMC10869501 DOI: 10.3389/fendo.2024.1328404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Background The burden of metabolic syndrome (MetS) continues to rise globally and is associated with complications of multiple organ systems. We aimed to identify the association between changes in MetS status and accelerated renal function progression through a regional epidemiological survey in China, thus discovering influence factors with treatable potential. Methods This study was a population-based survey conducted in 2008 and 2014, assessing a representative sample of 5,225 individuals from rural areas of China. They were divided into four subgroups according to their MetS status in 2008 and 2014 (Never, Previously abnormal, New-onset, and Consistent). Multivariate logistic regression and stratification analysis evaluated the relationship between clinical factors and renal function decline under different MetS statuses. Smooth curve fitting further addressed the role of serum uric acid, illustrating the vital turning point of uric acid levels in the background of renal function deterioration. Results Of all groups of MetS states, the new-onset MetS showed the most significant eGFR decline, with a 6.66 ± 8.21 mL/min/1.73 m2 decrease over 6 years. The population with newly-onset MetS showed a considerable risk increase in delta eGFR with a beta coefficient of 1.66 (95%CI=1.09-2.23) after necessary correction. In searching for the drivers, the strength of the association was significantly reduced after additional adjustment for uric acid levels (β=0.91, 95%CI=0.35-1.45). Regarding the turning point, uric acid levels exceeding 426 μmol/L were more significantly associated with the stepped-up deterioration of kidney function for those with new-onset MetS. Conclusion Metabolic syndrome demonstrated a solid correlation with the progression of renal function, particularly in those with newly-onset MetS status. In addition to the diagnostic components of MetS, hyperuricemia could be used as a marker to identify the high risk of accelerating eGFR decline early. Furthermore, we suggested a potential renal benefit for the newly-onset MetS population when maintaining their serum uric acid level below the criteria for asymptomatic hyperuricemia.
Collapse
Affiliation(s)
- Qiuyu Xu
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 44 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Fan
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenling Ye
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sanxi Ai
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Qin
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Limeng Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingxi Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Chen Q, Luo Y, Shen Y, Li X, Yang H, Li J, Wang J, Xiao Y. Fructose corn syrup induces inflammatory injury and obesity by altering gut microbiota and gut microbiota-related arachidonic acid metabolism. J Nutr Biochem 2024; 124:109527. [PMID: 37979711 DOI: 10.1016/j.jnutbio.2023.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Excessive fructose corn syrup (FCS) intake brings a series of health problems. The aim of the present study was to explore the mechanism of FCS-induced metabolic disorders from the perspective of gut microbiota. Mice were fed for 16 weeks with normal or 30% FCS drinking water. Compared to the control group, FCS caused significantly higher fat deposition, hepatic steatosis, liver and intestinal inflammatory damages (P<.05). FCS increased the abundance of Muribaculaceae in vivo and in vitro, which was positively correlated with the indices of metabolic disorders (P<.05). In vivo and in vitro data indicated that FCS enhanced the microbial function involved in pentose phosphate pathway and arachidonic acid metabolism, metabolomics further demonstrated that FCS led to an increase in prostaglandins (the catabolites of arachidonic acid) (P<.05). Our study confirmed that FCS can directly promote gut microbiota to synthesize inflammatory factor prostaglandins, which provides new insights and directions for the treatment of FCS-induced metabolic disorders and inflammation.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinmei Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoqiong Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | | | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
45
|
Rajasekar R, Sundaram SM, Raj CP, Poovitha M, Kumar JS. Analysing uric acid levels to assess the effectiveness of dapagliflozin. Clin Nutr ESPEN 2024; 59:81-88. [PMID: 38220410 DOI: 10.1016/j.clnesp.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors are an innovative diabetes treatment that lowers blood sugar levels without insulin. A growing body of evidence suggests that blood sugar levels are tightly correlated with uric acid levels in their blood and urine. To alleviate type 2 diabetes (T2DM) suffering, we tested dapagliflozin on serum and urinary uric acid levels of patients with T2DM and measured its efficacy in reducing uric acid levels. METHODS A study was conducted on 60 people with T2DM. Patients were treated with Dapagliflozin doses of 10 mg daily for 3 months. Three months later, we measured body weight, fasting, and postprandial blood glucose levels, Hemoglobin A1C (HbA1c), serum lipids, renal function tests, routine urine, and serum uric acid. RESULTS A number of clinical parameters of T2DM patients were compared to those of healthy subjects of the same age group. A comprehensive analysis of all parameters was conducted to evaluate dapagliflozin's impact. After 90 days of dapagliflozin treatment, serum uric acid levels dropped significantly from 9.0 to 8 mg/dL in the dapagliflozin group, as well as uric acid percentage in urine changed from 16.1 to 23.6 %. After three months of treatment, HbA1C levels decreased from 9.8 % to 8.5 %. CONCLUSION Following treatment with dapagliflozin, the patients' Homeostatic Model Assessment for Insulin Resistance decreased to 4.0. Further, multivariate correlation analysis showed a correlation of serum uric acid with glycemic profile positively. In conclusion, dapagliflozin lowers uric acid levels and increases insulin sensitivity in diabetic patients to improve their glycemic control.
Collapse
Affiliation(s)
- R Rajasekar
- Department of General Medicine, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Sivaraj Mohana Sundaram
- Division of Medical Research, Faculty of Medical and Health Sciences, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India.
| | - C Poornima Raj
- Department of General Medicine, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| | - M Poovitha
- Department of General Medicine, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Janardanan Subramonia Kumar
- Department of General Medicine, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
46
|
Mao T, He Q, Yang J, Jia L, Xu G. Relationship between gout, hyperuricemia, and obesity-does central obesity play a significant role?-a study based on the NHANES database. Diabetol Metab Syndr 2024; 16:24. [PMID: 38254222 PMCID: PMC10804703 DOI: 10.1186/s13098-024-01268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Our objective was to evaluate how various measures of obesity, such as body mass index(BMI), body roundness index(BRI), and weigh adjusted waist index(WWI), influence urate levels, prevalence of gout and to compare the disparities among these obesity indicators. METHODS By analyzing the 2001-2018 National Health and Nutrition Examination Survey (NHANES), we assessed the relationship between BMI, WWI, and BRI indices and urate levels, hyperuricemia, and the prevalence of gout. Smoothed curve fitting was used to determine whether there was a nonlinear relationship between BMI,WWI, and BRI indices and urate levels, hyperuricemia, and the prevalence of gout, and threshold effects analysis was used to test this relationship. We also used ROC curves to determine the diagnostic efficacy of BMI, WWI, and BRI on the prevalence of hyperuricemia and gout. RESULTS The study incorporated a total of 29,310 participants aged over 20 years, out of which 14,268 were male. Following the adjustment for the pertinent confounding factors, it was observed that higher levels of BMI, WWI, and BRI were significantly associated with a gradual and dose-dependent increase in urate levels. In the sensitivity analysis, each unit increment in BMI, WWI, and BRI levels exhibited an 8%, 72%, and 26% respective elevation in the risk of hyperuricemia, as well as a 5%, 31%, and 15% respective increase in the risk of gout. Dose-response curves provided evidence of a linear positive correlation between BMI, WWI, BRI, and urate levels, as well as the prevalence of hyperuricemia and gout. Based on the response from the ROC curve, overall, the diagnostic efficacy of BRI for hyperuricemia and gout surpasses that of BMI. CONCLUSION The central obesity indices WWI and BRI levels are superior to BMI in detecting the prevalence of urate levels, hyperuricemia, and gout, and although a clear causal relationship has not yet been established, it is important to recognize the impact of central obesity on uric acid levels and to give it due attention.
Collapse
Affiliation(s)
- Tongjun Mao
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Qian He
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Junping Yang
- Department of General Practice, Wuhu City SecondPeoplès Hospital, Wuhu, Anhui, China
| | - Lanlan Jia
- Department of Rheumatology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Guofei Xu
- Anhui Normal University School of Educational Sciences, Wuhu, China.
| |
Collapse
|
47
|
Jafari-Nozad AM, Jafari A, Yousefi S, Bakhshi H, Farkhondeh T, Samarghandian S. Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside. Curr Med Chem 2024; 31:3715-3732. [PMID: 37488765 DOI: 10.2174/0929867331666230721154653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities. OBJECTIVE This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease. METHODS Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included. RESULTS According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels. CONCLUSION In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.
Collapse
Affiliation(s)
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saman Yousefi
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hasan Bakhshi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| |
Collapse
|
48
|
Rao J, Yan Y, Cheng H, Hou D, Zhao X, Shan X, Mi J. Uric acid mediated the relationship between obesity and hypertension in children and adolescents: A population‑based cohort study. Nutr Metab Cardiovasc Dis 2024; 34:214-222. [PMID: 37993286 DOI: 10.1016/j.numecd.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND AND AIM Obesity and hyperuricemia (HUA) often coexist and have been widely accepted as risk factors for hypertension, but the role of uric acid (UA) in the relationship between obesity and hypertension remains unknown in children and adolescents. METHODS AND RESULTS A total of 7525 subjects aged 6-16 years were from the School-based Cardiovascular and Bone Health Promotion Program (SCVBH) at baseline (2017) and followed up in 2019. Multivariable logistic regression with interaction terms, cross-lagged panel analysis, and causal mediation model were applied to delineate the joint impact of obesity and HUA on hypertension, including the interaction effect, the temporal association, and the mediating effect of UA in the relationship between obesity and hypertension. There were 10.8 % of the participants with normotension at baseline developed hypertension after two years of follow-up. Cross-lagged panel analysis showed that the two-time point association was significant only from baseline BMI to follow-up UA (β1 = 0.302, P < 0.001), but not from baseline UA to follow-up BMI (β2 = 0.002, P = 0.745). Multivariable logistic regression showed that both obesity and HUA increased the risk of hypertension, but no interaction effect between HUA and obesity. The causal mediation analysis found that UA partially mediated the association between BMI and SBP (mediate proportion: 20.3 %, 95 % CI: 17.4-22.9 %) or DBP (mediate proportion: 11.9 %, 95 % CI: 3.9-18.2 %). The results were consistent in the analysis of systolic hypertension rather than diastolic hypertension. CONCLUSIONS It is mediating effect that UA played in the progress from obesity to hypertension, particularly systolic hypertension in children and adolescents.
Collapse
Affiliation(s)
- Jiahuan Rao
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yinkun Yan
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Dongqing Hou
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Xinying Shan
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Jie Mi
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
49
|
Johnson RJ, Sánchez-Lozada LG, Lanaspa MA. The fructose survival hypothesis as a mechanism for unifying the various obesity hypotheses. Obesity (Silver Spring) 2024; 32:12-22. [PMID: 37846155 DOI: 10.1002/oby.23920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023]
Abstract
The pathogenesis of obesity remains contested. Although genetics is important, the rapid rise in obesity with Western culture and diet suggests an environmental component. Today, some of the major hypotheses for obesity include the energy balance hypothesis, the carbohydrate-insulin model, the protein-leverage hypothesis, and the seed oil hypothesis. Each hypothesis has its own support, creating controversy over their respective roles in driving obesity. Here we propose that all hypotheses are largely correct and can be unified by another dietary hypothesis, the fructose survival hypothesis. Fructose is unique in resetting ATP levels to a lower level in the cell as a consequence of suppressing mitochondrial function, while blocking the replacement of ATP from fat. The low intracellular ATP levels result in carbohydrate-dependent hunger, impaired satiety (leptin resistance), and metabolic effects that result in the increased intake of energy-dense fats. This hypothesis emphasizes the unique role of carbohydrates in stimulating intake while fat provides the main source of energy. Thus, obesity is a disorder of energy metabolism, in which there is low usable energy (ATP) in the setting of elevated total energy. This leads to metabolic effects independent of excess energy while the excess energy drives weight gain.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Nephrology, Rocky Mountain VA Medical Center, Aurora, Colorado, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
50
|
Carullo N, Zicarelli M, Michael A, Faga T, Battaglia Y, Pisani A, Perticone M, Costa D, Ielapi N, Coppolino G, Bolignano D, Serra R, Andreucci M. Childhood Obesity: Insight into Kidney Involvement. Int J Mol Sci 2023; 24:17400. [PMID: 38139229 PMCID: PMC10743690 DOI: 10.3390/ijms242417400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
This review examines the impact of childhood obesity on the kidney from an epidemiological, pathogenetic, clinical, and pathological perspective, with the aim of providing pediatricians and nephrologists with the most current data on this topic. The prevalence of childhood obesity and chronic kidney disease (CKD) is steadily increasing worldwide, reaching epidemic proportions. While the impact of obesity in children with CKD is less pronounced than in adults, recent studies suggest a similar trend in the child population. This is likely due to the significant association between obesity and the two leading causes of end-stage renal disease (ESRD): diabetes mellitus (DM) and hypertension. Obesity is a complex, systemic disease that reflects interactions between environmental and genetic factors. A key mechanism of kidney damage is related to metabolic syndrome and insulin resistance. Therefore, we can speculate about an adipose tissue-kidney axis in which neurohormonal and immunological mechanisms exacerbate complications resulting from obesity. Adipose tissue, now recognized as an endocrine organ, secretes cytokines called adipokines that may induce adaptive or maladaptive responses in renal cells, leading to kidney fibrosis. The impact of obesity on kidney transplant-related outcomes for both donors and recipients is also significant, making stringent preventive measures critical in the pre- and post-transplant phases. The challenge lies in identifying renal involvement as early as possible, as it is often completely asymptomatic and not detectable through common markers of kidney function. Ongoing research into innovative technologies, such as proteomics and metabolomics, aims to identify new biomarkers and is constantly evolving. Many aspects of pediatric disease progression in the population of children with obesity still require clarification. However, the latest scientific evidence in the field of nephrology offers glimpses into various new perspectives, such as genetic factors, comorbidities, and novel biomarkers. Investigating these aspects early could potentially improve the prognosis of these young patients through new diagnostic and therapeutic strategies. Hence, the aim of this review is to provide a comprehensive exploration of the pathogenetic mechanisms and prevalent pathological patterns of kidney damage observed in children with obesity.
Collapse
Affiliation(s)
- Nazareno Carullo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Mariateresa Zicarelli
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Yuri Battaglia
- Department of Medicine, University of Verona, 37129 Verona, Italy;
| | - Antonio Pisani
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy;
| | - Maria Perticone
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
| | - Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy;
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| |
Collapse
|