1
|
Ansari S, Khoo B, Tan T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:447-459. [PMID: 38632474 DOI: 10.1038/s41574-024-00979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are widespread, non-communicable diseases that are responsible for considerable levels of morbidity and mortality globally, primarily in the form of cardiovascular disease (CVD). Changes to lifestyle and behaviour have insufficient long-term efficacy in most patients with these diseases; metabolic surgery, although effective, is not practically deliverable on the scale that is required. Over the past two decades, therapies based on incretin hormones, spearheaded by glucagon-like peptide 1 (GLP1) receptor agonists (GLP1RAs), have become the treatment of choice for obesity and T2DM, and clinical evidence now suggests that these agents have benefits for CVD. We review the latest advances in incretin-based pharmacotherapy. These include 'GLP1 plus' agents, which combine the known advantages of GLP1RAs with the activity of additional hormones, such as glucose-dependent insulinotropic peptide, glucagon and amylin, to achieve desired therapeutic goals. Second-generation non-peptidic oral GLP1RAs promise to extend the benefits of GLP1 therapy to those who do not want, or cannot have, subcutaneous injection therapy. We conclude with a discussion of the knowledge gaps that must be addressed before incretin-based therapies can be properly deployed for maximum benefit in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Bernard Khoo
- Department of Endocrinology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
| |
Collapse
|
2
|
Alabdulkader S, Al-Alsheikh AS, Miras AD, Goldstone AP. Obesity surgery and neural correlates of human eating behaviour: A systematic review of functional MRI studies. Neuroimage Clin 2024; 41:103563. [PMID: 38237270 PMCID: PMC10828606 DOI: 10.1016/j.nicl.2024.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Changes in eating behaviour including reductions in appetite and food intake, and healthier food cue reactivity, reward, hedonics and potentially also preference, contribute to weight loss and its health benefits after obesity surgery. Functional magnetic resonance imaging (fMRI) has been increasingly used to interrogate the neural correlates of eating behaviour in obesity, including brain reward-cognitive systems, changes after obesity surgery, and links with alterations in the gut-hormone-brain axis. Neural responses to food cues can be measured by changes in blood oxygen level dependent (BOLD) signal in brain regions involved in reward processing, including caudate, putamen, nucleus accumbens, insula, amygdala, orbitofrontal cortex, and top-down inhibitory control, including dorsolateral prefrontal cortex (dlPFC). This systematic review aimed to examine: (i) results of human fMRI studies involving obesity surgery, (ii) important methodological differences in study design across studies, and (iii) correlations and associations of fMRI findings with clinical outcomes, other eating behaviour measures and mechanistic measures. Of 741 articles identified, 23 were eligible for inclusion: 16 (69.6%) longitudinal, two (8.7%) predictive, and five (21.7%) cross-sectional studies. Seventeen studies (77.3%) included patients having Roux-en-Y gastric bypass (RYGB) surgery, six (26.1%) vertical sleeve gastrectomy (VSG), and five (21.7%) laparoscopic adjustable gastric banding (LAGB). The majority of studies (86.0%) were identified as having a very low risk of bias, though only six (27.3%) were controlled interventional studies, with none including randomisation to surgical and control interventions. The remaining studies (14.0%) had a low risk of bias driven by their control groups not having an active treatment. After RYGB surgery, food cue reactivity often decreased or was unchanged in brain reward systems, and there were inconsistent findings as to whether reductions in food cue reactivity was greater for high-energy than low-energy foods. There was minimal evidence from studies of VSG and LAGB surgeries for changes in food cue reactivity in brain reward systems, though effects of VSG surgery on food cue reactivity in the dlPFC were more consistently found. There was consistent evidence for post-operative increases in satiety gut hormones glucagon-like-peptide 1 (GLP-1) and peptide YY (PYY) mediating reduced food cue reactivity after RYGB surgery, including two interventional studies. Methodological heterogeneity across studies, including nutritional state, nature of food cues, post-operative timing, lack of control groups for order effects and weight loss or dietary/psychological advice, and often small sample sizes, limited the conclusions that could be drawn, especially for correlational analyses with clinical outcomes, other eating behaviour measures and potential mediators. This systematic review provides a detailed data resource for those performing or analysing fMRI studies of obesity surgery and makes suggestions to help improve reporting and design of such studies, as well as future directions.
Collapse
Affiliation(s)
- Shahd Alabdulkader
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia; Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Alhanouf S Al-Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Ulster University, School of Medicine, Faculty of Life & Health Sciences, Londonderry, Northern Ireland BT48 7JL, UK.
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| |
Collapse
|
3
|
Al‐Alsheikh AS, Alabdulkader S, Miras AD, Goldstone AP. Effects of bariatric surgery and dietary interventions for obesity on brain neurotransmitter systems and metabolism: A systematic review of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies. Obes Rev 2023; 24:e13620. [PMID: 37699864 PMCID: PMC10909448 DOI: 10.1111/obr.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/05/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023]
Abstract
This systematic review collates studies of dietary or bariatric surgery interventions for obesity using positron emission tomography and single-photon emission computed tomography. Of 604 publications identified, 22 met inclusion criteria. Twelve studies assessed bariatric surgery (seven gastric bypass, five gastric bypass/sleeve gastrectomy), and ten dietary interventions (six low-calorie diet, three very low-calorie diet, one prolonged fasting). Thirteen studies examined neurotransmitter systems (six used tracers for dopamine DRD2/3 receptors: two each for 11 C-raclopride, 18 F-fallypride, 123 I-IBZM; one for dopamine transporter, 123 I-FP-CIT; one used tracer for serotonin 5-HT2A receptor, 18 F-altanserin; two used tracers for serotonin transporter, 11 C-DASB or 123 I-FP-CIT; two used tracer for μ-opioid receptor, 11 C-carfentanil; one used tracer for noradrenaline transporter, 11 C-MRB); seven studies assessed glucose uptake using 18 F-fluorodeoxyglucose; four studies assessed regional cerebral blood flow using 15 O-H2 O (one study also used arterial spin labeling); and two studies measured fatty acid uptake using 18 F-FTHA and one using 11 C-palmitate. The review summarizes findings and correlations with clinical outcomes, eating behavior, and mechanistic mediators. The small number of studies using each tracer and intervention, lack of dietary intervention control groups in any surgical studies, heterogeneity in time since intervention and degree of weight loss, and small sample sizes hindered the drawing of robust conclusions across studies.
Collapse
Affiliation(s)
- Alhanouf S. Al‐Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- Department of Community Health Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Shahd Alabdulkader
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- Department of Health Sciences, College of Health and Rehabilitation SciencesPrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Alexander D. Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
- School of Medicine, Faculty of Life and Health SciencesUlster UniversityLondonderryUK
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College LondonHammersmith HospitalLondonUK
| |
Collapse
|
4
|
Yildirim V, ter Horst KW, Gilijamse PW, van Harskamp D, Schierbeek H, Jansen H, Schimmel AW, Nieuwdorp M, Groen AK, Serlie MJ, van Riel NA, Dallinga-Thie GM. Bariatric surgery improves postprandial VLDL kinetics and restores insulin-mediated regulation of hepatic VLDL production. JCI Insight 2023; 8:e166905. [PMID: 37432744 PMCID: PMC10543721 DOI: 10.1172/jci.insight.166905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Public and Occupational Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | | | | | - Dewi van Harskamp
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henk Schierbeek
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Hans Jansen
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alinda W.M. Schimmel
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Albert K. Groen
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Natal A.W. van Riel
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Experimental and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
5
|
How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI. Physiol Behav 2023; 263:114111. [PMID: 36740132 DOI: 10.1016/j.physbeh.2023.114111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.
Collapse
|
6
|
Bergeat D, Coquery N, Gautier Y, Clotaire S, Vincent É, Romé V, Guérin S, Le Huërou-Luron I, Blat S, Thibault R, Val-Laillet D. Exploration of fMRI brain responses to oral sucrose after Roux-en-Y gastric bypass in obese yucatan minipigs in relationship with microbiota and metabolomics profiles. Clin Nutr 2023; 42:394-410. [PMID: 36773369 DOI: 10.1016/j.clnu.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS In most cases, Roux-en-Y gastric bypass (RYGBP) is an efficient intervention to lose weight, change eating behavior and improve metabolic outcomes in obese patients. We hypothesized that weight loss induced by RYGBP in obese Yucatan minipigs would induce specific modifications of the gut-brain axis and neurocognitive responses to oral sucrose stimulation in relationship with food intake control. METHODS An integrative study was performed after SHAM (n = 8) or RYGBP (n = 8) surgery to disentangle the physiological, metabolic and neurocognitive mechanisms of RYGBP. BOLD fMRI responses to sucrose stimulations at different concentrations, brain mRNA expression, cecal microbiota, and plasma metabolomics were explored 4 months after surgery and integrated with WGCNA analysis. RESULTS We showed that weight loss induced by RYGBP or SHAM modulated differently the frontostriatal responses to oral sucrose stimulation, suggesting a different hedonic treatment and inhibitory control related to palatable food after RYGBP. The expression of brain genes involved in the serotoninergic and cannabinoid systems were impacted by RYGBP. Cecal microbiota was deeply modified and many metabolite features were differentially increased in RYGBP. Data integration with WGCNA identified interactions between key drivers of OTUs and metabolites features linked to RYGBP. CONCLUSION This longitudinal study in the obese minipig model illustrates with a systemic and integrative analysis the mid-term consequences of RYGBP on brain mRNA expression, cecal microbiota and plasma metabolites. We confirmed the impact of RYGBP on functional brain responses related to food reward, hedonic evaluation and inhibitory control, which are key factors for the success of anti-obesity therapy and weight loss maintenance.
Collapse
Affiliation(s)
- Damien Bergeat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Digestive Surgery, CHU Rennes, Rennes, France
| | - Nicolas Coquery
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Yentl Gautier
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sarah Clotaire
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Émilie Vincent
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Véronique Romé
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sylvie Guérin
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Isabelle Le Huërou-Luron
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Sophie Blat
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| | - Ronan Thibault
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France; Department of Endocrinology-Diabetology-Nutrition, Home Parenteral Nutrition Centre, CHU Rennes, Rennes, France.
| | - David Val-Laillet
- Inrae, Inserm, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France.
| |
Collapse
|
7
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Dischinger U, Kötzner L, Kovatcheva-Datchary P, Kleinschmidt H, Haas C, Perez J, Presek C, Koschker AC, Miras AD, Hankir MK, Vogel J, Germer CT, Fassnacht M, Herrmann MJ, Seyfried F. Hypothalamic integrity is necessary for sustained weight loss after bariatric surgery: A prospective, cross-sectional study. Metabolism 2023; 138:155341. [PMID: 36341838 DOI: 10.1016/j.metabol.2022.155341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The hypothalamus is the main integrator of peripheral and central signals in the control of energy homeostasis. Its functional relevance for the effectivity of bariatric surgery is not entirely elucidated. Studying the effects of bariatric surgery in patients with hypothalamic damage might provide insight. SUMMARY BACKGROUND DATA Prospective study to analyze the effects of bariatric surgery in patients with hypothalamic obesity (HO) vs. matched patients with common obesity (CO) with and without bariatric surgery. METHODS 65 participants were included (HO-surgery: n = 8, HO-control: n = 10, CO-surgery: n = 12, CO-control: n = 12, Lean-control: n = 23). Body weight, levels of anorexic hormones, gut microbiota, as well as subjective well-being/health status, eating behavior, and brain activity (via functional MRI) were evaluated. RESULTS Patients with HO lost significantly less weight after bariatric surgery than CO-participants (total body weight loss %: 5.5 % vs. 26.2 %, p = 0.0004). After a mixed meal, satiety and abdominal fullness tended to be lowest in HO-surgery and did not correlate with levels of GLP-1 or PYY. Levels of PYY (11,151 ± 1667 pmol/l/h vs. 8099 ± 1235 pmol/l/h, p = 0.028) and GLP-1 (20,975 ± 2893 pmol/l/h vs. 13,060 ± 2357 pmol/l/h, p = 0.009) were significantly higher in the HO-surgery vs. CO-surgery group. Abundance of Enterobacteriaceae and Streptococcus was increased in feces of HO and CO after bariatric surgery. Comparing HO patients with lean-controls revealed an increased activation in insula and cerebellum to viewing high-caloric foods in left insula and cerebellum in fMRI. CONCLUSIONS Hypothalamic integrity is necessary for the effectiveness of bariatric surgery in humans. Peripheral changes after bariatric surgery are not sufficient to induce satiety and long-term weight loss in patients with hypothalamic damage.
Collapse
Affiliation(s)
- Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany.
| | - Laura Kötzner
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | | | - Helena Kleinschmidt
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Christina Haas
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Jose Perez
- Department of Neurosurgery, University Hospital, University of Würzburg, Germany
| | - Cornelius Presek
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, Germany
| | - Ann-Cathrin Koschker
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom
| | - Mohammed K Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, Germany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital, University of Würzburg, Germany
| |
Collapse
|
9
|
Feris F, McRae A, Kellogg TA, McKenzie T, Ghanem O, Acosta A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2023; 19:37-49. [PMID: 36243547 PMCID: PMC9797451 DOI: 10.1016/j.soard.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
The aim of this study was to perform a comprehensive literature review regarding the relevant hormonal and histologic changes observed after Roux-en-Y gastric bypass (RYGB). We aimed to describe the relevant hormonal (glucagon-like peptides 1 and 2 [GLP-1 and GLP-2], peptide YY [PYY], oxyntomodulin [OXM], bile acids [BA], cholecystokinin [CCK], ghrelin, glucagon, gastric inhibitory polypeptide [GIP], and amylin) profiles, as well as the histologic (mucosal cellular) adaptations happening after patients undergo RYGB. Our review compiles the current evidence and furthers the understanding of the rationale behind the food intake regulatory adaptations occurring after RYGB surgery. We identify gaps in the literature where the potential for future investigations and therapeutics may lie. We performed a comprehensive database search without language restrictions looking for RYGB bariatric surgery outcomes in patients with pre- and postoperative blood work hormonal profiling and/or gut mucosal biopsies. We gathered the relevant study results and describe them in this review. Where human findings were lacking, we included animal model studies. The amalgamation of physiologic, metabolic, and cellular adaptations following RYGB is yet to be fully characterized. This constitutes a fundamental aspiration for enhancing and individualizing obesity therapy.
Collapse
Affiliation(s)
- Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Travis McKenzie
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Omar Ghanem
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Assessment of Eating Disorders and Eating Behavior to Improve Treatment Outcomes in Women with Polycystic Ovary Syndrome. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111906. [PMID: 36431041 PMCID: PMC9692921 DOI: 10.3390/life12111906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The essential role of the frequent coexistence of mental disorders and polycystic ovary syndrome (PCOS) is being increasingly recognized in the management of PCOS patients since it influences the success of weight loss interventions. Patients frequently experience disrupted eating behaviors, evidenced by the high prevalence of eating disorders in this population. Therefore, assessment and potential modification of eating disorders and eating-related behavior might be especially relevant to improve obesity treatment outcomes in this population, which remains the most efficient causal treatment in PCOS patients with high metabolic risk. Following a literature overview on common eating disorders and eating behaviors in PCOS, the aim of this review was to explore the prevalence and underlying mechanisms behind those occurrences. Understanding the clinical relevance of those associations and the addition of the assessments of eating disorders as well as eating phenotypes, eating chronotypes, and eating content as essential determinants of eating behavior could aid in the successful management of women with PCOS. In addition, the review also covers the potential of using eating disorders and eating behavior as a tool for the personalization of obesity treatment in PCOS.
Collapse
|
11
|
Shah A, Prasad M, Mark V, Holst JJ, Laferrère B. Glucagon-like peptide-1 effect on β-cell function varies according to diabetes remission status after Roux-en-Y gastric bypass. Diabetes Obes Metab 2022; 24:2081-2089. [PMID: 35676799 PMCID: PMC9595602 DOI: 10.1111/dom.14793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
AIMS The contribution of endogenous glucagon-like peptide (GLP)-1 to β-cell function after Roux-en-Y gastric bypass surgery (RYGB) is well established in normoglycaemic individuals, but not in those with postoperative hyperglycaemia. We, therefore, studied the effect of GLP-1 on β-cell function in individuals with varying degrees of type 2 diabetes mellitus (T2D) control after RYGB. MATERIALS AND METHODS Glucose, insulin secretion rates, β-cell glucose sensitivity and glucagon were measured during an oral glucose tolerance test before (saline only) and at 3, 12 and 24 months after RYGB with and without infusion of the GLP-1 receptor blocker exendin9-39 (EX9). The cohort was retrospectively classified based on T2D remission (REM) status at the latest study time point: REM (n = 5), persistent T2D (n = 8), or impaired glucose tolerance (n = 16). RESULTS EX9 blunted the increase in β-cell glucose sensitivity at 3 months (-44.1%, p < .001) and 12 months (-43.3%, p < .001), but not at 24 months (-12.4%, p = .243). EX9 enhanced postprandial glucagon concentrations by 62.0% at 3 months (p = .008), 46.5% at 12 months (p = .055), and 30.4% at 24 months (p = .017). EX9 counterintuitively decreased glucose concentrations at 3 months in the entire cohort (p < .001) but had no effect on glycaemia at 12 and 24 months in persistent T2D and impaired glucose tolerance; it minimally worsened glycaemia in REM at 12 months. CONCLUSIONS GLP-1 blockade reversed the improvement in β-cell function observed after RYGB, but this effect varied temporally and by REM status. GLP-1 blockade transiently and minimally worsened glycaemia only in REM, and lowered postprandial glucose values at 3 months, regardless of REM status.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Malini Prasad
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Victoria Mark
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blandine Laferrère
- Division of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
12
|
Guerrero-Hreins E, Stammers L, Wong L, Brown RM, Sumithran P. A Comparison of Emotional Triggers for Eating in Men and Women with Obesity. Nutrients 2022; 14:nu14194144. [PMID: 36235796 PMCID: PMC9570591 DOI: 10.3390/nu14194144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Emotional eating (EE) is prevalent in people seeking obesity treatment and is a contributor to poor weight loss outcomes. We aimed to delineate the emotions most associated with this type of eating, and whether they differ by sex in people undergoing obesity treatment. METHODS A cross-sectional study recruiting 387 adults from a hospital obesity management service. Emotional eating was measured using the Emotional Eating Scale (EES). Separate analyses included all participants, and those undergoing lifestyle interventions alone or in combination with obesity medication and/or bariatric surgery. RESULTS A total of 387 people (71% women) participated in the study (n = 187 receiving lifestyle modification alone; n = 200 in combination with additional treatments). Feeling 'bored' was most commonly and most strongly associated with the urge to eat, regardless of sex or treatment. Women had higher scores for total EES, for subscales of depression and anger, and individual feelings of 'blue', 'sad' and 'upset' compared to men. CONCLUSIONS Understanding why certain emotions differentially trigger an urge to eat in men and women, and finding strategies to break the link between boredom and eating may enable better personalisation of lifestyle interventions for people with obesity.
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville 3010, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Lauren Stammers
- Department of Medicine, Melbourne Medical School, University of Melbourne, Parkville 3010, Australia; (L.S.); (L.W.)
| | - Lisa Wong
- Department of Medicine, Melbourne Medical School, University of Melbourne, Parkville 3010, Australia; (L.S.); (L.W.)
| | - Robyn M. Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville 3010, Australia;
- Correspondence: (R.M.B.); (P.S.)
| | - Priya Sumithran
- Department of Medicine (St. Vincent’s), University of Melbourne, Fitzroy 3065, Australia
- Department of Endocrinology, Austin Health, Heidelberg 3084, Australia
- Correspondence: (R.M.B.); (P.S.)
| |
Collapse
|
13
|
Roth CL, Melhorn SJ, De Leon MRB, Rowland MG, Elfers CT, Huang A, Saelens BE, Schur EA. Impaired Brain Satiety Responses After Weight Loss in Children With Obesity. J Clin Endocrinol Metab 2022; 107:2254-2266. [PMID: 35544121 PMCID: PMC9282278 DOI: 10.1210/clinem/dgac299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity interventions often result in increased motivation to eat. OBJECTIVE We investigated relationships between obesity outcomes and changes in brain activation by visual food cues and hormone levels in response to obesity intervention by family-based behavioral treatment (FBT). METHODS Neuroimaging and hormone assessments were conducted before and after 24-week FBT intervention in children with obesity (OB, n = 28), or children of healthy weight without intervention (HW, n = 17), all 9- to 11-year-old boys and girls. We evaluated meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions and gut hormones. RESULTS Among children with OB who underwent FBT, greater declines of BMI z-score were associated with lesser reductions after the FBT intervention in meal-induced changes in neural activation to high- vs low-calorie food cues across appetite-processing brain regions (P < 0.05), and the slope of relationship was significantly different compared with children of HW. In children with OB, less reduction in brain responses to a meal from before to after FBT was associated with greater meal-induced reduction in ghrelin and increased meal-induced stimulation in peptide YY and glucagon-like peptide-1 (all P < 0.05). CONCLUSION In response to FBT, adaptations of central satiety responses and peripheral satiety-regulating hormones were noted. After weight loss, changes of peripheral hormone secretion support weight loss, but there was a weaker central satiety response. The findings suggest that even when peripheral satiety responses by gut hormones are intact, the central regulation of satiety is disturbed in children with OB who significantly improve their weight status during FBT, which could favor future weight regain.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Susan J Melhorn
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mary Rosalynn B De Leon
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maya G Rowland
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Alyssa Huang
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Brian E Saelens
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Schur
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Kumar N, D'Alessio DA. Slow and Steady Wins the Race: 25 Years Developing the GLP-1 Receptor as an Effective Target for Weight Loss. J Clin Endocrinol Metab 2022; 107:2148-2153. [PMID: 35536590 DOI: 10.1210/clinem/dgac276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/19/2022]
Abstract
Recent evidence from clinical trials supports the efficacy and tolerability of glucagon-like peptide 1 (GLP-1) receptor agonists as useful agents for weight loss. Although originally developed as glucose lowering agents for people with type 2 diabetes, progress in research over the last 3 decades has demonstrated that GLP-1 receptor agonists act in the central nervous system to reduce food intake. This minireview summarizes key aspects of GLP-1 biology and the clinical studies supporting the utility of the GLP-1 receptor signaling system as a therapeutic target for weight loss.
Collapse
Affiliation(s)
- Nitya Kumar
- Duke University Medical Center, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC 27710, USA
| | - David A D'Alessio
- Duke University Medical Center, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC 27710, USA
| |
Collapse
|
15
|
van Ruiten CC, Ten Kulve JS, van Bloemendaal L, Nieuwdorp M, Veltman DJ, IJzerman RG. Eating behavior modulates the sensitivity to the central effects of GLP-1 receptor agonist treatment: a secondary analysis of a randomized trial. Psychoneuroendocrinology 2022; 137:105667. [PMID: 35033928 DOI: 10.1016/j.psyneuen.2022.105667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
AIMS We investigated if individuals with higher emotional eating scores are less sensitive to the effects of a GLP-1RA on central responses to food cues. Additionally, we investigated the associations of higher external and restraint eating scores with the sensitivity to the central effects of GLP-1RA. METHODS This secondary analysis of a randomized crossover study in people with obesity and type 2 diabetes, consisted of two periods of 12-week treatment with liraglutide or insulin glargine. Using functional MRI, we assessed the relation between baseline eating behavior and the effects of the GLP-1RA liraglutide compared with insulin after 10 days and 12 weeks of treatment on brain responses to food cues. RESULTS After 10 days, higher emotional eating scores were associated with less pronounced GLP-1RA induced reductions in brain responses to food pictures in the amygdala, insula and caudate nucleus. In addition, higher emotional eating scores tended to be associated with less pronounced GLP-1RA increases in brain responses to chocolate milk receipt in the caudate nucleus and insula. After 12 weeks, there were no significant associations between emotional eating scores and liraglutide-induced changes in brain responses to food cues. After 10 days, baseline external eating scores were associated with less pronounced GLP-1RA induced reductions in brain responses to food pictures in the insula, amygdala and orbitofrontal cortex. After 12 weeks, baseline restraint eating scores were associated with more GLP-1RA induced reductions in brain responses to food pictures in the insula and caudate nucleus, and with more GLP-1RA induced reductions in brain responses to the anticipation of chocolate milk in the caudate nucleus. CONCLUSIONS Our findings indicate that individuals with higher baseline emotional eating scores are less sensitive to the central effect of GLP-1RA treatment. Additionally, external eating may also decrease, whereas restraint eating may increase the sensitivity to the treatment effects of GLP-1RAs. These insights may help to optimize treatment strategies for obesity and to select patient groups with better efficacy of GLP-1RA treatment.
Collapse
Affiliation(s)
- Charlotte C van Ruiten
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, The Netherlands.
| | - Jennifer S Ten Kulve
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, The Netherlands
| | - Liselotte van Bloemendaal
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands; Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Center, location VU University Medical Center, Amsterdam, The Netherlands
| | - Richard G IJzerman
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Al-Alsheikh AS, Alabdulkader S, Johnson B, Goldstone AP, Miras AD. Effect of Obesity Surgery on Taste. Nutrients 2022; 14:866. [PMID: 35215515 PMCID: PMC8878262 DOI: 10.3390/nu14040866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity surgery is a highly efficacious treatment for obesity and its comorbidities. The underlying mechanisms of weight loss after obesity surgery are not yet fully understood. Changes to taste function could be a contributing factor. However, the pattern of change in different taste domains and among obesity surgery operations is not consistent in the literature. A systematic search was performed to identify all articles investigating gustation in human studies following bariatric procedures. A total of 3323 articles were identified after database searches, searching references and deduplication, and 17 articles were included. These articles provided evidence of changes in the sensory and reward domains of taste following obesity procedures. No study investigated the effect of obesity surgery on the physiological domain of taste. Taste detection sensitivity for sweetness increases shortly after Roux-en-Y gastric bypass. Additionally, patients have a reduced appetitive reward value to sweet stimuli. For the subgroup of patients who experience changes in their food preferences after Roux-en-Y gastric bypass or vertical sleeve gastrectomy, changes in taste function may be underlying mechanisms for changing food preferences which may lead to weight loss and its maintenance. However, data are heterogeneous; the potential effect dilutes over time and varies significantly between different procedures.
Collapse
Affiliation(s)
- Alhanouf S. Al-Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahd Alabdulkader
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Brett Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Alexander Dimitri Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (A.S.A.-A.); (S.A.); (B.J.); (A.D.M.)
| |
Collapse
|
17
|
An Z, Wang H, Mokadem M. Role of the Autonomic Nervous System in Mechanism of Energy and Glucose Regulation Post Bariatric Surgery. Front Neurosci 2021; 15:770690. [PMID: 34887725 PMCID: PMC8649921 DOI: 10.3389/fnins.2021.770690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Even though lifestyle changes are the mainstay approach to address obesity, Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) are the most effective and durable treatments facing this pandemic and its associated metabolic conditions. The traditional classifications of bariatric surgeries labeled them as “restrictive,” “malabsorptive,” or “mixed” types of procedures depending on the anatomical rearrangement of each one of them. This conventional categorization of bariatric surgeries assumed that the “restrictive” procedures induce their weight loss and metabolic effects by reducing gastric content and therefore having a smaller reservoir. Similarly, the “malabsorptive” procedures were thought to induce their main energy homeostatic effects from fecal calorie loss due to intestinal malabsorption. Observational data from human subjects and several studies from rodent models of bariatric surgery showed that neither of those concepts is completely true, at least in explaining the multiple metabolic changes and the alteration in energy balance that those two surgeries induce. Rather, neuro-hormonal mechanisms have been postulated to underly the physiologic effects of those two most performed bariatric procedures. In this review, we go over the role the autonomic nervous system plays- through its parasympathetic and sympathetic branches- in regulating weight balance and glucose homeostasis after SG and RYGB.
Collapse
Affiliation(s)
- Zhibo An
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Haiying Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, United States.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, IA, United States.,Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
18
|
Jensterle M, DeVries JH, Battelino T, Battelino S, Yildiz B, Janez A. Glucagon-like peptide-1, a matter of taste? Rev Endocr Metab Disord 2021; 22:763-775. [PMID: 33123893 DOI: 10.1007/s11154-020-09609-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/22/2023]
Abstract
Understanding of gustatory coding helps to predict, and perhaps even modulate the ingestive decision circuitry, especially when eating behaviour becomes dysfunctional. Preclinical research demonstrated that glucagon like peptide 1 (GLP-1) is locally synthesized in taste bud cells in the tongue and that GLP-1 receptor exists on the gustatory nerves in close proximity to GLP-1 containing taste bud cells. In humans, the tongue has not yet been addressed as clinically relevant target for GLP-1 based therapies. The primary aim of the current review was to elaborate on the role of GLP- 1 in mammalian gustatory system, in particular in the perception of sweet. Secondly, we aimed to explore what modulates gustatory coding and whether the GLP-1 based therapies might be involved in regulation of taste perception. We performed a series of PubMed, Medline and Embase databases systemic searches. The Population-Intervention-Comparison-Outcome (PICO) framework was used to identify interventional studies. Based on the available data, GLP-1 is specifically involved in the perception of sweet. Aging, diabetes and obesity are characterized by diminished taste and sweet perception. Calorie restriction and bariatric surgery are associated with a diminished appreciation of sweet food. GLP-1 receptor agonists (RAs) modulate food preference, yet its modulatory potential in gustatory coding is currently unknown. Future studies should explore whether GLP-1 RAs modulate taste perception to the extent that changes of food preference and consumption ensue.
Collapse
Affiliation(s)
- Mojca Jensterle
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta, 7, 1000, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - J Hans DeVries
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bulent Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Hacettepe, 06100, Ankara, Turkey
| | - Andrej Janez
- Division of Internal Medicine, Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška cesta, 7, 1000, Ljubljana, Slovenia.
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, Zaloška cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Gasbjerg LS, Bari EJ, Christensen M, Knop FK. Exendin(9-39)NH 2 : Recommendations for clinical use based on a systematic literature review. Diabetes Obes Metab 2021; 23:2419-2436. [PMID: 34351033 DOI: 10.1111/dom.14507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
AIM To present an overview of exendin(9-39)NH2 usage as a scientific tool in humans and provide recommendations for dosage and infusion regimes. METHODS We systematically searched the literature on exendin(9-39)NH2 and included for review 44 clinical studies reporting use of exendin(9-39)NH2 in humans. RESULTS Exendin(9-39)NH2 binds to the orthosteric binding site of the glucagon-like peptide-1 (GLP-1) receptor with high affinity. The plasma elimination half-life of exendin(9-39)NH2 after intravenous administration is ~30 minutes, requiring ~2.5 hours of constant infusion before steady-state plasma concentrations can be expected. Studies utilizing infusions with exendin(9-39)NH2 in humans have applied varying regimens (priming with a bolus or constant infusion) and dosages (continuous infusion rate range 30-900 pmol/kg/min) with subsequent differences in effects. Administration of exendin(9-39)NH2 in healthy individuals, patients with diabetes, obese patients, and patients who have undergone bariatric surgery significantly increases fasting and postprandial levels of glucose and glucagon, but has inconsistent effects on circulating concentrations of insulin and C-peptide, gastric emptying, appetite sensations, and food intake. Importantly, exendin(9-39)NH2 induces secretion of all L cell products (ie, in addition to GLP-1, also peptide YY, glucagon-like peptide-2, oxyntomodulin, and glicentin) complicating use of exendin(9-39)NH2 as a tool to study the isolated effect of GLP-1. CONCLUSIONS Exendin(9-39)NH2 is selective for the GLP-1 receptor, with numerous and complex whole-body effects. To obtain GLP-1 receptor blockade in humans, we recommend an initial high-dose infusion, followed by a continuous infusion rate aiming at a ratio of exendin(9-39)NH2 to GLP-1 of 2000:1. Highlights Exendin(9-39)NH2 is a competitive antagonist of the human GLP-1 receptor. Exendin(9-39)NH2 has been used as a tool to delineate human GLP-1 physiology since 1998. Exendin(9-39)NH2 induces secretion of GLP-1 and other L cell products. Reported effects of exendin(9-39)NH2 on insulin levels and food intake are inconsistent. Here, we provide recommendations for the use of exendin(9-39)NH2 in clinical studies.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Johanning Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
20
|
Guerrero-Hreins E, Goldstone AP, Brown RM, Sumithran P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: a review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110303. [PMID: 33741445 DOI: 10.1016/j.pnpbp.2021.110303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Stress and low mood are powerful triggers for compulsive overeating, a maladaptive form of eating leading to negative physical and mental health consequences. Stress-vulnerable individuals, such as people with obesity, are particularly prone to overconsumption of high energy foods and may use it as a coping mechanism for general life stressors. Recent advances in the treatment of obesity and related co-morbidities have focused on the therapeutic potential of anorexigenic gut hormones, such as glucagon-like peptide 1 (GLP-1), which acts both peripherally and centrally to reduce energy intake. Besides its appetite suppressing effect, GLP-1 acts on areas of the brain involved in stress response and emotion regulation. However, the role of GLP-1 in emotion and stress regulation, and whether it is a viable treatment for stress-induced compulsive overeating, has yet to be established. A thorough review of the pre-clinical literature measuring markers of stress, anxiety and mood after GLP-1 exposure points to potential divergent effects based on temporality. Specifically, acute GLP-1 injection consistently stimulates the physiological stress response in rodents whereas long-term exposure indicates anxiolytic and anti-depressive benefits. However, the limited clinical evidence is not as clear cut. While prolonged GLP-1 analogue treatment in people with type 2 diabetes improved measures of mood and general psychological wellbeing, the mechanisms underlying this may be confounded by associated weight loss and improved blood glucose control. There is a paucity of longitudinal clinical literature on mechanistic pathways by which stress influences eating behavior and how centrally-acting gut hormones such as GLP-1, can modify these. (250).
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Victoria, Australia; Dept. of Endocrinology, Austin Health, Victoria, Australia.
| |
Collapse
|
21
|
Hong J, Bo T, Xi L, Xu X, He N, Zhan Y, Li W, Liang P, Chen Y, Shi J, Li D, Yan F, Gu W, Wang W, Liu R, Wang J, Wang Z, Ning G. Reversal of Functional Brain Activity Related to Gut Microbiome and Hormones After VSG Surgery in Patients With Obesity. J Clin Endocrinol Metab 2021; 106:e3619-e3633. [PMID: 33950216 PMCID: PMC8372652 DOI: 10.1210/clinem/dgab297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/19/2022]
Abstract
CONTEXT Vertical sleeve gastrectomy (VSG) is becoming a prioritized surgical intervention for obese individuals; however, the brain circuits that mediate its effective control of food intake and predict surgical outcome remain largely unclear. OBJECTIVE We investigated VSG-correlated alterations of the gut-brain axis. METHODS In this observational cohort study, 80 patients with obesity were screened. A total of 36 patients together with 26 normal-weight subjects were enrolled and evaluated using the 21-item Three-Factor Eating Questionnaire (TFEQ), MRI scanning, plasma intestinal hormone analysis, and fecal sample sequencing. Thirty-two patients underwent VSG treatment and 19 subjects completed an average of 4-month follow-up evaluation. Data-driven regional homogeneity (ReHo) coupled with seed-based connectivity analysis were used to quantify VSG-related brain activity. Longitudinal alterations of body weight, eating behavior, brain activity, gastrointestinal hormones, and gut microbiota were detected and subjected to repeated measures correlation analysis. RESULTS VSG induced significant functional changes in the right putamen (PUT.R) and left supplementary motor area, both of which correlated with weight loss and TFEQ scores. Moreover, postprandial levels of active glucagon-like peptide-1 (aGLP-1) and Ghrelin were associated with ReHo of PUT.R; meanwhile, relative abundance of Clostridia increased by VSG was associated with improvements in aGLP-1 secretion, PUT.R activity, and weight loss. Importantly, VSG normalized excessive functional connectivities with PUT.R, among which baseline connectivity between PUT.R and right orbitofrontal cortex was related to postoperative weight loss. CONCLUSION VSG causes correlated alterations of gut-brain axis, including Clostridia, postprandial aGLP-1, PUT.R activity, and eating habits. Preoperative connectivity of PUT.R may represent a potential predictive marker of surgical outcome in patients with obesity.
Collapse
Affiliation(s)
- Jie Hong
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Tingting Bo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Xi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | | | - Naying He
- Department of Radiology, Ruijin Hospital, SJTUSM, Shanghai 200025, China
| | - Yafeng Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Peiwen Liang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Yufei Chen
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Juan Shi
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Danjie Li
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, SJTUSM, Shanghai 200025, China
| | - Weiqiong Gu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Weiqing Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Ruixin Liu
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Jiqiu Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Zheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of Chinese Health Commission, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| |
Collapse
|
22
|
Salem V, Demetriou L, Behary P, Alexiadou K, Scholtz S, Tharakan G, Miras AD, Purkayastha S, Ahmed AR, Bloom SR, Wall MB, Dhillo WS, Tan TMM. Weight Loss by Low-Calorie Diet Versus Gastric Bypass Surgery in People With Diabetes Results in Divergent Brain Activation Patterns: A Functional MRI Study. Diabetes Care 2021; 44:1842-1851. [PMID: 34158363 PMCID: PMC8385466 DOI: 10.2337/dc20-2641] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/18/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Weight loss achieved with very-low-calorie diets (VLCDs) can produce remission of type 2 diabetes (T2D), but weight regain very often occurs with reintroduction of higher calorie intakes. In contrast, bariatric surgery produces clinically significant and durable weight loss, with diabetes remission that translates into reductions in mortality. We hypothesized that in patients living with obesity and prediabetes/T2D, longitudinal changes in brain activity in response to food cues as measured using functional MRI would explain this difference. RESEARCH DESIGN AND METHODS Sixteen participants underwent gastric bypass surgery, and 19 matched participants undertook a VLCD (meal replacement) for 4 weeks. Brain responses to food cues and resting-state functional connectivity were assessed with functional MRI pre- and postintervention and compared across groups. RESULTS We show that Roux-en-Y gastric bypass surgery (RYGB) results in three divergent brain responses compared with VLCD-induced weight loss: 1) VLCD resulted in increased brain reward center food cue responsiveness, whereas in RYGB, this was reduced; 2) VLCD resulted in higher neural activation of cognitive control regions in response to food cues associated with exercising increased cognitive restraint over eating, whereas RYGB did not; and 3) a homeostatic appetitive system (centered on the hypothalamus) is better engaged following RYGB-induced weight loss than VLCD. CONCLUSIONS Taken together, these findings point to divergent brain responses to different methods of weight loss in patients with diabetes, which may explain weight regain after a short-term VLCD in contrast to enduring weight loss after RYGB.
Collapse
Affiliation(s)
- Victoria Salem
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | | | - Preeshila Behary
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Kleopatra Alexiadou
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Samantha Scholtz
- West London Mental Health National Health Service Trust, London, U.K
| | - George Tharakan
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Alexander D Miras
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Ahmed R Ahmed
- Department of Surgery and Cancer, Imperial College Healthcare National Health Service Trust, London, U.K
| | - Stephen R Bloom
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Matthew B Wall
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K.,Invicro London, Hammersmith Hospital, London, U.K
| | - Waljit S Dhillo
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K
| | - Tricia M-M Tan
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, U.K.
| |
Collapse
|
23
|
Jensterle M, Ferjan S, Battelino T, Kovač J, Battelino S, Šuput D, Vovk A, Janež A. Does intervention with GLP-1 receptor agonist semaglutide modulate perception of sweet taste in women with obesity: study protocol of a randomized, single-blinded, placebo-controlled clinical trial. Trials 2021; 22:464. [PMID: 34281590 PMCID: PMC8287101 DOI: 10.1186/s13063-021-05442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Preclinical studies demonstrated that glucagon-like peptide 1 (GLP-1) is locally synthesized in taste bud cells and that GLP-1 receptor exists on the gustatory nerves in close proximity to GLP-1-containing taste bud cells. This local paracrine GLP-1 signalling seems to be specifically involved in the perception of sweets. However, the role of GLP-1 in taste perception remains largely unaddressed in clinical studies. Whether any weight-reducing effects of GLP-1 receptor agonists are mediated through the modulation of taste perception is currently unknown. Methods and analysis This is an investigator-initiated, randomized single-blind, placebo-controlled clinical trial. We will enrol 30 women with obesity and polycystic ovary syndrome (PCOS). Participants will be randomized in a 1:1 ratio to either semaglutide 1.0 mg or placebo for 16 weeks. The primary endpoints are alteration of transcriptomic profile of tongue tissue as changes in expression level from baseline to follow-up after 16 weeks of treatment, measured by RNA sequencing, and change in taste sensitivity as detected by chemical gustometry. Secondary endpoints include change in neural response to visual food cues and to sweet-tasting substances as assessed by functional MRI, change in body weight, change in fat mass and change in eating behaviour and food intake. Discussion This is the first study to investigate the role of semaglutide on taste perception, along with a neural response to visual food cues in reward processing regions. The study may identify the tongue and the taste perception as a novel target for GLP-1 receptor agonists. Ethics and disseminations The study has been approved by the Slovene National Medical Ethics Committee and will be conducted in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. Results will be submitted for publication in an international peer-reviewed scientific journal. Trial registration ClinicalTrials.govNCT04263415. Retrospectively registered on 10 February 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05442-y.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Simona Ferjan
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Jernej Kovač
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.,Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, University Medical Centre Ljubljana, Bohoričeva 20, SI-1000, Ljubljana, Slovenia
| | - Saba Battelino
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.,Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, SI-1000, Ljubljana, Slovenia
| | - Dušan Šuput
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Andrej Vovk
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, SI-1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. Sensory cue reactivity: Sensitization in alcohol use disorder and obesity. Neurosci Biobehav Rev 2021; 124:326-357. [PMID: 33587959 DOI: 10.1016/j.neubiorev.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Neuroimaging techniques to measure the function of the human brain such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), are powerful tools for understanding the underlying neural circuitry associated with alcohol use disorder (AUD) and obesity. The sensory (visual, taste and smell) paradigms used in neuroimaging studies represent an ideal platform to investigate the connection between the different neural circuits subserving the reward/executive control systems in these disorders, which may offer a translational mechanism for novel intervention predictions. Thus, the current review provides an integrated summary of the recent neuroimaging studies that have applied cue-reactivity paradigms and neuromodulation strategies to explore underlying alterations in neural circuitry as well in treatment strategies in AUD and obesity. Finally, we discuss literature on mechanisms associated with increased alcohol sensitivity post-bariatric surgery (BS) which offers guidance for future research to use sensory percepts in elucidating the relation of reward signaling in AUD development post-BS.
Collapse
Affiliation(s)
- Khushbu Agarwal
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | | | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | - Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA.
| |
Collapse
|
25
|
Loos RJF, Burant C, Schur EA. Strategies to Understand the Weight-Reduced State: Genetics and Brain Imaging. Obesity (Silver Spring) 2021; 29 Suppl 1:S39-S50. [PMID: 33759393 PMCID: PMC8500189 DOI: 10.1002/oby.23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022]
Abstract
Most individuals with obesity or overweight have difficulty maintaining weight loss. The weight-reduced state induces changes in many physiological processes that appear to drive weight regain. Here, we review the use of cell biology, genetics, and imaging techniques that are being used to begin understanding why weight regain is the normal response to dieting. As with obesity itself, weight regain has both genetic and environmental drivers. Genetic drivers for "thinness" and "obesity" largely overlap, but there is evidence for specific genetic loci that are different for each of these weight states. There is only limited information regarding the genetics of weight regain. Currently, most genetic loci related to weight point to the central nervous system as the organ responsible for determining the weight set point. Neuroimaging tools have proved useful in studying the contribution of the central nervous system to the weight-reduced state in humans. Neuroimaging technologies fall into three broad categories: functional, connectivity, and structural neuroimaging. Connectivity and structural imaging techniques offer unique opportunities for testing mechanistic hypotheses about changes in brain function or tissue structure in the weight-reduced state.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles Burant
- Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Ellen A. Schur
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Moran GW, Thapaliya G. The Gut-Brain Axis and Its Role in Controlling Eating Behavior in Intestinal Inflammation. Nutrients 2021; 13:nu13030981. [PMID: 33803651 PMCID: PMC8003054 DOI: 10.3390/nu13030981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Malnutrition represents a major problem in the clinical management of the inflammatory bowel disease (IBD). Presently, our understanding of the cross-link between eating behavior and intestinal inflammation is still in its infancy. Crohn's disease patients with active disease exhibit strong hedonic desires for food and emotional eating patterns possibly to ameliorate feelings of low mood, anxiety, and depression. Impulsivity traits seen in IBD patients may predispose them to palatable food intake as an immediate reward rather than concerns for future health. The upregulation of enteroendocrine cells (EEC) peptide response to food intake has been described in ileal inflammation, which may lead to alterations in gut-brain signaling with implications for appetite and eating behavior. In summary, a complex interplay of gut peptides, psychological, cognitive factors, disease-related symptoms, and inflammatory burden may ultimately govern eating behavior in intestinal inflammation.
Collapse
Affiliation(s)
- Gordon William Moran
- National Institute of Health Research Nottingham Biomedical Research Centre, University of Nottingham, and Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
- Correspondence:
| | - Gita Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
27
|
Hindsø M, Svane MS, Hedbäck N, Holst JJ, Madsbad S, Bojsen-Møller KN. The role of GLP-1 in postprandial glucose metabolism after bariatric surgery: a narrative review of human GLP-1 receptor antagonist studies. Surg Obes Relat Dis 2021; 17:1383-1391. [PMID: 33771461 DOI: 10.1016/j.soard.2021.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
The Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) bariatric procedures lead to remission or improvement of type 2 diabetes. A weight loss-independent augmentation of postprandial insulin secretion contributes to the improvement in glycemic control after RYGB and is associated with a ∼10-fold increase in plasma concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the physiologic importance of the markedly increased postprandial GLP-1 secretion after RYGB has been much debated. The effect of GLP-1 receptor blockade after RYGB has been investigated in 12 studies. The studies indicate a shift toward a more prominent role for GLP-1 in postprandial β-cell function after RYGB. The effect of GLP-1 receptor antagonism on glucose tolerance after RYGB is more complex and is associated with important methodological challenges. The postprandial GLP-1 response is less enhanced after SG compared with RYGB. However, the effect of GLP-1 receptor blockade after SG has been examined in 1 study only and needs further investigation.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen and Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
28
|
van Duinkerken E, Bernardes G, van Bloemendaal L, Veltman DJ, Barkhof F, Mograbi DC, Gerdes VEA, Deacon CF, Holst JJ, Drent ML, Diamant M, ten Kulve J, Ijzerman RG. Cerebral effects of glucagon-like peptide-1 receptor blockade before and after Roux-en-Y gastric bypass surgery in obese women: A proof-of-concept resting-state functional MRI study. Diabetes Obes Metab 2021; 23:415-424. [PMID: 33084088 PMCID: PMC7821255 DOI: 10.1111/dom.14233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
AIM To assess the effects of Roux-en-Y gastric bypass surgery (RYGB)-related changes in glucagon-like peptide-1 (GLP-1) on cerebral resting-state functioning in obese women. MATERIALS AND METHODS In nine obese females aged 40-54 years in the fasted state, we studied the effects of RYGB and GLP-1 on five a priori selected networks implicated in food- and reward-related processes as well as environment monitoring (default mode, right frontoparietal, basal ganglia, insula/anterior cingulate and anterior cingulate/orbitofrontal networks). RESULTS Before surgery, GLP-1 receptor blockade (using exendin9-39) was associated with increased right caudate nucleus (basal ganglia network) and decreased right middle frontal (right frontoparietal network) connectivity compared with placebo. RYGB resulted in decreased right orbitofrontal (insula/anterior cingulate network) connectivity. In the default mode network, after surgery, GLP-1 receptor blockade had a larger effect on connectivity in this region than GLP-1 receptor blockade before RYGB (all PFWE < .05). Results remained similar after correction for changes in body weight. Default mode and right frontoparietal network connectivity changes were related to changes in body mass index and food scores after RYGB. CONCLUSIONS These findings suggest GLP-1 involvement in resting-state networks related to food and reward processes and monitoring of the internal and external environment, pointing to a potential role for GLP-1-induced changes in resting-state connectivity in RYGB-mediated weight loss and appetite control.
Collapse
Affiliation(s)
- Eelco van Duinkerken
- Department of Medical PsychologyAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Department of NeurologyHospital Universitário Gaffrée e Guinle, Universidade Federal do Estado do Rio de JaneiroRio de JaneiroBrazil
- Center for EpilepsyInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Gabriel Bernardes
- Departament of PsychologyPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
| | - Liselotte van Bloemendaal
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Daniel C. Mograbi
- Departament of PsychologyPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
- Institute of PsychiatryKing's College LondonLondonUK
| | | | - Carolyn F. Deacon
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Madeleine L. Drent
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Section of Clinical Neuropsychology, Department of Clinical, Neuro‐ & Developmental PsychologyFaculty of Behavioral and Movement Sciences, Vrije UniversiteitAmsterdamthe Netherlands
| | - Michaela Diamant
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Jennifer ten Kulve
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Richard G. Ijzerman
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
29
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
30
|
Pilonis ND, Tischkowitz M, Fitzgerald RC, di Pietro M. Hereditary Diffuse Gastric Cancer: Approaches to Screening, Surveillance, and Treatment. Annu Rev Med 2020; 72:263-280. [PMID: 33217247 DOI: 10.1146/annurev-med-051019-103216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hereditary diffuse gastric cancer (HDGC) is a cancer syndrome associated with a significant lifetime risk of diffuse gastric cancer (DGC), a malignancy characterized by late clinical presentation and poor prognosis, as well as lobular breast cancer. HDGC is linked to germline pathogenic variants in the E-cadherin gene (CDH1) that are inherited in an autosomal dominant pattern; however, in many families with DGC clustering, no genetic cause has been identified. This review discusses key elements that allow risk assessment of potential inherited DGC susceptibility. We provide a practical overview of the recommendations for surveillance and treatment of individuals at risk and patients with early disease. The review also outlines future research avenues to improve our understanding of the genetic background and natural history of the disease, the endoscopic detection of early lesions, and the outcome of prophylactic surgery in young individuals.
Collapse
Affiliation(s)
- Nastazja Dagny Pilonis
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom; .,The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw 02-781, Poland
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | | |
Collapse
|
31
|
Grill HJ. A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology 2020; 161:bqaa093. [PMID: 32516384 PMCID: PMC7899438 DOI: 10.1210/endocr/bqaa093] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic recurring disease whose prevalence has almost tripled over the past 40 years. In individuals with obesity, there is significant increased risk of morbidity and mortality, along with decreased quality of life. Increased obesity prevalence results, at least partly, from the increased global food supply that provides ubiquitous access to tasty, energy-dense foods. These hedonic foods and the nonfood cues that through association become reward predictive cues activate brain appetitive control circuits that drive hyperphagia and weight gain by enhancing food-seeking, motivation, and reward. Behavioral therapy (diet and lifestyle modifications) is the recommended initial treatment for obesity, yet it often fails to achieve meaningful weight loss. Furthermore, those who lose weight regain it over time through biological regulation. The need to effectively treat the pathophysiology of obesity thus centers on biologically based approaches such as bariatric surgery and more recently developed drug therapies. This review highlights neurobiological aspects relevant to obesity causation and treatment by emphasizing the common aspects of the feeding-inhibitory effects of multiple signals. We focus on glucagon like peptide-1 receptor (GLP-1R) signaling as a promising obesity treatment target by discussing the activation of intestinal- and brain-derived GLP-1 and GLP-1R expressing central nervous system circuits resulting from normal eating, bariatric surgery, and GLP-1R agonist drug therapy. Given the increased availability of energy-dense foods and frequent encounters with cues that drive hyperphagia, this review also describes how bariatric surgery and GLP-1R agonist therapies influence food reward and the motivational drive to overeat.
Collapse
Affiliation(s)
- Harvey J Grill
- Institute of Diabetes, Obesity and Metabolism, Graduate Groups for Psychology and Neuroscience, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Nielsen MS, Ritz C, Wewer Albrechtsen NJ, Holst JJ, le Roux CW, Sjödin A. Oxyntomodulin and Glicentin May Predict the Effect of Bariatric Surgery on Food Preferences and Weight Loss. J Clin Endocrinol Metab 2020; 105:5722168. [PMID: 32016415 DOI: 10.1210/clinem/dgaa061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Alterations in several gastrointestinal hormones are implicated in the postoperative suppression of food intake leading to weight loss after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). The aim was to evaluate changes in responses of gastrointestinal hormones after RYGB and SG and the associations of these changes with weight loss, energy intake, and food preferences. METHODS Forty-two subjects with severe obesity were included (32 RYGB; 10 SG). Postprandial responses of glicentin, oxyntomodulin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and ghrelin were measured before and 6 months after surgery. Energy intake and energy density were assessed before and 6 months after surgery using a buffet meal test and weight loss was assessed 18 months after surgery. RESULTS Postprandial concentrations of glicentin, oxyntomodulin, GLP-1, and ghrelin differed between RYGB and SG (all P ≤ .02). Enhanced responses of glicentin and oxyntomodulin predicted a greater weight loss (both P < .01) and were associated with a larger decrease in energy density (P ≤ .04). No associations were found for GLP-1, PYY, and ghrelin, and changes were not associated with changes in energy intake. When combing all hormones, 60%, 19%, and 33% of the variations in weight loss, energy intake, and energy density, respectively, could be explained. CONCLUSION Postprandial responses of gastrointestinal hormones differed between RYGB and SG. Enhanced responses of glicentin and oxyntomodulin predicted a better weight loss and were associated with a decreased preference for energy-dense foods. Replication of these results could imply an opportunity to identify patients in need of additional support after surgical treatments of obesity.
Collapse
Affiliation(s)
- Mette S Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- The Danish Diabetes Academy, Odense, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carel W le Roux
- Investigative Science, Imperial College London, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Hankir MK, Al-Bas S, Rullmann M, Chakaroun R, Seyfried F, Pleger B. Homeostatic, reward and executive brain functions after gastric bypass surgery. Appetite 2020; 146:104419. [DOI: 10.1016/j.appet.2019.104419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/01/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
34
|
Xie C, Wang X, Jones KL, Horowitz M, Sun Z, Little TJ, Rayner CK, Wu T. Role of endogenous glucagon-like peptide-1 enhanced by vildagliptin in the glycaemic and energy expenditure responses to intraduodenal fat infusion in type 2 diabetes. Diabetes Obes Metab 2020; 22:383-392. [PMID: 31693275 DOI: 10.1111/dom.13906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
AIM To evaluate the effects of the dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin on glycaemic and energy expenditure responses during intraduodenal fat infusion, as well as the contribution of endogenous glucagon-like peptide-1 (GLP-1) signalling, in people with type 2 diabetes (T2DM). METHODS A total of 15 people with T2DM managed by diet and/or metformin (glycated haemoglobin 49.3 ± 2.1 mmol/mol) were studied on three occasions (two with vildagliptin and one with placebo) in a double-blind, randomized, crossover fashion. On each day, vildagliptin 50 mg or placebo was given orally, followed by intravenous exendin (9-39) 600 pmol/kg/min, on one of the two vildagliptin treatment days, or 0.9% saline over 180 minutes. At between 0 and 120 minutes, a fat emulsion was infused intraduodenally at 2 kcal/min. Energy expenditure, plasma glucose and glucose-regulatory hormones were evaluated. RESULTS Intraduodenal fat increased plasma GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon, and energy expenditure, and decreased plasma glucose (all P < 0.05). On the two intravenous saline days, plasma glucose and glucagon were lower, plasma intact GLP-1 was higher (all P < 0.05), and energy expenditure tended to be lower after vildagliptin (P = 0.08) than placebo. On the two vildagliptin days, plasma glucose, glucagon and GLP-1 (both total and intact), and energy expenditure were higher during intravenous exendin (9-39) than saline (all P < 0.05). CONCLUSIONS In well-controlled T2DM during intraduodenal fat infusion, vildagliptin lowered plasma glucose and glucagon, and tended to decrease energy expenditure, effects that were mediated by endogenous GLP-1.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Xuyi Wang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Tanya J Little
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Katsogiannos P, Kamble PG, Wiklund U, Sundbom M, Espes D, Hammar U, Karlsson FA, Pereira MJ, Eriksson JW. Rapid changes in neuroendocrine regulation may contribute to reversal of type 2 diabetes after gastric bypass surgery. Endocrine 2020; 67:344-353. [PMID: 31983031 PMCID: PMC7026226 DOI: 10.1007/s12020-020-02203-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To explore the role of hormones and the autonomic nervous system in the rapid remission of diabetes after Roux-en-Y Gastric Bypass (RYGB). RESEARCH DESIGN AND METHODS Nineteen obese patients with type 2 diabetes, 7 M/12 F, were randomized (2:1) to RYGB or standard-of-care medical treatment (control). At baseline and 4 and 24 weeks post surgery, fasting blood sampling, OGTT, intravenous arginine challenge, and heart-rate variability (HRV) assessments were performed. RESULTS At both 4 and 24 weeks post-RYGB the following effects were found: arginine-stimulated insulin secretion was reduced. GLP-1, GIP, and glucagon rise during OGTT was enhanced. IGF-1 and GH levels increased. In addition, total HRV and spectral components PLF (power of low frequency) and PHF (power of high frequency) increased. At 4 weeks, morning cortisol was lower than baseline and 24 weeks. At 24 weeks, NEFA levels during OGTT, and the PLF/PHF ratio decreased. None of these changes were seen in the control group. CONCLUSIONS There were rapid changes within 4 weeks after RYGB: signs of enhanced parasympathetic nerve activity, reduced morning cortisol, and enhanced incretin and glucagon responses to glucose. The findings suggest that neurohormonal mechanisms can contribute to the rapid improvement of insulin resistance and glycemia following RYGB in type 2 diabetes.
Collapse
Affiliation(s)
- Petros Katsogiannos
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Radiation Sciences, Biomedical Engineering & Informatics, Umeå University, Umeå, Sweden
| | | | - Daniel Espes
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ulf Hammar
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - F Anders Karlsson
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Science, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
36
|
Ma N, Ma R, Tang K, Li X, He B. Roux-en-Y Gastric Bypass in Obese Diabetic Rats Promotes Autophagy to Improve Lipid Metabolism through mTOR/p70S6K Signaling Pathway. J Diabetes Res 2020; 2020:4326549. [PMID: 32309446 PMCID: PMC7136782 DOI: 10.1155/2020/4326549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the effects of Roux-en-Y gastric bypass (RYGB) surgery on markers of liver mitochondrial dynamics and find new therapeutic basis on obese type 2 diabetes mellitus (T2DM) patients. Materials and Methods. Thirty-two rats were divided into nondiabetic group, diabetic group, sham group, and RYGB group. The Dual-energy X-ray absorptiometry (DEXA) was used to detect short-term curriculum vitae for rat body component and fat and lean mass. Hepatic lipid content and triglyceride levels were detected by Oil Red O staining. Western blotting was used to examine autophagy and mammalian target of rapamycin/P70S6 kinase (mTOR/p70S6K) pathway-related proteins. The carbon dioxide production from the oxidation of [14C] oleate was measured. Plasma glucose was measured by glucose oxidase assay. The insulin and C-peptide were detected. Triacylglyceride (TG) and free fat acid (FFA) in plasma were determined by enzymatic colorimetric assays. RESULTS RYGB improved metabolic parameters and enhanced plasma GLP-1 level, ameliorated the lipopexia, and increased insulin sensitivity in the liver; RYGB promoted the hepatic autophagy and inhibited the mTOR/p70S6K signaling pathway. GLP-1 reduced fat load and increased fatty acid β-oxidation by activated autophagy to regulate the hepatic lipid pathway through mTOR/p70S6K signaling pathway. CONCLUSIONS RYGB may reduce liver lipid toxicity and improve insulin sensitivity through activating the hepatic fat hydrolysis pathway and inhibiting the liver fat synthesis pathway. However, the transport pathway of liver fat does not play a key role.
Collapse
Affiliation(s)
- Nanxi Ma
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rui Ma
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kaixin Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xuesong Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
37
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
38
|
Maurer L, Mai K, Krude H, Haynes JD, Weygandt M, Spranger J. Interaction of circulating GLP-1 and the response of the dorsolateral prefrontal cortex to food-cues predicts body weight development. Mol Metab 2019; 29:136-144. [PMID: 31668385 PMCID: PMC6812034 DOI: 10.1016/j.molmet.2019.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES This study evaluated the impact of the interaction between the anorexigenic incretin hormone glucagon-like peptide-1 (GLP-1) and reward-related brain activity in the dorsolateral prefrontal cortex (DLPFC), a key area of behavioral control, on future weight loss in obese individuals. METHODS We performed a weight loss-weight maintenance intervention study over 27 months. We applied an fMRI food-cue reactivity paradigm during which the participants were passively exposed to food pictures to evaluate neuronal activity in the DLPFC. Additionally, we measured concentrations of circulating GLP-1 levels during a standard oral glucose tolerance test. Phenotyping was performed consecutively before and after a 3-month low-calorie diet as well as after a randomized 12-month trial, investigating the effect of a combined behavioral intervention on body weight maintenance. Participants were then followed-up for another 12 months without further intervention. RESULTS Using voxel-wise linear mixed-effects regression analyses, we evaluated 56 measurements and identified a strong interaction between circulating, endogenous GLP-1 levels and DLPFC activity predicting body weight change over the total observation period (t = -6.17, p = 1.6 · 10-7). While neither the GLP-1 nor the DLPFC response individually predicted the subsequent weight change, participants achieved body weight loss when the GLP-1 and the DLPFC responses occurred concurrently. CONCLUSIONS Our data demonstrate an interaction between a peripheral hormonal signal and central nervous activity as robust predictor of body weight change throughout the different periods of a long-term life-style intervention. The preeminent role of their interdependency compared to the partly ambivalent effects of the single components argues for integrative approaches to improve sensitivity and reliability of weight prediction conventionally based on individual biomarkers.
Collapse
Affiliation(s)
- Lukas Maurer
- Charité - Universitätsmedizin Berlin, Clinic of Endocrinology, Diabetes and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, Charité Center for Cardiovascular Research, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Charité - Universitätsmedizin Berlin, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Knut Mai
- Charité - Universitätsmedizin Berlin, Clinic of Endocrinology, Diabetes and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Heiko Krude
- Charité - Universitätsmedizin Berlin, Clinic of Pediatric Endocrinology and Diabetology, Berlin, Germany
| | - John-Dylan Haynes
- Charité - Universitätsmedizin Berlin, Excellence Cluster NeuroCure, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin, Germany
| | - Martin Weygandt
- Charité - Universitätsmedizin Berlin, Excellence Cluster NeuroCure, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, Clinic of Endocrinology, Diabetes and Metabolism, Berlin, Germany; Charité - Universitätsmedizin Berlin, Charité Center for Cardiovascular Research, Berlin, Germany; Charité - Universitätsmedizin Berlin, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
39
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Zhang X, Young RL, Bound M, Hu S, Jones KL, Horowitz M, Rayner CK, Wu T. Comparative Effects of Proximal and Distal Small Intestinal Glucose Exposure on Glycemia, Incretin Hormone Secretion, and the Incretin Effect in Health and Type 2 Diabetes. Diabetes Care 2019; 42:520-528. [PMID: 30765429 DOI: 10.2337/dc18-2156] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cells releasing glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are distributed predominately in the proximal and distal gut, respectively. Hence, the region of gut exposed to nutrients may influence GIP and GLP-1 secretion and impact on the incretin effect and gastrointestinal-mediated glucose disposal (GIGD). We evaluated glycemic and incretin responses to glucose administered into the proximal or distal small intestine and quantified the corresponding incretin effect and GIGD in health and type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS Ten healthy subjects and 10 patients with T2DM were each studied on four occasions. On two days, a transnasal catheter was positioned with infusion ports opening 13 cm and 190 cm beyond the pylorus, and 30 g glucose with 3 g 3-O-methylglucose (a marker of glucose absorption) was infused into either site and 0.9% saline into the alternate site over 60 min. Matching intravenous isoglycemic clamp studies were performed on the other two days. Blood glucose, serum 3-O-methylglucose, and plasma hormones were evaluated over 180 min. RESULTS In both groups, blood glucose and serum 3-O-methylglucose concentrations were higher after proximal than distal glucose infusion (all P < 0.001). Plasma GLP-1 increased minimally after proximal, but substantially after distal, glucose infusion, whereas GIP increased promptly after both infusions, with concentrations initially greater, but less sustained, with proximal versus distal infusion (all P < 0.001). Both the incretin effect and GIGD were less with proximal than distal glucose infusion (both P ≤ 0.009). CONCLUSIONS The distal, as opposed to proximal, small intestine is superior in modulating postprandial glucose metabolism in both health and T2DM.
Collapse
Affiliation(s)
- Xiang Zhang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Richard L Young
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Michelle Bound
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Boland B, Mumphrey MB, Hao Z, Gill B, Townsend RL, Yu S, Münzberg H, Morrison CD, Trevaskis JL, Berthoud HR. The PYY/Y2R-Deficient Mouse Responds Normally to High-Fat Diet and Gastric Bypass Surgery. Nutrients 2019; 11:E585. [PMID: 30857366 PMCID: PMC6471341 DOI: 10.3390/nu11030585] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/GOALS The gut hormone peptide YY (PYY) secreted from intestinal L-cells has been implicated in the mechanisms of satiation via Y2-receptor (Y2R) signaling in the brain and periphery and is a major candidate for mediating the beneficial effects of bariatric surgery on appetite and body weight. METHODS Here we assessed the role of Y2R signaling in the response to low- and high-fat diets and its role in the effects of Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure and glucose handling, in global Y2R-deficient (Y2RKO) and wildtype (WT) mice made obese on high-fat diet. RESULTS Both male and female Y2RKO mice responded normally to low- and high-fat diet in terms of body weight, body composition, fasting levels of glucose and insulin, as well as glucose and insulin tolerance for up to 30 weeks of age. Contrary to expectations, obese Y2RKO mice also responded similarly to RYGB compared to WT mice for up to 20 weeks after surgery, with initial hypophagia, sustained body weight loss, and significant improvements in fasting insulin, glucose tolerance, insulin resistance (HOMA-IR), and liver weight compared to sham-operated mice. Furthermore, non-surgical Y2RKO mice weight-matched to RYGB showed the same improvements in glycemic control as Y2RKO mice with RYGB that were similar to WT mice. CONCLUSIONS PYY signaling through Y2R is not required for the normal appetite-suppressing and body weight-lowering effects of RYGB in this global knockout mouse model. Potential compensatory adaptations of PYY signaling through other receptor subtypes or other gut satiety hormones such as glucagon-like peptide-1 (GLP-1) remain to be investigated.
Collapse
Affiliation(s)
- Brandon Boland
- Cardiovascular, Renal & Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| | - Michael B Mumphrey
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Zheng Hao
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Benji Gill
- Cardiovascular, Renal & Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| | - R Leigh Townsend
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - James L Trevaskis
- Cardiovascular, Renal & Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
42
|
Salehi M, Purnell JQ. The Role of Glucagon-Like Peptide-1 in Energy Homeostasis. Metab Syndr Relat Disord 2019; 17:183-191. [PMID: 30720393 DOI: 10.1089/met.2018.0088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Energy homeostasis is coordinated by bidirectional communication pathways between the brain and peripheral organs, including adipose tissue, muscle, the pancreas, liver, and gut. Disruption of the integrated chemical, hormonal, and neuronal signals that constitute the gut-brain axis significantly contributes to disorders of metabolism and body weight. Initial studies of glucagon-like peptide-1 (GLP-1), a gut hormone released in response to the ingestion of nutrients, focused on its incretin actions to improve postprandial glucose homeostasis by enhancing meal-induced insulin secretion. However, GLP-1 is also a key player in the gut-brain regulatory axis with multiple effects on appetite and energy metabolism outside of its peripheral glucoregulatory actions. In this review, we explore the function of GLP-1 as a component of the gut-brain axis in the regulation of energy homeostasis, and consider the implications of this role for the development of therapeutic treatment options for obesity.
Collapse
Affiliation(s)
- Marzieh Salehi
- 1 Division of Diabetes, Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, Texas.,2 Bartter Research Unit, Audie Murphy Hospital, South Texas Veteran Health Care System, San Antonio, Texas
| | - Jonathan Q Purnell
- 3 The Knight Cardiovascular Institute, Mailcode MDYMI, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
43
|
Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Metabolic and Endocrine Consequences of Bariatric Surgery. Front Endocrinol (Lausanne) 2019; 10:626. [PMID: 31608009 PMCID: PMC6761298 DOI: 10.3389/fendo.2019.00626] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is one of the most serious worldwide epidemics of the twenty-first century according to the World Health Organization. Frequently associated with a number of comorbidities, obesity threatens and compromises individual health and quality of life. Bariatric surgery (BS) has been demonstrated to be an effective treatment to achieve not only sustained weight loss but also significant metabolic improvement that goes beyond mere weight loss. The beneficial effects of BS on metabolic traits are so widely recognized that some authors have proposed BS as metabolic surgery that could be prescribed even for moderate obesity. However, most of the BS procedures imply malabsorption and/or gastric acid reduction which lead to nutrient deficiency and, consequently, further complications could be developed in the long term. In fact, BS not only affects metabolic homeostasis but also has pronounced effects on endocrine systems other than those exclusively involved in metabolic function. The somatotropic, corticotropic, and gonadal axes as well as bone health have also been shown to be affected by the various BS procedures. Accordingly, further consequences and complications of BS in the long term in systems other than metabolic system need to be addressed in large cohorts, taking into account each bariatric procedure before making generalized recommendations for BS. In this review, current data regarding these issues are summarized, paying special attention to the somatotropic, corticotropic, gonadal axes, and bone post-operative health.
Collapse
Affiliation(s)
- Isabel Cornejo-Pareja
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Málaga, Spain
| | - Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Málaga, Spain
- *Correspondence: Mercedes Clemente-Postigo
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Málaga, Spain
- Francisco J. Tinahones
| |
Collapse
|
44
|
Zhai H, Li Z, Peng M, Huang Z, Qin T, Chen L, Li H, Zhang H, Zhang W, Xu G. Takeda G Protein-Coupled Receptor 5-Mechanistic Target of Rapamycin Complex 1 Signaling Contributes to the Increment of Glucagon-Like Peptide-1 Production after Roux-en-Y Gastric Bypass. EBioMedicine 2018; 32:201-214. [PMID: 29859856 PMCID: PMC6020750 DOI: 10.1016/j.ebiom.2018.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The mechanism by which Roux-en-Y Gastric Bypass (RYGB) increases the secretion of glucagon-like peptide-1 (GLP-1) remains incompletely defined. Here we investigated whether TGR5-mTORC1 signaling mediates the RYGB-induced alteration in GLP-1 production in mice and human beings. METHODS Circulating bile acids, TGR5-mTORC1 signaling, GLP-1 synthesis and secretion were determined in lean or obese male C57BL/6 mice with or without RYGB operation, as well as in normal glycemic subjects, obese patients with type 2 diabetes before and after RYGB. RESULTS Positive relationships were observed among circulating bile acids, ileal mechanistic target of rapamycin complex 1 (mTORC1) signaling and GLP-1 during changes in energy status in the present study. RYGB increased circulating bile acids, ileal Takeda G protein-coupled receptor 5 (TGR5) and mTORC1 signaling activity, as well as GLP-1 production in both mice and human subjects. Inhibition of ileal mTORC1 signaling by rapamycin significantly attenuated the stimulation of bile acid secretion, TGR5 expression and GLP-1 synthesis induced by RYGB in lean and diet-induced obese mice. GLP-1 production and ileal TGR5-mTORC1 signaling were positively correlated with plasma deoxycholic acid (DCA) in mice. Treatment of STC-1 cells with DCA stimulated the production of GLP-1. This effect was associated with a significant enhancement of TGR5-mTORC1 signaling. siRNA knockdown of mTORC1 or TGR5 abolished the enhancement of GLP-1 synthesis induced by DCA. DCA increased interaction between mTOR-regulatory-associated protein of mechanistic target of rapamycin (Raptor) and TGR5 in STC-1 cells. INTERPRETATION Deoxycholic acid-TGR5-mTORC1 signaling contributes to the up-regulation of GLP-1 production after RYGB.
Collapse
Affiliation(s)
- Hening Zhai
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China; Endoscopy Center, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Zhi Li
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Miao Peng
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Zhaoqi Huang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Tingfeng Qin
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Linxi Chen
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Hanbing Li
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Heng Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Weizhen Zhang
- Shenzhen University Diabetes Center, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA.
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
45
|
Abstract
Glucagon-like peptide-1 (GLP-1) released from gut enteroendocrine cells controls meal-related glycemic excursions through augmentation of insulin and inhibition of glucagon secretion. GLP-1 also inhibits gastric emptying and food intake, actions maximizing nutrient absorption while limiting weight gain. Here I review the circuits engaged by endogenous versus pharmacological GLP-1 action, highlighting key GLP-1 receptor (GLP-1R)-positive cell types and pathways transducing metabolic and non-glycemic GLP-1 signals. The role(s) of GLP-1 in the benefits and side effects associated with bariatric surgery are discussed and actions of GLP-1 controlling islet function, appetite, inflammation, and cardiovascular pathophysiology are highlighted. Refinement of the risk-versus-benefit profile of GLP-1-based therapies for the treatment of diabetes and obesity has stimulated development of orally bioavailable agonists, allosteric modulators, and unimolecular multi-agonists, all targeting the GLP-1R. This review highlights established and emerging concepts, unanswered questions, and future challenges for development and optimization of GLP-1R agonists in the treatment of metabolic disease.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Mailbox 39, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
46
|
Hankir MK, Seyfried F, Miras AD, Cowley MA. Brain Feeding Circuits after Roux-en-Y Gastric Bypass. Trends Endocrinol Metab 2018; 29:218-237. [PMID: 29475578 DOI: 10.1016/j.tem.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
Metabolic surgical procedures, such as Roux-en-Y gastric bypass (RYGB), uniquely reprogram feeding behavior and body weight in obese subjects. Clinical neuroimaging and animal studies are only now beginning to shed light on some of the underlying central mechanisms. We present here the roles of key brain neurotransmitter/neuromodulator systems in food choice, value, and intake at various stages after RYGB. In doing so, we elaborate on how known signals emanating from the reorganized gut, including peptide hormones and microbiota products, impinge on newly mapped homeostatic and hedonic brain feeding circuits. Continued progress in the rapidly evolving field of metabolic surgery will inform the design of more effective weight-loss compounds.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany; German Research Foundation Collaborative Research Center in Obesity Mechanisms, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Florian Seyfried
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Alexander D Miras
- Department of Investigative Science, Imperial College London Academic Healthcare Centre, London W12 0NN, UK
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
47
|
Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol 2018; 91:20170910. [PMID: 29365284 DOI: 10.1259/bjr.20170910] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity constitutes a major global health threat. Despite the success of bariatric surgery in delivering sustainable weight loss and improvement in obesity-related morbidity, effective non-surgical treatments are urgently needed, necessitating an increased understanding of body weight regulation. Neuroimaging studies undertaken in people with healthy weight, overweight, obesity and following bariatric surgery have contributed to identifying the neurophysiological changes seen in obesity and help increase our understanding of the mechanisms driving the favourable eating behaviour changes and sustained weight loss engendered by bariatric surgery. These studies have revealed a key interplay between peripheral metabolic signals, homeostatic and hedonic brain regions and genetics. Findings from brain functional magnetic resonance imaging (fMRI) studies have consistently associated obesity with an increased motivational drive to eat, increased reward responses to food cues and impaired food-related self-control processes. Interestingly, new data link these obesity-associated changes with structural and connectivity changes within the central nervous system. Moreover, emerging data suggest that bariatric surgery leads to neuroplastic recovery. A greater understanding of the interactions between peripheral signals of energy balance, the neural substrates that regulate eating behaviour, the environment and genetics will be key for the development of novel therapeutic strategies for obesity. This review provides an overview of our current understanding of the pathoaetiology of obesity with a focus upon the role that fMRI studies have played in enhancing our understanding of the central regulation of eating behaviour and energy homeostasis.
Collapse
Affiliation(s)
- Janine M Makaronidis
- 1 Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London , London , UK.,2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital , London , UK.,3 Bariatric Centre for Weight Management and Metabolic Surgery, National Institute of Health Research, UCLH Biomedical Research Centre , London , UK
| | - Rachel L Batterham
- 1 Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London , London , UK.,2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital , London , UK.,3 Bariatric Centre for Weight Management and Metabolic Surgery, National Institute of Health Research, UCLH Biomedical Research Centre , London , UK
| |
Collapse
|
48
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
49
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|