1
|
Yang W, Si SC, Luo HY, Ma YX, Zhao H. Cognitive impairment and hippocampal degeneration in aged rat models of type 2 diabetes with induced glycemic fluctuation: A pilot study. Brain Res 2025; 1850:149452. [PMID: 39814193 DOI: 10.1016/j.brainres.2025.149452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE Effective methods for establishing an aged animal model of diabetes and glycemic fluctuation have rarely been investigated. The aim of the study was to explore the feasibility of inducing glycemic fluctuation in aged Sprague-Dawley rats and to evaluate the corresponding changes in cognitive function. METHODS Male rats aged 48 weeks were fed a high-fat and high-glucose diet and given streptozotocin intraperitoneally to establish a rat model of type 2 diabetes mellitus (T2DM). Then, glycemic fluctuation was induced via three different protocols: (1) intraperitoneal injection of glucose; (2) sequential fasting, insulin injection, and normal diet; and (3) intermittent intraperitoneal injections of glucose and insulin. RESULTS All three protocols were effective at inducing glycemic fluctuation in aged rats with T2DM, with successful modeling rates of 60 %, 90 %, and 70 %, respectively. Aged T2DM rats with glycemic fluctuation showed significant increases in glycemic variability compared with controls, including in the mean blood glucose, postprandial glycemic excursion, largest amplitude of glycemic excursion, and standard deviation of blood glucose values (all P < 0.05). Additionally, rats with glycemic fluctuation had more severe insulin resistance and dyslipidemia (P < 0.05). Morris water maze testing showed a trend of longer escape latency in the navigation test for rats in the glycemic fluctuation groups, suggesting impaired cognitive function. Pathological analysis showed degenerative changes in the CA1 hippocampal region of rats in the glycemic fluctuation groups. Finally, differential gene expression analysis revealed 1323 significantly altered genes in the GV group, with 691 upregulated and 632 downregulated. The dysregulated genes were predominantly associated with the axon guidance pathway and potassium channel regulation. CONCLUSIONS The proposed protocols were effective at establishing an aged T2DM rat model with glycemic fluctuation, and rats with glycemic fluctuation exhibited diminished cognitive function.
Collapse
Affiliation(s)
- Wei Yang
- Department of Geriatric Medicine, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing 100053, China.
| | - Si-Cong Si
- Department of Geriatric Medicine, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing 100053, China
| | - Hong-Yu Luo
- Department of Geriatric Medicine, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing 100053, China
| | - Yi-Xin Ma
- Department of Geriatric Medicine, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing 100053, China
| | - Huan Zhao
- Department of Geriatric Medicine, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing 100053, China
| |
Collapse
|
2
|
Nwakama CA, Durand-de Cuttoli R, Oketokoun ZM, Brown SO, Haller JE, Méndez A, Jodeiri Farshbaf M, Cho YZ, Ahmed S, Leng S, Ables JL, Sweis BM. Neuroeconomically dissociable forms of mental accounting are altered in a mouse model of diabetes. Commun Biol 2025; 8:102. [PMID: 39838110 PMCID: PMC11751097 DOI: 10.1038/s42003-025-07500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Those with diabetes mellitus are at high-risk of developing psychiatric disorders, especially mood disorders, yet the link between hyperglycemia and altered motivation has not been thoroughly explored. Here, we characterized value-based decision-making behavior of a streptozocin-induced diabetic mouse model on Restaurant Row, a naturalistic neuroeconomic foraging paradigm capable of behaviorally capturing multiple decision systems known to depend on dissociable neural circuits. Mice made self-paced choices on a daily limited time-budget, accepting or rejecting reward offers based on cost (delays cued by tone pitch) and subjective value (flavors), in a closed-economy system tested across months. We found streptozocin-treated mice disproportionately undervalued less-preferred flavors and inverted their meal-consumption patterns shifted toward a more costly strategy overprioritizing high-value rewards. These foraging behaviors were driven by impairments in multiple decision-making processes, including the ability to deliberate when engaged in conflict and cache the value of the passage of time as sunk costs. Surprisingly, diabetes-induced changes in motivation depended not only on the type of choice being made, but also on the salience of reward-scarcity in the environment. These findings suggest that complex relationships between metabolic dysfunction and dissociable valuation algorithms underlying unique cognitive heuristics and sensitivity to opportunity costs can disrupt distinct computational processes leading to comorbid psychiatric vulnerabilities.
Collapse
Affiliation(s)
- Chinonso A Nwakama
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zainab M Oketokoun
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samantha O Brown
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jillian E Haller
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, University of Scranton College of Arts and Sciences, Scranton, PA, 18510, USA
| | - Adriana Méndez
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mohammad Jodeiri Farshbaf
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Y Zoe Cho
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Chemistry, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Sanjana Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Macaulay Honors College at CUNY Hunter, New York, NY, 10023, USA
| | - Sophia Leng
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Hunter College High School, New York, NY, 10128, USA
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Brian M Sweis
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Jodeiri Farshbaf M, Matos TA, Niblo K, Alokam Y, Ables JL. STZ-induced hyperglycemia differentially influences mitochondrial distribution and morphology in the habenulointerpeduncular circuit. Front Cell Neurosci 2024; 18:1432887. [PMID: 39763617 PMCID: PMC11700986 DOI: 10.3389/fncel.2024.1432887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease. Methods This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images. We examined different time points after STZ-induced diabetes onset to determine how the brain responded to chronic hyperglycemia, with the limitation that mitochondria and lipids were not examined with respect to cell type or intracellular location. Results Mitochondrial distribution and morphology differentially responded to hyperglycemia depending on time and brain area. Six weeks after STZ treatment, mitochondria in the ventral MHb and dorsal IPN increased in number and exhibited altered morphology, but no changes were observed in the lateral habenula (LHb) or ventral IPN. Strikingly, mitochondrial numbers returned to normal dynamics at 12 weeks. Both blood glucose level and glycated hemoglobin (HbA1C) correlated with mitochondrial dynamics in ventral MHb, whereas only HbA1C correlated in the IPN. We also examined lipid homeostasis using BODIPY staining for neutral lipids in this model given that diabetes is associated with disrupted lipid homeostasis. BODIPY staining intensity was unchanged in the vMHb of STZ-treated mice but increased in the IPN and VTA and decreased in the LHb at 12 weeks. Interestingly, areas that demonstrated changes in mitochondria had little change in lipid staining and vice versa. Discussion This study is the first to describe the specific impacts of diabetes on mitochondria in the MHb-IPN circuit and suggests that the cholinergic MHb is uniquely sensitive to diabetesinduced hyperglycemia. Further studies are needed to understand the functional and behavioral implications of these findings.
Collapse
Affiliation(s)
- Mohammad Jodeiri Farshbaf
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taelor A. Matos
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- PREP Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristi Niblo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jessica L. Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, Diabetes Obesity Metabolism Institute, New York, NY, United States
| |
Collapse
|
4
|
Tanvir A, Jo J, Park SM. Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease. Cells 2024; 13:1876. [PMID: 39594624 PMCID: PMC11592965 DOI: 10.3390/cells13221876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glucose metabolism is essential for the maintenance and function of the central nervous system. Although the brain constitutes only 2% of the body weight, it consumes approximately 20% of the body's total energy, predominantly derived from glucose. This high energy demand of the brain underscores its reliance on glucose to fuel various functions, including neuronal activity, synaptic transmission, and the maintenance of ion gradients necessary for nerve impulse transmission. Increasing evidence shows that many neurodegenerative diseases, including Parkinson's disease (PD), are associated with abnormalities in glucose metabolism. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, accompanied by the accumulation of α-synuclein protein aggregates. These pathological features are exacerbated by mitochondrial dysfunction, oxidative stress, and neuroinflammation, all of which are influenced by glucose metabolism disruptions. Emerging evidence suggests that targeting glucose metabolism could offer therapeutic benefits for PD. Several antidiabetic drugs have shown promise in animal models and clinical trials for mitigating the symptoms and progression of PD. This review explores the current understanding of the association between PD and glucose metabolism, emphasizing the potential of antidiabetic medications as a novel therapeutic approach. By improving glucose uptake and utilization, enhancing mitochondrial function, and reducing neuroinflammation, these drugs could address key pathophysiological mechanisms in PD, offering hope for more effective management of this debilitating disease.
Collapse
Affiliation(s)
- Ahmed Tanvir
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Bombaci B, Passanisi S, Lombardo F, Salzano G. Clinical relevance of short-term glycemic variability in children and adolescents with type 1 diabetes: a narrative review. Transl Pediatr 2024; 13:1231-1241. [PMID: 39144438 PMCID: PMC11320011 DOI: 10.21037/tp-24-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Objective In recent years, there has been growing interest in glycemic variability within the scientific community, particularly regarding its potential as an independent risk factor for diabetes-related long-term complications. This narrative review aimed to provide a comprehensive overview of short-term glycemic variability in children and adolescents with type 1 diabetes (T1D). Methods We performed a search of published literature on the PubMed MEDLINE database using the following combination of search terms: "glycemic variability", "pediatric", "type 1 diabetes", and "children". Key Content and Findings The widespread use of continuous glucose monitoring (CGM) systems has facilitated the characterization and quantification of glycemic fluctuations. Over the years, several metrics for assessing glycemic variability have been developed. Children and adolescents with T1D often experience wide and frequent glycemic excursions due to behavioral and hormonal factors. Several studies suggest a potential link between glycemic variability and an increased risk of diabetes-related complications. Conclusions Glycemic variability has become an integral aspect of the routine clinical management of youths with T1D, serving as a valuable therapeutic target. However, achieving recommended glycemic targets in this population remains challenging. Further long-term data are needed to definitively establish the role of glycemic variability in the development of complications.
Collapse
Affiliation(s)
- Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
6
|
Stanisławska-Kubiak M, Majewska KA, Krasińska A, Wais P, Majewski D, Mojs E, Kȩdzia A. Brain functional and structural changes in diabetic children. How can intellectual development be optimized in type 1 diabetes? Ther Adv Chronic Dis 2024; 15:20406223241229855. [PMID: 38560719 PMCID: PMC10981223 DOI: 10.1177/20406223241229855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/11/2024] [Indexed: 04/04/2024] Open
Abstract
The neuropsychological functioning of people with type 1 diabetes (T1D) is of key importance to the effectiveness of the therapy, which, in its complexity, requires a great deal of knowledge, attention, and commitment. Intellectual limitations make it difficult to achieve the optimal metabolic balance, and a lack of this alignment can contribute to the further deterioration of cognitive functions. The aim of this study was to provide a narrative review of the current state of knowledge regarding the influence of diabetes on brain structure and functions during childhood and also to present possible actions to optimize intellectual development in children with T1D. Scopus, PubMed, and Web of Science databases were searched for relevant literature using selected keywords. The results were summarized using a narrative synthesis. Disturbances in glucose metabolism during childhood may have a lasting negative effect on the development of the brain and related cognitive functions. To optimize intellectual development in children with diabetes, it is essential to prevent disorders of the central nervous system by maintaining peri-normal glycemic levels. Based on the performed literature review, it seems necessary to take additional actions, including repeated neuropsychological evaluation with early detection of any cognitive dysfunctions, followed by the development of individual management strategies and the training of appropriate skills, together with complex, multidirectional environmental support.
Collapse
Affiliation(s)
- Maia Stanisławska-Kubiak
- Department of Clinical Psychology, Poznan University of Medical Sciences, ul. Bukowska 70, Poznan 60-812, Poland
| | - Katarzyna Anna Majewska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Krasińska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Wais
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Majewski
- Department of Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Kȩdzia
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Dolatshahi M, Sanjari Moghaddam H, Saberi P, Mohammadi S, Aarabi MH. Central nervous system microstructural alterations in Type 1 diabetes mellitus: A systematic review of diffusion Tensor imaging studies. Diabetes Res Clin Pract 2023; 205:110645. [PMID: 37004976 DOI: 10.1016/j.diabres.2023.110645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
AIMS Type 1 diabetes mellitus (T1DM) is a chronic childhood disease with potentially persistent CNS disruptions. In this study, we aimed to systematically review diffusion tensor imaging studies in patients with T1DM to understand the microstructural effects of this entity on individuals' brains METHODS: We performed a systematic search and reviewed the studies to include the DTI studies in individuals with T1DM. The data for the relevant studies were extracted and a qualitative synthesis was performed. RESULTS A total of 19 studies were included, most of which showed reduced FA widespread in optic radiation, corona radiate, and corpus callosum, as well as other frontal, parietal, and temporal regions in the adult population, while most of the studies in the juvenile patients showed non-significant differences or a non-persistent pattern of changes. Also, reduced AD and MD in individuals with T1DM compared to controls and non-significant differences in RD were noted in the majority of studies. Microstructural alterations were associated with clinical profile, including age, hyperglycemia, diabetic ketoacidosis and cognitive performance. CONCLUSION T1DM is associated with microstructural brain alterations including reduced FA, MD, and AD in widespread brain regions, especially in association with glycemic fluctuations and in adult age.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- NeuroImaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, United States; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Parastoo Saberi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soheil Mohammadi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Juras JA, Webb MB, Young LE, Markussen KH, Hawkinson TR, Buoncristiani MD, Bolton KE, Coburn PT, Williams MI, Sun LP, Sanders WC, Bruntz RC, Conroy LR, Wang C, Gentry MS, Smith BN, Sun RC. In situ microwave fixation provides an instantaneous snapshot of the brain metabolome. CELL REPORTS METHODS 2023; 3:100455. [PMID: 37159672 PMCID: PMC10163000 DOI: 10.1016/j.crmeth.2023.100455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Brain glucose metabolism is highly heterogeneous among brain regions and continues postmortem. In particular, we demonstrate exhaustion of glycogen and glucose and an increase in lactate production during conventional rapid brain resection and preservation by liquid nitrogen. In contrast, we show that these postmortem changes are not observed with simultaneous animal sacrifice and in situ fixation with focused, high-power microwave. We further employ microwave fixation to define brain glucose metabolism in the mouse model of streptozotocin-induced type 1 diabetes. Using both total pool and isotope tracing analyses, we identified global glucose hypometabolism in multiple brain regions, evidenced by reduced 13C enrichment into glycogen, glycolysis, and the tricarboxylic acid (TCA) cycle. Reduced glucose metabolism correlated with a marked decrease in GLUT2 expression and several metabolic enzymes in unique brain regions. In conclusion, our study supports the incorporation of microwave fixation for more accurate studies of brain metabolism in rodent models.
Collapse
Affiliation(s)
- Jelena A. Juras
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Madison B. Webb
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Tara R. Hawkinson
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Michael D. Buoncristiani
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Kayli E. Bolton
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Peyton T. Coburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Meredith I. Williams
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lisa P.Y. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - William C. Sanders
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Lindsey R. Conroy
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Division of Biostatics, Department of Internal Medicine, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ramon C. Sun
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Schwartz MW, Krinsley JS, Faber CL, Hirsch IB, Brownlee M. Brain Glucose Sensing and the Problem of Relative Hypoglycemia. Diabetes Care 2023; 46:237-244. [PMID: 36701597 PMCID: PMC9887623 DOI: 10.2337/dc22-1445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023]
Abstract
"Relative hypoglycemia" is an often-overlooked complication of diabetes characterized by an increase in the glycemic threshold for detecting and responding to hypoglycemia. The clinical relevance of this problem is linked to growing evidence that among patients with critical illness, higher blood glucose in the intensive care unit is associated with higher mortality among patients without diabetes but lower mortality in patients with preexisting diabetes and an elevated prehospitalization HbA1c. Although additional studies are needed, the cardiovascular stress associated with hypoglycemia perception, which can occur at normal or even elevated glucose levels in patients with diabetes, offers a plausible explanation for this difference in outcomes. Little is known, however, regarding how hypoglycemia is normally detected by the brain, much less how relative hypoglycemia develops in patients with diabetes. In this article, we explore the role in hypoglycemia detection played by glucose-responsive sensory neurons supplying peripheral vascular beds and/or circumventricular organs. These observations support a model wherein relative hypoglycemia results from diabetes-associated impairment of this neuronal glucose-sensing process. By raising the glycemic threshold for hypoglycemia perception, this impairment may contribute to the increased mortality risk associated with standard glycemic management of critically ill patients with diabetes.
Collapse
Affiliation(s)
- Michael W. Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA
| | - James S. Krinsley
- Stamford Hospital, Stamford, CT
- Columbia Vagelos College of Physicians and Surgeons, New York, NY
| | - Chelsea L. Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ
| | - Irl B. Hirsch
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA
| | - Michael Brownlee
- Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
10
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Sanchez-Rangel E, Gunawan F, Jiang L, Savoye M, Dai F, Coppoli A, Rothman DL, Mason GF, Hwang JJ. Reversibility of brain glucose kinetics in type 2 diabetes mellitus. Diabetologia 2022; 65:895-905. [PMID: 35247067 PMCID: PMC8960594 DOI: 10.1007/s00125-022-05664-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
AIMS/HYPOTHESIS We have previously shown that individuals with uncontrolled type 2 diabetes have a blunted rise in brain glucose levels measured by 1H magnetic resonance spectroscopy. Here, we investigate whether reductions in HbA1c normalise intracerebral glucose levels. METHODS Eight individuals (two men, six women) with poorly controlled type 2 diabetes and mean ± SD age 44.8 ± 8.3 years, BMI 31.4 ± 6.1 kg/m2 and HbA1c 84.1 ± 16.2 mmol/mol (9.8 ± 1.4%) underwent 1H MRS scanning at 4 Tesla during a hyperglycaemic clamp (~12.21 mmol/l) to measure changes in cerebral glucose at baseline and after a 12 week intervention that improved glycaemic control through the use of continuous glucose monitoring, diabetes regimen intensification and frequent visits to an endocrinologist and nutritionist. RESULTS Following the intervention, mean ± SD HbA1c decreased by 24.3 ± 15.3 mmol/mol (2.1 ± 1.5%) (p=0.006), with minimal weight changes (p=0.242). Using a linear mixed-effects regression model to compare glucose time courses during the clamp pre and post intervention, the pre-intervention brain glucose level during the hyperglycaemic clamp was significantly lower than the post-intervention brain glucose (p<0.001) despite plasma glucose levels during the hyperglycaemic clamp being similar (p=0.266). Furthermore, the increases in brain glucose were correlated with the magnitude of improvement in HbA1c (r = 0.71, p=0.048). CONCLUSION/INTERPRETATION These findings highlight the potential reversibility of cerebral glucose transport capacity and metabolism that can occur in individuals with type 2 diabetes following improvement of glycaemic control. Trial registration ClinicalTrials.gov NCT03469492.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Felona Gunawan
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Savoye
- Department of Pediatric Endocrinology and General Clinical Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Anastasia Coppoli
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Janice Jin Hwang
- Department of Internal Medicine/Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Lindkvist EB, Thorsen SU, Paulsrud C, Thingholm PR, Eriksen TLM, Gaulke A, Skipper N, Svensson J. Association of type 1 diabetes and educational achievement in 16-20-year-olds: A Danish nationwide register study. Diabet Med 2022; 39:e14673. [PMID: 34407249 DOI: 10.1111/dme.14673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
AIMS The objective of the study was to compare grade point averages (GPAs) on compulsory school exit exams (exam GPA) and educational attainment at age 16 and 20 for individuals with and without type 1 diabetes. METHODS This study was a population-based retrospective cohort study, which included the 1991 to 1998 birth cohorts in Denmark. Follow-up was conducted at age 16 and 20 (follow-up period; 1 January, 2007 to 31 December, 2018). There were 2083 individuals with and 555,929 individuals without type 1 diabetes. Linear regression and generalized linear models compared outcomes with and without adjustments for socio-economic characteristics. RESULTS A total of 558,012 individuals (51% males) were followed to the age of 20. Having type 1 diabetes was associated with a lower exam GPA when adjusting for socio-economic status (difference: -0.05 (95% CI, -0.09 to -0.01), a higher relative risk of not completing compulsory school by age 16 (1.37, 95% CI, 1.22 to 1.53)), and a higher relative risk of not completing or being enrolled in upper secondary education by age 20 (1.05, 95% CI, 1.00 to 1.10). Haemoglobin A1c (HbA1c) <58 mmol/mol (7.5%), >7 BGM/day and insulin pump use were associated with better educational achievement. CONCLUSION Type 1 diabetes was associated with a marginally lower exam GPA and a higher risk of not completing compulsory school by age 16 and lower educational attainment by age 20. The findings were modified by HbA1c, BGM and insulin pump use.
Collapse
Affiliation(s)
- Emilie Bundgaard Lindkvist
- Department of Pediatrics and Adolescents, North Zealand Hospital, Hillerød, Denmark
- Department of Pediatrics and Adolescents, Copenhagen University Hospital, Herlev, Denmark
| | - Steffen Ullitz Thorsen
- Department of Pediatrics and Adolescents, Copenhagen University Hospital, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Paulsrud
- Department of Pediatrics and Adolescents, Copenhagen University Hospital, Herlev, Denmark
| | - Peter Rønø Thingholm
- Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | | | - Amanda Gaulke
- Department of Economics, Kansas State University, Manhattan, USA
| | - Niels Skipper
- Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, CIRRAU, Aarhus University, Aarhus, Denmark
| | - Jannet Svensson
- Department of Pediatrics and Adolescents, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Insulin-Induced Recurrent Hypoglycemia Up-Regulates Glucose Metabolism in the Brain Cortex of Chemically Induced Diabetic Rats. Int J Mol Sci 2021; 22:ijms222413470. [PMID: 34948265 PMCID: PMC8708764 DOI: 10.3390/ijms222413470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a chronic metabolic disease that seriously compromises human well-being. Various studies highlight the importance of maintaining a sufficient glucose supply to the brain and subsequently safeguarding cerebral glucose metabolism. The goal of the present work is to clarify and disclose the metabolic alterations induced by recurrent hypoglycemia in the context of long-term hyperglycemia to further comprehend the effects beyond brain harm. To this end, chemically induced diabetic rats underwent a protocol of repeatedly insulin-induced hypoglycemic episodes. The activity of key enzymes of glycolysis, the pentose phosphate pathway and the Krebs cycle was measured by spectrophotometry in extracts or isolated mitochondria from brain cortical tissue. Western blot analysis was used to determine the protein content of glucose and monocarboxylate transporters, players in the insulin signaling pathway and mitochondrial biogenesis and dynamics. We observed that recurrent hypoglycemia up-regulates the activity of mitochondrial hexokinase and Krebs cycle enzymes (namely, pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinate dehydrogenase) and the protein levels of mitochondrial transcription factor A (TFAM). Both insults increased the nuclear factor erythroid 2–related factor 2 (NRF2) protein content and induced divergent effects in mitochondrial dynamics. Insulin-signaling downstream pathways were found to be down-regulated, and glycogen synthase kinase 3 beta (GSK3β) was found to be activated through both decreased phosphorylation at Ser9 and increased phosphorylation at Y216. Interestingly, no changes in the levels of cAMP response element-binding protein (CREB), which plays a key role in neuronal plasticity and memory, were caused by hypoglycemia and/or hyperglycemia. These findings provide experimental evidence that recurrent hypoglycemia, in the context of chronic hyperglycemia, has the capacity to evoke coordinated adaptive responses in the brain cortex that will ultimately contribute to sustaining brain cell health.
Collapse
|
15
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
16
|
Hwang JJ. Food for Thought. J Nutr 2021; 151:2089-2091. [PMID: 34195820 DOI: 10.1093/jn/nxab210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Janice J Hwang
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR. Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 2021; 70:1857-1873. [PMID: 34031123 PMCID: PMC8385615 DOI: 10.2337/db20-1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022]
Abstract
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY
| | - Xuemei Zhang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rubén García-Martín
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pediatrics, University of Kentucky, College of Medicine, Lexington, KY
| | - Guoxiao Wang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Food Science and Biotechnology, Sungshin University, Seoul, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Blood glucose-related indicators are associated with in-hospital mortality in critically ill patients with acute pancreatitis. Sci Rep 2021; 11:15351. [PMID: 34321549 PMCID: PMC8319392 DOI: 10.1038/s41598-021-94697-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
Acute pancreatitis (AP) results in potentially harmful blood glucose fluctuations, affecting patient prognosis. This study aimed to explore the relationship between blood glucose-related indicators and in-hospital mortality in critically ill patients with AP. We extracted data on AP patients from the Multiparameter Intelligent Monitoring in Intensive Care III database. Initial glucose (Glucose_initial), maximum glucose (Glucose_max), minimum glucose (Glucose_min), mean glucose (Glucose_mean), and glucose variability (glucose standard deviation [Glucose_SD] and glucose coefficient of variation [Glucose_CV]) were selected as blood glucose-related indicators. Logistic regression models and the Lowess smoothing curves were used to display the association between significant blood glucose-related indicators and in-hospital mortality. Survivors and non-survivors showed significant differences in Glucose_max, Glucose_mean, Glucose_SD, and Glucose_CV (P < 0.05). Glucose_max, Glucose_mean, Glucose_SD, and Glucose_CV were risk factors for in-hospital mortality in AP patients (OR > 1; P < 0.05). According to the Lowess smoothing curve, the overall trends of blood glucose-related indicators showed a non-linear correlation with in-hospital mortality. Glucose_max, Glucose_mean, Glucose_SD, and Glucose_CV were associated with in-hospital mortality in critically ill patients with AP.
Collapse
|
19
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
20
|
Ravi R, Balasubramaniam V, Kuppusamy G, Ponnusankar S. Current concepts and clinical importance of glycemic variability. Diabetes Metab Syndr 2021; 15:627-636. [PMID: 33743360 DOI: 10.1016/j.dsx.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Evolving evidence indicate that variations in blood glucose levels are likely to be an important factor in developing diabetic complications. Monitoring glucose fluctuations in patients remains as a therapeutic challenge and more evidence needs to be created in order to bring GV into limelight. This review encapsulates the most important findings conducted and discusses on them to provide readers a better understanding on this emerging subject. METHODS Keyword-based comprehensive desktop search was conducted to gather the relevant literature. Triple-stage cascade type content analysis of the literature was conducted to draw relevant themes of discussions. RESULTS High glycemic variability is associated with an increased risk of development of diabetic complications especially in cardiac conditions. The widely used and accepted metrics to determine the variations in blood glucose are Standard deviation (SD), MAGE (Mean amplitude of glycemic excursions) and MODD (Mean of daily differences). Occurrence of blood glucose variations affects at a molecular level thereby causing more harm than the occurrence of hyperglycemia alone. CONCLUSION Available data suggest that Glycemic Variability should be used as an additional marker of glycemia. Additional research globally, and in India are required.
Collapse
Affiliation(s)
- Ramya Ravi
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Udhagamandalam, The Nilgiris, Tamil Nadu, India
| | - V Balasubramaniam
- Department of Surgery, Govt. Medical College Hospital, Udhagamandalam, The Nilgiris, Tamil Nadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Udhagamandalam, The Nilgiris, Tamil Nadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Udhagamandalam, The Nilgiris, Tamil Nadu, India.
| |
Collapse
|
21
|
Mannal N, Kleiner K, Fauler M, Dougalis A, Poetschke C, Liss B. Multi-Electrode Array Analysis Identifies Complex Dopamine Responses and Glucose Sensing Properties of Substantia Nigra Neurons in Mouse Brain Slices. Front Synaptic Neurosci 2021; 13:635050. [PMID: 33716704 PMCID: PMC7952765 DOI: 10.3389/fnsyn.2021.635050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Dopaminergic (DA) midbrain neurons within the substantia nigra (SN) display an autonomous pacemaker activity that is crucial for dopamine release and voluntary movement control. Their progressive degeneration is a hallmark of Parkinson's disease. Their metabolically demanding activity-mode affects Ca2+ homeostasis, elevates metabolic stress, and renders SN DA neurons particularly vulnerable to degenerative stressors. Accordingly, their activity is regulated by complex mechanisms, notably by dopamine itself, via inhibitory D2-autoreceptors and the neuroprotective neuronal Ca2+ sensor NCS-1. Analyzing regulation of SN DA neuron activity-pattern is complicated by their high vulnerability. We studied this activity and its control by dopamine, NCS-1, and glucose with extracellular multi-electrode array (MEA) recordings from midbrain slices of juvenile and adult mice. Our tailored MEA- and spike sorting-protocols allowed high throughput and long recording times. According to individual dopamine-responses, we identified two distinct SN cell-types, in similar frequency: dopamine-inhibited and dopamine-excited neurons. Dopamine-excited neurons were either silent in the absence of dopamine, or they displayed pacemaker-activities, similar to that of dopamine-inhibited neurons. Inhibition of pacemaker-activity by dopamine is typical for SN DA neurons, and it can undergo prominent desensitization. We show for adult mice, that the number of SN DA neurons with desensitized dopamine-inhibition was increased (~60–100%) by a knockout of NCS-1, or by prevention of NCS-1 binding to D2-autoreceptors, while time-course and degrees of desensitization were not altered. The number of neurons with desensitized D2-responses was also higher (~65%) at high glucose-levels (25 mM), compared to lower glucose (2.5 mM), while again desensitization-kinetics were unaltered. However, spontaneous firing-rates were significantly higher at high glucose-levels (~20%). Moreover, transient glucose-deprivation (1 mM) induced a fast and fully-reversible pacemaker frequency reduction. To directly address and quantify glucose-sensing properties of SN DA neurons, we continuously monitored their electrical activity, while altering extracellular glucose concentrations stepwise from 0.5 mM up to 25 mM. SN DA neurons were excited by glucose, with EC50 values ranging from 0.35 to 2.3 mM. In conclusion, we identified a novel, common subtype of dopamine-excited SN neurons, and a complex, joint regulation of dopamine-inhibited neurons by dopamine and glucose, within the range of physiological brain glucose-levels.
Collapse
Affiliation(s)
- Nadja Mannal
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Michael Fauler
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | | | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Linacre and New College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Watt C, Sanchez-Rangel E, Hwang JJ. Glycemic Variability and CNS Inflammation: Reviewing the Connection. Nutrients 2020; 12:nu12123906. [PMID: 33371247 PMCID: PMC7766608 DOI: 10.3390/nu12123906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glucose is the primary energy source for the brain, and exposure to both high and low levels of glucose has been associated with numerous adverse central nervous system (CNS) outcomes. While a large body of work has highlighted the impact of hyperglycemia on peripheral and central measures of oxidative stress, cognitive deficits, and vascular complications in Type 1 and Type 2 diabetes, there is growing evidence that glycemic variability significantly drives increased oxidative stress, leading to neuroinflammation and cognitive dysfunction. In this review, the latest data on the impact of glycemic variability on brain function and neuroinflammation will be presented. Because high levels of oxidative stress have been linked to dysfunction of the blood-brain barrier (BBB), special emphasis will be placed on studies investigating the impact of glycemic variability on endothelial and vascular inflammation. The latest clinical and preclinical/in vitro data will be reviewed, and clinical/therapeutic implications will be discussed.
Collapse
|
23
|
Begum M, Chittleborough C, Pilkington R, Mittinty M, Lynch J, Penno M, Smithers L. Educational outcomes among children with type 1 diabetes: Whole-of-population linked-data study. Pediatr Diabetes 2020; 21:1353-1361. [PMID: 32833299 DOI: 10.1111/pedi.13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Challenges with type 1 diabetes (T1D) blood glucose management and illness-related school absences potentially influence children's educational outcomes. However, evidence about the impact of T1D on children's education is mixed. The objectives were to estimate the effects of T1D on children's educational outcomes, and compare time since T1D diagnosis (recent diagnosis [≤2 years] and 3 to 10 years long exposure) on educational outcomes. METHODS This whole-of-population study used de-identified, administrative linked-data from the South Australian Early Childhood Data Project. T1D was identified from hospital ICD-10-AM diagnosis codes (E10, ranging E101 to E109), from 2001 to 2014. Educational outcomes were measured in grade 5 by the National Assessment Program-Literacy and Numeracy (NAPLAN, 2008-2015) for children born from 1999 to 2005. Analyses were conducted using augmented inverse probability of treatment weighting. Multiple imputations was used to impute missing data. RESULTS Among 61 445 children born in South Australia who had undertaken NAPLAN assessments, 162 had T1D. There were negligible differences in the educational outcomes of children with and without T1D, and between recently diagnosed and those with longer exposure. For example, the mean reading score was 482.8 ± 78.9 for children with T1D and 475.5 ± 74.3 for other children. The average treatment effect of 6.8 (95% CI - 6.3-19.9) reflected one-tenth of a SD difference in the mean reading score of children with and without T1D. CONCLUSION Children with T1D performed similarly on literacy and numeracy in grade 5 (age ~ 10-years) compared to children without T1D. This could be due to effective T1D management.
Collapse
Affiliation(s)
- Mumtaz Begum
- School of Public Health, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Department of Food and Nutrition, College of Home Economics, University of Peshawar, Peshawar, Pakistan
| | - Catherine Chittleborough
- School of Public Health, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Rhiannon Pilkington
- School of Public Health, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Murthy Mittinty
- School of Public Health, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - John Lynch
- School of Public Health, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Population Health Sciences, University of Bristol, Bristol, UK
| | - Megan Penno
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Lisa Smithers
- School of Public Health, The University of Adelaide, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
24
|
Pedro JR, Moura LIF, Valério-Fernandes Â, Baptista FI, Gaspar JM, Pinheiro BS, Lemos C, Kaufmann FN, Morgado C, Silva-Santos CSD, Tavares I, Ferreira SG, Carvalho E, Ambrósio AF, Cunha RA, Duarte JMN, Köfalvi A. Transient gain of function of cannabinoid CB 1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Res Bull 2020; 161:106-115. [PMID: 32428627 DOI: 10.1016/j.brainresbull.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Here we aimed to unify some previous controversial reports on changes in both cannabinoid CB1 receptor (CB1R) expression and glucose metabolism in the forebrain of rodent models of diabetes. We determined how glucose metabolism and its modulation by CB1R ligands evolve in the frontal cortex of young adult male Wistar rats, in the first 8 weeks of streptozotocin-induced type-1 diabetes (T1D). We report that frontocortical CB1R protein density was biphasically altered in the first month of T1D, which was accompanied with a reduction of resting glucose uptake ex vivo in acute frontocortical slices that was normalized after eight weeks in T1D. This early reduction of glucose uptake in slices was also restored by ex vivo treatment with both the non-selective CB1R agonists, WIN55212-2 (500 nM) and the CB1R-selective agonist, ACEA (3 μM) while it was exacerbated by the CB1R-selective antagonist, O-2050 (500 nM). These results suggest a gain-of-function for the cerebrocortical CB1Rs in the control of glucose uptake in diabetes. Although insulin and IGF-1 receptor protein densities remained unaffected, phosphorylated GSKα and GSKβ levels showed different profiles 2 and 8 weeks after T1D induction in the frontal cortex. Altogether, the biphasic response in frontocortical CB1R density within a month after T1D induction resolves previous controversial reports on forebrain CB1R levels in T1D rodent models. Furthermore, this study also hints that cannabinoids may be useful to alleviate impaired glucoregulation in the diabetic cortex.
Collapse
Affiliation(s)
- Joana Reis Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liane I F Moura
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ângela Valério-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana M Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bárbara S Pinheiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carla Morgado
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla S da Silva-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Arkansas Children's Research Institute, and Department of Geriatrics, University of Arkansas for Medical Sciences, Arkansas 72205, United States
| | - António F Ambrósio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Attila Köfalvi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
25
|
Interaction of glucose sensing and leptin action in the brain. Mol Metab 2020; 39:101011. [PMID: 32416314 PMCID: PMC7267726 DOI: 10.1016/j.molmet.2020.101011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
Background In response to energy abundant or deprived conditions, nutrients and hormones activate hypothalamic pathways to maintain energy and glucose homeostasis. The underlying CNS mechanisms, however, remain elusive in rodents and humans. Scope of review Here, we first discuss brain glucose sensing mechanisms in the presence of a rise or fall of plasma glucose levels, and highlight defects in hypothalamic glucose sensing disrupt in vivo glucose homeostasis in high-fat fed, obese, and/or diabetic conditions. Second, we discuss brain leptin signalling pathways that impact glucose homeostasis in glucose-deprived and excessed conditions, and propose that leptin enhances hypothalamic glucose sensing and restores glucose homeostasis in short-term high-fat fed and/or uncontrolled diabetic conditions. Major conclusions In conclusion, we believe basic studies that investigate the interaction of glucose sensing and leptin action in the brain will address the translational impact of hypothalamic glucose sensing in diabetes and obesity.
Collapse
|
26
|
Bednařík P, Henry PG, Khowaja A, Rubin N, Kumar A, Deelchand D, Eberly LE, Seaquist E, Öz G, Moheet A. Hippocampal Neurochemical Profile and Glucose Transport Kinetics in Patients With Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5601935. [PMID: 31637440 PMCID: PMC7046023 DOI: 10.1210/clinem/dgz062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023]
Abstract
CONTEXT Longstanding type 1 diabetes (T1D) may lead to alterations in hippocampal neurochemical profile. Upregulation of hippocampal glucose transport as a result of recurrent exposure to hypoglycemia may preserve cognitive function during future hypoglycemia in subjects with T1D and impaired awareness of hypoglycemia (IAH). The effect of T1D on hippocampal neurochemical profile and glucose transport is unknown. OBJECTIVE To test the hypothesis that hippocampal neurochemical composition is altered in T1D and glucose transport is upregulated in T1D with IAH. DESIGN AND PARTICIPANTS Hippocampal neurochemical profile was measured with single-voxel magnetic resonance spectroscopy at 3T during euglycemia in 18 healthy controls (HC), 10 T1D with IAH, and 12 T1D with normal awareness to hypoglycemia (NAH). Additionally, 12 HC, 8 T1D-IAH, and 6 T1D-NAH were scanned during hyperglycemia to assess hippocampal glucose transport with metabolic modeling. SETTING University medical center. MAIN OUTCOME MEASURES Concentrations of hippocampal neurochemicals measured during euglycemia and ratios of maximal transport rate to cerebral metabolic rate of glucose (Tmax/CMRGlc), derived from magnetic resonance spectroscopy-measured hippocampal glucose as a function of plasma glucose. RESULTS Comparison of hippocampal neurochemical profile revealed no group differences (HC, T1D, T1D-IAH, and T1D-NAH). The ratio Tmax/CMRGlc was not significantly different between the groups, T1D-IAH (1.58 ± 0.09) and HC (1.65 ± 0.07, P = 0.54), between T1D-NAH (1.50 ± 0.09) and HC (P = 0.19), and between T1D-IAH and T1D-NAH (P = 0.53). CONCLUSIONS Subjects with T1D with sufficient exposure to recurrent hypoglycemia to create IAH did not have alteration of Tmax/CMRglc or neurochemical profile compared with participants with T1D-NAH or HC.
Collapse
Affiliation(s)
- Petr Bednařík
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Rubin
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Anjali Kumar
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Correspondence and Reprint Requests: Amir Moheet, MBBS, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, MMC 101, 420 Delaware St. SE, Minneapolis, MN 55455. E-mail:
| |
Collapse
|
27
|
Li N, Yan QT, Jing Q, Pan RY, Wang HJ, Jiang B, Li XJ, Wang Y, Dong JH, Wang XJ, Zhang MJ, Meng QG, Li XZ, Liu ZJ, Gao ZQ, Qu MH. Duodenal-Jejunal Bypass Ameliorates Type 2 Diabetes Mellitus by Activating Insulin Signaling and Improving Glucose Utilization in the Brain. Obes Surg 2019; 30:279-289. [DOI: 10.1007/s11695-019-04153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Zhang ZY, Miao LF, Qian LL, Wang N, Qi MM, Zhang YM, Dang SP, Wu Y, Wang RX. Molecular Mechanisms of Glucose Fluctuations on Diabetic Complications. Front Endocrinol (Lausanne) 2019; 10:640. [PMID: 31620092 PMCID: PMC6759481 DOI: 10.3389/fendo.2019.00640] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates the occurrence and development of diabetic complications relates to not only constant high plasma glucose, but also glucose fluctuations which affect various kinds of molecular mechanisms in various target cells and tissues. In this review, we detail reactive oxygen species and their potentially damaging effects upon glucose fluctuations and resultant downstream regulation of protein signaling pathways, including protein kinase C, protein kinase B, nuclear factor-κB, and the mitogen-activated protein kinase signaling pathway. A deeper understanding of glucose-fluctuation-related molecular mechanisms in the development of diabetic complications may enable more potential target therapies in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
29
|
Rothman DL, Dienel GA. Development of a Model to Test Whether Glycogenolysis Can Support Astrocytic Energy Demands of Na +, K +-ATPase and Glutamate-Glutamine Cycling, Sparing an Equivalent Amount of Glucose for Neurons. ADVANCES IN NEUROBIOLOGY 2019; 23:385-433. [PMID: 31667817 DOI: 10.1007/978-3-030-27480-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies of glycogen in brain have suggested a much more important role in brain energy metabolism and function than previously recognized, including findings of much higher than previously recognized concentrations, consumption at substantial rates compared with utilization of blood-borne glucose, and involvement in ion pumping and in neurotransmission and memory. However, it remains unclear how glycogenolysis is coupled to neuronal activity and provides support for neuronal as well as astroglial function. At present, quantitative aspects of glycogenolysis in brain functions are very difficult to assess due to its metabolic lability, heterogeneous distributions within and among cells, and extreme sensitivity to physiological stimuli. To begin to address this problem, the present study develops a model based on pathway fluxes, mass balance, and literature relevant to functions and turnover of pathways that intersect with glycogen mobilization. A series of equations is developed to describe the stoichiometric relationships between net glycogen consumption that is predominantly in astrocytes with the rate of the glutamate-glutamine cycle, rates of astrocytic and neuronal glycolytic and oxidative metabolism, and the energetics of sodium/potassium pumping in astrocytes and neurons during brain activation. Literature supporting the assumptions of the model is discussed in detail. The overall conclusion is that astrocyte glycogen metabolism is primarily coupled to neuronal function via fueling glycolytically pumping of Na+ and K+ and sparing glucose for neuronal oxidation, as opposed to previous proposals of coupling neurotransmission via glutamate transport, lactate shuttling, and neuronal oxidation of lactate.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Department of Radiology, Yale University, New Haven, CT, USA.
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|