1
|
Greenbaum CJ, Nepom GT, Wood-Heickman LK, Wherrett DK, DiMeglio LA, Herold KC, Krischer JP. Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes: Report of Diabetes Mellitus Interagency Coordinating Committee Workshop. Diabetes 2024; 73:1780-1790. [PMID: 39167668 PMCID: PMC11493760 DOI: 10.2337/dbi24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The approval of teplizumab to delay the onset of type 1 diabetes is an important inflection point in the decades-long pursuit to treat the cause of the disease rather than its symptoms. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop of the Diabetes Mellitus Interagency Coordinating Committee titled "Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes" to review this accomplishment and identify future goals. Speakers representing Type 1 Diabetes TrialNet (TrialNet) and the Immune Tolerance Network emphasized that the ability to robustly identify individuals destined to develop type 1 diabetes was essential for clinical trials. The presenter from the U.S. Food and Drug Administration described how regulatory approval relied on data from the single clinical trial of TrialNet with testing of teplizumab for delay of clinical diagnosis, along with confirmatory evidence from studies in patients after diagnosis. The workshop reviewed the etiology of type 1 diabetes as a disease involving multiple immune pathways, highlighting the current understanding of prognostic markers and proposing potential strategies to improve the therapeutic response of disease-modifying therapies based on the mechanism of action. While celebrating these achievements funded by the congressionally appropriated Special Diabetes Program, panelists from professional organizations, nonprofit advocacy/funding groups, and industry also identified significant hurdles in translating this research into clinical care.
Collapse
Affiliation(s)
- Carla J. Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA
| | - Gerald T. Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA
| | - Lauren K. Wood-Heickman
- Division of Diabetes, Lipid Disorders and Obesity in the Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD
| | - Diane K. Wherrett
- Paediatric Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Linda A. DiMeglio
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | - Jeffrey P. Krischer
- Departments of Pediatrics and Internal Medicine, Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
2
|
Haynes A, Tully A, Smith GJ, Penno MA, Craig ME, Wentworth JM, Huynh T, Colman PG, Soldatos G, Anderson AJ, McGorm KJ, Oakey H, Couper JJ, Davis EA. Early Dysglycemia Is Detectable Using Continuous Glucose Monitoring in Very Young Children at Risk of Type 1 Diabetes. Diabetes Care 2024; 47:1750-1756. [PMID: 39159241 PMCID: PMC11417303 DOI: 10.2337/dc24-0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Continuous glucose monitoring (CGM) can detect early dysglycemia in older children and adults with presymptomatic type 1 diabetes (T1D) and predict risk of progression to clinical onset. However, CGM data for very young children at greatest risk of disease progression are lacking. This study aimed to investigate the use of CGM data measured in children being longitudinally observed in the Australian Environmental Determinants of Islet Autoimmunity (ENDIA) study from birth to age 10 years. RESEARCH DESIGN AND METHODS Between January 2021 and June 2023, 31 ENDIA children with persistent multiple islet autoimmunity (PM Ab+) and 24 age-matched control children underwent CGM assessment alongside standard clinical monitoring. The CGM metrics of glucose SD (SDSGL), coefficient of variation (CEV), mean sensor glucose (SGL), and percentage of time >7.8 mmol/L (>140 mg/dL) were determined and examined for between-group differences. RESULTS The mean (SD) ages of PM Ab+ and Ab- children were 4.4 (1.8) and 4.7 (1.9) years, respectively. Eighty-six percent of eligible PM Ab+ children consented to CGM wear, achieving a median (quartile 1 [Q1], Q3) sensor wear period of 12.5 (9.0, 15.0) days. PM Ab+ children had higher median (Q1, Q3) SDSGL (1.1 [0.9, 1.3] vs. 0.9 [0.8, 1.0] mmol/L; P < 0.001) and CEV (17.3% [16.0, 20.9] vs. 14.7% [12.9, 16.6]; P < 0.001). Percentage of time >7.8 mmol/L was greater in PM Ab+ children (median [Q1, Q3] 8.0% [4.4, 13.0] compared with 3.3% [1.4, 5.3] in Ab- children; P = 0.005). Mean SGL did not differ significantly between groups (P = 0.10). CONCLUSIONS CGM is feasible and well tolerated in very young children at risk of T1D. Very young PM Ab+ children have increased SDSGL, CEV, and percentage of time >7.8 mmol/L, consistent with prior studies involving older participants.
Collapse
Affiliation(s)
- Aveni Haynes
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Paediatrics, UWA Medical School, University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexandra Tully
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Grant J. Smith
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Megan A.S. Penno
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Maria E. Craig
- Faculty of Medicine, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - John M. Wentworth
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Tony Huynh
- Department of Endocrinology and Diabetes, Queensland Children’s Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, Children’s Health Research Centre, University of Queensland, South Brisbane, Queensland, Australia
| | - Peter G. Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Georgia Soldatos
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, Victoria, Australia
| | - Amanda J. Anderson
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly J. McGorm
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Helena Oakey
- Faculty of Health and Medical Sciences and Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer J. Couper
- Department of Diabetes and Endocrinology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Elizabeth A. Davis
- Children’s Diabetes Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Diabetes and Endocrinology, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- School of Paediatrics, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Phillip M, Achenbach P, Addala A, Albanese-O'Neill A, Battelino T, Bell KJ, Besser REJ, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Larsson HE, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RIG, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O'Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NPB, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes. Diabetologia 2024; 67:1731-1759. [PMID: 38910151 PMCID: PMC11410955 DOI: 10.1007/s00125-024-06205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programmes are being increasingly emphasised. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk of (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in non-specialised settings. To inform this monitoring, JDRF in conjunction with international experts and societies developed consensus guidance. Broad advice from this guidance includes the following: (1) partnerships should be fostered between endocrinologists and primary-care providers to care for people who are IAb+; (2) when people who are IAb+ are initially identified there is a need for confirmation using a second sample; (3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; (4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; (5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and (6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasises significant unmet needs for further research on early-stage type 1 diabetes to increase the rigour of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Rachel E J Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of TU Dresden and Faculty of Medicine, Dresden, Germany
| | - Helen M Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Jennifer J Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Paediatrics, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Maria E Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, NSW, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Carla J Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kurt J Griffin
- Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL, USA
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, VIC, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, VIC, Australia
- Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura M Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Suzanne B Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Leslie E Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL, USA
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - M Loredana Marcovecchio
- Department of Pediatrics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K O'Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marian J Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Kimber M Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laura B Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA, USA
| | - Andrea K Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ksenia N Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children's Hospital and University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jamie R Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Phillip M, Achenbach P, Addala A, Albanese-O’Neill A, Battelino T, Bell KJ, Besser RE, Bonifacio E, Colhoun HM, Couper JJ, Craig ME, Danne T, de Beaufort C, Dovc K, Driscoll KA, Dutta S, Ebekozien O, Elding Larsson H, Feiten DJ, Frohnert BI, Gabbay RA, Gallagher MP, Greenbaum CJ, Griffin KJ, Hagopian W, Haller MJ, Hendrieckx C, Hendriks E, Holt RI, Hughes L, Ismail HM, Jacobsen LM, Johnson SB, Kolb LE, Kordonouri O, Lange K, Lash RW, Lernmark Å, Libman I, Lundgren M, Maahs DM, Marcovecchio ML, Mathieu C, Miller KM, O’Donnell HK, Oron T, Patil SP, Pop-Busui R, Rewers MJ, Rich SS, Schatz DA, Schulman-Rosenbaum R, Simmons KM, Sims EK, Skyler JS, Smith LB, Speake C, Steck AK, Thomas NP, Tonyushkina KN, Veijola R, Wentworth JM, Wherrett DK, Wood JR, Ziegler AG, DiMeglio LA. Consensus Guidance for Monitoring Individuals With Islet Autoantibody-Positive Pre-Stage 3 Type 1 Diabetes. Diabetes Care 2024; 47:1276-1298. [PMID: 38912694 PMCID: PMC11381572 DOI: 10.2337/dci24-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Given the proven benefits of screening to reduce diabetic ketoacidosis (DKA) likelihood at the time of stage 3 type 1 diabetes diagnosis, and emerging availability of therapy to delay disease progression, type 1 diabetes screening programs are being increasingly emphasized. Once broadly implemented, screening initiatives will identify significant numbers of islet autoantibody-positive (IAb+) children and adults who are at risk for (confirmed single IAb+) or living with (multiple IAb+) early-stage (stage 1 and stage 2) type 1 diabetes. These individuals will need monitoring for disease progression; much of this care will happen in nonspecialized settings. To inform this monitoring, JDRF, in conjunction with international experts and societies, developed consensus guidance. Broad advice from this guidance includes the following: 1) partnerships should be fostered between endocrinologists and primary care providers to care for people who are IAb+; 2) when people who are IAb+ are initially identified, there is a need for confirmation using a second sample; 3) single IAb+ individuals are at lower risk of progression than multiple IAb+ individuals; 4) individuals with early-stage type 1 diabetes should have periodic medical monitoring, including regular assessments of glucose levels, regular education about symptoms of diabetes and DKA, and psychosocial support; 5) interested people with stage 2 type 1 diabetes should be offered trial participation or approved therapies; and 6) all health professionals involved in monitoring and care of individuals with type 1 diabetes have a responsibility to provide education. The guidance also emphasizes significant unmet needs for further research on early-stage type 1 diabetes to increase the rigor of future recommendations and inform clinical care.
Collapse
Affiliation(s)
- Moshe Phillip
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Ananta Addala
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kirstine J. Bell
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rachel E.J. Besser
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre Human Genetics, Nuffield Department of Medicine Oxford National Institute for Health and Care Research Biomedical Research Centre, University of Oxford, Oxford, U.K
- Department of Paediatrics, University of Oxford, Oxford, U.K
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich at the University Clinic Carl Gustav Carus of Technical University of Dresden, and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Helen M. Colhoun
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
- Department of Public Health, NHS Fife, Kirkcaldy, U.K
| | - Jennifer J. Couper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Division of Paediatrics, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Maria E. Craig
- Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Paediatrics & Child Health, School of Clinical Medicine, UNSW Medicine & Health, Sydney, New South Wales, Australia
| | | | - Carine de Beaufort
- International Society for Pediatric and Adolescent Diabetes (ISPAD), Berlin, Germany
- Diabetes & Endocrine Care Clinique Pédiatrique (DECCP), Clinique Pédiatrique/Centre Hospitalier (CH) de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Klemen Dovc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolism, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Kimberly A. Driscoll
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| | | | | | - Helena Elding Larsson
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Skåne University Hospital, Malmö and Lund, Sweden
| | | | - Brigitte I. Frohnert
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Kurt J. Griffin
- Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, University of Washington, Seattle, WA
| | - Michael J. Haller
- Department of Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL
| | - Christel Hendrieckx
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- The Australian Centre for Behavioural Research in Diabetes, Diabetes Victoria, Carlton, Victoria, Australia
- Institute for Health Transformation, Deakin University, Geelong, Victoria, Australia
| | - Emile Hendriks
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, U.K
| | - Richard I.G. Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, U.K
- National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, U.K
| | | | - Heba M. Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Laura M. Jacobsen
- Division of Endocrinology, University of Florida College of Medicine, Gainesville, FL
| | - Suzanne B. Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL
| | - Leslie E. Kolb
- Association of Diabetes Care & Education Specialists, Chicago, IL
| | | | - Karin Lange
- Medical Psychology, Hannover Medical School, Hannover, Germany
| | | | - Åke Lernmark
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, PA
| | - Markus Lundgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - David M. Maahs
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Holly K. O’Donnell
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tal Oron
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shivajirao P. Patil
- Department of Family Medicine, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI
| | - Marian J. Rewers
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Rifka Schulman-Rosenbaum
- Division of Endocrinology, Long Island Jewish Medical Center, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY
| | - Kimber M. Simmons
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily K. Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jay S. Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Laura B. Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Cate Speake
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Andrea K. Steck
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nicholas P.B. Thomas
- National Institute of Health and Care Research Clinical Research Network Thames Valley and South Midlands, Oxford, U.K
| | - Ksenia N. Tonyushkina
- Division of Endocrinology and Diabetes, Baystate Children’s Hospital and University of Massachusetts Chan Medical School–Baystate, Springfield, MA
| | - Riitta Veijola
- Research Unit of Clinical Medicine, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - John M. Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Diane K. Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jamie R. Wood
- Department of Pediatric Endocrinology, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Linda A. DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Lin C, Hu S, Cai X, Lv F, Yang W, Liu G, Yang X, Ji L. The opportunities and challenges of the disease-modifying immunotherapy for type 1 diabetes: A systematic review and meta-analysis. Pharmacol Res 2024; 203:107157. [PMID: 38531504 DOI: 10.1016/j.phrs.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
There are multiple disease-modifying immunotherapies showing the potential of preventing or delaying the progression of type 1 diabetes (T1D). We designed and performed this systematic review and meta-analysis to gain an overview of what a role immunotherapy plays in the treatment of T1D. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to December 2023. We included clinical trials of immunotherapy conducted in patients with T1D that reported the incidence of hypoglycemia or changes from baseline in at least one of following outcomes: 2 h and 4 h mixed-meal-stimulated C-peptide area under the curve (AUC), fasting C-peptide, daily insulin dosage, glycated hemoglobin (HbA1c) and fasting plasma glucose (FPG). The results were computed as the weighted mean differences (WMDs) or odds ratios (ORs) and 95% confidence intervals (CIs) in random-effect model. In all, 34 clinical trials were included. When compared with control groups, 2 h C-peptide AUC was marginally higher in patient treated with nonantigen-based immunotherapies (WMD, 0.04nmol/L, 95% CI, 0.00-0.09 nmol/L, P=0.05), which was mainly driven by the effects of T cell-targeted therapy. A greater preservation in 4 h C-peptide AUC was observed in patients with nonantigen-based immunotherapies (WMD, 0.10nmol/L, 95% CI, 0.04-0.16 nmol/L, P=0.0007), which was mainly driven by the effects of tumor necrosis factor α (TNF-α) inhibitor and T cell-targeted therapy. After excluding small-sample trials, less daily insulin dosage was observed in patient treated with nonantigen-based immunotherapies when compared with control groups (WMD, -0.07units/kg/day, 95% CI, -0.11 to -0.03units/kg/day, P=0.0004). The use of antigen-based immunotherapies was also associated with a lower daily insulin dosage versus control groups (WMD, -0.11units/kg/day, 95% CI, -0.23 to -0.00units/kg/day, P=0.05). However, changes of HbA1c or FPG were comparable between nonantigen-based immunotherapies or antigen-based immunotherapies and control groups. The risk of hypoglycemia was not increased in patients treated with nonantigen-based immunotherapies or patients treated with antigen-based immunotherapies when compared with control groups. In conclusion, nonantigen-based immunotherapies were associated with a preservation of 2 h and 4 h C-peptide AUC in patients with T1D when compared with the controls, which was mainly driven by the effects of TNF-a inhibitor and T cell-targeted therapy. Both nonantigen-based immunotherapies and antigen-based immunotherapies tended to reduce the daily insulin dosage in patients with T1D when compared with the controls. However, they did not contribute to a substantial improvement in HbA1c or FPG. Both nonantigen-based immunotherapies and antigen-based immunotherapies were well tolerated with not increased risk of hypoglycemia in patients with T1D.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Suiyuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Geling Liu
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiaolin Yang
- Department of Endocrinology (Section I), Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Uenishi GI, Repic M, Yam JY, Landuyt A, Saikumar-Lakshmi P, Guo T, Zarin P, Sassone-Corsi M, Chicoine A, Kellogg H, Hunt M, Drow T, Tewari R, Cook PJ, Yang SJ, Cerosaletti K, Schweinoch D, Guiastrennec B, James E, Patel C, Chen TF, Buckner JH, Rawlings DJ, Wickham TJ, Mueller KT. GNTI-122: an autologous antigen-specific engineered Treg cell therapy for type 1 diabetes. JCI Insight 2024; 9:e171844. [PMID: 38516892 PMCID: PMC11063937 DOI: 10.1172/jci.insight.171844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving β cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC). GNTI-122 cells maintained an expression profile consistent with Treg phenotype and function. Activation of CISC using rapamycin mediated concentration-dependent STAT5 phosphorylation and, in concert with T cell receptor engagement, promoted cell proliferation. In response to the cognate antigen, GNTI-122 exhibited direct and bystander suppression of polyclonal, islet-specific effector T cells from patients with T1D. In an adoptive transfer mouse model of T1D, a mouse engineered-Treg analog of GNTI-122 trafficked to the pancreas, decreased the severity of insulitis, and prevented progression to diabetes. Taken together, these findings demonstrate in vitro and in vivo activity and support further development of GNTI-122 as a potential treatment for T1D.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingxi Guo
- GentiBio Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | - Martina Hunt
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ritika Tewari
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter J. Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Eddie James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Department of Medicine
- Department of Immunology, and
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Immunology, and
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
7
|
Sharma N, Das DD, Chawla PA. Journey of Teplizumab: A Promising Drug in the Treatment of Type 1 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e250124226249. [PMID: 38279734 DOI: 10.2174/0115733998261825231026060241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 01/28/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease caused by CD4+ and CD8+ that are activated via CD3+ cells and finally lead to the macrophages destroying the beta cells in the pancreas thereby causing diabetes. The anti-CD3 humanized monoclonal antibody was approved on 17th November 2022 by the United States Food Drug Administration (USFDA) with the name teplizumab and the brand name TZIELD. This is the only approved drug that treats type 1 diabetes (T1D) by delaying the onset of stage 3 in type 1 diabetes (T1D). This review outlines essential features of teplizumab including its brief introduction to its mechanism and other therapies for the treatment and various risks as well as the pharmacokinetics and pharmacodynamics of this disease and the clinical trial reports for the completed and ongoing therapies.
Collapse
Affiliation(s)
- Nikita Sharma
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| | | | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, India
| |
Collapse
|
8
|
Sylvester CM, Luby JL, Pine DS. Novel mechanism-based treatments for pediatric anxiety and depressive disorders. Neuropsychopharmacology 2024; 49:262-275. [PMID: 37608220 PMCID: PMC10700626 DOI: 10.1038/s41386-023-01709-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
Pediatric anxiety and depressive disorders are common, can be highly impairing, and can persist despite the best available treatments. Here, we review research into novel treatments for childhood anxiety and depressive disorders designed to target underlying cognitive, emotional, and neural circuit mechanisms. We highlight three novel treatments lying along a continuum relating to clinical impact of the disorder and the intensity of clinical management required. We review cognitive training, which involves the lowest risk and may be applicable for problems with mild to moderate impact; psychotherapy, which includes a higher level of clinical involvement and may be sufficient for problems with moderate impact; and brain stimulation, which has the highest potential risks and is therefore most appropriate for problems with high impact. For each treatment, we review the specific underlying cognitive, emotional, and brain circuit mechanisms that are being targeted, whether treatments modify those underlying mechanisms, and efficacy in reducing symptoms. We conclude by highlighting future directions, including the importance of work that leverages developmental windows of high brain plasticity to time interventions to the specific epochs in childhood that have the largest and most enduring life-long impact.
Collapse
Affiliation(s)
- Chad M Sylvester
- Washington University Department of Psychiatry, St. Louis, MO, USA.
- Washington University Department of Radiology, St. Louis, MO, USA.
| | - Joan L Luby
- Washington University Department of Psychiatry, St. Louis, MO, USA
| | - Daniel S Pine
- National Institute of Mental Health, Emotion and Development Branch, St. Louis, MO, USA
| |
Collapse
|
9
|
Montaser E, Breton MD, Brown SA, DeBoer MD, Kovatchev B, Farhy LS. Predicting Immunological Risk for Stage 1 and Stage 2 Diabetes Using a 1-Week CGM Home Test, Nocturnal Glucose Increments, and Standardized Liquid Mixed Meal Breakfasts, with Classification Enhanced by Machine Learning. Diabetes Technol Ther 2023; 25:631-642. [PMID: 37184602 PMCID: PMC10460684 DOI: 10.1089/dia.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Background: Predicting the risk for type 1 diabetes (T1D) is a significant challenge. We use a 1-week continuous glucose monitoring (CGM) home test to characterize differences in glycemia in at-risk healthy individuals based on autoantibody presence and develop a machine-learning technology for CGM-based islet autoantibody classification. Methods: Sixty healthy relatives of people with T1D with mean ± standard deviation age of 23.7 ± 10.7 years, HbA1c of 5.3% ± 0.3%, and body mass index of 23.8 ± 5.6 kg/m2 with zero (n = 21), one (n = 18), and ≥2 (n = 21) autoantibodies were enrolled in an National Institutes of Health TrialNet ancillary study. Participants wore a CGM for a week and consumed three standardized liquid mixed meals (SLMM) instead of three breakfasts. Glycemic outcomes were computed from weekly, overnight (12:00-06:00), and post-SLMM CGM traces, compared across groups, and used in four supervised machine-learning autoantibody status classifiers. Classifiers were evaluated through 10-fold cross-validation using the receiver operating characteristic area under the curve (AUC-ROC) to select the best classification model. Results: Among all computed glycemia metrics, only three were different across the autoantibodies groups: percent time >180 mg/dL (T180) weekly (P = 0.04), overnight CGM incremental AUC (P = 0.005), and T180 for 75 min post-SLMM CGM traces (P = 0.004). Once overnight and post-SLMM features are incorporated in machine-learning classifiers, a linear support vector machine model achieved the best performance of classifying autoantibody positive versus autoantibody negative participants with AUC-ROC ≥0.81. Conclusion: A new technology combining machine learning with a potentially self-administered 1-week CGM home test can help improve T1D risk detection without the need to visit a hospital or use a medical laboratory. Trial registration: ClinicalTrials.gov registration no. NCT02663661.
Collapse
Affiliation(s)
- Eslam Montaser
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Marc D. Breton
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Sue A. Brown
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D. DeBoer
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Boris Kovatchev
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Leon S. Farhy
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Ismail HM, Spall M, Evans-Molina C, DiMeglio LA. Evaluating the effect of prebiotics on the gut microbiome profile and β cell function in youth with newly diagnosed type 1 diabetes: protocol of a pilot randomized controlled trial. Pilot Feasibility Stud 2023; 9:150. [PMID: 37626387 PMCID: PMC10463339 DOI: 10.1186/s40814-023-01373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Data show that disturbances in the gut microbiota play a role in glucose homeostasis, type 1 diabetes (T1D) risk and progression. The prebiotic high amylose maize starch (HAMS) alters the gut microbiome profile and metabolites favorably with an increase in bacteria producing short chain fatty acids (SCFAs) that have significant anti-inflammatory effects. HAMS also improves glycemia, insulin sensitivity, and secretion in healthy non-diabetic adults. Additionally, a recent study testing an acetylated and butyrylated form of HAMS (HAMS-AB) that further increases SCFA production prevented T1D in a rodent model without adverse safety effects. The overall objective of this human study will be to assess how daily HAMS-AB consumption impacts the gut microbiome profile, SCFA production, β cell heath, function, and glycemia as well as immune responses in newly diagnosed T1D youth. METHODS AND ANALYSIS We hypothesize that HAMS-AB intake will improve the gut microbiome profile, increase SCFA production, improve β cell health, function and glycemia as well as modulate the immune system. We describe here a pilot, randomized crossover trial of HAMS-AB in 12 newly diagnosed T1D youth, ages 11-17 years old, with residual β cell function. In Aim 1, we will determine the effect of HAMS-AB on the gut microbiome profile and SCFA production; in Aim 2, we will determine the effect of HAMS-AB on β cell health, function and glycemia; and in Aim 3, we will determine the peripheral blood effect of HAMS-AB on frequency, phenotype and function of specific T cell markers. Results will be used to determine the effect-size estimate of using HAMS-AB. We anticipate beneficial effects from a simple, inexpensive, and safe dietary approach. ETHICS AND DISSEMINATION The Institutional Review Board at Indiana University approved the study protocol. The findings of this trial will be submitted to a peer-reviewed pediatric journal. Abstracts will be submitted to relevant national and international conferences. TRIAL REGISTRATION NCT04114357; Pre-results.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA.
| | - Maria Spall
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA
| |
Collapse
|
11
|
Redondo MJ, van Raalte DH. Age Ain't Nothing But a Number . . . or Is It? Diabetes Care 2023; 46:1135-1136. [PMID: 37220267 PMCID: PMC10234734 DOI: 10.2337/dci23-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Maria J. Redondo
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Daniël H. van Raalte
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands
- Diabetes Center, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, the Netherlands
- Research Institute for Cardiovascular Sciences, VU University, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Ferrannini E, Mari A, Monaco GSF, Skyler JS, Evans-Molina C. The effect of age on longitudinal measures of beta cell function and insulin sensitivity during the progression of early stage type 1 diabetes. Diabetologia 2023; 66:508-519. [PMID: 36459177 PMCID: PMC9716154 DOI: 10.1007/s00125-022-05836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
AIM/HYPOTHESIS The risk of progressing from autoantibody positivity to type 1 diabetes is inversely related to age. Separately, whether age influences patterns of C-peptide loss or changes in insulin sensitivity in autoantibody-positive individuals who progress to stage 3 type 1 diabetes is unclear. METHODS Beta cell function and insulin sensitivity were determined by modelling of OGTTs performed in 658 autoantibody-positive participants followed longitudinally in the Diabetes Prevention Trial-Type 1 (DPT-1). In this secondary analysis of DPT-1 data, time trajectories of beta cell function and insulin sensitivity were analysed in participants who progressed to type 1 diabetes (progressors) to address the impact of age on patterns of metabolic progression to diabetes. RESULTS Among the entire DPT-1 cohort, the highest discriminant age for type 1 diabetes risk was 14 years, with participants aged <14 years being twice as likely to progress to type 1 diabetes as those aged ≥14 years. At study entry, beta cell glucose sensitivity was impaired to a similar extent in progressors aged <14 years and progressors aged ≥14 years. From study entry to stage 3 type 1 diabetes onset, beta cell glucose sensitivity and insulin sensitivity declined in both progressor groups. However, there were no significant differences in the yearly rate of decline in either glucose sensitivity (-13.7 [21.2] vs -11.9 [21.5] pmol min-1 m-2 [mmol/l]-1, median [IQR], p=0.52) or insulin sensitivity (-22 [37] vs -14 [40] ml min-1 m-2, median [IQR], p=0.07) between progressors aged <14 years and progressors aged ≥14 years. CONCLUSIONS/INTERPRETATION Our data indicate that during progression to stage 3 type 1 diabetes, rates of change in declining glucose and insulin sensitivity are not significantly different between progressors aged <14 years and progressors aged ≥14 years. These data suggest there is a predictable course of declining metabolic function during the progression to type 1 diabetes that is not influenced by age.
Collapse
Affiliation(s)
| | | | - Gabriela S F Monaco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
13
|
O’Rourke C, Ylescupidez A, Bahnson HT, Bender C, Speake C, Lord S, Greenbaum CJ. Risk Modeling to Reduce Monitoring of an Autoantibody-Positive Population to Prevent DKA at Type 1 Diabetes Diagnosis. J Clin Endocrinol Metab 2023; 108:688-696. [PMID: 36227635 PMCID: PMC10210620 DOI: 10.1210/clinem/dgac594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/07/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The presence of islet autoimmunity identifies individuals likely to progress to clinical type 1 diabetes (T1D). In clinical research studies, autoantibody screening followed by regular metabolic monitoring every 6 months reduces incidence of diabetic ketoacidosis (DKA) at diagnosis. OBJECTIVE We hypothesized that DKA reduction can be achieved on a population basis with a reduced frequency of metabolic monitoring visits. We reasoned that prolonged time between the development of T1D and the time of clinical diagnosis ("undiagnosed time") would more commonly result in DKA and thus that limiting undiagnosed time would decrease DKA. METHODS An analysis was conducted of data from TrialNet's Pathway to Prevention (PTP), a cross-sectional longitudinal study that identifies and follows at-risk relatives of people with T1D. PTP is a population-based study enrolling across multiple countries. A total of 6193 autoantibody (AAB)-positive individuals participated in PTP from March 2004 to April 2019. We developed models of progression to clinical diagnosis for pediatric and adult populations with single or multiple AAB, and summarized results using estimated hazard rate. An optimal monitoring visit schedule was determined for each model to achieve a minimum average level of undiagnosed time for each population. RESULTS Halving the number of monitoring visits usually conducted in research studies is likely to substantially lower the population incidence of DKA at diagnosis of T1D. CONCLUSION Our study has clinical implications for the metabolic monitoring of at-risk individuals. Fewer monitoring visits would reduce the clinical burden, suggesting a path toward transitioning monitoring beyond the research setting.
Collapse
Affiliation(s)
- Colin O’Rourke
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | - Alyssa Ylescupidez
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | - Henry T Bahnson
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | - Christine Bender
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | - Sandra Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| |
Collapse
|
14
|
Delamater AM. Forty Years of Behavioral Diabetes Research: A Personal Journey. Diabetes Spectr 2022; 36:88-96. [PMID: 36818415 PMCID: PMC9935293 DOI: 10.2337/ds22-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article was adapted from the address Dr. Delamater delivered as the recipient of the American Diabetes Association's Richard R. Rubin Award for 2022. This award recognizes a behavioral researcher who has made outstanding, innovative contributions to the study and understanding of the behavioral aspects of diabetes in diverse populations. Dr. Delamater delivered the address in June 2022 at the Association's virtual 82nd Scientific Sessions. A webcast of this speech is available for viewing on the DiabetesPro website (https://professional.diabetes.org/webcast/stigma-diabetes-care%E2%80%94evidence-and-solutions-richard-r-rubin-award-lecture).
Collapse
|
15
|
Li C, Gao Q, Jiang H, Liu C, Du Y, Li L. Changes of macrophage and CD4 + T cell in inflammatory response in type 1 diabetic mice. Sci Rep 2022; 12:14929. [PMID: 36056051 PMCID: PMC9440103 DOI: 10.1038/s41598-022-19031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells play an important role in the development of inflammation in type 1 diabetes mellitus, so we want to explore the changes of CD4+ T cells and macrophages in vivo, which can provide an experimental basis for immunotherapy based on CD4+ T cells and macrophages. The intraperitoneal injection of streptozocin was used to induce a type 1 diabetes mellitus mouse model; the blood glucose, body weight, and the expression of inflammatory factors in the kidney were measured. Immunohistochemistry was applied to determine and analyze the infiltration of CD4+ T cells and macrophages in the spleen, pancreas, and kidney. The subtypes of macrophages in the kidney and CD4+ T cells in the spleen were analyzed by flow cytometry. Our study suggests that CD4+ T cells and macrophages increase, while the inflammatory immune response system is activated in the development of T1DM. CD4+ T cells positively correlated with macrophages in the pancreas and kidney of T1DM. CD4+ T cells turn to pro-inflammatory subtypes in the spleen of T1DM, while macrophages turn to pro-inflammatory subtypes in the kidney of T1DM. Therefore, regulation of CD4+ T cells and macrophages may be a potential target for T1DM and kidney complications.
Collapse
Affiliation(s)
- Chenhao Li
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Qingyuan Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Hao Jiang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
16
|
Martinez MM, Spiliopoulos L, Salami F, Agardh D, Toppari J, Lernmark Å, Kero J, Veijola R, Tossavainen P, Palmu S, Lundgren M, Borg H, Katsarou A, Larsson HE, Knip M, Maziarz M, Törn C. Heterogeneity of beta-cell function in subjects with multiple islet autoantibodies in the TEDDY family prevention study - TEFA. Clin Diabetes Endocrinol 2022; 7:23. [PMID: 34983671 PMCID: PMC8728995 DOI: 10.1186/s40842-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Individuals with multiple islet autoantibodies are at increased risk for clinical type 1 diabetes and may proceed gradually from stage to stage complicating the recruitment to secondary prevention studies. We evaluated multiple islet autoantibody positive subjects before randomisation for a clinical trial 1 month apart for beta-cell function, glucose metabolism and continuous glucose monitoring (CGM). We hypothesized that the number and type of islet autoantibodies in combination with different measures of glucose metabolism including fasting glucose, HbA1c, oral glucose tolerance test (OGTT), intra venous glucose tolerance test (IvGTT) and CGM allows for more precise staging of autoimmune type 1 diabetes than the number of islet autoantibodies alone. METHODS Subjects (n = 57) at 2-50 years of age, positive for two or more islet autoantibodies were assessed by fasting plasma insulin, glucose, HbA1c as well as First Phase Insulin Response (FPIR) in IvGTT, followed 1 month later by OGTT, and 1 week of CGM (n = 24). RESULTS Autoantibodies against GAD65 (GADA; n = 52), ZnT8 (ZnT8A; n = 40), IA-2 (IA-2A; n = 38) and insulin (IAA; n = 28) were present in 9 different combinations of 2-4 autoantibodies. Fasting glucose and HbA1c did not differ between the two visits. The estimate of the linear relationship between log2-transformed FPIR as the outcome and log2-transformed area under the OGTT glucose curve (AUC) as the predictor, adjusting for age and sex was - 1.88 (- 2.71, - 1.05) p = 3.49 × 10-5. The direction of the estimates for all glucose metabolism measures was positive except for FPIR, which was negative. FPIR was associated with higher blood glucose. Both the median and the spread of the CGM glucose data were significantly associated with higher glucose values based on OGTT, higher HbA1c, and lower FPIR. There was no association between glucose metabolism, autoantibody number and type except that there was an indication that the presence of at least one of ZnT8(Q/R/W) A was associated with a lower log2-transformed FPIR (- 0.80 (- 1.58, - 0.02), p = 0.046). CONCLUSIONS The sole use of two or more islet autoantibodies as inclusion criterion for Stage 1 diabetes in prevention trials is unsatisfactory. Staging type 1 diabetes needs to take the heterogeneity in beta-cell function and glucose metabolism into account. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02605148 , November 16, 2015.
Collapse
Affiliation(s)
- Maria Månsson Martinez
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden.
| | - Lampros Spiliopoulos
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Falastin Salami
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Jukka Kero
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Sauli Palmu
- Department of Pediatrics, Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University Hospital, Tampere, Finland
| | - Markus Lundgren
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Henrik Borg
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Anastasia Katsarou
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marlena Maziarz
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Jan Waldenströms gata 35, Box 503 32, SE-214 28, Malmö, Sweden
| |
Collapse
|
17
|
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: Can it be treated as an autoimmune disorder? Rev Endocr Metab Disord 2021; 22:859-876. [PMID: 33730229 DOI: 10.1007/s11154-021-09642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes Mellitus (T1DM) is characterized by progressive autoimmune-mediated destruction of the pancreatic beta-cells leading to insulin deficiency and hyperglycemia. It is associated with significant treatment burden and necessitates life-long insulin therapy. The role of immunotherapy in the prevention and management of T1DM is an evolving area of interest which has the potential to alter the natural history of this disease.In this review, we give insight into recent clinical trials related to the use of immunotherapeutic approaches for T1DM, such as proinflammatory cytokine inhibition, cell-depletion and cell-therapy approaches, autoantigen-specific treatments and stem cell therapies. We highlight the timing of intervention, aspects of therapy including adverse effects and the emergence of a novel lymphocyte crucial in T1DM autoimmunity. We also discuss the role of cardiac autoimmunity and its link to excess CVD risk in T1DM.We conclude that significant advances have been made in development of immunotherapeutic targets and agents for the treatment and prevention of T1DM. These immune-based therapies promise preservation of beta-cells and decreasing insulin dependency. In their current state, immunotherapeutic approaches cannot yet halt the progression from a preclinical state to overt T1DM nor can they replace standard insulin therapy in existing T1DM. It remains to be seen whether immunotherapy will ultimately play a key role in the prevention of progression to overt T1DM and whether it may find a place in our therapeutic armamentarium to improve clinical outcomes and quality of life in established T1DM.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolic Diseases, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Christopher M Tessier
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA.
| | - Christos S Mantzoros
- Endocrinology Section, VA Boston Healthcare System, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527, Athens, Goudi, Greece
| |
Collapse
|
18
|
Budd MA, Monajemi M, Colpitts SJ, Crome SQ, Verchere CB, Levings MK. Interactions between islets and regulatory immune cells in health and type 1 diabetes. Diabetologia 2021; 64:2378-2388. [PMID: 34550422 DOI: 10.1007/s00125-021-05565-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes results from defects in immune self-tolerance that lead to inflammatory infiltrate in pancreatic islets, beta cell dysfunction and T cell-mediated killing of beta cells. Although therapies that broadly inhibit immunity show promise to mitigate autoinflammatory damage caused by effector T cells, these are unlikely to permanently reset tolerance or promote regeneration of the already diminished pool of beta cells. An emerging concept is that certain populations of immune cells may have the capacity to both promote tolerance and support the restoration of beta cells by supporting proliferation, differentiation and/or regeneration. Here we will highlight three immune cell types-macrophages, regulatory T cells and innate lymphoid cells-for which there is evidence of dual roles of immune regulation and tissue regeneration. We explore how findings in this area from other fields might be extrapolated to type 1 diabetes and highlight recent discoveries in the context of type 1 diabetes. We also discuss technological advances that are supporting this area of research and contextualise new therapeutic avenues to consider for type 1 diabetes.
Collapse
Affiliation(s)
- Matthew A Budd
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mahdis Monajemi
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah J Colpitts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Leslie RD, Evans-Molina C, Freund-Brown J, Buzzetti R, Dabelea D, Gillespie KM, Goland R, Jones AG, Kacher M, Phillips LS, Rolandsson O, Wardian JL, Dunne JL. Adult-Onset Type 1 Diabetes: Current Understanding and Challenges. Diabetes Care 2021; 44:2449-2456. [PMID: 34670785 PMCID: PMC8546280 DOI: 10.2337/dc21-0770] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Recent epidemiological data have shown that more than half of all new cases of type 1 diabetes occur in adults. Key genetic, immune, and metabolic differences exist between adult- and childhood-onset type 1 diabetes, many of which are not well understood. A substantial risk of misclassification of diabetes type can result. Notably, some adults with type 1 diabetes may not require insulin at diagnosis, their clinical disease can masquerade as type 2 diabetes, and the consequent misclassification may result in inappropriate treatment. In response to this important issue, JDRF convened a workshop of international experts in November 2019. Here, we summarize the current understanding and unanswered questions in the field based on those discussions, highlighting epidemiology and immunogenetic and metabolic characteristics of adult-onset type 1 diabetes as well as disease-associated comorbidities and psychosocial challenges. In adult-onset, as compared with childhood-onset, type 1 diabetes, HLA-associated risk is lower, with more protective genotypes and lower genetic risk scores; multiple diabetes-associated autoantibodies are decreased, though GADA remains dominant. Before diagnosis, those with autoantibodies progress more slowly, and at diagnosis, serum C-peptide is higher in adults than children, with ketoacidosis being less frequent. Tools to distinguish types of diabetes are discussed, including body phenotype, clinical course, family history, autoantibodies, comorbidities, and C-peptide. By providing this perspective, we aim to improve the management of adults presenting with type 1 diabetes.
Collapse
Affiliation(s)
- R David Leslie
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, U.K.
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine and Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | | | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity & Diabetes Center, Colorado School of Public Health, and Departments of Epidemiology and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Robin Goland
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Angus G Jones
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | | | - Lawrence S Phillips
- Atlanta VA Medical Center and Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jana L Wardian
- College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
20
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Patel SK, Ma CS, Fourlanos S, Greenfield JR. Autoantibody-Negative Type 1 Diabetes: A Neglected Subtype. Trends Endocrinol Metab 2021; 32:295-305. [PMID: 33712367 DOI: 10.1016/j.tem.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Up to 15% of individuals with a clinical phenotype of type 1 diabetes (T1D) do not have evidence of seropositivity for pancreatic islet autoantibodies. On this basis, they are classified as nonimmune or idiopathic, and remain an understudied population, as they are excluded from T1D immunomodulatory trials. Our limited understanding of the disease aetiopathogenesis in autoantibody-negative T1D hinders our ability to improve diagnostic pathways and discover novel therapeutic agents; particularly as we progress towards an era of precision medicine. This review summarises the current understanding and challenges in studying autoantibody-negative T1D. We review the literature regarding T1D classification, and the role of autoimmunity and defects in the immunogenic pathway that may distinguish autoantibody-positive and -negative T1D.
Collapse
Affiliation(s)
- Shivani K Patel
- Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Diabetes and Endocrinology, St. Vincent's Hospital, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Cindy S Ma
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia; Human Immune Disorders, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Spiros Fourlanos
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jerry R Greenfield
- Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Diabetes and Endocrinology, St. Vincent's Hospital, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Linsley PS, Greenbaum CJ, Nepom GT. Uncovering Pathways to Personalized Therapies in Type 1 Diabetes. Diabetes 2021; 70:831-841. [PMID: 33741606 PMCID: PMC7980192 DOI: 10.2337/db20-1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022]
Abstract
The goal of personalized medicine is to match the right drugs to the right patients at the right time. Personalized medicine has been most successful in cases where there is a clear genetic linkage between a disease and a therapy. This is not the case with type 1 diabetes (T1D), a genetically complex immune-mediated disease of β-cell destruction. Researchers over decades have traced the natural history of disease sufficiently to use autoantibodies as predictive biomarkers for disease risk and to conduct successful clinical trials of disease-modifying therapy. Recent studies, however, have highlighted heterogeneity associated with progression, with nonuniform rate of insulin loss and distinct features of the peri-diagnostic period. Likewise, there is heterogeneity in immune profiles and outcomes in response to therapy. Unexpectedly, from these studies demonstrating perplexing complexity in progression and response to therapy, new biomarker-based principles are emerging for how to achieve personalized therapies for T1D. These include therapy timed to periods of disease activity, use of patient stratification biomarkers to align therapeutic target with disease endotype, pharmacodynamic biomarkers to achieve personalized dosing and appropriate combination therapies, and efficacy biomarkers for "treat-to-target" strategies. These principles provide a template for application of personalized medicine to complex diseases.
Collapse
Affiliation(s)
- Peter S Linsley
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA
| | - Carla J Greenbaum
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA
| | - Gerald T Nepom
- Benaroya Research Institute and Immune Tolerance Network, Seattle, WA
| |
Collapse
|
23
|
Wiedeman AE, Speake C, Long SA. The many faces of islet antigen-specific CD8 T cells: clues to clinical outcome in type 1 diabetes. Immunol Cell Biol 2021; 99:475-485. [PMID: 33483981 PMCID: PMC8248166 DOI: 10.1111/imcb.12437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
Immune monitoring enables a better understanding of disease processes and response to therapy, but has been challenging in the setting of chronic autoimmunity because of unknown etiology, variable and protracted kinetics of the disease process, heterogeneity across patients and the complexity of immune interactions. To begin to parse this complexity, we focus here on type 1 diabetes (T1D) and CD8 T cells as a cell type that has features that are associated with different stages of disease, rates of progression and response to therapy. Specifically, we discuss the current understanding of the role of autoreactive CD8 T cells in disease outcome, which implicates particular CD8 functional subsets, rather than unique antigens or total number of autoreactive T cells. Next, we discuss how autoreactive CD8 T‐cell features can be reflected in measures of global CD8 T cells, and then pull these concepts together by highlighting immune therapies recently shown to modulate both CD8 T cells and disease progression. We end by discussing outstanding questions about the role of specific subsets of autoreactive CD8 T cells in disease progression and how they may be optimally modulated to treat and prevent T1D.
Collapse
Affiliation(s)
- Alice E Wiedeman
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Cate Speake
- Interventional Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| | - Sarah Alice Long
- Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101, USA
| |
Collapse
|
24
|
Papachrisanthou MM, Fuller KM. Pediatric Screenings: Helpful or Hinderance? J Nurse Pract 2021. [DOI: 10.1016/j.nurpra.2020.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Tatsiopoulou P, Porfyri GN, Bonti E, Diakogiannis I. Priorities in the Interdisciplinary Approach of Specific Learning Disorders (SLD) in Children with Type I Diabetes Mellitus (T1DM). From Theory to Practice. Brain Sci 2020; 11:brainsci11010004. [PMID: 33374577 PMCID: PMC7822406 DOI: 10.3390/brainsci11010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A considerable endeavor had taken place in order to understand the associated challenges for children and adolescents with Specific Learning Disorder (SLD) and Type 1 Diabetes Mellitus (T1DM) but also in order to describe the necessary skills and approaches that the care givers have to develop to assist both children and parents. (1) Aim: The aim of this review is twofold. Firstly, to highlight the T1DM's potential impact on psychological well-being, on cognitive functioning and on school performance in children and adolescents who confront SLD. Secondly, to discuss the necessity of a multidiscipline approach of poor school performance in students with SLD and T1DM, presenting the serious contribution of care providers: (a) parents/carers in the family setting, (b) teachers and psychologists in the school setting and (c) health specialists (pediatricians, nutricians, nurses, child psychiatrists and psychologists) in the medical setting. (2) Methods: In this narrative literature review of 12 selected articles, each one studies a special aspect of approach, during the diagnosis and the treatment of individuals with T1DM and SLD. The review concerns the arising problems and difficulties in the adherence to diagnosis, the management of insulin, the mental and physical wellbeing, the school performance, the cognitive functioning and learning difficulties of patients. We tried to synthesize an interdisciplinary approach that involves collaboration between family, school and medical frame; facilitating children's and adolescents' difficulties management, as well as parent and teacher involvement during the intervention implementation. (3) Results: The main issues of concern were examined through the available literature, as different factors had to be re-examined in the previous studies, regarding the potential impact of T1DM in cognitive and psychological functioning, as well as the effects of the intervention/approach/treatment of children and adolescents with SLD and T1DM. (4) Conclusions: Although T1DM diagnosis and demanding treatment are a heavy burden for children and their families, T1DM may or may not be associated with a variety of academic and psychological outcomes. Despite the variability of the reviewed research design quality, it was clearly defined that the impact of T1DM is not uniform across educational and mental variables. Strengthening the children's physical, psychological and social wellbeing is an especially important factor, as it facilitates the insulin's management as well as the learning difficulties. This is possible by supporting the parental and teacher involvement in the intervention process. This review highlights the need to reduce the distance between theory/research and practice, in some of the proposed areas in this field of knowledge.
Collapse
|
26
|
Quattrin T, Haller MJ, Steck AK, Felner EI, Li Y, Xia Y, Leu JH, Zoka R, Hedrick JA, Rigby MR, Vercruysse F. Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes. N Engl J Med 2020; 383:2007-2017. [PMID: 33207093 DOI: 10.1056/nejmoa2006136] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Type 1 diabetes is an autoimmune disease characterized by progressive loss of pancreatic beta cells. Golimumab is a human monoclonal antibody specific for tumor necrosis factor α that has already been approved for the treatment of several autoimmune conditions in adults and children. Whether golimumab could preserve beta-cell function in youth with newly diagnosed overt (stage 3) type 1 diabetes is unknown. METHODS In this phase 2, multicenter, placebo-controlled, double-blind, parallel-group trial, we randomly assigned, in a 2:1 ratio, children and young adults (age range, 6 to 21 years) with newly diagnosed overt type 1 diabetes to receive subcutaneous golimumab or placebo for 52 weeks. The primary end point was endogenous insulin production, as assessed according to the area under the concentration-time curve for C-peptide level in response to a 4-hour mixed-meal tolerance test (4-hour C-peptide AUC) at week 52. Secondary and additional end points included insulin use, the glycated hemoglobin level, the number of hypoglycemic events, the ratio of fasting proinsulin to C-peptide over time, and response profile. RESULTS A total of 84 participants underwent randomization - 56 were assigned to the golimumab group and 28 to the placebo group. The mean (±SD) 4-hour C-peptide AUC at week 52 differed significantly between the golimumab group and the placebo group (0.64±0.42 pmol per milliliter vs. 0.43±0.39 pmol per milliliter, P<0.001). A treat-to-target approach led to good glycemic control in both groups, and there was no significant difference between the groups in glycated hemoglobin level. Insulin use was lower with golimumab than with placebo. A partial-remission response (defined as an insulin dose-adjusted glycated hemoglobin level score [calculated as the glycated hemoglobin level plus 4 times the insulin dose] of ≤9) was observed in 43% of participants in the golimumab group and in 7% of those in the placebo group (difference, 36 percentage points; 95% CI, 22 to 55). The mean number of hypoglycemic events did not differ between the trial groups. Hypoglycemic events that were recorded as adverse events at the discretion of investigators were reported in 13 participants (23%) in the golimumab group and in 2 (7%) of those in the placebo group. Antibodies to golimumab were detected in 30 participants who received the drug; 29 had antibody titers lower than 1:1000, of whom 12 had positive results for neutralizing antibodies. CONCLUSIONS Among children and young adults with newly diagnosed overt type 1 diabetes, golimumab resulted in better endogenous insulin production and less exogenous insulin use than placebo. (Funded by Janssen Research and Development; T1GER ClinicalTrials.gov number, NCT02846545.).
Collapse
Affiliation(s)
- Teresa Quattrin
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Michael J Haller
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Andrea K Steck
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Eric I Felner
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Yinglei Li
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Yichuan Xia
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Jocelyn H Leu
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Ramineh Zoka
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Joseph A Hedrick
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Mark R Rigby
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| | - Frank Vercruysse
- From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.)
| |
Collapse
|
27
|
Lord S, Greenbaum CJ. Insulin is necessary but not sufficient: changing the therapeutic paradigm in type 1 diabetes. F1000Res 2020; 9. [PMID: 32789003 PMCID: PMC7400689 DOI: 10.12688/f1000research.21801.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the clear evidence that type 1 diabetes (T1D) begins well before hyperglycemia is evident, there are no clinically available disease-modifying therapies for early-stage disease. However, following the exciting results of the Teplizumab Prevention Study, the first study to demonstrate that overt T1D can be delayed with immunotherapy, there is renewed optimism that in the future, T1D will be treated before hyperglycemia develops. A different treatment paradigm is needed, as a majority of people with T1D do not meet the glycemic targets that are associated with a lower risk of T1D complications and therefore remain vulnerable to complications and shortened life expectancy. The following review will outline the history and current status of immunotherapy for T1D and highlight some challenges and ideas for the future. Although such efforts have been worldwide, we will focus particularly on the activities of Diabetes TrialNet, a National Institutes of Health consortium launched in 2004.
Collapse
Affiliation(s)
- Sandra Lord
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| |
Collapse
|
28
|
Wood Heickman LK, DeBoer MD, Fasano A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes Metab Res Rev 2020; 36:e3309. [PMID: 32162764 PMCID: PMC7340576 DOI: 10.1002/dmrr.3309] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
The incidence of type 1 diabetes (T1D) is increasing annually, in addition to other childhood-onset autoimmune diseases. This review is inspired by recent strides in research defining the pathophysiology of autoimmunity in celiac disease, a disease that has significant genetic overlap with T1D. Population genetic studies have demonstrated an increased proportion of newly diagnosed young children with T1D also have a higher genetic risk of celiac disease, suggesting that shared environmental risk factors are driving the incidence of both diseases. The small intestine barrier forms a tightly regulated interface of the immune system with the outside world and largely controls the mucosal immune response to non-self-antigens, dictating the balance between tolerance and immune response. Zonulin is the only known physiological modulator of the intercellular tight junctions, important in antigen trafficking, and therefore, is a key player in regulation of the mucosal immune response. While usually tightly controlled, when the zonulin pathway is dysregulated by changes in microbiome composition and function, antigen trafficking control is lost, leading to loss of mucosal tolerance in genetically susceptible individuals. The tenant of this hypothesis is that loss of tolerance would not occur if the zonulin-dependent intestinal barrier function is restored, thereby preventing the influence of environmental triggers in individuals genetically susceptible to autoimmunity. This review outlines the current research and a structured hypothesis on how a dysregulated small intestinal epithelial barrier, a "leaky gut," may be important in the pathogenesis of autoimmunity in certain individuals at risk of both T1D and celiac disease.
Collapse
Affiliation(s)
- Lauren K Wood Heickman
- Department of Pediatrics, Division of Endocrinology, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D DeBoer
- Department of Pediatrics, Division of Endocrinology, University of Virginia, Charlottesville, Virginia, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School Boston, Boston, Massachusetts, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
29
|
Leete P, Oram RA, McDonald TJ, Shields BM, Ziller C, Hattersley AT, Richardson SJ, Morgan NG. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020; 63:1258-1267. [PMID: 32172310 PMCID: PMC7228905 DOI: 10.1007/s00125-020-05115-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. METHODS Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. RESULTS Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). CONCLUSIONS/INTERPRETATION Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Clemens Ziller
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
30
|
Pan W, Zheng X, Chen G, Su L, Luo S, Wang W, Ye S, Weng J, Min Y. Nanotechnology's application in Type 1 diabetes. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1645. [PMID: 32558337 DOI: 10.1002/wnan.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the immune system attacking islet cells. T1D, with a long prediabetes period, and the incidence of T1D increases with age during childhood and peaks at 10-14 years. And once it gets overt, it requires lifelong insulin replace treatment. Therefore, the diagnosis of early-stage T1D and effective treatments are important for the management of T1D patients. The imaging methods, such as magnetic resonance imaging (MRI) and so on, were applied in diagnosis of the early stage T1D and its development tracking. The addition of nanomaterials, especially in MRI, can improve the quality of T1D imaging for the diagnosis of T1D at early stage and cause less harm to human body. Meantime, among various treatment options, islet transplantation and immunotherapy are promising, effective, and less independent on insulin. The addition of nanotechnology can effectively reduce the attack of the immune system on drugs and cells, making the therapeutic drug more targeted in the body and prolonging the action time between drugs and cells, thus its addition makes these therapy safer and more efficient. In this review, we attempt to summarize the recent advances in the development of nanotechnology advances of T1D including using nanomaterials for the diagnosis and immunological imaging of T1D, protecting the transplanted islet cells from immune system attack, and delivering relevant molecules to targeted immunocytes. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Wen Pan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, University of Science and Technology of China, Hefei, China.,CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China.,Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Bogdani M, Speake C, Dufort MJ, Johnson PY, Larmore MJ, Day AJ, Wight TN, Lernmark Å, Greenbaum CJ. Hyaluronan deposition in islets may precede and direct the location of islet immune-cell infiltrates. Diabetologia 2020; 63:549-560. [PMID: 31907557 PMCID: PMC7002022 DOI: 10.1007/s00125-019-05066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Substantial deposition of the extracellular matrix component hyaluronan (HA) is characteristic of insulitis in overt type 1 diabetes. We investigated whether HA accumulation is detectable in islets early in disease pathogenesis and how this affects the development of insulitis and beta cell mass. METHODS Pancreas tissue from 15 non-diabetic organ donors who were positive for islet autoantibodies (aAbs) and from 14 similarly aged aAb- control donors were examined for the amount of islet HA staining and the presence of insulitis. The kinetics of HA deposition in islets, along with the onset and progression of insulitis and changes in beta cell mass, were investigated in BioBreeding DRLyp/Lyp rats (a model of spontaneous autoimmune diabetes) from 40 days of age until diabetes onset. RESULTS Abundant islet HA deposits were observed in pancreas tissues from n = 3 single- and n = 4 double-aAb+ donors (aAb+HAhigh). In these seven tissues, the HA-stained areas in islets measured 1000 ± 240 μm2 (mean ± SEM) and were fourfold larger than those from aAb- control tissues. The aAb+HAhigh tissues also had a greater prevalence of islets that were highly rich in HA (21% of the islets in these tissues contained the largest HA-stained areas [>2000 μm2] vs less than 1% in tissues from aAb- control donors). The amount of HA staining in islets was associated with the number of aAbs (i.e. single- or double-aAb positivity) but not with HLA genotype or changes in beta cell mass. Among the seven aAb+HAhigh tissues, three from single- and one from double-aAb+ donors did not show any islet immune-cell infiltrates, indicating that HA accumulates in aAb+ donors independently of insulitis. The three aAb+HAhigh tissues that exhibited insulitis had the largest HA-stained areas and, in these tissues, islet-infiltrating immune cells co-localised with the most prominent HA deposits (i.e. with HA-stained areas >2000 μm2). Accumulation of HA in islets was evident prior to insulitis in 7-8-week-old presymptomatic DRLyp/Lyp rats, in which the islet HA-stained area measured 2370 ± 170 μm2 (mean ± SEM), which was threefold larger than in 6-week-old rats. This initial islet HA deposition was not concurrent with beta cell loss. Insulitis was first detected in 9-10-week-old rats, in which the HA-stained areas were 4980 ± 500 μm2. At this age, the rats also exhibited a 44% reduction in beta cell mass. Further enlargement of the HA-positive areas (mean ± SEM: 7220 ± 880 μm2) was associated with invasive insulitis. HA deposits remained abundant in the islets of rats with destructive insulitis, which had lost 85% of their beta cells. CONCLUSIONS/INTERPRETATION This study indicates that HA deposition in islets occurs early in type 1 diabetes and prior to insulitis, and points to a potential role of HA in triggering islet immune-cell infiltration and the promotion of insulitis.
Collapse
Affiliation(s)
- Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA, 98101, USA.
| | - Cate Speake
- Diabetes Research Program and Clinical Research Center, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mathew J Dufort
- Bioinformatics Department, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Pamela Y Johnson
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA, 98101, USA
| | - Megan J Larmore
- Histology and Imaging Core, University of Washington, Seattle, WA, USA
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA, 98101, USA
| | - Åke Lernmark
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - Carla J Greenbaum
- Diabetes Research Program and Clinical Research Center, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
32
|
Affiliation(s)
- Maria J Redondo
- Section of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
33
|
Speake C, Skinner SO, Berel D, Whalen E, Dufort MJ, Young WC, Odegard JM, Pesenacker AM, Gorus FK, James EA, Levings MK, Linsley PS, Akirav EM, Pugliese A, Hessner MJ, Nepom GT, Gottardo R, Long SA. A composite immune signature parallels disease progression across T1D subjects. JCI Insight 2019; 4:126917. [PMID: 31671072 PMCID: PMC6962023 DOI: 10.1172/jci.insight.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting β cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Samuel O. Skinner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Dror Berel
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Whalen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Matthew J. Dufort
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - William Chad Young
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M. Odegard
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anne M. Pesenacker
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Frans K. Gorus
- Diabetes Research Center, Medical School and University Hospital (UZ Brussel), Brussels Free University Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Megan K. Levings
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Eitan M. Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York, USA
- Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Immune Tolerance Network, Bethesda, Maryland, USA
| | - Raphael Gottardo
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
34
|
Sims EK, Geyer S, Johnson SB, Libman I, Jacobsen LM, Boulware D, Rafkin LE, Matheson D, Atkinson MA, Rodriguez H, Spall M, Elding Larsson H, Wherrett DK, Greenbaum CJ, Krischer J, DiMeglio LA. Who Is Enrolling? The Path to Monitoring in Type 1 Diabetes TrialNet's Pathway to Prevention. Diabetes Care 2019; 42:2228-2236. [PMID: 31558546 PMCID: PMC6868467 DOI: 10.2337/dc19-0593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/29/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To better understand potential facilitators of individual engagement in type 1 diabetes natural history and prevention studies through analysis of enrollment data in the TrialNet Pathway to Prevention (PTP) study. RESEARCH DESIGN AND METHODS We used multivariable logistic regression models to examine continued engagement of eligible participants at two time points: 1) the return visit after screening to confirm an initial autoantibody-positive (Ab+) test result and 2) the initial oral glucose tolerance test (OGTT) for enrollment into the monitoring protocol. RESULTS Of 5,387 subjects who screened positive for a single autoantibody (Ab), 4,204 (78%) returned for confirmatory Ab testing. Younger age was associated with increased odds of returning for Ab confirmation (age <12 years vs. >18 years: odds ratio [OR] 2.12, P < 0.0001). Racial and ethnic minorities were less likely to return for confirmation, particularly nonwhite non-Hispanic (OR 0.50, P < 0.0001) and Hispanic (OR 0.69, P = 0.0001) relative to non-Hispanic white subjects. Of 8,234 subjects, 5,442 (66%) were identified as eligible to be enrolled in PTP OGTT monitoring. Here, younger age and identification as multiple Ab+ were associated with increased odds of returning for OGTT monitoring (age <12 years vs. >18 years: OR 1.43, P < 0.0001; multiple Ab+: OR 1.36, P < 0.0001). Parents were less likely to enroll into monitoring than other relatives (OR 0.78, P = 0.004). Site-specific factors, including site volume and U.S. site versus international site, were also associated with differences in rates of return for Ab+ confirmation and enrollment into monitoring. CONCLUSIONS These data confirm clear differences between successfully enrolled populations and those lost to follow-up, which can serve to identify strategies to increase ongoing participation.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL
| | | | - Ingrid Libman
- Division of Endocrinology, Diabetes and Metabolism, University of Pittsburgh and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Laura M Jacobsen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - David Boulware
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Lisa E Rafkin
- University of Miami Miller School of Medicine Diabetes Research Institute, Miami, FL
| | - Della Matheson
- University of Miami Miller School of Medicine Diabetes Research Institute, Miami, FL
| | - Mark A Atkinson
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| | - Henry Rodriguez
- University of Miami Miller School of Medicine Diabetes Research Institute, Miami, FL
| | - Maria Spall
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Jeffrey Krischer
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | |
Collapse
|
35
|
Korsgren O, Skyler JS, Skog O, Sundberg F, Forsander G, Ludvigsson J. Imagining a better future for all people with type 1 diabetes mellitus. Nat Rev Endocrinol 2019; 15:623-624. [PMID: 31471596 DOI: 10.1038/s41574-019-0257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olle Korsgren
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
- University of Gothenburg, Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Gothenburg, Sweden.
| | - Jay S Skyler
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Oskar Skog
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Frida Sundberg
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Gun Forsander
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children´s Hospital, Region Östergötland, Linköping, Sweden
| |
Collapse
|
36
|
Cabello-Olmo M, Araña M, Radichev I, Smith P, Huarte E, Barajas M. New Insights into Immunotherapy Strategies for Treating Autoimmune Diabetes. Int J Mol Sci 2019; 20:ijms20194789. [PMID: 31561568 PMCID: PMC6801436 DOI: 10.3390/ijms20194789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune illness that affects millions of patients worldwide. The main characteristic of this disease is the destruction of pancreatic insulin-producing beta cells that occurs due to the aberrant activation of different immune effector cells. Currently, T1D is treated by lifelong administration of novel versions of insulin that have been developed recently; however, new approaches that could address the underlying mechanisms responsible for beta cell destruction have been extensively investigated. The strategies based on immunotherapies have recently been incorporated into a panel of existing treatments for T1D, in order to block T-cell responses against beta cell antigens that are very common during the onset and development of T1D. However, a complete preservation of beta cell mass as well as insulin independency is still elusive. As a result, there is no existing T1D targeted immunotherapy able to replace standard insulin administration. Presently, a number of novel therapy strategies are pursuing the goals of beta cell protection and normoglycemia. In the present review we explore the current state of immunotherapy in T1D by highlighting the most important studies in this field, and envision novel strategies that could be used to treat T1D in the future.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain.
| | - Miriam Araña
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain.
| | - Ilian Radichev
- Diabetes research group at Sanford Research, Sioux Falls, SD 57104, USA.
| | - Paul Smith
- Incyte Corporation, Wilmington, DE 19803, USA.
| | | | - Miguel Barajas
- Biochemistry Area, Health Science Department, Faculty of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
37
|
Abstract
The novel understanding that the presence of multiple islet autoantibodies, indicating islet autoimmunity, inevitably leads to type 1 diabetes mellitus (T1DM) has necessitated the development of a new staging classification system for the condition. Coupled with an improved understanding of the disease course, the realization that T1DM appears to be more heterogeneous than previously thought has led to unique opportunities to develop more targeted therapies that may be applied even before the onset of dysglycemia or symptoms. To date, several therapies have been trialed to delay or halt disease progression in both presymptomatic and clinical T1DM, each demonstrating varying degrees of effectiveness, toxicity, and utility. Key research supports the eventual implementation of immunotherapy in autoimmune diabetes, potentially calling for a paradigm shift among care providers. It will likely be necessary to develop new approaches to trial design and to address potential barriers to progress before an effective treatment for the disease may be achieved.
Collapse
|
38
|
Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, Gitelman SE, Gottlieb PA, Krischer JP, Linsley PS, Marks JB, Moore W, Moran A, Rodriguez H, Russell WE, Schatz D, Skyler JS, Tsalikian E, Wherrett DK, Ziegler AG, Greenbaum CJ. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N Engl J Med 2019; 381:603-613. [PMID: 31180194 PMCID: PMC6776880 DOI: 10.1056/nejmoa1902226] [Citation(s) in RCA: 586] [Impact Index Per Article: 117.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 1 diabetes is a chronic autoimmune disease that leads to destruction of insulin-producing beta cells and dependence on exogenous insulin for survival. Some interventions have delayed the loss of insulin production in patients with type 1 diabetes, but interventions that might affect clinical progression before diagnosis are needed. METHODS We conducted a phase 2, randomized, placebo-controlled, double-blind trial of teplizumab (an Fc receptor-nonbinding anti-CD3 monoclonal antibody) involving relatives of patients with type 1 diabetes who did not have diabetes but were at high risk for development of clinical disease. Patients were randomly assigned to a single 14-day course of teplizumab or placebo, and follow-up for progression to clinical type 1 diabetes was performed with the use of oral glucose-tolerance tests at 6-month intervals. RESULTS A total of 76 participants (55 [72%] of whom were ≤18 years of age) underwent randomization - 44 to the teplizumab group and 32 to the placebo group. The median time to the diagnosis of type 1 diabetes was 48.4 months in the teplizumab group and 24.4 months in the placebo group; the disease was diagnosed in 19 (43%) of the participants who received teplizumab and in 23 (72%) of those who received placebo. The hazard ratio for the diagnosis of type 1 diabetes (teplizumab vs. placebo) was 0.41 (95% confidence interval, 0.22 to 0.78; P = 0.006 by adjusted Cox proportional-hazards model). The annualized rates of diagnosis of diabetes were 14.9% per year in the teplizumab group and 35.9% per year in the placebo group. There were expected adverse events of rash and transient lymphopenia. KLRG1+TIGIT+CD8+ T cells were more common in the teplizumab group than in the placebo group. Among the participants who were HLA-DR3-negative, HLA-DR4-positive, or anti-zinc transporter 8 antibody-negative, fewer participants in the teplizumab group than in the placebo group had diabetes diagnosed. CONCLUSIONS Teplizumab delayed progression to clinical type 1 diabetes in high-risk participants. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT01030861.).
Collapse
Affiliation(s)
- Kevan C Herold
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Brian N Bundy
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - S Alice Long
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jeffrey A Bluestone
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Linda A DiMeglio
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Matthew J Dufort
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Stephen E Gitelman
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Peter A Gottlieb
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jeffrey P Krischer
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Peter S Linsley
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jennifer B Marks
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Wayne Moore
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Antoinette Moran
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Henry Rodriguez
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - William E Russell
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Desmond Schatz
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Jay S Skyler
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Eva Tsalikian
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Diane K Wherrett
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Anette-Gabriele Ziegler
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| | - Carla J Greenbaum
- From the Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT (K.C.H.); the Departments of Epidemiology and Pediatrics, University of South Florida, Tampa (B.N.B., J.P.K., H.R.), the Department of Medicine, University of Miami, Miami (J.B.M., J.S.S.), and the Department of Pediatrics, University of Florida, Gainesville (D.S.) - all in Florida; Benaroya Research Institute, Seattle (S.A.L., M.J.D., P.S.L., C.J.G.); the Diabetes Center, University of California at San Francisco, San Francisco (J.A.B., S.E.G.); the Department of Pediatrics, Indiana University, Indianapolis (L.A.D.); the Barbara Davis Diabetes Center, University of Colorado, Anschultz (P.A.G.); Children's Mercy Hospital, Kansas City, MO (W.M.); the Department of Pediatrics, University of Minnesota, Minneapolis (A.M.); the Department of Pediatrics and Cell and Developmental Biology, Vanderbilt University, Nashville (W.E.R.); the Department of Pediatrics, University of Iowa, Iowa City (E.T.); the Hospital for Sick Children, University of Toronto, Toronto (D.K.W.); and Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany (A.-G.Z.)
| |
Collapse
|
39
|
Vallianou N, Liu J, Dalamaga M. Could hyperglycemia-induced cardiac autoimmunity be hidden behind cardiovascular disease in type 1 diabetes mellitus? Metabol Open 2019; 3:100013. [PMID: 32812933 PMCID: PMC7424818 DOI: 10.1016/j.metop.2019.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Natalia Vallianou
- Department of Endocrinology, Evangelismos General Hospital of Athens, 45-47 Ypsilantou Street, 10676, Athens, Greece
| | - Junli Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527, Athens, Greece
| |
Collapse
|
40
|
|
41
|
Linsley PS, Greenbaum CJ, Speake C, Long SA, Dufort MJ. B lymphocyte alterations accompany abatacept resistance in new-onset type 1 diabetes. JCI Insight 2019; 4:126136. [PMID: 30830871 PMCID: PMC6478438 DOI: 10.1172/jci.insight.126136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Costimulatory interactions control T cell activation at sites of activated antigen-presenting cells, including B cells. Blockade of the CD28/CD80/CD86 costimulatory axis with CTLA4Ig (abatacept) is widely used to treat certain autoimmune diseases. While transiently effective in subjects with new-onset type 1 diabetes (T1D), abatacept did not induce long-lasting immune tolerance. To elucidate mechanisms limiting immune tolerance in T1D, we performed unbiased analysis of whole blood transcriptomes and targeted measurements of cell subset levels in subjects from a clinical trial of abatacept in new-onset T1D. We showed that individual subjects displayed age-related immune phenotypes ("immunotypes") at baseline, characterized by elevated levels of B cells or neutrophils, that accompanied rapid or slow progression, respectively, in both abatacept- and placebo-treated groups. A more pronounced immunotype was exhibited by a subset of subjects showing poor response (resistance) to abatacept. This resistance immunotype was characterized by a transient increase in activated B cells (one of the cell types that binds abatacept), reprogrammed costimulatory ligand gene expression, and reduced inhibition of anti-insulin antibodies. Our findings identify immunotypes in T1D subjects that are linked to the rate of disease progression, both in placebo- and abatacept-treated subjects. Furthermore, our results suggest therapeutic approaches to restore immune tolerance in T1D.
Collapse
Affiliation(s)
| | | | | | - S. Alice Long
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | |
Collapse
|
42
|
Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol 2019; 7:52-64. [PMID: 30528099 PMCID: PMC7322790 DOI: 10.1016/s2213-8587(18)30112-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
With the conceptual advance about four decades ago that type 1 diabetes represents an autoimmune disease, hope arose that immune-based therapies would soon emerge to prevent and reverse the disorder. However, despite dozens of clinical trials seeking to achieve these goals, the promise remains unfulfilled, at least in a pragmatic form. With the benefit of hindsight, several important reasons are likely to account for this disappointing outcome, including failure to appreciate disease heterogeneity, inappropriate use of rodent models of disease, inadequacies in addressing the immunological and metabolic contributions to the disease, suboptimal trial designs, and lack of a clear understanding of the pathogenesis of type 1 diabetes. In this Series paper, we convey how recent knowledge gains in these areas, combined with efforts related to disease staging and emerging mechanistic data from clinical trials, provide cautious optimism that immune-based approaches to prevent the loss of β cells in type 1 diabetes will emerge into clinical practice.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA; Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Amanda Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | | | - Mark Peakman
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK; King's Health Partners Institute of Diabetes, Obesity and Endocrinology, London, UK
| |
Collapse
|
43
|
Wentworth JM, Bediaga NG, Giles LC, Ehlers M, Gitelman SE, Geyer S, Evans-Molina C, Harrison LC. Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables. Diabetologia 2019; 62:33-40. [PMID: 30167735 PMCID: PMC6518395 DOI: 10.1007/s00125-018-4722-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Beta cell function in type 1 diabetes is commonly assessed as the average plasma C-peptide concentration over 2 h following a mixed-meal test (CPAVE). Monitoring of disease progression and response to disease-modifying therapy would benefit from a simpler, more convenient and less costly measure. Therefore, we determined whether CPAVE could be reliably estimated from routine clinical variables. METHODS Clinical and fasting biochemical data from eight randomised therapy trials involving participants with recently diagnosed type 1 diabetes were used to develop and validate linear models to estimate CPAVE and to test their accuracy in estimating loss of beta cell function and response to immune therapy. RESULTS A model based on disease duration, BMI, insulin dose, HbA1c, fasting plasma C-peptide and fasting plasma glucose most accurately estimated loss of beta cell function (area under the receiver operating characteristic curve [AUROC] 0.89 [95% CI 0.87, 0.92]) and was superior to the commonly used insulin-dose-adjusted HbA1c (IDAA1c) measure (AUROC 0.72 [95% CI 0.68, 0.76]). Model-estimated CPAVE (CPEST) reliably identified treatment effects in randomised trials. CPEST, compared with CPAVE, required only a modest (up to 17%) increase in sample size for equivalent statistical power. CONCLUSIONS/INTERPRETATION CPEST, approximated from six variables at a single time point, accurately identifies loss of beta cell function in type 1 diabetes and is comparable to CPAVE for identifying treatment effects. CPEST could serve as a convenient and economical measure of beta cell function in the clinic and as a primary outcome measure in trials of disease-modifying therapy in type 1 diabetes.
Collapse
Affiliation(s)
- John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.
| | - Naiara G Bediaga
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lynne C Giles
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Mario Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, CA, USA
- Eli Lilly and Company, San Diego, CA, USA
| | | | | | | | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
44
|
Fischer KI, Fischer FH, Barthel D, Otto C, Thyen U, Klein M, Walter O, Ravens-Sieberer U, Rose M, Nolte S. Trajectories of Health-Related Quality of Life and HbA1c Values of Children and Adolescents With Diabetes Mellitus Type 1 Over 6 Months: A Longitudinal Observational Study. Front Pediatr 2019; 7:566. [PMID: 32039122 PMCID: PMC6986264 DOI: 10.3389/fped.2019.00566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/27/2019] [Indexed: 11/17/2022] Open
Abstract
Introduction: To achieve optimized blood glucose concentrations (assessed by HbA1c) and high health-related quality of life (HRQL), children and adolescents with diabetes mellitus type 1 (T1DM) must follow strict disease management strategies. This study aims to investigate HRQL of children and adolescents with T1DM and its association with HbA1c values over the course of 6 months. Methods: Patients aged 7-17 years (n = 203) with T1DM provided HRQL data on a monthly basis. HRQL was measured using the Kids-CAT, a computer-adaptive test (CAT) comprising five generic HRQL domains. HbA1c concentrations were assessed at baseline, at 3 and 6 months. We explored the trajectory of HRQL at the domain level using linear mixed effects models. Further, we investigated the association between HRQL and HbA1c concentrations over time using path analysis models. Results: Children and adolescents with T1DM reported high scores across all HRQL domains over time. However, those with an HbA1c concentrations of >9.0% reported significantly lower scores in physical well-being and parent relations compared with those with an HbA1c concentration of <7.5%. Path analysis models revealed a minimal temporal relationship between HbA1c and HRQL, with a small negative impact of HbA1c on physical well-being, psychological well-being and parent relations. Conclusion: Although observed HRQL of young patients with T1DM was comparable to age-related German-speaking reference population over the course of 6 months, those with an HbA1c concentration >9.0% reported lower scores in selected HRQL domains. Thus, special attention should be drawn to HRQL of children and adolescents with higher HbA1c concentrations. The minimal relationship between HbA1c and HRQL indicates that the two therapy goals, i.e., achievement and maintenance of glycemic targets and high HRQL, should be considered and evaluated independently in clinical routine. Trial Registration: DRKS00006326 (German Clinical Trial Register), date of registration: August 1st, 2014.
Collapse
Affiliation(s)
- Kathrin I Fischer
- Department of Psychosomatic Medicine, Center of Internal Medicine and Dermatology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix H Fischer
- Department of Psychosomatic Medicine, Center of Internal Medicine and Dermatology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dana Barthel
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Otto
- Research Unit Child Public Health, Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Thyen
- Department of Pediatric and Adolescent Medicine, Universität zu Lübeck, Lübeck, Germany
| | - Marcus Klein
- Department of General Pediatrics, Christian-Albrechts-Universität, Kiel, Germany
| | - Otto Walter
- Department of Psychosomatic Medicine, Center of Internal Medicine and Dermatology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Ravens-Sieberer
- Research Unit Child Public Health, Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Rose
- Department of Psychosomatic Medicine, Center of Internal Medicine and Dermatology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sandra Nolte
- Department of Psychosomatic Medicine, Center of Internal Medicine and Dermatology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Public Health Innovation, Population Health Strategic Research Centre, School of Health and Social Development, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
45
|
Coppieters K, von Herrath M. The Development of Immunotherapy Strategies for the Treatment of Type 1 Diabetes. Front Med (Lausanne) 2018; 5:283. [PMID: 30356664 PMCID: PMC6189286 DOI: 10.3389/fmed.2018.00283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023] Open
Abstract
Optimized insulin therapies, increased use of continuous glucose monitoring/insulin pumps and most importantly the arrival of reliable closed loop systems will undeniably lead to a reduction in the burden of complications that arise from type 1 diabetes. However, insulin therapy will only ever treat the symptoms of the disease and will not alter the underlying pathology. The aim of immunotherapy treatment is to modulate the immune system, a strategy that has been successful in autoimmune conditions such as multiple sclerosis, rheumatoid arthritis and lupus. However, the success rate of immunotherapy treatment in type 1 diabetes has been low. There are several distinct stages of T1D development. In this review, we summarize the most important immunotherapeutic approaches tested thus far and focus on the characteristic features and unmet need within the different stages of the disease.
Collapse
|
46
|
Leete P, Mallone R, Richardson SJ, Sosenko JM, Redondo MJ, Evans-Molina C. The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms. Curr Diab Rep 2018; 18:115. [PMID: 30259209 PMCID: PMC10043737 DOI: 10.1007/s11892-018-1083-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW To explore the impact of age on type 1 diabetes (T1D) pathogenesis. RECENT FINDINGS Children progress more rapidly from autoantibody positivity to T1D and have lower C-peptide levels compared to adults. In histological analysis of post-mortem pancreata, younger age of diagnosis is associated with reduced numbers of insulin containing islets and a hyper-immune CD20hi infiltrate. Moreover compared to adults, children exhibit decreased immune regulatory function and increased engagement and trafficking of autoreactive CD8+ T cells, and age-related differences in β cell vulnerability may also contribute to the more aggressive immune phenotype observed in children. To account for some of these differences, HLA and non-HLA genetic loci that influence multiple disease characteristics, including age of onset, are being increasingly characterized. The exception of T1D as an autoimmune disease more prevalent in children than adults results from a combination of immune, metabolic, and genetic factors. Age-related differences in T1D pathology have important implications for better tailoring of immunotherapies.
Collapse
Affiliation(s)
- Pia Leete
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Roberto Mallone
- INSERM U1016, CNRS UMR8104, Cochin Institute, Sorbonne Paris Cité; Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, INSERM and Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Jay M Sosenko
- Department of Medicine and the Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine and the Texas Children's Hospital, Houston, TX, USA
| | - Carmella Evans-Molina
- Departments of Medicine and Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine and the Roudebush VA Medical Center, 635 Barnhill Drive, MS 2031A, Indianapolis, IN, 46202, USA.
| |
Collapse
|
47
|
Chiang JL, Maahs DM, Garvey KC, Hood KK, Laffel LM, Weinzimer SA, Wolfsdorf JI, Schatz D. Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association. Diabetes Care 2018; 41:2026-2044. [PMID: 30093549 PMCID: PMC6105320 DOI: 10.2337/dci18-0023] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jane L Chiang
- McKinsey & Company and Diasome Pharmaceuticals, Inc., Palo Alto, CA
| | - David M Maahs
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Katharine C Garvey
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Korey K Hood
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Lori M Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Stuart A Weinzimer
- Pediatric Endocrinology & Diabetes, Yale School of Medicine, New Haven, CT
| | - Joseph I Wolfsdorf
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Desmond Schatz
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
48
|
Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes 2018; 19:346-353. [PMID: 29094512 PMCID: PMC5918237 DOI: 10.1111/pedi.12597] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) results from immune-mediated loss of pancreatic beta cells leading to insulin deficiency. It is the most common form of diabetes in children, and its incidence is on the rise. This article reviews the current knowledge on the genetics of T1D. In particular, we discuss the influence of HLA and non-HLA genes on T1D risk and disease progression through the preclinical stages of the disease, and the development of genetic scores that can be applied to disease prediction. Racial/ethnic differences, challenges and future directions in the genetics of T1D are also discussed.
Collapse
Affiliation(s)
- Maria J. Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Andrea K. Steck
- University of Colorado School of Medicine, Barbara Davis Center for Childhood Diabetes, Aurora, CO, 80045
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
49
|
Chon S, Rhee SY, Ahn KJ, Baik SH, Park Y, Nam MS, Lee KW, Yoo SJ, Koh G, Lee DH, Kim YS, Woo JT. Long-term effects on glycaemic control and β-cell preservation of early intensive treatment in patients with newly diagnosed type 2 diabetes: A multicentre randomized trial. Diabetes Obes Metab 2018; 20:1121-1130. [PMID: 29272062 DOI: 10.1111/dom.13196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
AIM To determine the effects of early intensive glycaemic control with intensive insulin treatment (IIT) or initial combined oral antidiabetic drug (COAD) therapy on long-term glycaemic control and the preservation of β-cell function in people with type 2 diabetes mellitus (T2DM). METHODS Newly diagnosed drug-naïve patients with T2DM from 8 outpatient diabetes centres were randomized to receive either IIT (n = 50; glargine/glulisine) or COAD (n = 47; glimepiride/metformin) as intensive treatment until the termination criteria to ensure euglycaemia were met. After intensive treatment, the patients completed a follow-up period with either lifestyle modification (LSM) alone or rescue therapy to maintain target glycated haemoglobin levels of <7% (53 mmol/mol) up to week 104. The primary outcomes were analysed after excluding participants who were anti-glutamic acid decarboxylase autoantibody-positive. RESULTS Both intensive treatment methods were effective for short-term glycaemic control, but improvements in the disposition index (DI) were significantly greater in the IIT group than in the COAD group (P = .021). During the follow-up period after intensive treatment, the two groups significantly differed in rescue method regarding the maintenance of comparable levels of glycaemic control (P = .010) and more participants who received IIT exhibited well-controlled glycaemia with LSM alone. Additionally, the IIT group maintained a higher DI than the COAD group during the follow-up period. Cox regression analysis showed that the IIT method was associated with a 52.5% lower risk of failing to maintain drug-free glycaemic remission compared with the COAD method (P = .015). CONCLUSIONS The findings indicate that outpatient clinic-based IIT to ensure euglycaemia in newly diagnosed patients with T2DM might be an effective initial therapeutic option for improvements in β-cell function and glycaemic control over the long term, without serious adverse events.
Collapse
Affiliation(s)
- Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyu Jeung Ahn
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yongsoo Park
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, Korea
| | - Moon Suk Nam
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Soon Jib Yoo
- Department of Endocrinology and Metabolism, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon, Korea
| | - Gwanpyo Koh
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Young Seol Kim
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ. Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care 2018; 41:653-661. [PMID: 29559451 PMCID: PMC5860837 DOI: 10.2337/dc17-0806] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
Abstract
What will it take to bring disease-modifying therapy to clinical use in type 1 diabetes? Coordinated efforts of investigators involved in discovery, translational, and clinical research operating in partnership with funders and industry and in sync with regulatory agencies are needed. This Perspective describes one such effort, Type 1 Diabetes TrialNet, a National Institutes of Health-funded and JDRF-supported international clinical trials network that emerged from the Diabetes Prevention Trial-Type 1 (DPT-1). Through longitudinal natural history studies, as well as trials before and after clinical onset of disease combined with mechanistic and ancillary investigations to enhance scientific understanding and translation to clinical use, TrialNet is working to bring disease-modifying therapies to individuals with type 1 diabetes. Moreover, TrialNet uses its expertise and experience in clinical studies to increase efficiencies in the conduct of trials and to reduce the burden of participation on individuals and families. Herein, we highlight key contributions made by TrialNet toward a revised understanding of the natural history of disease and approaches to alter disease course and outline the consortium's plans for the future.
Collapse
Affiliation(s)
- Polly J Bingley
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ann Shultz
- Diabetes Research Program, Benaroya Research Institute, Seattle, WA
| | - Lisa E Rafkin
- University of Miami Diabetes Research Institute, Miami, FL
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida College of Medicine,Gainesville, FL
| | | |
Collapse
|