1
|
Skowronski AA, Leibel RL, LeDuc CA. Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk. Endocr Rev 2024; 45:253-280. [PMID: 37971140 PMCID: PMC10911958 DOI: 10.1210/endrev/bnad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.
Collapse
Affiliation(s)
- Alicja A Skowronski
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Mathrani A, Yip W, Sequeira-Bisson IR, Barnett D, Stevenson O, Taylor MW, Poppitt SD. Effect of a 12-Week Polyphenol Rutin Intervention on Markers of Pancreatic β-Cell Function and Gut Microbiota in Adults with Overweight without Diabetes. Nutrients 2023; 15:3360. [PMID: 37571297 PMCID: PMC10420824 DOI: 10.3390/nu15153360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Supplementation with prebiotic polyphenol rutin is a potential dietary therapy for type 2 diabetes prevention in adults with obesity, based on previous glycaemic improvement in transgenic mouse models. Gut microbiota are hypothesised to underpin these effects. We investigated the effect of rutin supplementation on pancreatic β-cell function measured as C-peptide/glucose ratio, and 16S rRNA gene-based gut microbiota profiles, in a cohort of individuals with overweight plus normoglycaemia or prediabetes. Eighty-seven participants were enrolled, aged 18-65 years with BMI of 23-35 kg/m2. This was a 12-week double-blind randomised controlled trial (RCT), with 3 treatments comprising (i) placebo control, (ii) 500 mg/day encapsulated rutin, and (iii) 500 mg/day rutin-supplemented yoghurt. A 2-h oral glucose tolerance test (OGTT) was performed at baseline and at the end of the trial, with faecal samples also collected. Compliance with treatment was high (~90%), but rutin in both capsule and dietary format did not alter pancreatic β-cell response to OGTT over 12 weeks. Gut bacterial community composition also did not significantly change, with Firmicutes dominating irrespective of treatment. Fasting plasma glucose negatively correlated with the abundance of the butyrate producer Roseburia inulinivorans, known for its anti-inflammatory capacity. This is the first RCT to investigate postprandial pancreatic β-cell function in response to rutin supplementation.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Wilson Yip
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Oliver Stevenson
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Verma N, Despa F. The association between renal accumulation of pancreatic amyloid-forming amylin and renal hypoxia. Front Endocrinol (Lausanne) 2023; 14:1104662. [PMID: 36875454 PMCID: PMC9978768 DOI: 10.3389/fendo.2023.1104662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic kidney disease (CKD) is increasing worldwide and is associated with diabetic states (obesity, prediabetes and type-2 diabetes mellitus). The kidney is intrinsically susceptible to low oxygen (hypoxia) and renal hypoxia plays a vital role in the progression of CKD. Recent studies suggest an association between CKD and renal deposition of amyloid-forming amylin secreted from the pancreas. Renal accumulation of amyloid-forming amylin is associated with hypertension, mitochondrial dysfunction, increased production of reactive oxygen species (ROS) and activation of hypoxia signaling in the kidney. In this review we will discuss potential associations between renal amylin amyloid accumulation, hypertension, and mechanism of hypoxia-induced kidney dysfunction, including activation of hypoxia-inducible factors (HIFs) and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
4
|
Gurlo T, Prakash TP, Wang Z, Archang M, Pei L, Rosenberger M, Pirie E, Lee RG, Butler PC. Efficacy of IAPP suppression in mouse and human islets by GLP-1 analogue conjugated antisense oligonucleotide. Front Mol Biosci 2023; 10:1096286. [PMID: 36814640 PMCID: PMC9939749 DOI: 10.3389/fmolb.2023.1096286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Insulin resistance is the major risk factor for Type 2 diabetes (T2D). In vulnerable individuals, insulin resistance induces a progressive loss of insulin secretion with islet pathology revealing a partial deficit of beta cells and islet amyloid derived from islet amyloid polypeptide (IAPP). IAPP is co-expressed and secreted with insulin by beta cells, expression of both proteins being upregulated in response to insulin resistance. If IAPP expression exceeds the threshold for clearance of misfolded proteins, beta cell failure occurs exacerbated by the action of IAPP toxicity to compromise the autophagy lysosomal pathway. We postulated that suppression of IAPP expression by an IAPP antisense oligonucleotide delivered to beta cells by the GLP-1 agonist exenatide (eGLP1-IAPP-ASO) is a potential disease modifying therapy for T2D. While eGLP1-IAPP-ASO suppressed mouse IAPP and transgenic human IAPP expression in mouse islets, it had no discernable effects on IAPP expression in human islets under the conditions studied. Suppression of transgenic human IAPP expression in mouse islets attenuated disruption of the autophagy lysosomal pathway in beta cells, supporting the potential of this strategy.
Collapse
Affiliation(s)
- Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States,*Correspondence: Tatyana Gurlo, ; Peter C. Butler,
| | | | - Zhongying Wang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maani Archang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lina Pei
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Madeline Rosenberger
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elaine Pirie
- IONIS Pharmaceuticals, Carlsbad, CA, United States
| | | | - Peter C. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States,*Correspondence: Tatyana Gurlo, ; Peter C. Butler,
| |
Collapse
|
5
|
Jastreboff AM, Kushner RF. New Frontiers in Obesity Treatment: GLP-1 and Nascent Nutrient-Stimulated Hormone-Based Therapeutics. Annu Rev Med 2023; 74:125-139. [PMID: 36706749 DOI: 10.1146/annurev-med-043021-014919] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nearly half of Americans are projected to have obesity by 2030, underscoring the pressing need for effective treatments. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) represent the first agents in a rapidly evolving, highly promising landscape of nascent hormone-based obesity therapeutics. With the understanding of the neurobiology of obesity rapidly expanding, these emerging entero-endocrine and endo-pancreatic agents combined or coformulated with GLP-1 RAs herald a new era of targeted, mechanism-based treatment of obesity. This article reviews GLP-1 RAs in the treatment of obesity and previews the imminent future of nutrient-stimulated hormone-based anti-obesity therapeutics.
Collapse
Affiliation(s)
- Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Robert F Kushner
- Departments of Medicine (Endocrinology) and Medical Education, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
6
|
Antevska A, Long CC, Dupuy SD, Collier JJ, Karlstad MD, Do TD. Mouse Pancreatic Peptide Hormones Probed at the Sub-Single-Islet Level: The Effects of Acute Corticosterone Treatment. J Proteome Res 2023; 22:235-245. [PMID: 36412564 DOI: 10.1021/acs.jproteome.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1. Further investigation indicates that Ins2 may populate both T and R states, whereas Ins1 may not. The assemblies of Ins1's B-chain also introduce more structural heterogeneity than Ins2. Collectively, these features account for their unique degradation profiles, the diabetes risk associated with Ins1, and the protective effect of Ins2. In the same experiments, we observe that the ratio of amylin to Ins1 increased significantly in Cort-treated mice (15:1) compared to the control mice (42:1), correlating well with β-cell proliferation observed in immunoassays on the same animal model. We observe no increase in intact full-length insulin levels but more of the truncated forms, indicating that enzymatic activity is accelerated. Our data provide a molecular basis for reduced insulin action induced by Cort and connections between insulin turnover and insulin resistance.
Collapse
Affiliation(s)
- Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Connor C Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana70808, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
7
|
Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. THERAPY OF ENDOCRINE DISEASE: Amylin and calcitonin - physiology and pharmacology. Eur J Endocrinol 2022; 186:R93-R111. [PMID: 35353712 DOI: 10.1530/eje-21-1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes is a common manifestation of metabolic dysfunction due to obesity and constitutes a major burden for modern health care systems, in concert with the alarming rise in obesity worldwide. In recent years, several successful pharmacotherapies improving glucose metabolism have emerged and some of these also promote weight loss, thus, ameliorating insulin resistance. However, the progressive nature of type 2 diabetes is not halted by these new anti-diabetic pharmacotherapies. Therefore, novel therapies promoting weight loss further and delaying diabetes progression are needed. Amylin, a beta cell hormone, has satiating properties and also delays gastric emptying and inhibits postprandial glucagon secretion with the net result of reducing postprandial glucose excursions. Amylin acts through the six amylin receptors, which share the core component with the calcitonin receptor. Calcitonin, derived from thyroid C cells, is best known for its role in humane calcium metabolism, where it inhibits osteoclasts and reduces circulating calcium. However, calcitonin, particularly of salmon origin, has also been shown to affect insulin sensitivity, reduce the gastric emptying rate and promote satiation. Preclinical trials with agents targeting the calcitonin receptor and the amylin receptors, show improvements in several parameters of glucose metabolism including insulin sensitivity and some of these agents are currently undergoing clinical trials. Here, we review the physiological and pharmacological effects of amylin and calcitonin and discuss the future potential of amylin and calcitonin-based treatments for patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
8
|
Mediators of Amylin Action in Metabolic Control. J Clin Med 2022; 11:jcm11082207. [PMID: 35456307 PMCID: PMC9025724 DOI: 10.3390/jcm11082207] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism.
Collapse
|
9
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
10
|
Wang JW, Chen PY, Huang HH, Yeh C, Chen SC, Lee WJ, Chen CY. Change of plasma amylin after bariatric surgery challenged by oral glucose is associated with remission of type 2 diabetes mellitus. J Chin Med Assoc 2021; 84:1001-1006. [PMID: 34393186 DOI: 10.1097/jcma.0000000000000602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gastric bypass (GB) and sleeve gastrectomy (SG) were found to achieve different remission rates in the treatment of type 2 diabetes (T2DM). The alteration in several gut hormones after bariatric surgery has been demonstrated to play a key role for T2DM remission. Nevertheless, amylin, one of the diabetes-associated peptides, so far has an undetermined position on T2DM remission after bariatric surgery. METHODS Sixty eligible patients with T2DM (GB, 30; SG, 30) were initially enrolled in the hospital-based randomized trial. Twenty patients (GB, 10; SG, 10) who met the inclusion criteria and agreed to undergo 75-g oral glucose tolerance test (OGTT) were recruited. The recruited subjects underwent anthropometric measurements, routine laboratory tests, and 75-g OGTT before and 1 year after bariatric surgery. Enzyme immunoassays for plasma amylin were analyzed. RESULTS All subjects that underwent GB and half of those who underwent SG achieved T2DM remission. Plasma amylin levels significantly decreased 60-90 min after OGTT in the GB group (p < 0.05) and 30-60 minutes after OGTT in the SG group (p < 0.05). Significantly decreased plasma amylin levels were observed at 30-90 minutes after OGTT in the noncomplete remitters of the GB group (p < 0.05). Plasma amylin levels initially increased (p < 0.05) within 30 minutes after OGTT and then decreased (p < 0.05) in the next 30-minute interval in the nonremitters of the SG group. CONCLUSION Postoral glucose challenge amylin levels could be as one of the parameters to evaluate T2DM remission after bariatric surgery, especially in those after SG.
Collapse
Affiliation(s)
- Jiunn-Wei Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Division of Gastroenterology, Department of Internal medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Pei-Yu Chen
- Department of Emergency & Critical Care Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chun Yeh
- Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Shu-Chun Chen
- Department of Nursing, Chang-Gung Institute of Technology, Taoyuan, Taiwan, ROC
| | - Wei-Jei Lee
- Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan, ROC
- Taiwan Society for Metabolic and Bariatric Surgery, Taoyuan Taiwan, ROC
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine and Institute of Emergency and Critical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Taiwan Association for the Study of Small Intestinal Diseases, Taoyuan, Taiwan, ROC
- Chinese Taipei Society for the Study of Obesity, Taipei, Taiwan, ROC
| |
Collapse
|
11
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
12
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
13
|
McKay NJ, Giorgianni NR, Czajka KE, Brzyski MG, Lewandowski CL, Hales ML, Sequeira IK, Bernardo MB, Mietlicki-Baase EG. Plasma levels of ghrelin and GLP-1, but not leptin or amylin, respond to a psychosocial stressor in women and men. Horm Behav 2021; 134:105017. [PMID: 34174584 DOI: 10.1016/j.yhbeh.2021.105017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
It is well known that stress elevates intake of total calories and shifts food preference toward unhealthy food choices. There is, however, little known on the physiological mechanisms that drive stress-induced hyperphagia. In order to better understand how to reduce stress eating, it is critical to identify mechanisms in humans that are points of convergence between stress and eating. The feeding-related hormones ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and amylin are likely candidates. It was hypothesized that ghrelin, an orexigenic hormone, would increase in response to an acute laboratory stressor, but that leptin, GLP-1, and amylin (anorexigenic hormones) would decrease after stress. To this aim, participants (n = 47) came into the laboratory and had feeding-related hormones, salivary cortisol and α-amylase, and self-rated anxiety measured. Then they underwent either exposure to a stressor (n = 24), which reliably elevates measures of stress and energy intake, or a no-stress condition (n = 23). Feeding hormones, stress hormones, and self-rated anxiety were measured twice more after the stressor. Elevated self-rated anxiety and α-amylase confirmed the validity of the stressor. Furthermore, there was a time X condition interaction for both ghrelin and GLP-1. Ghrelin was significantly elevated after stress compared to baseline (p = .02) and there was a trend for GLP-1 to be higher in the stress condition over the no-stress condition immediately after the stressor (p = .07). Overall, ghrelin is the most likely candidate driving energy intake after stress in humans.
Collapse
Affiliation(s)
- Naomi J McKay
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA.
| | - Nicolas R Giorgianni
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Kristin E Czajka
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Michael G Brzyski
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Cassandra L Lewandowski
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Marnee L Hales
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | - Isabelle K Sequeira
- Department of Psychology, State University of New York Buffalo State College, Buffalo, NY 14222, USA
| | | | - Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chem Rev 2021; 121:8285-8307. [PMID: 34137605 DOI: 10.1021/acs.chemrev.1c00196] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review will focus on the process of amyloid-type protein aggregation. Amyloid fibrils are an important hallmark of protein misfolding diseases and therefore have been investigated for decades. Only recently, however, atomic or near-atomic resolution structures have been elucidated from various in vitro and ex vivo obtained fibrils. In parallel, the process of fibril formation has been studied in vitro under highly artificial but comparatively reproducible conditions. The review starts with a summary of what is known and speculated from artificial in vitro amyloid-type protein aggregation experiments. A partially hypothetic fibril selection model will be described that may be suitable to explain why amyloid fibrils look the way they do, in particular, why at least all so far reported high resolution cryo-electron microscopy obtained fibril structures are in register, parallel, cross-β-sheet fibrils that mostly consist of two protofilaments twisted around each other. An intrinsic feature of the model is the prion-like nature of all amyloid assemblies. Transferring the model from the in vitro point of view to the in vivo situation is not straightforward, highly hypothetic, and leaves many open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Henrike Heise
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Myers MG, Affinati AH, Richardson N, Schwartz MW. Central nervous system regulation of organismal energy and glucose homeostasis. Nat Metab 2021; 3:737-750. [PMID: 34158655 DOI: 10.1038/s42255-021-00408-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Growing evidence implicates the brain in the regulation of both immediate fuel availability (for example, circulating glucose) and long-term energy stores (that is, adipose tissue mass). Rather than viewing the adipose tissue and glucose control systems separately, we suggest that the brain systems that control them are components of a larger, highly integrated, 'fuel homeostasis' control system. This conceptual framework, along with new insights into the organization and function of distinct neuronal systems, provides a context within which to understand how metabolic homeostasis is achieved in both basal and postprandial states. We also review evidence that dysfunction of the central fuel homeostasis system contributes to the close association between obesity and type 2 diabetes, with the goal of identifying more effective treatment options for these common metabolic disorders.
Collapse
Affiliation(s)
- Martin G Myers
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Alison H Affinati
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Richardson
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Henriksen K, Broekhuizen K, de Boon WMI, Karsdal MA, Bihlet AR, Christiansen C, Dillingh MR, de Kam M, Kumar R, Burggraaf J, Kamerling IMC. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br J Clin Pharmacol 2021; 87:4786-4796. [PMID: 34019711 DOI: 10.1111/bcp.14921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 11/26/2022] Open
Abstract
There is a need for antidiabetic agents successfully targeting insulin sensitivity and treating obesity control at the same time. The aim of this first-in-human study was (a) to evaluate safety and tolerability, (b) to evaluate pharmacokinetics and (c) to assess indications of receptor engagement of single ascending doses of KBP-042, a dual amylin and calcitonin receptor agonist (DACRA) that has shown promising preclinical data, with superior activity in terms of typical amylin-induced responses including reduction of food intake, weight loss and gluco-regulatory capacities. A randomised double-blind placebo-controlled single ascending dose study was performed with six dose levels of KBP-042 (5, 7.5, 10, 20, 20 (evening), 40 ug) in healthy male adults. KBP-042 or placebo was administered as a single dose after an overnight fast, followed by a standardized lunch after 4 hours. KBP-042 was associated with dose-dependent complaints of nausea and vomiting, with a lack of tolerability at doses of 20 μg and above. Doses of 5-40 μg KBP-042 behaved according to a linear pharmacokinetic profile. Indications of target receptor engagement were observed at the level of glucose control and lowering of bone resorption, compared to placebo. The results of this study showed that doses up to 40 μg were safe, although tolerability was not present at the highest doses. The study confirmed target receptor engagement at the studied doses.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience, Herlev, Denmark.,KeyBioscience AG, Stans, Switzerland
| | | | | | - Morten A Karsdal
- Nordic Bioscience, Herlev, Denmark.,KeyBioscience AG, Stans, Switzerland
| | | | | | | | | | - Raj Kumar
- KeyBioscience AG, Stans, Switzerland
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherland.,Leiden Academic Center for Drug Research, Leiden, the Netherlands.,Leiden University Medical Center, Leiden, the Netherlands
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, the Netherland.,Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front Endocrinol (Lausanne) 2021; 11:617400. [PMID: 33488526 PMCID: PMC7819850 DOI: 10.3389/fendo.2020.617400] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hormones amylin and calcitonin interact with receptors within the same family to exert their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity, while the more potent calcitonin extracted from salmon additionally inhibits gastric emptying, promotes gallbladder relaxation, increases energy expenditure and induces satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates plasma glucose by delaying gastric emptying after meal ingestion, and modulates glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to have metabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD) and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor agonists have demonstrated robust body weight loss, improved glucose tolerance and a decreased deposition of fat in liver tissue beyond what is observed after a body weight loss. The translational aspects of these preclinical data currently remain unknown. Here, we describe the physiology, pathophysiology, and pharmacological effects of amylin and calcitonin and review preclinical and clinical findings alluding to the future potential of amylin and calcitonin-based drugs for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- David S. Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Abstract
Insulin therapy has advanced remarkably over the past few decades. Ultra-rapid-acting and ultra-long-acting insulin analogs are now commercially available. Many additional insulin formulations are in development. This review outlines recent advances in insulin therapy and novel therapies in development.
Collapse
Affiliation(s)
- Leah M. Wilson
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Jessica R. Castle
- Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon, USA
- Address correspondence to: Jessica R. Castle, MD, Division of Endocrinology, Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L607, Portland, OR 97239-3098, USA
| |
Collapse
|
19
|
Abstract
Islet dysfunction is a hallmark of type 2 diabetes mellitus (T2DM). Compelling evidence suggests that accumulation of islet amyloid in the islets of Langerhans significantly contribute to β-cell dysfunction and diabetes. Emerging evidence implicates a role for cystic fibrosis transmembrane-conductance regulator in the regulation of insulin secretion from pancreatic islets. Impaired first-phase insulin responses and glucose homeostasis have also been reported in cystic fibrosis patients. The transforming growth factor-β protein superfamily is central regulators of pancreatic cell function, and has a key role in pancreas development and pancreatic disease, including diabetes and islet dysfunction. It is also becoming clear that islet inflammation plays a key role in the development of islet dysfunction. Inflammatory changes, including accumulation of macrophages, have been documented in type 2 diabetic islets. Islet dysfunction leads to hyperglycemia and ultimately the development of diabetes. In this review, we describe these risk factors and their associations with islet dysfunction.
Collapse
Affiliation(s)
- Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohui Qiu
- Department of nephrology, Ningbo Medical Center Li Huili Eastern Hospital Affiliated to Ningbo University
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020; 127:163-177. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Obesity Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
21
|
Banks WA. The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Curr Pharm Des 2020; 26:1438-1447. [DOI: 10.2174/1381612826666200325110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is one of the most common diseases in the world. Among its effects are an increase in the risk of cognitive impairment, including Alzheimer’s disease, and blood-brain barrier (BBB) dysfunction. DM is characterized by high blood glucose levels that are caused by either lack of insulin (Type I) or resistance to the actions of insulin (Type II). The phenotypes of these two types are dramatically different, with Type I animals being thin, with low levels of leptin as well as insulin, whereas Type II animals are often obese with high levels of both leptin and insulin. The best characterized change in BBB dysfunction is that of disruption. The brain regions that are disrupted, however, vary between Type I vs Type II DM, suggesting that factors other than hyperglycemia, perhaps hormonal factors such as leptin and insulin, play a regionally diverse role in BBB vulnerability or protection. Some BBB transporters are also altered in DM, including P-glycoprotein, lowdensity lipoprotein receptor-related protein 1, and the insulin transporter as other functions of the BBB, such as brain endothelial cell (BEC) expression of matrix metalloproteinases (MMPs) and immune cell trafficking. Pericyte loss secondary to the increased oxidative stress of processing excess glucose through the Krebs cycle is one mechanism that has shown to result in BBB disruption. Vascular endothelial growth factor (VEGF) induced by advanced glycation endproducts can increase the production of matrix metalloproteinases, which in turn affects tight junction proteins, providing another mechanism for BBB disruption as well as effects on P-glycoprotein. Through the enhanced expression of the redox-related mitochondrial transporter ABCB10, redox-sensitive transcription factor NF-E2 related factor-2 (Nrf2) inhibits BEC-monocyte adhesion. Several potential therapies, in addition to those of restoring euglycemia, can prevent some aspects of BBB dysfunction. Carbonic anhydrase inhibition decreases glucose metabolism and so reduces oxidative stress, preserving pericytes and blocking or reversing BBB disruption. Statins or N-acetylcysteine can reverse the BBB opening in some models of DM, fibroblast growth factor-21 improves BBB permeability through an Nrf2-dependent pathway, and nifedipine or VEGF improves memory in DM models. In summary, DM alters various aspects of BBB function through a number of mechanisms. A variety of treatments based on those mechanisms, as well as restoration of euglycemia, may be able to restore BBB functions., including reversal of BBB disruption.
Collapse
Affiliation(s)
- William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
| |
Collapse
|
22
|
Verma N, Liu M, Ly H, Loria A, Campbell KS, Bush H, Kern PA, Jose PA, Taegtmeyer H, Bers DM, Despa S, Goldstein LB, Murray AJ, Despa F. Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int 2020; 97:143-155. [PMID: 31739987 PMCID: PMC6943180 DOI: 10.1016/j.kint.2019.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023]
Abstract
In the setting of type-2 diabetes, there are declines of structural stability and functionality of blood capillaries and red blood cells (RBCs), increasing the risk for microcirculatory disturbances. Correcting hyperglycemia is not entirely effective at reestablishing normal cellular metabolism and function. Therefore, identification of pathological changes occurring before the development of overt hyperglycemia may lead to novel therapeutic targets for reducing the risk of microvascular dysfunction. Here we determine whether RBC-capillary interactions are altered by prediabetic hypersecretion of amylin, an amyloid forming hormone co-synthesized with insulin, and is reversed by endothelial cell-secreted epoxyeicosatrienoic acids. In patients, we found amylin deposition in RBCs in association with type-2 diabetes, heart failure, cancer and stroke. Amylin-coated RBCs have altered shape and reduced functional (non-glycated) hemoglobin. Amylin-coated RBCs administered intravenously in control rats upregulated erythropoietin and renal arginase expression and activity. We also found that diabetic rats expressing amyloid-forming human amylin in the pancreas (the HIP rat model) have increased tissue levels of hypoxia-inducible transcription factors, compared to diabetic rats that express non-amyloid forming rat amylin (the UCD rat model). Upregulation of erythropoietin correlated with lower hematocrit in the HIP model indicating pathologic erythropoiesis. In the HIP model, pharmacological upregulation of endogenous epoxyeicosatrienoic acids protected the renal microvasculature against amylin deposition and also reduced renal accumulation of HIFs. Thus, prediabetes induces dysregulation of amylin homeostasis and promotes amylin deposition in RBCs and the microvasculature altering RBC-capillary interaction leading to activation of hypoxia signaling pathways and pathologic erythropoiesis. Hence, dysregulation of amylin homeostasis could be a therapeutic target for ameliorating diabetic vascular complications.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Miao Liu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Han Ly
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Analia Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Heather Bush
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Division of Endocrinology, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School at University of Texas Health, Houston, Texas, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, California, USA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Larry B Goldstein
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA; Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
23
|
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa ESA, Sun Q. Calcitonin and Bone Physiology: In Vitro, In Vivo, and Clinical Investigations. Int J Endocrinol 2020; 2020:3236828. [PMID: 32963524 PMCID: PMC7501564 DOI: 10.1155/2020/3236828] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Calcitonin was discovered as a peptide hormone that was known to reduce the calcium levels in the systemic circulation. This hypocalcemic effect is produced due to multiple reasons such as inhibition of bone resorption or suppression of calcium release from the bone. Thus, calcitonin was said as a primary regulator of the bone resorption process. This is the reason why calcitonin has been used widely in clinics for the treatment of bone disorders such as osteoporosis, hypercalcemia, and Paget's disease. However, presently calcitonin usage is declined due to the development of efficacious formulations of new drugs. Calcitonin gene-related peptides and several other peptides such as intermedin, amylin, and adrenomedullin (ADM) are categorized in calcitonin family. These peptides are known for the structural similarity with calcitonin. Aside from having a similar structure, these peptides have few overlapping biological activities and signal transduction action through related receptors. However, several other activities are also present that are peptide specific. In vitro and in vivo studies documented the posttreatment effects of calcitonin peptides, i.e., positive effect on bone osteoblasts and their formation and negative effect on osteoclasts and their resorption. The recent research studies carried out on genetically modified mice showed the inhibition of osteoclast activity by amylin, while astonishingly calcitonin plays its role by suppressing osteoblast and bone turnover. This article describes the review of the bone, the activity of the calcitonin family of peptides, and the link between them.
Collapse
Affiliation(s)
- Jingbo Xie
- Department of Orthopedics, Fengcheng People's Hospital, Fengcheng, Jiangxi 331100, China
| | - Jian Guo
- Department of the Second Orthopedics, Hongdu Hospital of Traditional Chinese Medicine Affiliated to Jiangxi University of Traditional Chinese Medicine, Nanchang Hongdu Traditional Chinese Medicine Hospital, Nanchang, Jiangxi 330008, China
| | | | - Mingzheng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiangyang Lv
- Department of Orthopaedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | | | - Ping Li
- Department of Orthopaedics, Ya'an People's Hospital, Ya'an, Sichuan 625000, China
| | | | | | - Qingshan Sun
- Department of Orthopedics, The Third Hospital of Shandong Province, Jinan, Shandong 250031, China
| |
Collapse
|
24
|
Ling W, Huang YM, Qiao YC, Zhang XX, Zhao HL. Human Amylin: From Pathology to Physiology and Pharmacology. Curr Protein Pept Sci 2019; 20:944-957. [DOI: 10.2174/1389203720666190328111833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
The histopathological hallmark of type 2 diabetes is islet amyloid implicated in the developing treatment options. The major component of human islet amyloid is 37 amino acid peptide known as amylin or islet amyloid polypeptide (IAPP). Amylin is an important hormone that is co-localized, copackaged, and co-secreted with insulin from islet β cells. Physiologically, amylin regulates glucose homeostasis by inhibiting insulin and glucagon secretion. Furthermore, amylin modulates satiety and inhibits gastric emptying via the central nervous system. Normally, human IAPP is soluble and natively unfolded in its monomeric state. Pathologically, human IAPP has a propensity to form oligomers and aggregate. The oligomers show misfolded α-helix conformation and can further convert themselves to β-sheet-rich fibrils as amyloid deposits. The pathological findings and physiological functions of amylin have led to the introduction of pramlintide, an amylin analog, for the treatment of diabetes. The history of amylin’s discovery is a representative example of how a pathological finding can translate into physiological exploration and lead to pharmacological intervention. Understanding the importance of transitioning from pathology to physiology and pharmacology can provide novel insight into diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Wei Ling
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yan-Mei Huang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yong-Chao Qiao
- Department of Laboratory, the Affiliated Hospital of Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
25
|
Rose AJ. Role of Peptide Hormones in the Adaptation to Altered Dietary Protein Intake. Nutrients 2019; 11:E1990. [PMID: 31443582 PMCID: PMC6770041 DOI: 10.3390/nu11091990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Dietary protein profoundly influences organismal traits ultimately affecting healthspan. While intracellular signalling downstream of altered amino acid supply is undoubtedly important, peptide hormones have emerged as critical factors determining systemic responses to variations in protein intake. Here the regulation and role of certain peptides hormones in such responses to altered dietary protein intake is reviewed.
Collapse
Affiliation(s)
- Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Department of Biochemistry and Molecular Biology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
26
|
Rose F, Bloom S, Tan T. Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years. Expert Opin Drug Discov 2019; 14:1151-1159. [DOI: 10.1080/17460441.2019.1646243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Frances Rose
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen Bloom
- Department of Investigative Medicine, Imperial College London, London, UK
| | - Tricia Tan
- Department of Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
27
|
McKinley MJ, Denton DA, Ryan PJ, Yao ST, Stefanidis A, Oldfield BJ. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. J Neuroendocrinol 2019; 31:e12689. [PMID: 30672620 DOI: 10.1111/jne.12689] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/14/2023]
Abstract
Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Derek A Denton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Office of the Dean of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Naot D, Musson DS, Cornish J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol Rev 2019; 99:781-805. [PMID: 30540227 DOI: 10.1152/physrev.00066.2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcitonin was discovered over 50 yr ago as a new hormone that rapidly lowers circulating calcium levels. This effect is caused by the inhibition of calcium efflux from bone, as calcitonin is a potent inhibitor of bone resorption. Calcitonin has been in clinical use for conditions of accelerated bone turnover, including Paget's disease and osteoporosis; although in recent years, with the development of drugs that are more potent inhibitors of bone resorption, its use has declined. A number of peptides that are structurally similar to calcitonin form the calcitonin family, which currently includes calcitonin gene-related peptides (αCGRP and βCGRP), amylin, adrenomedullin, and intermedin. Apart from being structurally similar, the peptides signal through related receptors and have some overlapping biological activities, although other activities are peptide specific. In bone, in vitro studies and administration of the peptides to animals generally found inhibitory effects on osteoclasts and bone resorption and positive effects on osteoblasts and bone formation. Surprisingly, studies in genetically modified mice have demonstrated that the physiological role of calcitonin appears to be the inhibition of osteoblast activity and bone turnover, whereas amylin inhibits osteoclast activity. The review article focuses on the activities of peptides of the calcitonin family in bone and the challenges in understanding the relationship between the pharmacological effects and the physiological roles of these peptides.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - David S Musson
- Department of Medicine, University of Auckland , Auckland , New Zealand
| | - Jillian Cornish
- Department of Medicine, University of Auckland , Auckland , New Zealand
| |
Collapse
|
29
|
Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor deficiency are less sensitive to amylin. Am J Physiol Regul Integr Comp Physiol 2018; 315:R856-R865. [DOI: 10.1152/ajpregu.00179.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic hormone amylin is released from beta cells following nutrient ingestion and contributes to the control of body weight and glucose homeostasis. Amylin reduces food intake by activating neurons in the area postrema (AP). Amylin was also shown to synergize with the adipokine leptin, with combination therapy producing greater weight loss and food intake reduction than either hormone alone. Although amylin and leptin were initially thought to interact downstream of the AP in the hypothalamus, recent findings show that the two hormones can act on the same AP neurons, suggesting a more direct relationship. The objective of this study was to determine whether amylin action depends on functional leptin signaling. We tested the ability of amylin to induce satiation and to activate its primary target neurons in the AP in two rodent models of LepR deficiency, the db/db mouse and the Zucker diabetic fatty (ZDF) rat. When compared with wild-type (WT) mice, db/db mice exhibited reduced amylin-induced satiation, reduced amylin-induced Fos in the AP, and a lower expression of calcitonin receptor (CTR) protein, the core component of all amylin receptors. ZDF rats also showed no reduction in food intake following amylin treatment; however, unlike the db/db mice, levels of amylin-induced Fos and CTR in the AP were no different than WT rats. Our results suggest that LepR expression is required for the full anorexic effect of amylin; however, the neuronal activation in the AP seems to depend on the type of LepR mutation.
Collapse
Affiliation(s)
- Sonya Duffy
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Amperometric immunoassay for the obesity biomarker amylin using a screen printed carbon electrode functionalized with an electropolymerized carboxylated polypyrrole. Mikrochim Acta 2018; 185:323. [PMID: 29886520 DOI: 10.1007/s00604-018-2863-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
Amylin (the islet amyloid polypeptide) is a hormone related to adiposity, hunger and satiety. It is co-secreted with insulin from pancreatic B-cells. An amperometric immunosensor is presented here for the determination of amylin. It is making use of a screen printed carbon electrode (SPCE) functionalized with electropolymerized poly(pyrrole propionic acid) (pPPA) with abundant carboxyl groups that facilitate covalent binding of antibody against amylin. A competitive immunoassay was implemented using biotinylated amylin and streptavidin labeled with horse radish peroxidase (HRP-Strept) as the enzymatic tracer. The amperometric detection of H2O2 mediated by hydroquinone was employed as an electrochemical probe to monitor the affinity reaction. The variables involved in the preparation and function of the immunosensor were optimized and the electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The calibration graph for amylin, obtained by amperometry at -200 mV vs Ag pseudo-reference electrode, showed a range of linearity extending from 1.0 fg∙mL-1 to 50 pg∙mL-1, with a detection limit of 0.92 fg∙mL-1. This is approximately 7000 times lower than the minimum detectable concentration reported for the ELISA immunoassays available for amylin. The assay has excellent reproducibility and good selectivity over potential interferents. Graphical abstract Schematic of an amperometric competitive immunoassay for the obesity biomarker amylin using a poly(pyrrole propionic acid)-modified screen-printed electrode. The detection limit is 0.92 fg∙mL-1 amylin. The method provides excellent reproducibility for the measurements, good selectivity and successful applicability to human urine and serum samples.
Collapse
|
31
|
Rodriguez Camargo DC, Garg D, Buday K, Franko A, Rodriguez Camargo A, Schmidt F, Cox SJ, Suladze S, Haslbeck M, Mideksa YG, Gemmecker G, Aichler M, Mettenleiter G, Schulz M, Walch AK, Hrabě de Angelis M, Feige MJ, Sierra CA, Conrad M, Tripsianes K, Ramamoorthy A, Reif B. hIAPP forms toxic oligomers in plasma. Chem Commun (Camb) 2018; 54:5426-5429. [PMID: 29745410 PMCID: PMC5970100 DOI: 10.1039/c8cc03097a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In diabetes, hyperamylinemia contributes to cardiac dysfunction. The interplay between hIAPP, blood glucose and other plasma components is, however, not understood. We show that glucose and LDL interact with hIAPP, resulting in β-sheet rich oligomers with increased β-cell toxicity and hemolytic activity, providing mechanistic insights for a direct link between diabetes and cardiovascular diseases.
Collapse
|
32
|
Liu Y, Ren B, Zhang Y, Sun Y, Chang Y, Liang G, Xu L, Zheng J. Molecular simulation aspects of amyloid peptides at membrane interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1906-1916. [PMID: 29421626 DOI: 10.1016/j.bbamem.2018.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
The interactions of amyloid peptides with cell membranes play an important role in maintaining the integrity and functionality of cell membrane. A thorough molecular-level understanding of the structure, dynamics, and interactions between amyloid peptides and cell membranes is critical to amyloid aggregation and toxicity mechanisms for the bench-to-bedside applications. Here we review the most recent computational studies of amyloid peptides at model cell membranes. Different mechanisms of action of amyloid peptides on/in cell membranes, targeted by different computational techniques at different lengthscales and timescales, are rationally discussed. Finally, we have proposed some new insights into the remaining challenges and perspectives for future studies to improve our understanding of the activity of amyloid peptides associated with protein-misfolding diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Yonglan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China; Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical EngineeringChung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, PR China; Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States.
| |
Collapse
|
33
|
Pulido-Capiz A, Díaz-Molina R, Martínez-Navarro I, Guevara-Olaya LA, Casanueva-Pérez E, Mas-Oliva J, Rivero IA, García-González V. Modulation of Amyloidogenesis Controlled by the C-Terminal Domain of Islet Amyloid Polypeptide Shows New Functions on Hepatocyte Cholesterol Metabolism. Front Endocrinol (Lausanne) 2018; 9:331. [PMID: 29988450 PMCID: PMC6026639 DOI: 10.3389/fendo.2018.00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
The islet amyloid polypeptide (IAPP) or amylin maintains a key role in metabolism. This 37-residues-peptide could form pancreatic amyloids, which are a characteristic feature of diabetes mellitus type 2. However, some species do not form amyloid fibril structures. By employing a biomimetic approach, we generated an extensive panel of optimized sequences of IAPP, which could drastically reduce aggregation propensity. A structural and cellular characterization analysis was performed on the C-terminal domain with the highest aggregation propensity. This allowed the observation of an aggregative phenomenon dependent of the lipid environment. Evaluation of the new F23R variant demonstrated inhibition of β-sheet structure and, therefore, amyloid formation on the native C-terminal, phenomenon that was associated with functional optimization in calcium and cholesterol management coupled with the optimization of insulin secretion by beta cells. When F23R variant was evaluated in microglia cells, a model of amyloidosis, cytotoxic conditions were not registered. In addition, it was found that C-terminal sequences of IAPP could modulate cholesterol metabolism in hepatocytes through regulation of SREBP-2, apoA-1, ABCA1, and LDLR, mechanism that may represent a new function of IAPP on the metabolism of cholesterol, increasing the LDL endocytosis in hepatocytes. Optimized sequences with only one residue modification in the C-terminal core aggregation could diminish β-sheet formation and represent a novel strategy adaptable to other pharmacological targets. Our data suggest a new IAPP function associated with rearrangements on metabolism of cholesterol in hepatocytes.
Collapse
Affiliation(s)
- Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Israel Martínez-Navarro
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
- Facultad de Enfermería, Universidad Autónoma de Baja California, Mexico City, Mexico
| | - Lizbeth A. Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Enrique Casanueva-Pérez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ignacio A. Rivero
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Mexico
- *Correspondence: Victor García-González,
| |
Collapse
|
34
|
Boyle CN, Lutz TA, Le Foll C. Amylin - Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 2017; 8:203-210. [PMID: 29203236 PMCID: PMC5985014 DOI: 10.1016/j.molmet.2017.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. One of its best-characterized effects is the reduction in eating and body weight seen in preclinical and clinical studies. Amylin activates specific receptors, a portion of which it shares with calcitonin gene-related peptide (CGRP). Amylin's role in the control of energy metabolism relates to its satiating effect, but recent data indicate that amylin may also affect hedonic aspects in the control of eating, including a reduction of the rewarding value of food. Recently, several amylin-based peptides have been characterized. Pramlintide (Symlin®) is currently the only one being used clinically to treat type 1 and type 2 diabetes. However other amylin analogs with improved pharmacokinetic properties are being considered as anti-obesity treatment strategies. Several other studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents. SCOPE OF REVIEW This review will briefly summarize amylin physiology and pharmacology and then focus on amylin's role in food reward and the effects of amylin analogs in pre-clinical testing for anti-obesity drugs. CONCLUSION We propose here that the effects of amylin may be homeostatic and hedonic in nature.
Collapse
Affiliation(s)
- Christina Neuner Boyle
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
35
|
Amylin and diabetic cardiomyopathy - amylin-induced sarcolemmal Ca 2+ leak is independent of diabetic remodeling of myocardium. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1923-1930. [PMID: 29066284 DOI: 10.1016/j.bbadis.2017.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023]
Abstract
Amylin is a pancreatic β-cell hormone co-secreted with insulin, plays a role in normal glucose homeostasis, and forms amyloid in the pancreatic islets of individuals with type-2 diabetes. Aggregated amylin is also found in blood and extra-pancreatic tissues, including myocardium. Myocardial amylin accumulation is associated with myocyte Ca2+ dysregulation in diabetic rats expressing human amylin. Whether deposition of amylin in the heart is a consequence of or a contributor to diabetic cardiomyopathy remains unknown. We used amylin knockout (AKO) mice intravenously infused with either human amylin (i.e, the aggregated form) or non-amyloidogenic (i.e., monomeric) rodent amylin to test the hypothesis that aggregated amylin accumulates in the heart in the absence of diabetes. AKO mice infused with human amylin, but not rodent amylin, showed amylin deposits in the myocardium. Cardiac amylin level was larger in males compared to females. Sarcolemmal Ca2+ leak and Ca2+ transients were increased in myocytes isolated from males infused with human amylin while no significant changes occurred in either females injected with human amylin or in rat amylin-infused mice. In isolated cardiac myocytes, the amylin receptor antagonist AC-187 did not effectively block the interaction of amylin with the sarcolemma. In conclusion, circulating aggregated amylin accumulates preferentially in male vs. female hearts and its effects on myocyte Ca2+ cycling do not require diabetic remodeling of the myocardium. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
|
36
|
Raleigh D, Zhang X, Hastoy B, Clark A. The β-cell assassin: IAPP cytotoxicity. J Mol Endocrinol 2017; 59:R121-R140. [PMID: 28811318 DOI: 10.1530/jme-17-0105] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
Islet amyloid polypeptide (IAPP) forms cytotoxic oligomers and amyloid fibrils in islets in type 2 diabetes (T2DM). The causal factors for amyloid formation are largely unknown. Mechanisms of molecular folding and assembly of human IAPP (hIAPP) into β-sheets, oligomers and fibrils have been assessed by detailed biophysical studies of hIAPP and non-fibrillogenic, rodent IAPP (rIAPP); cytotoxicity is associated with the early phases (oligomers/multimers) of fibrillogenesis. Interaction with synthetic membranes promotes β-sheet assembly possibly via a transient α-helical molecular conformation. Cellular hIAPP cytotoxicity can be activated from intracellular or extracellular sites. In transgenic rodents overexpressing hIAPP, intracellular pro-apoptotic signals can be generated at different points in β-cell protein synthesis. Increased cellular trafficking of proIAPP, failure of the unfolded protein response (UPR) or excess trafficking of misfolded peptide via the degradation pathways can induce apoptosis; these data indicate that defects in intracellular handling of hIAPP can induce cytotoxicity. However, there is no evidence for IAPP overexpression in T2DM. Extracellular amyloidosis is directly related to the degree of β-cell apoptosis in islets in T2DM. IAPP fragments, fibrils and multimers interact with membranes causing disruption in vivo and in vitro These findings support a role for extracellular IAPP in β-sheet conformation in cytotoxicity. Inhibitors of fibrillogenesis are useful tools to determine the aberrant mechanisms that result in hIAPP molecular refolding and islet amyloidosis. However, currently, their role as therapeutic agents remains uncertain.
Collapse
Affiliation(s)
- Daniel Raleigh
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
- Research Department of Structural and Molecule BiologyUniversity College London, London, UK
| | - Xiaoxue Zhang
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
| | - Benoît Hastoy
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| |
Collapse
|
37
|
Zhang M, Ren B, Liu Y, Liang G, Sun Y, Xu L, Zheng J. Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations. ACS Chem Neurosci 2017; 8:1789-1800. [PMID: 28585804 DOI: 10.1021/acschemneuro.7b00160] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interaction of human islet amyloid polypeptide (hIAPP) peptides with cell membrane is crucial for the understanding of amyloid toxicity associated with Type II diabetes (T2D). While it is known that the hIAPP-membrane interactions are considered to promote hIAPP aggregation into fibrils and induce membrane disruption, the membrane-induced conformation, orientation, aggregation, and adsorption behaviors of hIAPP peptides have not been well understood at the atomic level. Herein, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the adsorption, orientation, and surface interaction of hIAPP aggregates with different sizes (monomer to tetramer) and conformations (monomer with α-helix and tetramer with β-sheet-rich U-turn) upon adsorption on the lipid bilayers composed of both pure zwitterionic POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mixed anionic POPC/POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) (3:1) lipids. MD simulation results show that hIAPP monomer with α-helical conformation and hIAPP pentamer with β-sheet conformation can adsorb on both POPC and POPC/POPE bilayers via a preferential orientation of N-terminal residues facing toward the bilayer surface. The hIAPP aggregates show stronger interactions with mixed POPC/POPE lipids than pure POPC lipids, consistent with experimental observation that hIAPP adsorption and fibrililation are enhanced on mixed lipid bilayers. While electrostatic interactions are main attractive forces to drive the hIAPP aggregates to adsorb on both bilayers, the introduction of the more hydrophilic head groups of POPE lipids further promote the formation of the interfacial hydrogen bonds. Complement to our previous studies of hIAPP aggregates in bulk solution, this computational work increases our knowledge about the mechanism of amyloid peptide-membrane interactions that is central to the understanding the progression of all amyloid diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- College
of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou 412007, China
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lijian Xu
- College
of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou 412007, China
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
38
|
Varkey J, Langen R. Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:127-139. [PMID: 28579098 PMCID: PMC5461824 DOI: 10.1016/j.jmr.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 06/07/2023]
Abstract
The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single protein can generate different type of membrane curvatures using specific conformations for specific membrane structures and how EPR is a versatile tool well-suited to analyze subtle alterations in structures under such modifying conditions which otherwise would have been difficult using other biophysical tools.
Collapse
Affiliation(s)
- Jobin Varkey
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
39
|
Zhang XX, Pan YH, Huang YM, Zhao HL. Neuroendocrine hormone amylin in diabetes. World J Diabetes 2016; 7:189-97. [PMID: 27162583 PMCID: PMC4856891 DOI: 10.4239/wjd.v7.i9.189] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 02/05/2023] Open
Abstract
The neuroendocrine hormone amylin, also known as islet amyloid polypeptide, is co-localized, co-packaged and co-secreted with insulin from adult pancreatic islet β cells to maintain glucose homeostasis. Specifically, amylin reduces secretion of nutrient-stimulated glucagon, regulates blood pressure with an effect on renin-angiotensin system, and delays gastric emptying. The physiological actions of human amylin attribute to the conformational α-helix monomers whereas the misfolding instable oligomers may be detrimental to the islet β cells and further transform to β-sheet fibrils as amyloid deposits. No direct evidence proves that the amylin fibrils in amyloid deposits cause diabetes. Here we also have performed a systematic review of human amylin gene changes and reported the S20G mutation is minor in the development of diabetes. In addition to the metabolic effects, human amylin may modulate autoimmunity and innate inflammation through regulatory T cells to impact on both human type 1 and type 2 diabetes.
Collapse
|
40
|
Carballo-Pacheco M, Strodel B. Advances in the Simulation of Protein Aggregation at the Atomistic Scale. J Phys Chem B 2016; 120:2991-9. [PMID: 26965454 DOI: 10.1021/acs.jpcb.6b00059] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation into highly structured amyloid fibrils is associated with various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. Amyloids can also have normal biological functions and, in the future, could be used as the basis for novel nanoscale materials. However, a full understanding of the physicochemical forces that drive protein aggregation is still lacking. Such understanding is crucial for the development of drugs that can effectively inhibit aberrant amyloid aggregation and for the directed design of functional amyloids. Atomistic simulations can help understand protein aggregation. In particular, atomistic simulations can be used to study the initial formation of toxic oligomers which are hard to characterize experimentally and to understand the difference in aggregation behavior between different amyloidogenic peptides. Here, we review the latest atomistic simulations of protein aggregation, concentrating on amyloidogenic protein fragments, and provide an outlook for the future in this field.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,AICES Graduate School, RWTH Aachen University , Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Gurlo T, Rivera JF, Butler AE, Cory M, Hoang J, Costes S, Butler PC. CHOP Contributes to, But Is Not the Only Mediator of, IAPP Induced β-Cell Apoptosis. Mol Endocrinol 2016; 30:446-54. [PMID: 26900721 DOI: 10.1210/me.2015-1255] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The islet in type 2 diabetes is characterized by β-cell loss, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). When protein misfolding protective mechanisms are overcome, human IAPP (h-IAPP) forms membrane permeant toxic oligomers that induce β-cell dysfunction and apoptosis. In humans with type 2 diabetes (T2D) and mice transgenic for h-IAPP, endoplasmic reticulum (ER) stress has been inferred from nuclear translocation of CCAAT/enhancer-binding protein homologous protein (CHOP), an established mediator of ER stress. To establish whether h-IAPP toxicity is mediated by ER stress, we evaluated diabetes onset and β-cell mass in h-IAPP transgenic (h-TG) mice with and without deletion of CHOP in comparison with wild-type controls. Diabetes was delayed in h-TG CHOP(-/-) mice, with relatively preserved β-cell mass and decreased β-cell apoptosis. Deletion of CHOP attenuates dysfunction of the autophagy/lysosomal pathway in β-cells of h-TG mice, uncovering a role for CHOP in mediating h-IAPP-induced dysfunction of autophagy. As deletion of CHOP delayed but did not prevent h-IAPP-induced β-cell loss and diabetes, we examined CHOP-independent stress pathways. JNK, a target of the IRE-1pTRAF2 complex, and the Bcl-2 family proapoptotic mediator BIM, a target of ATF4, were comparably activated by h-IAPP expression in the presence and absence of CHOP. Therefore, although these studies affirm that CHOP is a mediator of h-IAPP-induced ER stress, it is not the only one. Therefore, suppression of CHOP alone is unlikely to be a durable therapeutic strategy to protect against h-IAPP toxicity because multiple stress pathways are activated.
Collapse
Affiliation(s)
- T Gurlo
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| | - J F Rivera
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| | - A E Butler
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| | - M Cory
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| | - J Hoang
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| | - S Costes
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7073
| |
Collapse
|
42
|
Kegulian NC, Sankhagowit S, Apostolidou M, Jayasinghe SA, Malmstadt N, Butler PC, Langen R. Membrane Curvature-sensing and Curvature-inducing Activity of Islet Amyloid Polypeptide and Its Implications for Membrane Disruption. J Biol Chem 2015; 290:25782-93. [PMID: 26283787 DOI: 10.1074/jbc.m115.659797] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet β-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well.
Collapse
Affiliation(s)
- Natalie C Kegulian
- From the Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Shalene Sankhagowit
- the Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, and
| | - Melania Apostolidou
- From the Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Sajith A Jayasinghe
- From the Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Noah Malmstadt
- the Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, and
| | - Peter C Butler
- the Larry Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Ralf Langen
- From the Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
43
|
Lopes DHJ, Attar A, Nair G, Hayden EY, Du Z, McDaniel K, Dutt S, Bandmann H, Bravo-Rodriguez K, Mittal S, Klärner FG, Wang C, Sanchez-Garcia E, Schrader T, Bitan G. Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem Biol 2015; 10:1555-69. [PMID: 25844890 DOI: 10.1021/acschembio.5b00146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In type-2 diabetes (T2D), islet amyloid polypeptide (IAPP) self-associates into toxic assemblies causing islet β-cell death. Therefore, preventing IAPP toxicity is a promising therapeutic strategy for T2D. The molecular tweezer CLR01 is a supramolecular tool for selective complexation of K residues in (poly)peptides. Surprisingly, it inhibits IAPP aggregation at substoichiometric concentrations even though IAPP has only one K residue at position 1, whereas efficient inhibition of IAPP toxicity requires excess CLR01. The basis for this peculiar behavior is not clear. Here, a combination of biochemical, biophysical, spectroscopic, and computational methods reveals a detailed mechanistic picture of the unique dual inhibition mechanism for CLR01. At low concentrations, CLR01 binds to K1, presumably nucleating nonamyloidogenic, yet toxic, structures, whereas excess CLR01 binds also to R11, leading to nontoxic structures. Encouragingly, the CLR01 concentrations needed for inhibition of IAPP toxicity are safe in vivo, supporting its development toward disease-modifying therapy for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Zhenming Du
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Som Dutt
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Heinz Bandmann
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | - Sumit Mittal
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Chunyu Wang
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | |
Collapse
|
44
|
El Assar M, Angulo J, Santos-Ruiz M, Moreno P, Novials A, Villanueva-Peñacarrillo ML, Rodríguez-Mañas L. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats. PLoS One 2015; 10:e0120479. [PMID: 25807378 PMCID: PMC4373784 DOI: 10.1371/journal.pone.0120479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/22/2015] [Indexed: 02/05/2023] Open
Abstract
Insulin resistance (IR) is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD). On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR) and insulin resistant (IRR) rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM) deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD) or the NADPH oxidase inhibitor (VAS2870). By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide generation through NADPH oxidase activity may be a common link involved in the endothelial dysfunction associated to insulin resistance and to amylin exposure in CR.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Javier Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, Spain
| | - Marta Santos-Ruiz
- Servicio de Análisis Clínicos del Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Paola Moreno
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - María Luisa Villanueva-Peñacarrillo
- Department of Metabolism, Nutrition & Hormones, Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Madrid, Spain
- Servicio de Geriatría del Hospital Universitario de Getafe, Getafe, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Brender JR, Krishnamoorthy J, Sciacca MFM, Vivekanandan S, D’Urso L, Chen J, La Rosa C, Ramamoorthy A. Probing the sources of the apparent irreproducibility of amyloid formation: drastic changes in kinetics and a switch in mechanism due to micellelike oligomer formation at critical concentrations of IAPP. J Phys Chem B 2015; 119:2886-96. [PMID: 25645610 PMCID: PMC11444341 DOI: 10.1021/jp511758w] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aggregation of amyloidogenic proteins is infamous for being highly chaotic, with small variations in conditions sometimes leading to large changes in aggregation rates. Using the amyloidogenic protein IAPP (islet amyloid polypeptide protein, also known as amylin) as an example, we show that a part of this phenomenon may be related to the formation of micellelike oligomers at specific critical concentrations and temperatures. We show that pyrene fluorescence can sensitively detect micellelike oligomer formation by IAPP and discriminate between micellelike oligomers from fibers and monomers, making pyrene one of the few chemical probes specific to a prefibrillar oligomer. We further show that oligomers of this type reversibly form at critical concentrations in the low micromolar range and at specific critical temperatures. Micellelike oligomer formation has several consequences for amyloid formation by IAPP. First, the kinetics of fiber formation increase substantially as the critical concentration is approached but are nearly independent of concentration below it, suggesting a direct role for the oligomers in fiber formation. Second, the critical concentration is strongly correlated with the propensity to form amyloid: higher critical concentrations are observed for both IAPP variants with lower amyloidogenicity and for native IAPP at acidic pH in which aggregation is greatly slowed. Furthermore, using the DEST NMR technique, we show that the pathway of amyloid formation switches as the critical point is approached, with self-interactions primarily near the N-terminus below the critical temperature and near the central region above the critical temperature, reconciling two apparently conflicting views of the initiation of IAPP aggregation.
Collapse
Affiliation(s)
| | | | - Michele F. M. Sciacca
- Biophysics, University of Michigan, Ann Arbor, Michigan
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | - Luisa D’Urso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Jennifer Chen
- Biophysics, University of Michigan, Ann Arbor, Michigan
| | - Carmelo La Rosa
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
46
|
Clemmensen C, Müller TD, Finan B, Tschöp MH, DiMarchi R. Current and Emerging Treatment Options in Diabetes Care. Handb Exp Pharmacol 2015; 233:437-59. [PMID: 25903416 DOI: 10.1007/164_2015_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes constitutes an increasing threat to human health, particularly in newly industrialized and densely populated countries. Type 1 and type 2 diabetes arise from different etiologies but lead to similar metabolic derangements constituted by an absolute or relative lack of insulin that results in elevated plasma glucose. In the last three decades, a set of new medicines built upon a deeper understanding of physiology and diabetic pathology have emerged to enhance the clinical management of the disease and related disorders. Recent insights into insulin-dependent and insulin-independent molecular events have accelerated the generation of a series of novel medicinal agents, which hold the promise for further advances in the management of diabetes. In this chapter, we provide a historical context for what has been accomplished to provide perspective for future research and novel emerging treatment options.
Collapse
Affiliation(s)
- Christoffer Clemmensen
- Institute for Diabetes and Obesity and Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity and Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Brian Finan
- Institute for Diabetes and Obesity and Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity and Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany. .,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany.
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
47
|
Baisley SK, Baldo BA. Amylin receptor signaling in the nucleus accumbens negatively modulates μ-opioid-driven feeding. Neuropsychopharmacology 2014; 39:3009-17. [PMID: 24957819 PMCID: PMC4229571 DOI: 10.1038/npp.2014.153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/09/2022]
Abstract
Amylin is a peptide co-secreted with insulin that penetrates into the brain, and produces satiation-like effects via actions in the brainstem, hypothalamus, and mesencephalon. Little is known, however, about the effects of amylin in the nucleus accumbens shell (AcbSh), where a circumscribed zone of intense amylin receptor (AMY-R) binding overlaps reported mappings of a 'hotspot' for μ-opioid receptor (μ-OR) amplification of food reward. Here, the ability of intra-AcbSh AMY-R signaling to modulate μ-OR-driven feeding was explored. Amylin (1-30 ng) was administered with the μ-OR agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) (0.25 μg), directly into the AcbSh of ad libitum-maintained rats. Amylin dose-dependently reversed DAMGO-induced hyperphagia; 3 ng of amylin reduced DAMGO-mediated feeding by nearly 50%. This dose was, however, completely ineffective at altering DAMGO-induced feeding in the anterior dorsal striatum. Intra-AcbSh amylin alone (3-30 ng) modestly suppressed 10% sucrose intake in ad libitum-maintained rats, and chow in food-deprived rats, but only at the 30-ng dose. This result indicates that reversal of AcbSh DAMGO-induced feeding at a 10-fold lower dose was neither due to malaise nor motoric impairment. Finally, intra-AcbSh infusion of the AMY-R antagonist, AC187 (20 μg), significantly attenuated the ability of prefeeding to suppress DAMGO-induced food intake, with no effects in non-prefed rats. Hence, AMY-R signaling negatively modulates μ-OR-mediated appetitive responses at the level of the AcbSh. The results with AC187 indicate that endogenous AMY-R transmission in the AcbSh curtails opioid function in the postprandial period, suggesting a novel pathway for peripheral-central integration in the control of appetitive motivation and opioid reward.
Collapse
Affiliation(s)
- Sarah K Baisley
- Neuroscience Training Program, University of Wisconsin-Madison, Medical Sciences Center, University Ave Madison, WI, USA
| | - Brian A Baldo
- Neuroscience Training Program, University of Wisconsin-Madison, Medical Sciences Center, University Ave Madison, WI, USA
- Department of Psychiatry University of Wisconsin-Madison, Research Park Blvd, Madison, WI, USA
| |
Collapse
|
48
|
Braegger FE, Asarian L, Dahl K, Lutz TA, Boyle CN. The role of the area postrema in the anorectic effects of amylin and salmon calcitonin: behavioral and neuronal phenotyping. Eur J Neurosci 2014; 40:3055-66. [PMID: 25040689 DOI: 10.1111/ejn.12672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 11/27/2022]
Abstract
Amylin reduces meal size by activating noradrenergic neurons in the area postrema (AP). Neurons in the AP also mediate the eating-inhibitory effects of salmon calcitonin (sCT), a potent amylin agonist, but the phenotypes of the neurons mediating its effect are unknown. Here we investigated whether sCT activates similar neuronal populations to amylin, and if its anorectic properties also depend on AP function. Male rats underwent AP lesion (APX) or sham surgery. Meal patterns were analysed under ad libitum and post-deprivation conditions. The importance of the AP in mediating the anorectic action of sCT was examined in feeding experiments of dose-response effects of sCT in APX vs. sham rats. The effect of sCT to induce Fos expression was compared between surgery groups, and relative to amylin. The phenotype of Fos-expressing neurons in the brainstem was examined by testing for the co-expression of dopamine beta hydroxylase (DBH) or tryptophan hydroxylase (TPH). By measuring the apposition of vesicular glutamate transporter-2 (VGLUT2)-positive boutons, potential glutamatergic input to amylin- and sCT-activated AP neurons was compared. Similar to amylin, an intact AP was necessary for sCT to reduce eating. Further, co-expression between Fos activation and DBH after amylin or sCT did not differ markedly, while co-localization of Fos and TPH was minor. Approximately 95% of neurons expressing Fos and DBH after amylin or sCT treatment were closely apposed to VGLUT2-positive boutons. Our study suggests that the hindbrain pathways engaged by amylin and sCT share many similarities, including the mediation by AP neurons.
Collapse
Affiliation(s)
- Fiona E Braegger
- Institute of Veterinary Physiology, University of Zurich, Zurich, 8057, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Abstract
Over 200 million people worldwide suffer from diabetes, a disorder of glucose homeostasis. The majority of these individuals are diagnosed with type 2 diabetes. It has traditionally been thought that tissue resistance to the action of insulin is the primary defect in type 2 diabetes. However, recent longitudinal and genome‐wide association studies have shown that insulin resistance is more likely to be a precondition, and that the failure of the pancreatic β cell to meet the increased insulin requirements is the triggering factor in the development of type 2 diabetes. A major emphasis in diabetes research has therefore shifted to understanding the causes of β cell failure. Collectively, these studies have implicated a complex network of triggers, which activate intersecting execution pathways leading to β cell dysfunction and death. In the present review, we discuss these triggers (glucotoxicity, lipotoxicity, amyloid and cytokines) with respect to the pathways they activate (oxidative stress, inflammation and endoplasmic reticulum stress) and propose a model for understanding β cell failure in type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00021.x, 2010)
Collapse
Affiliation(s)
- Takeshi Ogihara
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research
| | - Raghavendra G Mirmira
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research ; Departments of Medicine and Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
50
|
Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD, Egan JM, Siddiqui S, Maudsley S, Martin B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington's disease patients. Front Physiol 2014; 5:231. [PMID: 25002850 PMCID: PMC4066441 DOI: 10.3389/fphys.2014.00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG) expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be “pre-manifest.” Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids, and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon, and amylin were also observed. Total cholesterol, HDL-C, and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.
Collapse
Affiliation(s)
- Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Departments of Neuroscience and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Huan Cai
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Wei-Na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Olga D Carlson
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Josephine M Egan
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- VIB Department of Molecular Genetics, University of Antwerp Antwerpen, Belgium
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|