1
|
Li P, Ye H, Guo F, Zheng J, Shen W, Xie D, Shi S, Zhang Y, Fa Y, Zhao Z. Construction of cynomolgus monkey type 2 diabetes models by combining genetic prediction model with high-energy diet. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167616. [PMID: 39672349 DOI: 10.1016/j.bbadis.2024.167616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is a significant health concern. Research using non-human primates, which develop T2D with similar symptoms and pancreatic changes as humans, is crucial but limited by long timelines and low success rates. RESULTS We targeted capture sequenced 61 normal and 81 T2D cynomolgus monkeys using a primer panel that captured 269 potential regulatory regions potentially associated with T2D in the cynomolgus monkey genome. 80 variants were identified to be associated with T2D and were used to construct a genetic prediction model. Among 8 machine learning algorithms tested, we found that the best prediction performance was achieve when the model using support vector machine with polynomial kernel as the machine learning algorithm (AUC = 0.933). Including age and sex in this model did not significantly improve the prediction performance. Using the genetic prediction model, we further screened 22 monkeys and found 13 were high risk while 9 were low risk. After feeding the 22 monkeys with high-energy food for 32 weeks, we found all the 9 low risk monkeys did not develop T2D while 4 out of 13 high risk monkeys (31 %) develop T2D. CONCLUSIONS This method greatly increased the success rate of establishing T2D monkey models while decreased the time needed compared to traditional methods. Therefore, we developed a new high-efficiency method to establish T2D monkey models by combining the genetic prediction model and high-energy diet, which will greatly contribute to the research on the clinical characteristics, pathogenesis, complications and potential new treatments.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Huahu Ye
- Academy of Military Medical Sciences, Beijing, China
| | - Feng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jianhua Zheng
- Academy of Military Medical Sciences, Beijing, China
| | - Wenlong Shen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Dejian Xie
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Yunzhi Fa
- Academy of Military Medical Sciences, Beijing, China
| | - Zhihu Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Molnár AÁ, Birgés K, Surman A, Merkely B. The Complex Connection Between Myocardial Dysfunction and Cancer Beyond Cardiotoxicity: Shared Risk Factors and Common Molecular Pathways. Int J Mol Sci 2024; 25:13185. [PMID: 39684895 DOI: 10.3390/ijms252313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previously, these two conditions were considered independent, except in terms of cardiotoxicity, which links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that there are further connections between cancer and heart disease beyond cardiotoxicity. It has been revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional common pathophysiological mechanisms might be involved in the relationship between cardiology and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may include shared risk factors and common molecular pathways, such as persistent inflammation and neurohormonal activation. This review explores the connection between myocardial dysfunction and cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors like cardiotoxicity, along with their clinical implications.
Collapse
Affiliation(s)
| | - Kristóf Birgés
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Adrienn Surman
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
3
|
Usakin LA, Maksimova NV, Pesheva ED, Zaitseva EL, Tokmakova AY, Panteleyev AA. Assessment of potential genetic markers for diabetic foot ulcer among Moscow residents. Endocrine 2024; 86:1035-1044. [PMID: 39017835 DOI: 10.1007/s12020-024-03966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Diabetic foot ulcer (DFU) is one of the most severe complications of type 2 diabetes, which is manifested in chronic skin ulcers of lower extremities. DFU treatment remains complex and expensive despite the availability of well-established protocols. Early prediction of potential DFU development at the onset of type 2 diabetes can greatly improve the aftermath of this complication. METHODS To assess potential genetic markers for DFU, a group of diabetic patients from Moscow region with and without DFU was genotyped for a number of SNPs previously reported to be associated with the DFU. RESULTS Obtained results did not confirm previously claimed association of rs1024611, rs3918242, rs2073618, rs1800629, rs4986790, rs179998, rs1963645 and rs11549465 (respectively, in MCP1, MMP9, TNFRSF11B, TNFα, TLR4, eNOS, NOS1AP and HIF1α genes) with the DFU. Surprisingly, the t allele of rs7903146 in the TCF7l2 gene known as one of the most prominent risk factors for type 2 diabetes has shown a protective effect on DFU with OR(95%) = 0.68(0.48-0.96). CONCLUSION Non-replication of previously published SNP associations with DFU suggests that the role of genetic factors in the DFU onset is either highly variable in different populations or is not as significant as the role of non-genetic factors.
Collapse
Affiliation(s)
- Lev A Usakin
- National Research Centre Kurchatov Institute, Moscow, Russian Federation.
| | - Nadezhda V Maksimova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Ekaterina D Pesheva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | | | - Andrey A Panteleyev
- National Research Centre Kurchatov Institute, Moscow, Russian Federation.
- A.V. Vishnevsky Institute of Surgery, Moscow, Russian Federation.
| |
Collapse
|
4
|
Zhu J, Huang L, Zhang W, Li H, Yang Y, Lin Y, Zhang C, Du Z, Xiang H, Wang Y. Single-nucleus transcriptional profiling reveals TCF7L2 as a key regulator in adipogenesis in goat skeletal muscle development. Int J Biol Macromol 2024; 281:136326. [PMID: 39389483 DOI: 10.1016/j.ijbiomac.2024.136326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Intramuscular adipogenesis plays an important role in muscle development, which determines the quality of goat meat. However, its underlying cellular and molecular mechanisms remain poorly understood. In this study, we provided detailed cellular atlases of goat longissimus dorsi during muscle development at single-nucleus resolution, and identified the subpopulations of fibroblasts/fibro-adipogenic progenitors (FAPs) and muscle satellite cell (MuSC), as well as the differentiation trajectory of FAPs subpopulations. Cellular ligand-receptor interaction analysis revealed enriched BMP and IGF pathways implicated in within-tissue crosstalk centered around FAPs. Through single-nucleus gene regulatory network analysis and in vitro interference verification, we found that TCF7L2 was a critical transcriptional factor (TF) in early adipogenesis in skeletal muscle. Overall, our work reveals the cellular intricacies and diversity of goat longissimus dorsi during muscle development, implementing insights into the critical roles of BMP, IGF pathways and TCF7L2 TF in intramuscular adipogenesis.
Collapse
Affiliation(s)
- Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yuling Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China; Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
5
|
Åkerlund M, Baskozos G, Li W, Themistocleous AC, Pascal MMV, Rayner NW, Attal N, Baron R, Baudic S, Bennedsgaard K, Bouhassira D, Comini M, Crombez G, Faber CG, Finnerup NB, Gierthmühlen J, Granovsky Y, Gylfadottir SS, Hébert HL, Jensen TS, John J, Kemp HI, Lauria G, Laycock H, Meng W, Nilsen KB, Palmer C, Rice ASC, Serra J, Smith BH, Tesfaye S, Topaz LS, Veluchamy A, Vollert J, Yarnitsky D, van Zuydam N, Zwart JA, McCarthy MI, Lyssenko V, Bennett DL. Genetic associations of neuropathic pain and sensory profile in a deeply phenotyped neuropathy cohort. Pain 2024:00006396-990000000-00756. [PMID: 39471050 DOI: 10.1097/j.pain.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT We aimed to investigate the genetic associations of neuropathic pain in a deeply phenotyped cohort. Participants with neuropathic pain were cases and compared with those exposed to injury or disease but without neuropathic pain as control subjects. Diabetic polyneuropathy was the most common aetiology of neuropathic pain. A standardised quantitative sensory testing protocol was used to categorize participants based on sensory profile. We performed genome-wide association study, and in a subset of participants, we undertook whole-exome sequencing targeting analyses of 45 known pain-related genes. In the genome-wide association study of diabetic neuropathy (N = 1541), a top significant association was found at the KCNT2 locus linked with pain intensity (rs114159097, P = 3.55 × 10-8). Gene-based analysis revealed significant associations between LHX8 and TCF7L2 and neuropathic pain. Polygenic risk score for depression was associated with neuropathic pain in all participants. Polygenic risk score for C-reactive protein showed a positive association, while that for fasting insulin showed a negative association with neuropathic pain, in individuals with diabetic polyneuropathy. Gene burden analysis of candidate pain genes supported significant associations between rare variants in SCN9A and OPRM1 and neuropathic pain. Comparison of individuals with the "irritable" nociceptor profile to those with a "nonirritable" nociceptor profile identified a significantly associated variant (rs72669682, P = 4.39 × 10-8) within the ANK2 gene. Our study on a deeply phenotyped cohort with neuropathic pain has confirmed genetic associations with the known pain-related genes KCNT2, OPRM1, and SCN9A and identified novel associations with LHX8 and ANK2, genes not previously linked to pain and sensory profiles, respectively.
Collapse
Affiliation(s)
- Mikael Åkerlund
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Georgios Baskozos
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Wenqianglong Li
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | | | - Mathilde M V Pascal
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - N William Rayner
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadine Attal
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sophie Baudic
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | | | - Didier Bouhassira
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Maddalena Comini
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Mental Health and Neuroscience Reseach Institute, Maastricht, the Netherlands
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Gierthmühlen
- Department for Anesthesiology and Surgical Intensive Care Medicine, Pain Therapy, University Hospital of Kiel, Kiel, Germany
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sandra Sif Gylfadottir
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Troels S Jensen
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jishi John
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Harriet I Kemp
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Giuseppe Lauria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Clinical Neurosciences, IRCCS Fondazione Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Helen Laycock
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Kristian Bernhard Nilsen
- Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Colin Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jordi Serra
- Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Leah Shafran Topaz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - David Yarnitsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Anker Zwart
- Department of Research and Innovation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mark I McCarthy
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Zhang W, Zhang X, Qiu C, Zhang Z, Su KJ, Luo Z, Liu M, Zhao B, Wu L, Tian Q, Shen H, Wu C, Deng HW. An atlas of genetic effects on the monocyte methylome across European and African populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311885. [PMID: 39211851 PMCID: PMC11361221 DOI: 10.1101/2024.08.12.24311885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elucidating the genetic architecture of DNA methylation is crucial for decoding complex disease etiology. However, current epigenomic studies are often limited by incomplete methylation coverage and heterogeneous tissue samples. Here, we present the first comprehensive, multi-ancestry human methylome atlas of purified human monocytes, generated through integrated whole-genome bisulfite sequencing and whole-genome sequencing from 298 European Americans (EA) and 160 African Americans (AA). By analyzing over 25 million methylation sites, we identified 1,383,250 and 1,721,167 methylation quantitative trait loci (meQTLs) in cis- regions for EA and AA populations, respectively, revealing both shared (880,108 sites) and population-specific regulatory patterns. Furthermore, we developed population-specific DNAm imputation models, enabling methylome-wide association studies (MWAS) for 1,976,046 and 2,657,581 methylation sites in EA and AA, respectively. These models were validated through multi-ancestry analysis of 41 complex traits from the Million Veteran Program. The identified meQTLs, MWAS models, and data resources are freely available at www.gcbhub.org and https://osf.io/gct57/ .
Collapse
|
7
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
8
|
Hernández-Guerrero C, Arenas E, García-Mena J, Mendivil EJ, Ramos-Lopez O, Teruel G. Genetic and Anthropometric Interplay: How Waist-to-Hip Ratio Modulates LDL-c Levels in Mexican Population. Nutrients 2024; 16:3402. [PMID: 39408369 PMCID: PMC11478600 DOI: 10.3390/nu16193402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Genetic factors contribute to the physiopathology of obesity and its comorbidities. This study aimed to investigate the association of the SNPs ABCA1 (rs9282541), ADIPOQ (rs2241766), FTO (rs9939609), GRB14 (rs10195252), and LEPR (rs1805134) with various clinical, anthropometric, and biochemical variables. METHODS The study included 396 Mexican mestizo individuals with obesity and 142 individuals with normal weight. Biochemical markers were evaluated from peripheral blood samples, and SNP genotyping was performed using PCR with TaqMan probes. A genetic risk score (GRS) was computed using an additive model. RESULTS No significant associations were found between the SNPs ABCA1, ADIPOQ, FTO, and LEPR with obesity. However, the T allele of the GRB14 SNP was significantly associated with obesity (χ2 = 5.93, p = 0.01; OR = 1.52; 95% CI: 1.08-2.12). A multivariate linear regression model (adjusted R-squared: 0.1253; p < 0.001) predicting LDL-c levels among all participants (n = 538) identified significant (p < 0.05) beta coefficients for several anthropometric and biochemical variables, as well as for the GRS. Additionally, the interaction between the GRS and the waist-to-hip ratio (WHR) showed a negative beta coefficient (BC = -26.5307; p = 0.014). Participants with a WHR < 0.839 showed no effect of GRS on LDL-c concentration, while those with a WHR > 0.839 exhibited a greater effect of GRS (~9) at lower LDL-c concentrations (~50 mg/dL) and a lesser effect of GRS (~7) at higher LDL-c concentrations (~250 mg/dL). CONCLUSIONS A significant interaction between genetics and WHR influences LDL-c in Mexicans, which may contribute to the prevention and clinical management of dyslipidemia and cardiovascular disease.
Collapse
Affiliation(s)
| | - Erika Arenas
- Department of Sociology, University of California, Santa Barbara, CA 93106, USA;
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Edgar J. Mendivil
- Departamento de Salud, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico;
| | - Omar Ramos-Lopez
- Medicine & Psychology Faculty, Autonomous University of Baja California, Tijuana 22390, Mexico;
| | - Graciela Teruel
- División de Estudios Sociales, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico
| |
Collapse
|
9
|
Murcia Pienkowski V, Skoczylas P, Zaremba A, Kłęk S, Balawejder M, Biernat P, Czarnocka W, Gniewek O, Grochowalski Ł, Kamuda M, Król-Józaga B, Marczyńska-Grzelak J, Mazzocco G, Szatanek R, Widawski J, Welanyk J, Orzeszko Z, Szura M, Torbicz G, Borys M, Wohadlo Ł, Wysocki M, Karczewski M, Markowska B, Kucharczyk T, Piatek MJ, Jasiński M, Warchoł M, Kaczmarczyk J, Blum A, Sanecka-Duin A. Harnessing the power of AI in precision medicine: NGS-based therapeutic insights for colorectal cancer cohort. Front Oncol 2024; 14:1407465. [PMID: 39435285 PMCID: PMC11491396 DOI: 10.3389/fonc.2024.1407465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose Developing innovative precision and personalized cancer therapeutics is essential to enhance cancer survivability, particularly for prevalent cancer types such as colorectal cancer. This study aims to demonstrate various approaches for discovering new targets for precision therapies using artificial intelligence (AI) on a Polish cohort of colorectal cancer patients. Methods We analyzed 71 patients with histopathologically confirmed advanced resectional colorectal adenocarcinoma. Whole exome sequencing was performed on tumor and peripheral blood samples, while RNA sequencing (RNAseq) was conducted on tumor samples. We employed three approaches to identify potential targets for personalized and precision therapies. First, using our in-house neoantigen calling pipeline, ARDentify, combined with an AI-based model trained on immunopeptidomics mass spectrometry data (ARDisplay), we identified neoepitopes in the cohort. Second, based on recurrent mutations found in our patient cohort, we selected corresponding cancer cell lines and utilized knock-out gene dependency scores to identify synthetic lethality genes. Third, an AI-based model trained on cancer cell line data was employed to identify cell lines with genomic profiles similar to selected patients. Copy number variants and recurrent single nucleotide variants in these cell lines, along with gene dependency data, were used to find personalized synthetic lethality pairs. Results We identified approximately 8,700 unique neoepitopes, but none were shared by more than two patients, indicating limited potential for shared neoantigenic targets across our cohort. Additionally, we identified three synthetic lethality pairs: the well-known APC-CTNNB1 and BRAF-DUSP4 pairs, along with the recently described APC-TCF7L2 pair, which could be significant for patients with APC and BRAF variants. Furthermore, by leveraging the identification of similar cancer cell lines, we uncovered a potential gene pair, VPS4A and VPS4B, with therapeutic implications. Conclusion Our study highlights three distinct approaches for identifying potential therapeutic targets in cancer patients. Each approach yielded valuable insights into our cohort, underscoring the relevance and utility of these methodologies in the development of precision and personalized cancer therapies. Importantly, we developed a novel AI model that aligns tumors with representative cell lines using RNAseq and methylation data. This model enables us to identify cell lines closely resembling patient tumors, facilitating accurate selection of models needed for in vitro validation.
Collapse
Affiliation(s)
| | | | | | - Stanisław Kłęk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | - Joanna Welanyk
- Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland
| | - Zofia Orzeszko
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Mirosław Szura
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Grzegorz Torbicz
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Maciej Borys
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Łukasz Wohadlo
- Department of Oncological and General Surgery, Andrzej Frycz Modrzewski Krakow University, Cracow, Poland
| | - Michał Wysocki
- Department of General Surgery and Surgical Oncology, Ludwik Rydygier Memorial Hospital, Cracow, Poland
| | - Marek Karczewski
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, University Hospital, Poznan, Poland
| | - Beata Markowska
- Department of Surgery, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Kucharczyk
- Holy Cross Cancer Center Clinic of Clinical Oncology, Kielce, Poland
| | | | | | | | | | | | | |
Collapse
|
10
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
11
|
Dong K, Wang S, Qu C, Zheng K, Sun P. Schizophrenia and type 2 diabetes risk: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1395771. [PMID: 39324122 PMCID: PMC11422011 DOI: 10.3389/fendo.2024.1395771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives The metabolic syndrome in patients with schizophrenia has consistently been a challenge for clinicians. Previous studies indicate that individuals with schizophrenia are highly prone to developing type 2 diabetes mellitus (T2DM). In recent years, a continuous stream of new observational studies has been reported, emphasizing the pressing need for clinicians to gain a more precise understanding of the association between schizophrenia and T2DM. The objective of this meta-analysis is to integrate new observational studies and further explore the potential link between schizophrenia and the risk of T2DM. Methods We conducted a comprehensive search of PubMed, Cochrane Library, Embase, and Web of Science using medical subject headings (MeSH) and relevant keywords. The risk of bias in cohort studies and case-control studies was assessed using the Newcastle-Ottawa Scale (NOS), while cross-sectional studies were evaluated using the Agency for Healthcare Research and Quality scale (AHRQ), scoring was based on the content of the original studies. A fixed-effects model was employed if P > 0.1 and I2 ≤ 50%, indicating low heterogeneity. Conversely, a random-effects model was utilized if I2 > 50%, indicating substantial heterogeneity. Publication bias was assessed using funnel plots and Egger's test. Statistical analyses were carried out using Stata statistical software version 14.0. Results This meta-analysis comprised 32 observational studies, involving a total of 2,007,168 patients with schizophrenia and 35,883,980 without schizophrenia, published from 2004 to 2023. The pooled analysis revealed a significant association between a history of schizophrenia and an increased risk of T2DM (Odds Ratio [OR] = 2.15; 95% Confidence Interval [CI]: 1.83-2.52; I2 = 98.9%, P < 0.001). Stratified by gender, females with schizophrenia (OR = 2.12; 95% CI: 1.70-2.64; I2 = 90.7%, P < 0.001) had a significantly higher risk of T2DM than males (OR = 1.68; 95% CI: 1.39-2.04; I2 = 91.3%, P < 0.001). Regarding WHO regions, EURO (OR = 2.73; 95% CI: 2.23-3.35; I2 = 97.5%, P < 0.001) exhibited a significantly higher risk of T2DM compared to WPRO (OR = 1.72; 95% CI: 1.32-2.23; I2 = 95.2%, P < 0.001) and AMRO (OR = 1.82; 95% CI: 1.40-2.37; I2 = 99.1%, P < 0.001). In terms of follow-up years, the >20 years subgroup (OR = 3.17; 95% CI: 1.24-8.11; I2 = 99.4%, P < 0.001) showed a significantly higher risk of T2DM than the 10-20 years group (OR = 2.26; 95% CI: 1.76-2.90; I2 = 98.6%, P < 0.001) and <10 years group (OR = 1.68; 95% CI: 1.30-2.19; I2 = 95.4%, P < 0.001). Conclusions This meta-analysis indicates a strong association between schizophrenia and an elevated risk of developing diabetes, suggesting that schizophrenia may function as an independent risk factor for T2DM. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023465826.
Collapse
Affiliation(s)
- Kai Dong
- College of Mental Health, Jining Medical University, Jining, China
- Qingdao Mental Health Center, Qingdao, China
| | | | - Chunhui Qu
- Qingdao Mental Health Center, Qingdao, China
| | - Kewei Zheng
- College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ping Sun
- Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
12
|
Huang S, Feng Y, Sun Y, Liu J, Wang P, Yu J, Su X, Han S, Huang S, Huang H, Chen S, Xu Y, Zeng F. The associations between single nucleotide polymorphisms and diabetic retinopathy risk: an umbrella review. Endocr J 2024; 71:839-849. [PMID: 39034116 DOI: 10.1507/endocrj.ej23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
This umbrella review was conducted aiming to assess the association between genetic variations and the development of diabetic retinopathy (DR) by collecting and evaluating available systematic reviews and meta-analysis results. We evaluated the methodological quality using the Measurement Tool to Assess Systematic Reviews (AMSTAR) 2.0, estimated the summary effect size by using the random effects model and calculated the 95% prediction intervals (PIs). Evidence from the included meta-analyses was graded according to established criteria as follows: convincing, highly suggestive, suggestive, weak, or not significant. This umbrella review included 32 meta-analyses of 52 candidate SNPs. The 12 selected meta-analyses were rated as "high," 2 studies were rated as "moderate," 11 studies were graded as "low," and the remaining 7 studies were graded as "critically low" in terms of methodological quality. Carriers of specific genotypes and alleles of the transcription Factor 7-like 2 C/T (TCF7L2 C/T) polymorphism (rs7903146, p < 0.001) might be more susceptible to the occurrence of DR in the homozygous and recessive models, and these associations were supported by "convincing" evidence. Significant associations were also found between interleukin-6 (IL-6) -174 G/C (rs1800795; p < 0.05) or vascular endothelial growth factor (VEGF) polymorphisms (rs2010963, rs699947, rs1570360, rs2010963, rs699947, rs2146323; all p values <0.05) and DR risk, but these associations were supported by "weak" evidence. The TCF7L2 C/T variant could be identified as a definitive genetic risk factor for the development and progression of DR. Data from additional in-depth studies are needed to establish robust evidence for the associations between polymorphisms of IL-6 or VEGF and DR.
Collapse
Affiliation(s)
- Shaofen Huang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pu Wang
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Jingrong Yu
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shasha Han
- Department of Neonatology and Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shiqi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Haokun Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Xu
- Baoan Center for Chronic Diseases Control, Shenzhen 518101, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Breeyear JH, Hellwege JN, Schroeder PH, House JS, Poisner HM, Mitchell SL, Charest B, Khakharia A, Basnet TB, Halladay CW, Reaven PD, Meigs JB, Rhee MK, Sun Y, Lynch MG, Bick AG, Wilson OD, Hung AM, Nealon CL, Iyengar SK, Rotroff DM, Buse JB, Leong A, Mercader JM, Sobrin L, Brantley MA, Peachey NS, Motsinger-Reif AA, Wilson PW, Sun YV, Giri A, Phillips LS, Edwards TL. Adaptive selection at G6PD and disparities in diabetes complications. Nat Med 2024; 30:2480-2488. [PMID: 38918629 PMCID: PMC11555759 DOI: 10.1038/s41591-024-03089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.
Collapse
Affiliation(s)
- Joseph H Breeyear
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
| | - Jacklyn N Hellwege
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Philip H Schroeder
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Hannah M Poisner
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Sabrina L Mitchell
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian Charest
- Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
| | - Anjali Khakharia
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Til B Basnet
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mary K Rhee
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, California, USA
| | | | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Otis D Wilson
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - John B Buse
- Division of Endocrinology & Metabolism, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aaron Leong
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Josep M Mercader
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucia Sobrin
- Department of Ophthalmology, Mass Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Milam A Brantley
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayush Giri
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System (626), Nashville, TN, USA.
| |
Collapse
|
14
|
Damarov IS, Korbolina EE, Rykova EY, Merkulova TI. Multi-Omics Analysis Revealed the rSNPs Potentially Involved in T2DM Pathogenic Mechanism and Metformin Response. Int J Mol Sci 2024; 25:9297. [PMID: 39273245 PMCID: PMC11394919 DOI: 10.3390/ijms25179297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The goal of our study was to identify and assess the functionally significant SNPs with potentially important roles in the development of type 2 diabetes mellitus (T2DM) and/or their effect on individual response to antihyperglycemic medication with metformin. We applied a bioinformatics approach to identify the regulatory SNPs (rSNPs) associated with allele-asymmetric binding and expression events in our paired ChIP-seq and RNA-seq data for peripheral blood mononuclear cells (PBMCs) of nine healthy individuals. The rSNP outcomes were analyzed using public data from the GWAS (Genome-Wide Association Studies) and Genotype-Tissue Expression (GTEx). The differentially expressed genes (DEGs) between healthy and T2DM individuals (GSE221521), including metformin responders and non-responders (GSE153315), were searched for in GEO RNA-seq data. The DEGs harboring rSNPs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We identified 14,796 rSNPs in the promoters of 5132 genes of human PBMCs. We found 4280 rSNPs to associate with both phenotypic traits (GWAS) and expression quantitative trait loci (eQTLs) from GTEx. Between T2DM patients and controls, 3810 rSNPs were detected in the promoters of 1284 DEGs. Based on the protein-protein interaction (PPI) network, we identified 31 upregulated hub genes, including the genes involved in inflammation, obesity, and insulin resistance. The top-ranked 10 enriched KEGG pathways for these hubs included insulin, AMPK, and FoxO signaling pathways. Between metformin responders and non-responders, 367 rSNPs were found in the promoters of 131 DEGs. Genes encoding transcription factors and transcription regulators were the most widely represented group and many were shown to be involved in the T2DM pathogenesis. We have formed a list of human rSNPs that add functional interpretation to the T2DM-association signals identified in GWAS. The results suggest candidate causal regulatory variants for T2DM, with strong enrichment in the pathways related to glucose metabolism, inflammation, and the effects of metformin.
Collapse
Affiliation(s)
- Igor S Damarov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena E Korbolina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena Y Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Tatiana I Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
15
|
de Souza AES, da Silva CHS, de Oliveira RDCS, Guimarães APA, da Silva ANLM, Diniz IG, de Oliveira HSS, de Sousa DS, Figueiredo FADPL, Costa GDLC, Guerreiro JF. Investigation of genetic markers associated to type 2 diabetes mellitus in Santarém-Pará. Genet Mol Biol 2024; 47:e20230107. [PMID: 39133695 PMCID: PMC11308377 DOI: 10.1590/1678-4685-gmb-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/22/2024] [Indexed: 08/15/2024] Open
Abstract
Genetic, epigenetic and environmental factors play an important role in the genesis of Type 2 Diabetes Mellitus (T2D). In the genetic context, one of the strategies used to investigate possible associations with diabetes is the search for Single Nucleotide Polymorphisms (SNPs), involving the comparison of alelle frequencies, the phenotypic variations and other relevant factors, such as environmental influences and lifestyle choices, Thus, the aim of this study was to find the relationship of risk variants for T2D in SNPs (rs4994) in the ADRB3 gene; (rs1799854) in the ABCC8 gene; (rs7901695 and rs12255372) in the TCF7L2 gene; and (rs8050136) in the FTO gene in a sample of the population of the municipality of Santarém (PA), Brazilian Amazon, in the northern region of Brazil. ABCC8 (rs1799854 C>T) showed a statistically significant association with T2D. Each chosen gene and SNP has been previously implicated in T2D risk according to existing scientific literature, owing to their roles in glucose regulation and body fat.
Collapse
Affiliation(s)
- Adjanny Estela Santos de Souza
- Universidade do Estado do Pará, Faculdade de Medicina, Departamento
de Morfologia e Ciências Fisiológicas, Belém, PA, Brazil
| | - Caio Henrique Silva da Silva
- Universidade do Estado do Pará, Faculdade de Medicina, Departamento
de Morfologia e Ciências Fisiológicas, Belém, PA, Brazil
| | | | - Ana Paula Araújo Guimarães
- Universidade do Estado do Pará, Faculdade de Medicina, Departamento
de Morfologia e Ciências Fisiológicas, Belém, PA, Brazil
| | | | - Isabela Guerreiro Diniz
- Universidade Federal do Pará, Instituto de Ciências Biológicas,
Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | - Haiala Soter Silva de Oliveira
- Universidade Federal do Pará, Instituto de Ciências Biológicas,
Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | - Diego Sarmento de Sousa
- Universidade Federal do Oeste do Pará (UFOPA), Santarém, PA,
Brazil
- Centro Universitário da Amazônia (UNAMA), Santarém, PA,
Brazil
| | | | - Greice de Lemos Cardoso Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas,
Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | - João Farias Guerreiro
- Universidade Federal do Pará, Instituto de Ciências Biológicas,
Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| |
Collapse
|
16
|
Zhang H, Shi S, Huang X, Gong C, Zhang Z, Zhao Z, Gao J, Zhang M, Yu X. Identification of core genes in intervertebral disc degeneration using bioinformatics and machine learning algorithms. Front Immunol 2024; 15:1401957. [PMID: 39050860 PMCID: PMC11266004 DOI: 10.3389/fimmu.2024.1401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Intervertebral Disc Degeneration (IDD) is a major cause of lower back pain and a significant global health issue. However, the specific mechanisms of IDD remain unclear. This study aims to identify key genes and pathways associated with IDD using bioinformatics and machine learning algorithms. Methods Gene expression profiles, including those from 35 LDH patients and 43 healthy volunteers, were downloaded from the GEO database (GSE124272, GSE150408, GSE23130, GSE153761). After merging four microarray datasets, differentially expressed genes (DEGs) were selected for GO and KEGG pathway enrichment analysis. Weighted Gene Co-expression Network Analysis (WGCNA) was then applied to the merged dataset to identify relevant modules and intersect with DEGs to discover candidate genes with diagnostic value. A LASSO model was established to select appropriate genes, and ROC curves were drawn to elucidate the diagnostic value of genetic markers. A Protein-Protein Interaction (PPI) network was constructed and visualized to determine central genes, followed by external validation using qRT-PCR. Results Differential analysis of the preprocessed dataset identified 244 genes, including 183 upregulated and 61 downregulated genes. WGCNA analysis revealed the most relevant module intersecting with DEGs, yielding 9 candidate genes. The lasso-cox method was used for regression analysis, ultimately identifying 6 genes: ASPH, CDC42EP3, FOSL2, IL1R1, NFKBIZ, TCF7L2. A Protein-Protein Interaction (PPI) network created with GENEMANIA identified IL1R1 and TCF7L2 as central genes. Conclusion Our study shows that IL1R1 and TCF7L2 are the core genes of IDD, offering new insights into the pathogenesis and therapeutic development of IDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
17
|
Rashid R, Shah IA, Makhdoomi MJ, Rashid A, Godha M, Ganai BA, Ganie MA. Association of TCF7L2 Gene Variant (rs12255372) with Polycystic Ovary Syndrome and its Effect Modification of the Disease Phenotype. Indian J Clin Biochem 2024; 39:373-379. [PMID: 39005872 PMCID: PMC11239628 DOI: 10.1007/s12291-023-01115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) and type-2 diabetes mellitus (T2DM) share common genetic features. Transcription factor 7-like-2 (TCF7L2) is consistently studied T2DM susceptibility locus. However, limited studies on TCF7L2 have failed to demonstrate any link with the PCOS risk. Therefore, we investigated the association of TCF7L2 polymorphic variant (rs12255372) with the PCOS risk. We recruited 120 PCOS cases, diagnosed as per Rotterdam 2003 criteria, and an equal number of age-matched controls. Besides a detailed clinical assessment, subjects underwent biochemical and hormonal profiling. Genotyping for rs12255372 was done by PCR-RFLP. Conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95%CIs) of genotype-phenotype correlations. The PCOS cases reported fewer menstrual cycles per year and exhibited signs of hyperandrogenism. The heterozygous genotype of rs12255372 was strongly associated with the PCOS risk (OR = 2.00; 95%CI: 1.07-3.76). Unlike controls, only 3 cases harbored TT genotype, and the PCOS risk persisted in the dominant model (GT + TT) as well. Moreover, we found a synergistic effect modification by the variant genotype in the subjects who had family histories of T2DM, hirsutism, or menstrual irregularities. We report a significant association of the TCF7L2 polymorphic variant rs12255372 with the PCOS risk.
Collapse
Affiliation(s)
- Rabiya Rashid
- Department of Life and Basic Sciences, Jaipur National University, Jaipur, India
- Multidisciplinary Research Unit, Department of Clinical Research, SKIMS, Srinagar, India
| | - Idrees A. Shah
- Multidisciplinary Research Unit, Department of Clinical Research, SKIMS, Srinagar, India
| | - Mudassir Jan Makhdoomi
- Department of Life and Basic Sciences, Jaipur National University, Jaipur, India
- Departments of Endocrinology, Sheri Kashmir Institute of Medical Sciences, Srinagar, India
| | - Aafia Rashid
- Departments of Endocrinology, Sheri Kashmir Institute of Medical Sciences, Srinagar, India
| | - Meena Godha
- Department of Life and Basic Sciences, Jaipur National University, Jaipur, India
| | - Bashir A. Ganai
- Centre for Research and Development, University of Kashmir, Srinagar, India
| | - Mohd Ashraf Ganie
- Multidisciplinary Research Unit, Department of Clinical Research, SKIMS, Srinagar, India
- Departments of Endocrinology, Sheri Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
18
|
Breyer MD. AKR1A1 and Kidney Disease: Promise and Perils of the Multiverse. Diabetes 2024; 73:1046-1047. [PMID: 38900956 DOI: 10.2337/dbi24-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/22/2024]
|
19
|
Younus AH, Al-Faisal AHM. Correlation between TCF7L2 gene expression and certain biochemical parameters in type 2 diabetes mellitus. J Taibah Univ Med Sci 2024; 19:575-584. [PMID: 38736897 PMCID: PMC11087234 DOI: 10.1016/j.jtumed.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Objectives The transcription factor 7-like 2 gene (TCF7L2) is associated with a predisposition to type 2 diabetes mellitus (T2DM) in different ethnic populations. This article investigated the relationship between TCF7L2 gene expression and several biochemical indexes among different age categories of T2DM in a sample of the Iraqi population. Methods One hundred and fifty blood samples were collected from three groups: young T2DM (10-35 years), old T2DM (40-80 years), and healthy control (10-65 years) groups. Both sexes were enrolled. qPCR was performed to explore the expression of the TCF7L2 gene. Biochemical tests were performed to assess hemoglobin A1C (HbA1c), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels. The body mass index (BMI) was calculated. The results were statistically analyzed. Results Patients with T2DM had higher BMI, TG, and LDL, and lower HDL than the control group. There was a strong positive correlation between hemoglobin A1C (HbA1c) and BMI, TG, and LDL and a negative correlation between HbA1c and HDL. Expression of the TCF7L2 gene showed a significant difference between old and young patients by 1.68 and 0.207 fold, respectively. These results showed that old patients had higher gene expression than young patients. Conclusion TCF7L2 gene expression was affected by age, with higher expression in old T2DM patients. This may influence beta cell functions and insulin secretion.
Collapse
Affiliation(s)
- Alaa H. Younus
- Biomedical Engineering Department, University of Technology, Iraq
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
20
|
Ray GW, Zeng Q, Kusi P, Zhang H, Shao T, Yang T, Wei Y, Li M, Che X, Guo R. Genetic and inflammatory factors underlying gestational diabetes mellitus: a review. Front Endocrinol (Lausanne) 2024; 15:1399694. [PMID: 38694942 PMCID: PMC11061502 DOI: 10.3389/fendo.2024.1399694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Gestational diabetes mellitus (GDM) poses a significant global health concern, impacting both maternal and fetal well-being. Early detection and treatment are imperative to mitigate adverse outcomes during pregnancy. This review delves into the pivotal role of insulin function and the influence of genetic variants, including SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK, in GDM development. These genetic variations affect beta-cell function and insulin activity in crucial tissues, such as muscle, disrupting glucose regulation during pregnancy. We propose a hypothesis that this variation may disrupt zinc transport, consequently impairing insulin production and secretion, thereby contributing to GDM onset. Furthermore, we discussed the involvement of inflammatory pathways, such as TNF-alpha and IL-6, in predisposing individuals to GDM. Genetic modulation of these pathways may exacerbate glucose metabolism dysregulation observed in GDM patients. We also discussed how GDM affects cardiovascular disease (CVD) through a direct correlation between pregnancy and cardiometabolic function, increasing atherosclerosis, decreased vascular function, dyslipidemia, and hypertension in women with GDM history. However, further research is imperative to unravel the intricate interplay between inflammatory pathways, genetics, and GDM. This understanding is pivotal for devising targeted gene therapies and pharmacological interventions to rectify genetic variations in SLC30A8, CDKAL1, TCF7L2, IRS1, GCK, and other pertinent genes. Ultimately, this review offers insights into the pathophysiological mechanisms of GDM, providing a foundation for developing strategies to mitigate its impact.
Collapse
Affiliation(s)
- Gyan Watson Ray
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Phidelia Kusi
- University of Ghana, Ministry of Fisheries and Aquaculture Development, Fisheries Commission, Accra, Ghana
| | - Hengli Zhang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Taotao Shao
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Taili Yang
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Yue Wei
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Mianqin Li
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Xiaoqun Che
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Reproductive Medicine Center, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| |
Collapse
|
21
|
Rizwan MZ, Kamstra K, Pretz D, Shepherd PR, Tups A, Grattan DR. Conditional Deletion of β-Catenin in the Mediobasal Hypothalamus Impairs Adaptive Energy Expenditure in Response to High-Fat Diet and Exacerbates Diet-Induced Obesity. J Neurosci 2024; 44:e1666232024. [PMID: 38395612 PMCID: PMC10993030 DOI: 10.1523/jneurosci.1666-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
β-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, β-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether β-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female β-catenin flox mice, to specifically delete β-catenin expression in the mediobasal hypothalamus (MBH-β-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-β-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-β-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-β-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for β-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.
Collapse
Affiliation(s)
- Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Dominik Pretz
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Alexander Tups
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
22
|
Caldwell BA, Wu Y, Wang J, Li L. Altered DNA methylation underlies monocyte dysregulation and immune exhaustion memory in sepsis. Cell Rep 2024; 43:113894. [PMID: 38442017 DOI: 10.1016/j.celrep.2024.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Monocytes can develop an exhausted memory state characterized by reduced differentiation, pathogenic inflammation, and immune suppression that drives immune dysregulation during sepsis. Chromatin alterations, notably via histone modifications, underlie innate immune memory, but the contribution of DNA methylation remains poorly understood. Using an ex vivo sepsis model, we show altered DNA methylation throughout the genome of exhausted monocytes, including genes implicated in immune dysregulation during sepsis and COVID-19 infection (e.g., Plac8). These changes are recapitulated in septic mice induced by cecal slurry injection. Methylation profiles developed in septic mice are maintained during ex vivo culture, supporting the involvement of DNA methylation in stable monocyte exhaustion memory. Methylome reprogramming is driven in part by Wnt signaling inhibition in exhausted monocytes and can be reversed with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Our study demonstrates the significance of altered DNA methylation in the maintenance of stable monocyte exhaustion memory.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA.
| |
Collapse
|
23
|
Yadav R, Patel B. Insights on effects of Wnt pathway modulation on insulin signaling and glucose homeostasis for the treatment of type 2 diabetes mellitus: Wnt activation or Wnt inhibition? Int J Biol Macromol 2024; 261:129634. [PMID: 38272413 DOI: 10.1016/j.ijbiomac.2024.129634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a major worldwide chronic disease and can lead to serious diabetic complications. Despite the availability of many anti-diabetic agents in the market, they are unable to meet the long-term treatment goals. Also, they cause many side effects which justify the need for novel class of anti-diabetic drugs with newer mechanism of action. Wnt signaling is one of such novel target pathways which can be explored for metabolic disorders. Many key components of the Wnt signaling are involved in the regulation of glucose homeostasis. Polymorphism in the Transcription factor 7-like 2 (TCF7L2) gene, and mutations in the LRP5 (LDL Receptor Related Protein 5) gene lead to disturbed glucose metabolism and obesity. Despite of several years of research in this field, there is no concrete proof of concept available on whether Wnt activation or Wnt inhibition is the beneficial approach for the treatment of T2DM. Here, we have summarized the conclusions of relevant published research studies to give structured insights into possibilities to explore Wnt modulation as a novel target pathway for the treatment of T2DM. The review also highlights the present challenges and future opportunities towards the development of anti-diabetic small molecules targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
24
|
Kyriakidou A, Kyriazou AV, Koufakis T, Vasilopoulos Y, Avramidis I, Baltagiannis S, Goulis DG, Kotsa K. Association between variants in TCF7L2, CTRB1/2, and GLP-1R genes and response to therapy with glucagon-like peptide-1 receptor agonists. Postgrad Med 2024; 136:218-225. [PMID: 38453649 DOI: 10.1080/00325481.2024.2328513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES The factors determining the response to treatment with glucagon-like peptide-1 receptor agonists (GLP-1- RAs) have not been clarified. The present study investigated the association between polymorphisms in TCF7L2, CTRB1/2, and GLP-1 R genes and response to GLP-1 RAs regarding glycemic control and weight loss among Greek patients with type 2 diabetes mellitus (T2DM). METHODS Patients (n = 191) treated with GLP-1 RAs for at least 6 months were included. Participants were genotyped for TCF7L2 rs7903146 (C>T), CTRB1/2 rs7202877 (T>G) and GLP-1 R rs367543060 (C>T) polymorphisms. Clinical and laboratory parameters were measured before, 3, and 6 months after treatment initiation. The patients were classified into responders and non-responders according to specific criteria. RESULTS Carriers of at least one rs7903146 'T' allele and rs7202877 'G' allele presented similar glucose control and weight loss response to GLP-1 RAs with the respective homozygous wild-type genotypes [odds ratio (OR): 1.08, 95% confidence interval (CI): 0.5, 2.31, p = 0.85 and OR: 1.35, 95% CI: 0.66, 2.76, p = 0.42; OR: 1.4, 95% CI: 0.56, 3.47, p = 0.47 and OR: 1.28, 95% CI: 0.55, 2.98, p = 0.57, respectively]. Regarding the GLP-1 R polymorphism, all participants were homozygous for the wild-type allele; thus, no comparisons were feasible. Female sex (p = 0.03) and lower baseline weight (p = 0.024) were associated with an improved glycemic and weight loss response, respectively. CONCLUSION There is no evidence suggesting a role for the variants studied in response to GLP-1 RA therapy in people with T2DM. However, specific demographic and clinical factors may be related to a better response to treatment with these agents.
Collapse
Affiliation(s)
- Artemis Kyriakidou
- Division of Endocrinology and Metabolism - Diabetes Center, 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Angeliki V Kyriazou
- Division of Endocrinology and Metabolism - Diabetes Center, 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yiannis Vasilopoulos
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, Greece
| | - Iakovos Avramidis
- Diabetes Center, Department of Internal Medicine, G. Papanikolaou General Hospital, Thessaloniki, Greece
| | | | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism - Diabetes Center, 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
25
|
Suthon S, Tangjittipokin W. Mechanisms and Physiological Roles of Polymorphisms in Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:2039. [PMID: 38396716 PMCID: PMC10888615 DOI: 10.3390/ijms25042039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a significant pregnancy complication linked to perinatal complications and an elevated risk of future metabolic disorders for both mothers and their children. GDM is diagnosed when women without prior diabetes develop chronic hyperglycemia due to β-cell dysfunction during gestation. Global research focuses on the association between GDM and single nucleotide polymorphisms (SNPs) and aims to enhance our understanding of GDM's pathogenesis, predict its risk, and guide patient management. This review offers a summary of various SNPs linked to a heightened risk of GDM and explores their biological mechanisms within the tissues implicated in the development of the condition.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
26
|
Piron A, Szymczak F, Papadopoulou T, Alvelos MI, Defrance M, Lenaerts T, Eizirik DL, Cnop M. RedRibbon: A new rank-rank hypergeometric overlap for gene and transcript expression signatures. Life Sci Alliance 2024; 7:e202302203. [PMID: 38081640 PMCID: PMC10709657 DOI: 10.26508/lsa.202302203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
High-throughput omics technologies have generated a wealth of large protein, gene, and transcript datasets that have exacerbated the need for new methods to analyse and compare big datasets. Rank-rank hypergeometric overlap is an important threshold-free method to combine and visualize two ranked lists of P-values or fold-changes, usually from differential gene expression analyses. Here, we introduce a new rank-rank hypergeometric overlap-based method aimed at gene level and alternative splicing analyses at transcript or exon level, hitherto unreachable as transcript numbers are an order of magnitude larger than gene numbers. We tested the tool on synthetic and real datasets at gene and transcript levels to detect correlation and anticorrelation patterns and found it to be fast and accurate, even on very large datasets thanks to an evolutionary algorithm-based minimal P-value search. The tool comes with a ready-to-use permutation scheme allowing the computation of adjusted P-values at low time cost. The package compatibility mode is a drop-in replacement to previous packages. RedRibbon holds the promise to accurately extricate detailed information from large comparative analyses.
Collapse
Affiliation(s)
- Anthony Piron
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Theodora Papadopoulou
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Maria Inês Alvelos
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Décio L Eizirik
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- https://ror.org/01r9htc13 Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Zhuo C, Zhang Q, Wang L, Ma X, Li R, Ping J, Zhu J, Tian H, Jiang D. Insulin Resistance/Diabetes and Schizophrenia: Potential Shared Genetic Factors and Implications for Better Management of Patients with Schizophrenia. CNS Drugs 2024; 38:33-44. [PMID: 38097908 PMCID: PMC10811033 DOI: 10.1007/s40263-023-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Schizophrenia is a complex psychotic disorder with co-occurring conditions, including insulin resistance and type 2 diabetes (T2D). It is well established that T2D and its precursors (i.e., insulin resistance) are more prevalent in patients with schizophrenia who are treated with antipsychotics, as well as in antipsychotic-naïve patients experiencing their first episode of psychosis, compared with the general population. However, the mechanism(s) underlying the increased susceptibility, shared genetics, and possible cause-effect relationship between schizophrenia and T2D remain largely unknown. The objective of this narrative review was to synthesize important studies, including Mendelian randomization (MR) analyses that have integrated genome-wide association studies (GWAS), as well as results from in vitro models, in vivo models, and observational studies of patients with schizophrenia. Both GWAS and MR studies have found that schizophrenia and T2D/insulin resistance share genetic risk factors, and this may mediate a connection between peripheral or brain insulin resistance and T2D with cognition impairment and an increased risk of developing prediabetes and T2D in schizophrenia. Moreover, accumulating evidence supports a causal role for insulin resistance in schizophrenia and emphasizes the importance of a genetic basis for susceptibility to T2D in patients with schizophrenia before they receive psychotic treatment. The present findings and observations may have clinical implications for the development of better strategies to treat patients with schizophrenia, with both pharmacological (i.e., samidorphan, empagliflozin) and/or nonpharmacological (i.e., lifestyle changes) approaches. Additionally, this review may benefit the design of future studies by physicians and clinical investigators.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, No. 1 Zhongshan Road, Hebei District, Tianjin, 300140, China.
- Key Laboratory of Multiple Organs Damage in Patients with Metal Disorder (MODMD_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China.
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China.
| | - Qiuyu Zhang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, No. 1 Zhongshan Road, Hebei District, Tianjin, 300140, China
- Key Laboratory of Multiple Organs Damage in Patients with Metal Disorder (MODMD_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Xiaoyan Ma
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Ranli Li
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Jing Ping
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China
| | - Jingjing Zhu
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, No. 1 Zhongshan Road, Hebei District, Tianjin, 300140, China
- Key Laboratory of Multiple Organs Damage in Patients with Metal Disorder (MODMD_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Deguo Jiang
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
29
|
Kruczkowska W, Gałęziewska J, Kciuk M, Gielecińska A, Płuciennik E, Pasieka Z, Zhao LY, Yu YJ, Kołat D, Kałuzińska-Kołat Ż. Senescent adipocytes and type 2 diabetes - current knowledge and perspective concepts. Biomol Concepts 2024; 15:bmc-2022-0046. [PMID: 38530804 DOI: 10.1515/bmc-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Among civilization diseases, the number of individuals suffering from type 2 diabetes (T2DM) is expected to increase to more than a billion in less than 20 years, which is associated with, e.g., populational aging, poor diet, sedentary lifestyle, genetic predispositions, and immunological factors. T2DM affects many organs and is characterized by insulin resistance, high glucose levels, and adipocyte dysfunction, which are related to senescence. Although this type of cellular aging has beneficial biological functions, it can also act unfavorable since senescent adipocytes resist apoptosis, enhance cytokine secretion, downregulate cell identity genes, and acquire the senescence-associated secretory phenotype that renders a more oxidative environment. Opposing T2DM is possible via a wide variety of senotherapies, including senolytics and senomorphics; nevertheless, further research is advised to expand therapeutic possibilities and benefits. Consequences that ought to be deeply researched include secretory phenotype, chronic inflammation, increasing insulin resistance, as well as impairment of adipogenesis and functioning of adipocyte cells. Herein, despite reviewing T2DM and fat tissue senescence, we summarized the latest adipocyte-related anti-diabetes solutions and suggested further research directions.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Julia Gałęziewska
- Faculty of Biomedical Sciences, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
30
|
Kannan S, Chellappan DK, Kow CS, Ramachandram DS, Pandey M, Mayuren J, Dua K, Candasamy M. Transform diabetes care with precision medicine. Health Sci Rep 2023; 6:e1642. [PMID: 37915365 PMCID: PMC10616361 DOI: 10.1002/hsr2.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Background and Aims Diabetes is a global concern. This article took a closer look at diabetes and precision medicine. Methods A literature search of studies related to the use of precision medicine in diabetes care was conducted in various databases (PubMed, Google Scholar, and Scopus). Results Precision medicine encompasses the integration of a wide array of personal data, including clinical, lifestyle, genetic, and various biomarker information. Its goal is to facilitate tailored treatment approaches using contemporary diagnostic and therapeutic techniques that specifically target patients based on their genetic makeup, molecular markers, phenotypic traits, or psychosocial characteristics. This article not only highlights significant advancements but also addresses key challenges, particularly focusing on the technologies that contribute to the realization of personalized and precise diabetes care. Conclusion For the successful implementation of precision diabetes medicine, collaboration and coordination among multiple stakeholders are crucial.
Collapse
Affiliation(s)
- Sharumathy Kannan
- School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Chia Siang Kow
- Department of Pharmacy Practice, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | | | - Manisha Pandey
- Department of Pharmaceutical SciencesCentral University of HaryanaMahendergarhIndia
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of PharmacyInternational Medical UniversityKuala LumpurWilayah PersekutuanMalaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Mayuren Candasamy
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
31
|
Caldwell BA, Wu Y, Wang J, Li L. Altered DNA methylation underlies monocyte dysregulation and innate exhaustion memory in sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555580. [PMID: 37693554 PMCID: PMC10491170 DOI: 10.1101/2023.08.30.555580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Innate immune memory is the process by which pathogen exposure elicits cell-intrinsic states to alter the strength of future immune challenges. Such altered memory states drive monocyte dysregulation during sepsis, promoting pathogenic behavior characterized by pro-inflammatory, immunosuppressive gene expression in concert with emergency hematopoiesis. Epigenetic changes, notably in the form of histone modifications, have been shown to underlie innate immune memory, but the contribution of DNA methylation to this process remains poorly understood. Using an ex vivo sepsis model, we discovered broad changes in DNA methylation throughout the genome of exhausted monocytes, including at several genes previously implicated as major drivers of immune dysregulation during sepsis and Covid-19 infection (e.g. Plac8 ). Methylome alterations are driven in part by Wnt signaling inhibition in exhausted monocytes, and can be reversed through treatment with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Importantly, these changes are recapitulated in septic mice following cecal slurry injection, resulting in stable changes at critical immune genes that support the involvement of DNA methylation in acute and long-term monocyte dysregulation during sepsis.
Collapse
|
32
|
Cohen Y, Valdés-Mas R, Elinav E. The Role of Artificial Intelligence in Deciphering Diet-Disease Relationships: Case Studies. Annu Rev Nutr 2023; 43:225-250. [PMID: 37207358 DOI: 10.1146/annurev-nutr-061121-090535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Modernization of society from a rural, hunter-gatherer setting into an urban and industrial habitat, with the associated dietary changes, has led to an increased prevalence of cardiometabolic and additional noncommunicable diseases, such as cancer, inflammatory bowel disease, and neurodegenerative and autoimmune disorders. However, while dietary sciences have been rapidly evolving to meet these challenges, validation and translation of experimental results into clinical practice remain limited for multiple reasons, including inherent ethnic, gender, and cultural interindividual variability, among other methodological, dietary reporting-related, and analytical issues. Recently, large clinical cohorts with artificial intelligence analytics have introduced new precision and personalized nutrition concepts that enable one to successfully bridge these gaps in a real-life setting. In this review, we highlight selected examples of case studies at the intersection between diet-disease research and artificial intelligence. We discuss their potential and challenges and offer an outlook toward the transformation of dietary sciences into individualized clinical translation.
Collapse
Affiliation(s)
- Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
- Division of Microbiome & Cancer, National German Cancer Research Center (DKFZ), Heidelberg, Germany;
| |
Collapse
|
33
|
Arruda AL, Hartley A, Katsoula G, Smith GD, Morris AP, Zeggini E. Genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis. Am J Hum Genet 2023; 110:1304-1318. [PMID: 37433298 PMCID: PMC10432145 DOI: 10.1016/j.ajhg.2023.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Multimorbidity is a rising public health challenge with important implications for health management and policy. The most common multimorbidity pattern is the combination of cardiometabolic and osteoarticular diseases. Here, we study the genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis. We find genome-wide genetic correlation between the two diseases and robust evidence for association-signal colocalization at 18 genomic regions. We integrate multi-omics and functional information to resolve the colocalizing signals and identify high-confidence effector genes, including FTO and IRX3, which provide proof-of-concept insights into the epidemiologic link between obesity and both diseases. We find enrichment for lipid metabolism and skeletal formation pathways for signals underpinning the knee and hip osteoarthritis comorbidities with type 2 diabetes, respectively. Causal inference analysis identifies complex effects of tissue-specific gene expression on comorbidity outcomes. Our findings provide insights into the biological basis for the type 2 diabetes-osteoarthritis disease co-occurrence.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Munich School of Data Science, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich (TUM), School of Medicine, Graduate School of Experimental Medicine, 81675 Munich, Germany
| | - April Hartley
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
| | - Georgia Katsoula
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Technical University of Munich (TUM), School of Medicine, Graduate School of Experimental Medicine, 81675 Munich, Germany
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
| | - Andrew P Morris
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, M13 9PT Manchester, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
34
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
35
|
Xue D, Narisu N, Taylor DL, Zhang M, Grenko C, Taylor HJ, Yan T, Tang X, Sinha N, Zhu J, Vandana JJ, Chong ACN, Lee A, Mansell EC, Swift AJ, Erdos MR, Zhou T, Bonnycastle LL, Zhong A, Chen S, Collins FS. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic hESC-derived β-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539774. [PMID: 37214922 PMCID: PMC10197532 DOI: 10.1101/2023.05.07.539774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional role of many loci has remained unexplored. In this study, we engineered isogenic knockout human embryonic stem cell (hESC) lines for 20 genes associated with T2D risk. We systematically examined β-cell differentiation, insulin production and secretion, and survival. We performed RNA-seq and ATAC-seq on hESC-β cells from each knockout line. Analyses of T2D GWAS signals overlapping with HNF4A-dependent ATAC peaks identified a specific SNP as a likely causal variant. In addition, we performed integrative association analyses and identified four genes ( CP, RNASE1, PCSK1N and GSTA2 ) associated with insulin production, and two genes ( TAGLN3 and DHRS2 ) associated with sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental hESC line, to identify a single likely functional variant at each of 23 T2D GWAS signals.
Collapse
|
36
|
Ademola SA, Bamikole OJ, Amodu OK. Is TNF alpha a mediator in the co-existence of malaria and type 2 diabetes in a malaria endemic population? Front Immunol 2023; 14:1028303. [PMID: 37215099 PMCID: PMC10196125 DOI: 10.3389/fimmu.2023.1028303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Malaria remains a disease of public health importance globally, especially in sub-Saharan Africa. Malaria deaths reduced globally steadily between 2000-2019, however there was a 10% increase in 2020 due to disruptions in medical service during the COVID-19 pandemic. Globally, about 96% of malaria deaths occurred in 29 countries; out of which, four countries (Nigeria, the Democratic Republic of the Congo, the Niger, and the United Republic of Tanzania) accounted for just over half of the malaria deaths. Nigeria leads the four countries with the highest malaria deaths (accounting for 31% globally). Parallelly, sub-Saharan Africa is faced with a rise in the incidence of Type 2 diabetes (T2D). Until recently, T2D was a disease of adulthood and old age. However, this is changing as T2D in children and adolescents is becoming an increasingly important public health problem. Nigeria has been reported to have the highest burden of diabetes in Africa with a prevalence of 5.77% in the country. Several studies conducted in the last decade investigating the interaction between malaria and T2D in developing countries have led to the emergence of the intra-uterine hypothesis. The hypothesis has arisen as a possible explanation for the rise of T2D in malaria endemic areas; malaria in pregnancy could lead to intra-uterine stress which could contribute to low birth weight and may be a potential cause of T2D later in life. Hence, previous, and continuous exposure to malaria infection leads to a higher risk of T2D. Current and emerging evidence suggests that an inflammation-mediated link exists between malaria and eventual T2D emergence. The inflammatory process thus, is an important link for the co-existence of malaria and T2D because these two diseases are inflammatory-related. A key feature of T2D is systemic inflammation, characterized by the upregulation of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) which leads to impaired insulin signaling. Malaria infection is an inflammatory disease in which TNF-α also plays a major role. TNF-α plays an important role in the pathogenesis and development of malaria and T2D. We therefore hypothesize that TNF-α is an important link in the increasing co-existence of T2D.
Collapse
|
37
|
Lee DS, An TH, Kim H, Jung E, Kim G, Oh SY, Kim JS, Chun HJ, Jung J, Lee EW, Han BS, Han DH, Lee YH, Han TS, Hur K, Lee CH, Kim DS, Kim WK, Park JW, Koo SH, Seong JK, Lee SC, Kim H, Bae KH, Oh KJ. Tcf7l2 in hepatocytes regulates de novo lipogenesis in diet-induced non-alcoholic fatty liver disease in mice. Diabetologia 2023; 66:931-954. [PMID: 36759348 PMCID: PMC10036287 DOI: 10.1007/s00125-023-05878-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 02/11/2023]
Abstract
AIMS/HYPOTHESIS Non-alcoholic fatty liver disease (NAFLD) associated with type 2 diabetes may more easily progress towards severe forms of non-alcoholic steatohepatitis (NASH) and cirrhosis. Although the Wnt effector transcription factor 7-like 2 (TCF7L2) is closely associated with type 2 diabetes risk, the role of TCF7L2 in NAFLD development remains unclear. Here, we investigated how changes in TCF7L2 expression in the liver affects hepatic lipid metabolism based on the major risk factors of NAFLD development. METHODS Tcf7l2 was selectively ablated in the liver of C57BL/6N mice by inducing the albumin (Alb) promoter to recombine Tcf7l2 alleles floxed at exon 5 (liver-specific Tcf7l2-knockout [KO] mice: Alb-Cre;Tcf7l2f/f). Alb-Cre;Tcf7l2f/f and their wild-type (Tcf7l2f/f) littermates were fed a high-fat diet (HFD) or a high-carbohydrate diet (HCD) for 22 weeks to reproduce NAFLD/NASH. Mice were refed a standard chow diet or an HCD to stimulate de novo lipogenesis (DNL) or fed an HFD to provide exogenous fatty acids. We analysed glucose and insulin sensitivity, metabolic respiration, mRNA expression profiles, hepatic triglyceride (TG), hepatic DNL, selected hepatic metabolites, selected plasma metabolites and liver histology. RESULTS Alb-Cre;Tcf7l2f/f essentially exhibited increased lipogenic genes, but there were no changes in hepatic lipid content in mice fed a normal chow diet. However, following 22 weeks of diet-induced NAFLD/NASH conditions, liver steatosis was exacerbated owing to preferential metabolism of carbohydrate over fat. Indeed, hepatic Tcf7l2 deficiency enhanced liver lipid content in a manner that was dependent on the duration and amount of exposure to carbohydrates, owing to cell-autonomous increases in hepatic DNL. Mechanistically, TCF7L2 regulated the transcriptional activity of Mlxipl (also known as ChREBP) by modulating O-GlcNAcylation and protein content of carbohydrate response element binding protein (ChREBP), and targeted Srebf1 (also called SREBP1) via miRNA (miR)-33-5p in hepatocytes. Eventually, restoring TCF7L2 expression at the physiological level in the liver of Alb-Cre;Tcf7l2f/f mice alleviated liver steatosis without altering body composition under both acute and chronic HCD conditions. CONCLUSIONS/INTERPRETATION In mice, loss of hepatic Tcf7l2 contributes to liver steatosis by inducing preferential metabolism of carbohydrates via DNL activation. Therefore, TCF7L2 could be a promising regulator of the NAFLD associated with high-carbohydrate diets and diabetes since TCF7L2 deficiency may lead to development of NAFLD by promoting utilisation of excess glucose pools through activating DNL. DATA AVAILABILITY RNA-sequencing data have been deposited into the NCBI GEO under the accession number GSE162449 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162449 ).
Collapse
Affiliation(s)
- Da Som Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eunsun Jung
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Gyeonghun Kim
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Yeon Oh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Jun Seok Kim
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hye Jin Chun
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
| | - Jaeeun Jung
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Su Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon-si, Gangwon-do, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Golovina EL, Grishkevich IR, Vaizova OE, Samoilova IG, Podchinenova DV, Matveeva MV, Kudlay DA. [Genetic aspects of type 1 glucagon peptide agonists clinical efficacy: A review]. TERAPEVT ARKH 2023; 95:274-278. [PMID: 37167150 DOI: 10.26442/00403660.2023.03.202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
A review of publications devoted to the analysis of genetic polymorphisms of the gene encoding the glucagon-like peptide type 1 receptor and some other genes directly and indirectly involved in the implementation of its physiological action is presented. The aim of the study: to search for information on genes polymorphism that can affect the effectiveness of glucagon-like peptide type 1 agonists. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was based on PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic source eLIBRARY.RU from 1993 to 2022. The several genes polymorphisms (GLP1R, TCF7L2, CNR1, SORCS1, WFS1, PPARD, CTRB1/2) that may affect the course and therapy of type 2 diabetes mellitus, metabolic syndrome and obesity, was described. Single nucleotide substitutions in some regions of these genes can both decrease and increase the clinical efficacy of the treatment of diabetes mellitus and metabolic syndrome with the help of type 1 glucagon-like peptide agonists: exenatide, liraglutide. Data on the role of genetic variations in the structure of the products of these genes in the effectiveness of other type 1 glucacone-like peptide agonists have not been found.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D A Kudlay
- Sechenov First Moscow State Medical University (Sechenov University)
- NRC Institute of Immunology FMBA of Russia
| |
Collapse
|
39
|
Peng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:26-37. [PMID: 36963725 DOI: 10.1016/j.pbiomolbio.2023.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
Glycometabolism is well known for its roles as the main source of energy, which mainly includes three metabolic pathways: oxidative phosphorylation, glycolysis and pentose phosphate pathway. The orderly progress of glycometabolism is the basis for the maintenance of cardiovascular function. However, upon exposure to harmful stimuli, the intracellular glycometabolism changes or tends to shift toward another glycometabolism pathway more suitable for its own development and adaptation. This shift away from the normal glycometabolism is also known as glycometabolism reprogramming, which is commonly related to the occurrence and aggravation of cardiovascular diseases. In this review, we elucidate the physiological role of glycometabolism in the cardiovascular system and summarize the mechanisms by which glycometabolism drives cardiovascular diseases, including diabetes, cardiac hypertrophy, heart failure, atherosclerosis, and pulmonary hypertension. Collectively, directing GMR back to normal glycometabolism might provide a therapeutic strategy for the prevention and treatment of related cardiovascular diseases.
Collapse
Affiliation(s)
- Guolong Peng
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
40
|
Royer-Bertrand B, Lebon S, Craig A, Maeder J, Mittaz-Crettol L, Fodstad H, Superti-Furga A, Good JM. Developmental disorder and spastic paraparesis in two sisters with a TCF7L2 truncating variant inherited from a mosaic mother. Am J Med Genet A 2023; 191:1658-1663. [PMID: 36905089 DOI: 10.1002/ajmg.a.63173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Affiliation(s)
- Beryl Royer-Bertrand
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lebon
- Unit of Pediatric Neurology and Neurorehabilitation, Department of Pediatrics, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Ailsa Craig
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Johanna Maeder
- Unit of Pediatric Neurology and Neurorehabilitation, Department of Pediatrics, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Laureane Mittaz-Crettol
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Heidi Fodstad
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Yu X, Rong S. Genome-Wide Associations and Confirmatory Meta-Analyses in Diabetic Retinopathy. Genes (Basel) 2023; 14:653. [PMID: 36980925 PMCID: PMC10048213 DOI: 10.3390/genes14030653] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present study aimed to summarize and validate the genomic association signals for diabetic retinopathy (DR), proliferative DR, and diabetic macular edema/diabetic maculopathy. A systematic search of the genome-wide association study (GWAS) catalog and PubMed/MELINE databases was conducted to curate a comprehensive list of significant GWAS discoveries. The top signals were then subjected to meta-analysis using established protocols. The results indicate the need for improved consensus among DR GWASs, highlighting the importance of validation efforts. A subsequent meta-analysis confirmed the association of two SNPs, rs4462262 (ZWINT-MRPS35P3) (odds ratio = 1.38, p = 0.001) and rs7903146 (TCF7L2) (odd ratio = 1.30, p < 0.001), with DR in independent populations, strengthening the evidence of their true association. We also compiled a list of candidate SNPs for further validation. This study highlights the importance of consistent validation and replication efforts in the field of DR genetics. The two identified gene loci warrant further functional investigation to understand their role in DR pathogenesis.
Collapse
Affiliation(s)
- Xinting Yu
- Department of Medicine, Brigham and Women’s Hospital, Mass General Brigham, Harvard Medical School, Boston, MA 02445, USA
| | - Shisong Rong
- Department of Ophthalmology, Massachusetts Eye and Ear, Mass General Brigham, Harvard Medical School, Boston, MA 02445, USA
| |
Collapse
|
42
|
Looker HC, Chang DC, Baier LJ, Hanson RL, Nelson RG. Diagnostic criteria and etiopathogenesis of type 2 diabetes and its complications: Lessons from the Pima Indians. Presse Med 2023; 52:104176. [PMID: 37783422 PMCID: PMC10805453 DOI: 10.1016/j.lpm.2023.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Phoenix Epidemiology and Clinical Research Branch of the National Institute of Diabetes and Digestive and Kidney Diseases has conducted prospective studies of diabetes and its complications in the Pima Indians living in Arizona, USA for over 50 years. In this review we highlight areas in which these studies provided vital insights into the criteria used to diagnose type 2 diabetes, the pathophysiologic changes that accompany the development of type 2 diabetes, and the course and determinants of diabetes complications-focusing specifically on diabetic kidney disease. We include data from our longitudinal population-based study of diabetes and its complications, studies on the role of insulin resistance and insulin secretion in the pathophysiology of type 2 diabetes, and in-depth studies of diabetic kidney disease that include measures of glomerular function and research kidney biopsies. We also focus on the emerging health threat posed by youth-onset type 2 diabetes, which was first seen in the Pima Indians in the 1960s and is becoming an increasing issue worldwide.
Collapse
Affiliation(s)
- Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Leslie J Baier
- Diabetes Molecular Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert L Hanson
- Diabetes Genetic Epidemiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA.
| |
Collapse
|
43
|
Damanhouri ZA, Alkreathy HM, Alharbi FA, Abualhamail H, Ahmad MS. A Review of the Impact of Pharmacogenetics and Metabolomics on the Efficacy of Metformin in Type 2 Diabetes. Int J Med Sci 2023; 20:142-150. [PMID: 36619226 PMCID: PMC9812811 DOI: 10.7150/ijms.77206] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Metformin is the most often prescribed drug for people with type 2 diabetes (T2D). More than 120 million patients with T2D use metformin worldwide. However, monotherapy fails to achieve glycemic control in a third of the treated patients. Genetics contribute to some of the inter-individual variations in glycemic response to metformin. Numerous pharmacogenetic studies have demonstrated that variations in genes related to pharmacokinetics and pharmacodynamics of metformin's encoding transporters are mainly associated with metformin response. The goal of this review is to evaluate the current state of metformin pharmacogenetics and metabolomics research, discuss the clinical and scientific issues that need to be resolved in order to increase our knowledge of patient response variability to metformin, and how to improve patient outcomes. Metformin's hydrophilic nature and absorption as well as its action mechanism and effectiveness on T2D initiation are discussed. The impacts of variations associated with various genes are analysed to identify and evaluate the effect of genetic polymorphisms on the therapeutic activity of metformin. The metabolic pattern of T2D and metformin is also indicated. This is to emphasise that studies of pharmacogenetics and metabolomics could expand our knowledge of metformin response in T2D.
Collapse
Affiliation(s)
- Zoheir A Damanhouri
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M Alkreathy
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fawaz A Alharbi
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen Abualhamail
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad S Ahmad
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Seo SH, Lee D, Lee SH, Choi KY. Blockade of CXXC5-dishevelled interaction inhibits adipogenic differentiation, obesity, and insulin resistance in mice. Sci Rep 2022; 12:20669. [PMID: 36450849 PMCID: PMC9712602 DOI: 10.1038/s41598-022-25315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Obesity has become a major risk factor for developing metabolic diseases, including insulin resistance, type 2 diabetes, and hypertension. Growing pieces of evidence indicate that the Wnt/β-catenin signaling pathway plays an important role in adipogenesis and obesity. Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis by suppressing the differentiation of committed preadipocytes into mature adipocytes. CXXC5 is highly induced with suppression of Wnt/β-catenin signaling in early adipogenic differentiation. In addition, silencing CXXC5 in vitro increased β-catenin and decremented the major adipogenic differentiation markers. KY19334, a small molecule that activates the Wnt/β-catenin pathway via inhibition of CXXC5- Dishevelled (Dvl) protein-protein interaction (PPI), suppressed adipogenic differentiation. Administration of KY19334 ameliorated obesity by 26 ± 1.3% and insulin resistance by 23.45 ± 7.09% and reduced adipocyte hypertrophy by 80.87 ± 5.30% in high-fat diet (HFD)-fed mice. In addition, KY19334 accelerated the browning of adipose tissue and promoted hepatic glucose homeostasis in HFD-fed mice. In conclusion, activation of the Wnt/β-catenin signaling by inhibiting the interaction of CXXC5 and Dvl by small molecule-mediated interference is a potential therapeutic approach for treating obesity and insulin resistance.
Collapse
Affiliation(s)
- Seol Hwa Seo
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Dasung Lee
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | | | - Kang-Yell Choi
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea ,CK Regeon Inc, Seoul, 03722 Republic of Korea
| |
Collapse
|
45
|
Levin MG, Tsao NL, Singhal P, Liu C, Vy HMT, Paranjpe I, Backman JD, Bellomo TR, Bone WP, Biddinger KJ, Hui Q, Dikilitas O, Satterfield BA, Yang Y, Morley MP, Bradford Y, Burke M, Reza N, Charest B, Judy RL, Puckelwartz MJ, Hakonarson H, Khan A, Kottyan LC, Kullo I, Luo Y, McNally EM, Rasmussen-Torvik LJ, Day SM, Do R, Phillips LS, Ellinor PT, Nadkarni GN, Ritchie MD, Arany Z, Cappola TP, Margulies KB, Aragam KG, Haggerty CM, Joseph J, Sun YV, Voight BF, Damrauer SM. Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat Commun 2022; 13:6914. [PMID: 36376295 PMCID: PMC9663424 DOI: 10.1038/s41467-022-34216-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is a leading cause of cardiovascular morbidity and mortality. However, the contribution of common genetic variation to heart failure risk has not been fully elucidated, particularly in comparison to other common cardiometabolic traits. We report a multi-ancestry genome-wide association study meta-analysis of all-cause heart failure including up to 115,150 cases and 1,550,331 controls of diverse genetic ancestry, identifying 47 risk loci. We also perform multivariate genome-wide association studies that integrate heart failure with related cardiac magnetic resonance imaging endophenotypes, identifying 61 risk loci. Gene-prioritization analyses including colocalization and transcriptome-wide association studies identify known and previously unreported candidate cardiomyopathy genes and cellular processes, which we validate in gene-expression profiling of failing and healthy human hearts. Colocalization, gene expression profiling, and Mendelian randomization provide convergent evidence for the roles of BCKDHA and circulating branch-chain amino acids in heart failure and cardiac structure. Finally, proteome-wide Mendelian randomization identifies 9 circulating proteins associated with heart failure or quantitative imaging traits. These analyses highlight similarities and differences among heart failure and associated cardiovascular imaging endophenotypes, implicate common genetic variation in the pathogenesis of heart failure, and identify circulating proteins that may represent cardiomyopathy treatment targets.
Collapse
Affiliation(s)
- Michael G Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pankhuri Singhal
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chang Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ha My T Vy
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ishan Paranjpe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tiffany R Bellomo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William P Bone
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran J Biddinger
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Qin Hui
- Emory University School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Ozan Dikilitas
- Departments of Internal Medicine and Cardiovascular Medicine, and Mayo Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN, USA
| | | | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Morley
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan Burke
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Charest
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Leah C Kottyan
- Department of Pediatrics, Division of Human Genetics and Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Iftikhar Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, BioMe Phenomics Center, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lawrence S Phillips
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Girish N Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoltan Arany
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher M Haggerty
- Department of Translational Data Science and Informatics and Heart Institute, Geisinger, Danville, PA, USA
| | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan V Sun
- Emory University School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Jääskeläinen T, Klemetti MM. Genetic Risk Factors and Gene-Lifestyle Interactions in Gestational Diabetes. Nutrients 2022; 14:nu14224799. [PMID: 36432486 PMCID: PMC9694797 DOI: 10.3390/nu14224799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Paralleling the increasing trends of maternal obesity, gestational diabetes (GDM) has become a global health challenge with significant public health repercussions. In addition to short-term adverse outcomes, such as hypertensive pregnancy disorders and fetal macrosomia, in the long term, GDM results in excess cardiometabolic morbidity in both the mother and child. Recent data suggest that women with GDM are characterized by notable phenotypic and genotypic heterogeneity and that frequencies of adverse obstetric and perinatal outcomes are different between physiologic GDM subtypes. However, as of yet, GDM treatment protocols do not differentiate between these subtypes. Mapping the genetic architecture of GDM, as well as accurate phenotypic and genotypic definitions of GDM, could potentially help in the individualization of GDM treatment and assessment of long-term prognoses. In this narrative review, we outline recent studies exploring genetic risk factors of GDM and later type 2 diabetes (T2D) in women with prior GDM. Further, we discuss the current evidence on gene-lifestyle interactions in the development of these diseases. In addition, we point out specific research gaps that still need to be addressed to better understand the complex genetic and metabolic crosstalk within the mother-placenta-fetus triad that contributes to hyperglycemia in pregnancy.
Collapse
Affiliation(s)
- Tiina Jääskeläinen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Correspondence:
| | - Miira M. Klemetti
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, P.O. Box 140, 00029 Helsinki, Finland
| |
Collapse
|
47
|
Wang F, Zheng J, Cheng J, Zou H, Li M, Deng B, Luo R, Wang F, Huang D, Li G, Zhang R, Ding X, Li Y, Du J, Yang Y, Kan J. Personalized nutrition: A review of genotype-based nutritional supplementation. Front Nutr 2022; 9:992986. [PMID: 36159456 PMCID: PMC9500586 DOI: 10.3389/fnut.2022.992986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nutritional disorders have become a major public health issue, requiring increased targeted approaches. Personalized nutrition adapted to individual needs has garnered dramatic attention as an effective way to improve nutritional balance and maintain health. With the rapidly evolving fields of genomics and nutrigenetics, accumulation of genetic variants has been indicated to alter the effects of nutritional supplementation, suggesting its indispensable role in the genotype-based personalized nutrition. Additionally, the metabolism of nutrients, such as lipids, especially omega-3 polyunsaturated fatty acids, glucose, vitamin A, folic acid, vitamin D, iron, and calcium could be effectively improved with related genetic variants. This review focuses on existing literatures linking critical genetic variants to the nutrient and the ways in which these variants influence the outcomes of certain nutritional supplementations. Although further studies are required in this direction, such evidence provides valuable insights for the guidance of appropriate interventions using genetic information, thus paving the way for the smooth transition of conventional generic approach to genotype-based personalized nutrition.
Collapse
Affiliation(s)
| | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Hong Zou
- Sequanta Technologies Co., Ltd, Shanghai, China
| | | | - Bin Deng
- Nutrilite Health Institute, Guangzhou, China
| | - Rong Luo
- Nutrilite Health Institute, Guangzhou, China
| | - Feng Wang
- Nutrilite Health Institute, Guangzhou, China
| | | | - Gang Li
- Nutrilite Health Institute, Shanghai, China
| | - Rao Zhang
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xin Ding
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Yuan Li
- Sequanta Technologies Co., Ltd, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- Jun Du
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Juntao Kan
| |
Collapse
|
48
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
49
|
Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Antoun E, Lillycrop KA, Calder PC. Dysregulation of Subcutaneous White Adipose Tissue Inflammatory Environment Modelling in Non-Insulin Resistant Obesity and Responses to Omega-3 Fatty Acids – A Double Blind, Randomised Clinical Trial. Front Immunol 2022; 13:922654. [PMID: 35958557 PMCID: PMC9358040 DOI: 10.3389/fimmu.2022.922654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background Obesity is associated with enhanced lipid accumulation and the expansion of adipose tissue accompanied by hypoxia and inflammatory signalling. Investigation in human subcutaneous white adipose tissue (scWAT) in people living with obesity in which metabolic complications such as insulin resistance are yet to manifest is limited, and the mechanisms by which these processes are dysregulated are not well elucidated. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have been shown to modulate the expression of genes associated with lipid accumulation and collagen deposition and reduce the number of inflammatory macrophages in adipose tissue from individuals with insulin resistance. Therefore, these lipids may have positive actions on obesity associated scWAT hypertrophy and inflammation. Methods To evaluate obesity-associated tissue remodelling and responses to LC n-3 PUFAs, abdominal scWAT biopsies were collected from normal weight individuals and those living with obesity prior to and following 12-week intervention with marine LC n-3 PUFAs (1.1 g EPA + 0.8 g DHA daily). RNA sequencing, qRT-PCR, and histochemical staining were used to assess remodelling- and inflammatory-associated gene expression, tissue morphology and macrophage infiltration. Results Obesity was associated with scWAT hypertrophy (P < 0.001), hypoxia, remodelling, and inflammatory macrophage infiltration (P = 0.023). Furthermore, we highlight the novel dysregulation of Wnt signalling in scWAT in non-insulin resistant obesity. LC n-3 PUFAs beneficially modulated the scWAT environment through downregulating the expression of genes associated with inflammatory and remodelling pathways (P <0.001), but there were altered outcomes in individuals living with obesity in comparison to normal weight individuals. Conclusion Our data identify dysregulation of Wnt signalling, hypoxia, and hypertrophy, and enhanced macrophage infiltration in scWAT in non-insulin resistant obesity. LC n-3 PUFAs modulate some of these processes, especially in normal weight individuals which may be preventative and limit the development of restrictive and inflammatory scWAT in the development of obesity. We conclude that a higher dose or longer duration of LC n-3 PUFA intervention may be needed to reduce obesity-associated scWAT inflammation and promote tissue homeostasis. Clinical Trial Registration www.isrctn.com, identifier ISRCTN96712688.
Collapse
Affiliation(s)
- Helena L Fisk
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Caroline E Childs
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Ayres
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Paul S Noakes
- School of Medicine, The University of Notre Dame Australia, Freemantle, WA, Australia
| | | | - Elie Antoun
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
50
|
Shi H, Xiang T, Feng J, Yang X, Li Y, Fang Y, Xu L, Qi Q, Shen J, Tang L, Shen Q, Wang X, Xu H, Rao J. N6-Methyladenosine Methylomic Landscape of Ureteral Deficiency in Reflux Uropathy and Obstructive Uropathy. Front Med (Lausanne) 2022; 9:924579. [PMID: 35795641 PMCID: PMC9251069 DOI: 10.3389/fmed.2022.924579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Congenital anomalies of the kidneys and urinary tracts (CAKUT) represent the most prevalent cause for renal failure in children. The RNA epigenetic modification N6-methyladenosine (m6A) methylation modulates gene expression and function post-transcriptionally, which has recently been revealed to be critical in organ development. However, it is uncertain whether m6A methylation plays a role in the pathogenesis of CAKUT. Thus, we aimed to explore the pattern of m6A methylation in CAKUT. Methods Using m6A-mRNA epitranscriptomic microarray, we investigated the m6A methylomic landscape in the ureter tissue of children with obstructive megaureter (M group) and primary vesicoureteral reflux (V group). Results A total of 228 mRNAs engaged in multiple function-relevant signaling pathways were substantially differential methylated between the “V” and “M” groups. Additionally, 215 RNA-binding proteins that recognize differentially methylated regions were predicted based on public databases. The M group showed significantly higher mRNA levels of m6A readers/writers (YTHDF1, YTHDF2, YTHDC1, YTHDC2 and WTAP) and significantly lower mRNA levels of m6A eraser (FTO) according to real-time PCR. To further investigate the differentially methylated genes, m6A methylome and transcriptome data were integrated to identified 298 hypermethylated mRNAs with differential expressions (265 upregulation and 33 downregulation) and 489 hypomethylated mRNAs with differential expressions (431 upregulation and 58 downregulation) in the M/V comparison. Conclusion The current results highlight the pathogenesis of m6A methylation in obstructive and reflux uropathy.
Collapse
Affiliation(s)
- Hua Shi
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Tianchao Xiang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jiayan Feng
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Xue Yang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Fang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Linan Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Qi
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Shen
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
| | - Liangfeng Tang
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiang Wang
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
- Hong Xu
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Basic Medical Science, Fudan University, Shanghai, China
- Jia Rao
| |
Collapse
|