1
|
Estrada-Meza J, Videlo J, Bron C, Duchampt A, Saint-Béat C, Zergane M, Silva M, Rajas F, Bouret SG, Mithieux G, Gautier-Stein A. Intestinal gluconeogenesis controls the neonatal development of hypothalamic feeding circuits. Mol Metab 2024; 89:102036. [PMID: 39304064 PMCID: PMC11470480 DOI: 10.1016/j.molmet.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE Intestinal gluconeogenesis (IGN) regulates adult energy homeostasis in part by controlling the same hypothalamic targets as leptin. In neonates, leptin exhibits a neonatal surge controlling axonal outgrowth between the different hypothalamic nuclei involved in feeding circuits and autonomic innervation of peripheral tissues involved in energy and glucose homeostasis. Interestingly, IGN is induced during this specific time-window. We hypothesized that the neonatal pic of IGN also regulates the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues. METHODS We genetically induced neonatal IGN by overexpressing G6pc1 the catalytic subunit of glucose-6-phosphatase (the mandatory enzyme of IGN) at birth or at twelve days after birth. The neonatal development of hypothalamic feeding circuits was studied by measuring Agouti-related protein (AgRP) and Pro-opiomelanocortin (POMC) fiber density in hypothalamic nuclei of 20-day-old pups. The effect of the neonatal induction of intestinal G6pc1 on sympathetic innervation of the adipose tissues was studied via tyrosine hydroxylase (TH) quantification. The metabolic consequences of the neonatal induction of intestinal G6pc1 were studied in adult mice challenged with a high-fat/high-sucrose (HFHS) diet for 2 months. RESULTS Induction of intestinal G6pc1 at birth caused a neonatal reorganization of AgRP and POMC fiber density in the paraventricular nucleus of the hypothalamus, increased brown adipose tissue tyrosine hydroxylase levels, and protected against high-fat feeding-induced metabolic disorders. In contrast, inducing intestinal G6pc1 12 days after birth did not impact AgRP/POMC fiber densities, adipose tissue innervation or adult metabolism. CONCLUSION These findings reveal that IGN at birth but not later during postnatal life controls the development of hypothalamic feeding circuits and sympathetic innervation of adipose tissues, promoting a better management of metabolism in adulthood.
Collapse
Affiliation(s)
| | - Jasmine Videlo
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Bron
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Adeline Duchampt
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Mickael Zergane
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Marine Silva
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabienne Rajas
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Sebastien G Bouret
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
2
|
Ni D, Tan J, Macia L, Nanan R. Breastfeeding is associated with enhanced intestinal gluconeogenesis in infants. BMC Med 2024; 22:106. [PMID: 38454391 PMCID: PMC10921696 DOI: 10.1186/s12916-024-03327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Breastfeeding (BF) confers metabolic benefits to infants, including reducing risks of metabolic syndrome such as obesity and diabetes later in life. However, the underlying mechanism is not yet fully understood. Hence, we aim to investigate the impacts of BF on the metabolic organs of infants. METHODS Previous literatures directly studying the influences of BF on offspring's metabolic organs in both animal models and humans were comprehensively reviewed. A microarray dataset of intestinal gene expression comparing infants fed on breastmilk versus formula milk was analyzed. RESULTS Reanalysis of microarray data showed that BF is associated with enhanced intestinal gluconeogenesis in infants. This resembles observations in other mammalian species showing that BF was also linked to increased gluconeogenesis. CONCLUSIONS BF is associated with enhanced intestinal gluconeogenesis in infants, which may underpin its metabolic advantages through finetuning metabolic homeostasis. This observation seems to be conserved across species, hinting its biological significance.
Collapse
Affiliation(s)
- Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Level 5, South Block, Penrith, Sydney, NSW, 2751, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, NSW, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Level 5, South Block, Penrith, Sydney, NSW, 2751, Australia.
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, NSW, Australia.
| |
Collapse
|
3
|
Falode JA, Ajayi OI, Isinkaye TV, Adeoye AO, Ajiboye BO, Brai BIC, ADEOYE, Basiru Olaitan, AJIBOYE, BRAI BIC. Justicia carnea extracts ameliorated hepatocellular damage in streptozotocin-induced type 1 diabetic male rats via decrease in oxidative stress, inflammation and increasing other risk markers. Biomarkers 2023; 28:177-189. [PMID: 36511112 DOI: 10.1080/1354750x.2022.2157487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IntroductionDiabetes mellitus is still a raging disease not fully subdued globally, especially in Africa. Our study aims to evaluate the anti-diabetic potentials of Justicia carnea extracts [crude (JCC), free (JFP) and bound phenol (JBP) fractions], in streptozotocin (STZ)-induced type-1 diabetes in male albino rats.Materials and MethodsAbout thirty (30) animals were induced for type 1 diabetes with STZ; thereafter, treatment began for 14 days, after which the animals were euthanized, blood/serum was collected, the liver was removed and divided into two portions, for biochemical and histopathological analyses. Standard procedures were used to evaluate the liver biomarkers, like alanine transaminase (ALT), fructose-1,6-bisphosphatase, glucose-6- phosphatase, hexokinase activities, albumin, bilirubin, hepatic glucose concentrations; antioxidant status and pro- and anti-inflammatory cytokines were similarly assessed.ResultsThese results revealed that the extracts ameliorated the harmful effects of STZ-induced diabetes in the liver by enhancing the activities of liver-based biomarkers, reducing the concentrations of pro-inflammatory cytokines and increasing the anti-inflammatory cytokine.DiscussionThe results agreed with previous research, and the free phenol fraction showed excellent results compared to othersConclusionThese suggested that J. carnea could serve as an alternative remedy in ameliorating liver complications linked to oxidative damage and inflammation in STZ-induced type-1 diabetes.
Collapse
Affiliation(s)
- John Adeolu Falode
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Igbekele Ajayi
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Tolulope Victoria Isinkaye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi Oluwaseun Adeoye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I C Brai
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - ADEOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - AJIBOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I. C. BRAI
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
4
|
Zhang L, Liu C, Jiang Q, Yin Y. Butyrate in Energy Metabolism: There Is Still More to Learn. Trends Endocrinol Metab 2021; 32:159-169. [PMID: 33461886 DOI: 10.1016/j.tem.2020.12.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022]
Abstract
Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lin Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Chudan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
5
|
Species-Specific Glucose-6-Phosphatase Activity in the Small Intestine-Studies in Three Different Mammalian Models. Int J Mol Sci 2019; 20:ijms20205039. [PMID: 31614497 PMCID: PMC6829527 DOI: 10.3390/ijms20205039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter–intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.
Collapse
|
6
|
Xu J, Ou K, Chen C, Li B, Guo J, Zuo Z, Wang C. Tributyltin exposure disturbs hepatic glucose metabolism in male mice. Toxicology 2019; 425:152242. [PMID: 31306684 DOI: 10.1016/j.tox.2019.152242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Some previous studies showed that organotin compounds induced diabetes in animal models. The underlying mechanisms should be further revealed. In this study, male KM mice were exposed to tributyltin (TBT) at 0.5, 5 and 50 μg/kg once every three days for 45 days. The TBT-treated mice exhibited an elevation of fasting blood glucose level and glucose intolerance. The fasting serum insulin levels were increased and reached a significant difference in the 50 μg/kg group; the glucagon levels were significantly decreased in all the treatments. Pancreatic β-cell mass was significantly decreased in all the treatments; α-cell mass showed a significant decrease in the 5 and 50 ug/kg groups. The transcription of pancreatic insulin gene (Ins2) showed an up-regulation and reached a significant difference in the 5 and 50 μg/kg groups, which would be responsible for the increased serum insulin levels. The transcription of glucagon gene (Gcg) in the pancreas was significantly down-regulated in the 5 and 50 ug/kg groups. The protein expression of hepatic glucagon receptor was down-regulated, while the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase was up-regulated accompanied by increased hepatic glycogen content. These results indicated that hepatic gluconeogenesis was enhanced during insulin resistance stage caused by TBT exposure, which would exert a potential risk inducing the development of diabetes mellitus.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chuqiao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Binshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
7
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
8
|
Mandl J, Bánhegyi G. The ER - Glycogen Particle - Phagophore Triangle: A Hub Connecting Glycogenolysis and Glycophagy? Pathol Oncol Res 2018; 24:821-826. [PMID: 29981013 DOI: 10.1007/s12253-018-0446-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
Glycogen particle is an intracellular organelle, which serves as a carbohydrate reserve in various cells. The function of glycogen is not entirely known in several cell types. Glycogen can be mobilized for different purposes, which can be related to cellular metabolic needs, intracellular redox state, metabolic state of the whole organism depending on regulatory aspects and also on cell functions. Essentially there are two different ways of glycogen degradation localized in different cellular organelles: glycogenolysis or lysosomal breakdown by acid alpha-glucosidase. While glycogenolysis occurs in glycogen particles connected to endoplasmic reticulum membrane, glycogen particles can be also combined with phagophores forming autophagosomes. A subdomain of the endoplasmic reticulum membrane - omegasomes - are the sites for phagophore formation. Thus, three organelles, the endoplasmic reticulum, the phagophore and the glycogen particle forms a triangle in which glycogen degradation occurs. The physiological significance, molecular logic and regulation of the two different catabolic paths are summarized and discussed with special aspect on the role of glycogen particles in intracellular organelle homeostasis and on molecular pathology of the cell. Pathological aspects and some diseases connected to the two different degradation pathways of glycogen particles are also detailed.
Collapse
Affiliation(s)
- József Mandl
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Abstract
Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection.
Collapse
Affiliation(s)
- Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France.
| |
Collapse
|
10
|
Martins HA, Bazotte RB, Vicentini GE, Lima MM, Guarnier FA, Hermes-Uliana C, Frez FCV, Bossolani GDP, Fracaro L, Fávaro LDS, Manzano MI, Zanoni JN. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats. Tumour Biol 2017; 39:1010428317695960. [PMID: 28345452 DOI: 10.1177/1010428317695960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Collapse
Affiliation(s)
- Heber Amilcar Martins
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Roberto Barbosa Bazotte
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Mariana Machado Lima
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Catchia Hermes-Uliana
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Luciane Fracaro
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
11
|
Liu Y, He S, Zeng T, Du X, Shen J, Zhao A, Lu L. Transcriptome analysis of the livers of ducklings hatched normally and with assistance. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:773-780. [PMID: 27809466 PMCID: PMC5411839 DOI: 10.5713/ajas.16.0528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/22/2016] [Accepted: 10/23/2016] [Indexed: 12/26/2022]
Abstract
Objective “Hatchability” is an important economic trait in domestic poultry. Studies on poultry hatchability focus mainly on the genetic background, egg quality, and incubation conditions, whereas the molecular mechanisms behind the phenomenon that some ducklings failed to break their eggshells are poorly understood. Methods In this study, the transcriptional differences between the livers of normally hatched and assisted ducklings were systematically analyzed. Results The results showed that the clean reads were de novo assembled into 161,804 and 159,083 unigenes (≥200-bp long) by using Trinity, with an average length of 1,206 bp and 882 bp, respectively. The defined criteria of the absolute value of log2 fold-change ≥1 and false discovery rate≤0.05 were differentially expressed and were significant. As a result, 1,629 unigenes were identified, the assisted ducklings showed 510 significantly upregulated and 1,119 significantly down-regulated unigenes. In general, the metabolic rate in the livers of the assisted ducklings was lower than that in the normal ducklings; however, compared to normal ducklings, glucose-6-phosphatase and ATP synthase subunit alpha 1 associated with energy metabolism were significantly upregulated in the assisted group. The genes involved in immune defense such as major histocompatibility complex (MHC) class I antigen alpha chain and MHC class II beta chain 1 were downregulated in the assisted ducklings. Conclusion These data provide abundant sequence resources for studying the functional genome of the livers in ducks and other poultry. In addition, our study provided insight into the molecular mechanism by which the phenomenon of weak embryos is regulated.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.,Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, Zhejiang 310020, China
| | - Shishan He
- Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, Zhejiang 310020, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Junda Shen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Ayong Zhao
- College of Animal Science and Technology, Zhejiang Agricultural and Forestry University, Linan, Zhejiang 311300, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
12
|
Yin X, Huang Y, Jung DW, Chung HC, Choung SY, Shim JH, Kang IJ. Anti-Diabetic Effect of Aster sphathulifolius in C57BL/KsJ-db/db Mice. J Med Food 2015; 18:987-98. [PMID: 25961463 DOI: 10.1089/jmf.2014.3416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigated the anti-diabetic effect of Aster sphathulifolius (AS) extract in C57BL/KsJ-db/db mice. The db/db mice were orally administered with AS 50% ethanol extract at concentrations of 50, 100, and 200 mg/kg/day (db/db-AS50, db/db-AS100, and db/db-AS200, respectively) for 10 weeks. Food and water intake, fasting blood glucose concentrations, blood glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the db/db-AS200 group than in the vehicle-treated db/db group; whereas glucose tolerance was significantly improved in the db/db-AS200 group. Moreover, AS dose dependently increased both insulin receptor substrate 1 and glucose transporter type 4 expression in skeletal muscle, significantly increased glucokinase expression, and decreased glucose 6-phosphatase and phosphoenolpyruvate carboxykinase expressions in the liver. The expressions of transcription factors, such as sterol-regulatory element-binding protein, peroxisome proliferator-activated receptor γ, and adipocyte protein 2, were upregulated in adipose tissue. Furthermore, immunohistochemical analysis showed that AS upregulated insulin production by increasing pancreatic β-cell mass. In summary, AS extract normalized hyperglycemia by multiple mechanisms: inhibition of glyconeogenesis, acceleration of glucose metabolism and lipid metabolism, and increase of glucose uptake. Using in vivo assays, this study has shown the potential of AS as a medicinal food and suggests the efficacy of AS for the use of prevention of diabetes.
Collapse
Affiliation(s)
- Xingfu Yin
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | - Yuhua Huang
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | - Da-Woon Jung
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | | | - Se Young Choung
- 3 Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Jae-Hoon Shim
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| | - Il-Jun Kang
- 1 Department of Food Science and Nutrition, Hallym University , Gwangwon, Korea
| |
Collapse
|
13
|
Rajas F, Clar J, Gautier-Stein A, Mithieux G. Lessons from new mouse models of glycogen storage disease type 1a in relation to the time course and organ specificity of the disease. J Inherit Metab Dis 2015; 38:521-7. [PMID: 25164786 PMCID: PMC5522669 DOI: 10.1007/s10545-014-9761-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Patients with glycogen storage diseases type 1 (GSD1) suffer from life-threatening hypoglycaemia, when left untreated. Despite an intensive dietary treatment, patients develop severe complications, such as liver tumors and renal failure, with aging. Until now, the animal models available for studying the GSD1 did not survive after weaning. To gain further insights into the molecular mechanisms of the disease and to evaluate potential treatment strategies, we have recently developed novel mouse models in which the catalytic subunit of glucose-6 phosphatase (G6pc) is deleted in each glucose-producing organ specifically. For that, B6.G6pc(ex3lox/ex3lox) mice were crossed with transgenic mice expressing a recombinase under the control of the serum albumin, the kidney androgen protein or the villin promoter, in order to obtain liver, kidney or intestine G6pc(-/-) mice, respectively. As opposed to total G6pc knockout mice, tissue-specific G6pc deficiency allows mice to maintain their blood glucose by inducing glucose production in the other gluconeogenic organs. Even though it is considered that glucose is produced mainly by the liver, liver G6pc(-/-) mice are perfectly viable and exhibit the same hepatic pathological features as GSD1 patients, including the late development of hepatocellular adenomas and carcinomas. Interestingly, renal G6pc(-/-) mice developed renal symptoms similar to the early human GSD1 nephropathy. This includes glycogen overload that leads to nephromegaly and morphological and functional alterations in the kidneys. Thus, our data suggest that renal G6Pase deficiency per se is sufficient to induce the renal pathology of GSD1. Therefore, these new mouse models should allow us to improve the strategies of treatment on both nutritional and pharmacological points of view.
Collapse
Affiliation(s)
- Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, 69008, France,
| | | | | | | |
Collapse
|
14
|
Karthi S, Manimaran P, Gandhimathi K, Ganesh R, Varalakshmi P, Ashokkumar B. Glucose-6-phosphatase (G6PC1) promoter polymorphism associated with glycogen storage disease type 1a among the Indian population. RSC Adv 2015. [DOI: 10.1039/c5ra10452a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Promoter polymorphism rs559748047 inG6PC1from GSD-1a among Indian population.
Collapse
Affiliation(s)
- Sellamuthu Karthi
- Department of Genetic Engineering
- School of Biotechnology
- Madurai Kamaraj University
- Madurai
- India
| | - Paramasivam Manimaran
- Department of Genetic Engineering
- School of Biotechnology
- Madurai Kamaraj University
- Madurai
- India
| | - Krishnan Gandhimathi
- Department of Genetic Engineering
- School of Biotechnology
- Madurai Kamaraj University
- Madurai
- India
| | - Ramasamy Ganesh
- Kanchi Kamakoti CHILDS Trust Hospital & The CHILDS Trust Medical Research Foundation
- Chennai
- India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology
- School of Biotechnology
- Madurai Kamaraj University
- Madurai
- India
| | | |
Collapse
|
15
|
El-Seweidy MM, Sadik NAH, Malek MM, Amin RS. Chronic effects of clozapine administration on insulin resistance in rats: evidence for adverse metabolic effects. Pathol Res Pract 2013; 210:5-9. [PMID: 24176172 DOI: 10.1016/j.prp.2013.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/23/2013] [Accepted: 09/23/2013] [Indexed: 02/08/2023]
Abstract
Chronic treatment with the atypical antipsychotics clozapine has been associated with an increased risk for deterioration of glucose homeostasis, leading to hyperglycemia and insulin resistance diabetes. The present study mainly aimed to investigate possible mechanisms underlying clozapine-induced hyperglycemia. Male Wistar albino rats were randomly divided into two groups (each consists of 12 rats). The first group received clozapine orally at a dose of 10mg/kg body weight daily for 6 weeks, while the other group received the drug vehicle only and served as the control group. At the end of the six weeks, hyperglycemia, hyperinsulinemia and insulin resistance, as indicated by Homeostatic model assessment of insulin resistance (HOMA-IR), were observed in the clozapine group as compared with the control group. This disturbance in glucose regulation was associated with non-significant changes in body weight, serum cortisol level, and hepatic glycogen content. The Clozapine group showed a significant increase in hepatic phosphorylase activity and in the gene expression level of hepatic glucose-6-phosphatse (G6Pase) enzymes compared to the control group. It can be concluded that clozapine-induced hyperglycemia and insulin resistance occur in a manner mostly independent of weight gain, and may be attributed to an increase in hepatic phosphorylase activity and increased expression level of G6Pase.
Collapse
Affiliation(s)
- Mohamed M El-Seweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Marwa M Malek
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rawia S Amin
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
16
|
Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO, Walker SK, Morrison JL, Zhang S, Muhlhäusler BS, Martin-Gronert MS, McMillen IC. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 2013; 27:3786-96. [PMID: 23729590 DOI: 10.1096/fj.13-227918] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Our aim was to determine the effect of exposure to maternal obesity or to maternal weight loss around conception on the programming of hepatic insulin signaling in the offspring. We used an embryo transfer model in sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for 1 wk after conception on the expression of hepatic insulin-signaling and gluconeogenic factors and key miRNAs involved in insulin signaling in the offspring. We found that exposure to maternal obesity resulted in increased hepatic miR-29b (P<0.05), miR-103 (P<0.01), and miR-107 (P<0.05) expression, a decrease in IR (P<0.05), phopsho-Akt (P<0.01), and phospho-FoxO1 (P<0.01) abundance, and a paradoxical decrease in 11βHSD1 (P<0.05), PEPCK-C (P<0.01), and PEPCK-M (P<0.05) expression in lambs. These changes were ablated by a period of moderate dietary restriction imposed during the periconceptional period. Maternal dietary restriction alone also resulted in decreased abundance of a separate subset of hepatic insulin-signaling molecules, namely, IRS1 (P<0.05), PDK1 (P<0.01), phospho-PDK1 (P<0.05), and aPKCζ (P<0.05) and in decreased PEPCK-C (P<0.01) and G6Pase (P<0.01) expression in the lamb. Our findings highlight the sensitivity of the epigenome to maternal nutrition around conception and the need for dietary interventions that maximize metabolic benefits and minimize metabolic costs for the next generation.
Collapse
Affiliation(s)
- Lisa M Nicholas
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bennett KA, Hammill M, Currie S. Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels. J Comp Physiol B 2013; 183:1075-88. [PMID: 23743798 DOI: 10.1007/s00360-013-0768-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 01/05/2023]
Abstract
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species' at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82-95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
Collapse
Affiliation(s)
- K A Bennett
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Portland Square, Drake Circus, Plymouth, Devon, PL4 8AA, UK,
| | | | | |
Collapse
|
18
|
Gautier-Stein A, Soty M, Chilloux J, Zitoun C, Rajas F, Mithieux G. Glucotoxicity induces glucose-6-phosphatase catalytic unit expression by acting on the interaction of HIF-1α with CREB-binding protein. Diabetes 2012; 61:2451-60. [PMID: 22787137 PMCID: PMC3447892 DOI: 10.2337/db11-0986] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The activation of glucose-6-phosphatase (G6Pase), a key enzyme of endogenous glucose production, is correlated with type 2 diabetes. Type 2 diabetes is characterized by sustained hyperglycemia leading to glucotoxicity. We investigated whether glucotoxicity mechanisms control the expression of the G6Pase catalytic unit (G6pc). We deciphered the transcriptional regulatory mechanisms of the G6pc promoter by glucotoxicity in a hepatoma cell line then in primary hepatocytes and in the liver of diabetic mice. High glucose exposure induced the production of reactive oxygen species (ROS) and, in parallel, induced G6pc promoter activity. In hepatocytes, glucose induced G6pc gene expression and glucose release. The decrease of ROS concentrations by antioxidants eliminated all the glucose-inductive effects. The induction of G6pc promoter activity by glucose was eliminated in the presence of small interfering RNA, targeting either the hypoxia-inducible factor (HIF)-1α or the CREB-binding protein (CBP). Glucose increased the interaction of HIF-1α with CBP and the recruitment of HIF-1 on the G6pc promoter. The same mechanism might occur in hyperglycemic mice. We deciphered a new regulatory mechanism induced by glucotoxicity. This mechanism leading to the induction of HIF-1 transcriptional activity may contribute to the increase of hepatic glucose production during type 2 diabetes.
Collapse
|
19
|
Esposito D, Kizelsztein P, Komarnytsky S, Raskin I. Hypoglycemic effects of brassinosteroid in diet-induced obese mice. Am J Physiol Endocrinol Metab 2012; 303:E652-8. [PMID: 22785239 PMCID: PMC3774328 DOI: 10.1152/ajpendo.00024.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of obesity is increasing globally, and obesity is a major risk factor for metabolic diseases such as type 2 diabetes. Previously, we reported that oral administration of homobrassinolide (HB) to healthy rats triggered a selective anabolic response that was associated with lower blood glucose. Therefore, the aim of this study was to evaluate the effects of HB administration on glucose metabolism, insulin sensitivity, body composition, and gluconeogenic gene expression profiles in liver of C57BL/6J high-fat diet-induced obese mice. Acute oral administration of 50-300 mg/kg HB to obese mice resulted in a dose-dependent decrease in fasting blood glucose within 3 h of treatment. Daily chronic administration of HB (50 mg/kg for 8 wk) ameliorated hyperglycemia and improved oral glucose tolerance associated with obesity without significantly affecting body weight or body composition. These changes were accompanied by lower expression of two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase), and increased phosphorylation of AMP-activated protein kinase in the liver and muscle tissue. In vitro, HB treatment (1-15 μM) inhibited cyclic AMP-stimulated but not dexamethasone-stimulated upregulation of PEPCK and G-6-Pase mRNA levels in H4IIE rat hepatoma cells. Among a series of brassinosteroid analogs related to HB, only homocastasterone decreased glucose production in cell culture significantly. These results indicate the antidiabetic effects of brassinosteroids and begin to elucidate their putative cellular targets both in vitro and in vivo.
Collapse
Affiliation(s)
- Debora Esposito
- Biotech Center, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | |
Collapse
|
20
|
Arino T, Karakawa S, Ishiwata Y, Nagata M, Yasuhara M. Effect of cimetidine on pentamidine induced hyperglycemia in rats. Eur J Pharmacol 2012; 693:72-9. [PMID: 22968103 DOI: 10.1016/j.ejphar.2012.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 01/08/2023]
Abstract
The antiprotozoal agent pentamidine, used for the treatment of Pneumocystis jirovecii pneumonia (PCP), is known to cause abnormalities in blood glucose homeostasis, such as hypoglycemia and hyperglycemia. Pentamidine has been reported to be a substrate of organic cation transporter 1 (OCT1). We investigated the combination effects of cimetidine, an OCT1 inhibitor, on the pharmacokinetics of pentamidine and on pentamidine-induced hyperglycemia. Pentamidine was infused intravenously to rats for 20 min at a dose of 7.5 or 15 mg/kg and serum samples were obtained periodically. The serum concentration of glucose did not change significantly after pentamidine infusion at 7.5mg/kg, while it increased with pentamidine at 15 mg/kg, and the maximal concentration of glucose was 167 ± 36 mg/dl, 30 min after the start of pentamidine infusion. Cimetidine (50mg/kg) enhanced the pentamidine-induced elevation of glucose concentration and the maximal concentration of glucose was 208 ± 33 mg/dl in the pentamidine 15 mg/kg treated group. Cimetidine combination significantly reduced total body clearance of pentamidine and increased pentamidine concentrations in the liver, kidneys, and lungs. A significant correlation was found between changes in serum glucose concentrations and serum concentrations of pentamidine 30 min after the start of pentamidine infusion. These results suggest that the hyperglycemic effect of pentamidine is dependent on the concentration of pentamidine and can be enhanced by cimetidine combination.
Collapse
Affiliation(s)
- Toru Arino
- Department of Pharmacy, University Hospital of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
21
|
Budick-Harmelin N, Anavi S, Madar Z, Tirosh O. Fatty acids-stress attenuates gluconeogenesis induction and glucose production in primary hepatocytes. Lipids Health Dis 2012; 11:66. [PMID: 22676303 PMCID: PMC3391994 DOI: 10.1186/1476-511x-11-66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/07/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatic gluconeogenesis tightly controls blood glucose levels in healthy individuals, yet disorders of fatty acids (FAs) oxidation are characterized by hypoglycemia. We studied the ability of free-FAs to directly inhibit gluconeogenesis, as a novel mechanism that elucidates the hypoglycemic effect of FAs oxidation defects. METHODS Primary rat hepatocytes were pre-treated with FAs prior to gluconeogenic stimuli with glucagon or dexamethasone and cAMP. RESULTS Pre-treatment with 1 mM FAs (mixture of 2:1 oleate:palmitate) for 1 hour prior to gluconeogenic induction, significantly decreases the induced expression of the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6pase) as well as the induced glucose production by the cells. The inhibitory effect of FAs upon gluconeogenesis is abolished when pre-treatment is elongated to 18 hours, allowing clearance of FAs into triglycerides by the cells. Replacement of palmitate with the non-metabolic fatty acid 2-bromopalmitate inhibits esterification of FAs into triglycerides. Accordingly, the increased exposure to unesterified-FAs allows their inhibitory effect to be extended even when pre-treatment is elongated to 18 hours. Similar changes were caused by FAs to the induction of peroxisome-proliferator-activated receptor-γ coactivator 1α (PGC1α) expression, indicating this transcriptional coactivator as the mediating link of the effect. This inhibitory effect of FAs upon gluconeogenic induction is shown to involve reduced activation of cAMP response element-binding (CREB) transcription factor. CONCLUSIONS The present results demonstrate that free-FAs directly inhibit the induced gluconeogenic response in hepatocytes. Hence, high levels of free-FAs may attenuate hepatic gluconeogenesis, and liver glucose output.
Collapse
Affiliation(s)
- Noga Budick-Harmelin
- School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
22
|
Sala PC, Torrinhas RS, Heymsfield SB, Waitzberg DL. Type 2 diabetes mellitus: a possible surgically reversible intestinal dysfunction. Obes Surg 2012; 22:167-76. [PMID: 22094369 DOI: 10.1007/s11695-011-0563-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a global public health problem often associated with obesity. Bariatric surgery is effective for treating serious obesity, and techniques involving intestinal bypass have metabolic benefits, such as complete and early remission of T2DM. We present a literature review of the possible mechanisms of early normalization of glycemic homeostasis after bariatric surgery, including intestinal gluconeogenesis, increased antidiabetogenic signals from L cells located in the distal small intestine, and impaired secretion of diabetogenic signals in the upper part of the small intestine. Adding to these potential mechanisms, unknown factors that regulate insulin sensitivity may be involved and altered by bariatric surgery. This review discusses the various hypotheses about the mechanisms of glycemic control after bariatric surgery involving intestinal bypass. Further research is essential to better understand these mechanisms and to identify potential new mechanisms that might help in developing less invasive and safer alternatives for the treatment of T2DM and reveal novel pharmaceutical targets for glycemic control.
Collapse
Affiliation(s)
- Priscila C Sala
- Department of Gastroenterology, Digestive Surgery Discipline, LIM 35, University of São Paulo, Medical School, Av Dr Arnaldo, 455 Cerqueira César, CEP 01246-930 São Paulo, Brazil.
| | | | | | | |
Collapse
|
23
|
Stojanov K, de Vries EF, Hoekstra D, van Waarde A, Dierckx RA, Zuhorn IS. [
18
F]FDG Labeling of Neural Stem Cells for in Vivo Cell Tracking with Positron Emission Tomography: Inhibition of Tracer Release by Phloretin. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Katica Stojanov
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F.J. de Vries
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dick Hoekstra
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A.J.O. Dierckx
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Inge S. Zuhorn
- From the Departments of Cell Biology/Membrane Cell Biology and Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Charkoudian LK, Farrell BP, Khosla C. Natural product inhibitors of glucose-6-phosphate translocase. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20008b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Konopelska S, Kienitz T, Quinkler M. Downregulation of hepatic glucose-6-phosphatase-α in patients with hepatic steatosis. Obesity (Silver Spring) 2011; 19:2322-6. [PMID: 21593806 DOI: 10.1038/oby.2011.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucose-6-phosphate transporter (G6PT) and microsomal glucose-6-phosphatase-α (G6Pase-α) perform the terminal step in glycogenolysis and gluconeogenesis. Deficiency of these proteins leads to glycogen storage diseases. Partial inhibition of G6Pase in rats results in increased hepatic triglyceride content and de novo lipogenesis leading to hepatic steatosis. Hepatic steatosis represents hepatic manifestation of the metabolic syndrome. We investigated molecular mechanisms that may explain the relationship between fatty liver and G6Pase-α in humans in detail. A total of 27 patients (11 men, 16 women) underwent liver biopsy. Histological diagnosis identified nonfatty liver in seven patients and nonalcoholic fatty liver in 20 patients. We quantified G6Pase-α and G6PT mRNA expression by real-time PCR. Anthropometric measurements and analysis of plasma lipids and liver enzymes were performed. Patients with fatty liver showed no significant differences in age, HOMA(IR) (homeostasis model assessment of insulin resistance), BMI, liver enzymes or waist-to-hip ratio compared to those with nonfatty liver, but total plasma cholesterol levels and liver fat content were higher in patients with fatty liver (P < 0.05). G6Pase-α and G6PT mRNA expressions were significantly downregulated in fatty compared to histologically normal liver (P < 0.05). G6Pase-α and G6PT mRNA expressions correlated positively (R(2) = 0.406 P < 0.05). Both expressions did not correlate with age, BMI, aspartate transaminase, alanine transaminase, alkaline phosphatase, γ-glutamyl transferase, triglycerides or glucose levels. Our data suggest that expression of hepatic G6Pase-α and G6PT are closely interlinked. Downregulation of G6Pase-α in fatty liver might be associated with hepatic fat accumulation and pathogenesis of hepatic steatosis.
Collapse
Affiliation(s)
- Sarah Konopelska
- Department of Clinical Endocrinology, Charité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany.
| | | | | |
Collapse
|
26
|
Mutel E, Abdul-Wahed A, Ramamonjisoa N, Stefanutti A, Houberdon I, Cavassila S, Pilleul F, Beuf O, Gautier-Stein A, Penhoat A, Mithieux G, Rajas F. Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J Hepatol 2011; 54:529-37. [PMID: 21109326 DOI: 10.1016/j.jhep.2010.08.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/28/2010] [Accepted: 08/31/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Glycogen storage disease type 1a (GSD1a) is an inherited disease caused by a deficiency in the catalytic subunit of the glucose-6 phosphatase enzyme (G6Pase). GSD1a is characterized by hypoglycaemia, hyperlipidemia, and lactic acidosis with associated hepatic (including hepatocellular adenomas), renal, and intestinal disorders. A total G6pc (catalytic subunit of G6Pase) knock-out mouse model has been generated that mimics the human pathology. However, these mice rarely live longer than 3 months and long-term liver pathogenesis cannot be evaluated. Herein, we report the long-term characterization of a liver-specific G6pc knock-out mouse model (L-G6pc(-/-)). METHODS We generated L-G6pc(-/-) mice using an inducible CRE-lox strategy and followed up the development of hepatic tumours using magnetic resonance imaging. RESULTS L-G6pc(-/-) mice are viable and exhibit normoglycemia in the fed state. They develop hyperlipidemia, lactic acidosis, and uricemia during the first month after gene deletion. However, these plasmatic parameters improved after 6 months. L-G6pc(-/-) mice develop hepatomegaly with glycogen accumulation and hepatic steatosis. Using an MRI approach, we could detect hepatic nodules with diameters of less than 1 mm, 9 months after induction of deficiency. Hepatic nodules (1 mm) were detected in 30-40% of L-G6pc(-/-) mice at 12 months. After 18 months, all L-G6pc(-/-) mice developed multiple hepatocellular adenomas of 1-10 mm diameter. CONCLUSIONS This is the first report of a viable animal model of the hepatic pathology of GSD1a, including the late development of hepatocellular adenomas.
Collapse
Affiliation(s)
- Elodie Mutel
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon F-69008, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Delaere F, Magnan C, Mithieux G. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. DIABETES & METABOLISM 2010; 36:257-62. [PMID: 20561808 DOI: 10.1016/j.diabet.2010.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022]
Abstract
Glycolysis is an essential metabolic function that lies at the core of any cellular life. Glucose homoeostasis is, thus, a crucial physiological function of living organisms. A system of plasma glucose-sensing in the portal vein plays a key role in this homoeostasis. Connected to the hypothalamus via the peripheral nervous system, the system allows the body to adapt its response to any variation of portal glycaemia. The hypothalamus controls food intake (exogenous glucose supply) and hepatic glycogenolysis (endogenous glucose supply). Intestinal gluconeogenesis, via the release of glucose into the portal vein, plays a key role in the control of hunger and satiety, and of endogenous glucose production through the modulation of liver insulin sensitivity. The induction of intestinal gluconeogenesis provides a physiological explanation for the satiety effects induced by protein-enriched diets. In particular, the influence of protein-enriched diets on the hypothalamus is comparable to the activation observed after glucose infusion into the portal vein. The induction of intestinal gluconeogenesis also offers an explanation for the early improvement in glycaemia control observed in obese diabetic patients treated by gastric-bypass surgery. In addition to intestinal gluconeogenesis, a number of gastrointestinal hormones involved in the control of food intake exert their effects, at least in part, via the peripheral afferent nervous system. These data emphasize the importance of the gut-brain axis in the understanding and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- F Delaere
- Inserm U855, Institut national de la santé et de recherche médicale, faculté de médecine Laennec, rue Guillaume-Paradin, 69372 Lyon cedex 08, France
| | | | | |
Collapse
|
28
|
Mithieux G. A novel function of intestinal gluconeogenesis: Central signaling in glucose and energy homeostasis. Nutrition 2009; 25:881-4. [DOI: 10.1016/j.nut.2009.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 06/17/2009] [Accepted: 06/17/2009] [Indexed: 12/29/2022]
|
29
|
Previs SF, Brunengraber DZ, Brunengraber H. Is There Glucose Production Outside of the Liver and Kidney? Annu Rev Nutr 2009; 29:43-57. [DOI: 10.1146/annurev-nutr-080508-141134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen F. Previs
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106;
| | | | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
30
|
Mithieux G, Andreelli F, Magnan C. Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr Opin Clin Nutr Metab Care 2009; 12:419-23. [PMID: 19474723 DOI: 10.1097/mco.0b013e32832c4d6a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW It has been established that the gut is much more than a digestive tract. It has the capacity to participate in the control of energy homeostasis via the secretion of various hormones. It can also contribute to the control of glucose homeostasis via its high glycolytic capacity and a recently described function, gluconeogenesis. RECENT FINDINGS In addition to its quantitative role in endogenous glucose production, qualitative roles (i.e. central signaling) were recently described for intestinal gluconeogenesis. In relation to the control of energy homeostasis, intestinal gluconeogenesis, via its detection by a hepatoportal glucose sensor, is able to generate a central signal of control of food intake, resulting in enhanced satiety. This mechanism has been suggested to account for the well known satiety effect initiated by food protein. In relation to the control of glucose homeostasis, intestinal gluconeogenesis has been suggested to be a key factor of the central enhancement of insulin sensitivity for the whole body. It may especially account for the rapid amelioration of the parameters of insulin resistance occurring after gastric bypass, a specific type of surgery of obesity. SUMMARY These new findings on the role of intestinal gluconeogenesis in the central control of energy and glucose homeostasis should be of interest for nutritionists and diabetologists. They pave the way to envision new strategies of prevention or treatment of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U855, Université de Lyon, Lyon, France.
| | | | | |
Collapse
|
31
|
Hirota K, Sakamaki JI, Ishida J, Shimamoto Y, Nishihara S, Kodama N, Ohta K, Yamamoto M, Tanimoto K, Fukamizu A. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding. J Biol Chem 2008; 283:32432-41. [PMID: 18805788 DOI: 10.1074/jbc.m806179200] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase (GK) and glucose-6-phosphatase (G6Pase) regulate rate-limiting reactions in the physiologically opposed metabolic cascades, glycolysis and gluconeogenesis, respectively. Expression of these genes is conversely regulated in the liver in response to fasting and feeding. We explored the mechanism of transcriptional regulation of these genes by nutritional condition and found that reciprocal function of HNF-4 and Foxo1 plays an important role in this process. In the GK gene regulation, Foxo1 represses HNF-4-potentiated transcription of the gene, whereas it synergizes with HNF-4 in activating the G6Pase gene transcription. These opposite actions of Foxo1 concomitantly take place in the cells under no insulin stimulus, and such gene-specific action was promoter context-dependent. Interestingly, HNF-4-binding elements (HBEs) in the GK and G6Pase promoters were required both for the insulin-stimulated GK gene activation and insulin-mediated G6Pase gene repression. Indeed, mouse in vivo imaging showed that mutating the HBEs in the GK and G6Pase promoters significantly impaired their reactivity to the nutritional states, even in the presence of intact Foxo1-binding sites (insulin response sequences). Thus, in the physiological response of the GK and G6Pase genes to fasting/feeding conditions, Foxo1 distinctly decodes the promoter context of these genes and differently modulates the function of HBE, which then leads to opposite outcomes of gene transcription.
Collapse
Affiliation(s)
- Keiko Hirota
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mithieux G. [Intestinal metabolism and control of the appetite: from genes to diseases]. ANNALES D'ENDOCRINOLOGIE 2008; 69:112-115. [PMID: 18430407 DOI: 10.1016/j.ando.2008.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- G Mithieux
- INSERM U855, UCBL Lyon-1, institut fédératif de recherche Lyon-Est, rue Guillaume-Paradin, Lyon cedex 08, France.
| |
Collapse
|
33
|
Xu C, Chakravarty K, Kong X, Tuy TT, Arinze IJ, Bone F, Massillon D. Several transcription factors are recruited to the glucose-6-phosphatase gene promoter in response to palmitate in rat hepatocytes and H4IIE cells. J Nutr 2007; 137:554-9. [PMID: 17311939 DOI: 10.1093/jn/137.3.554] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fatty acids and glucose are strong modulators of the expression of glucose-6-phosphatase (Glc-6-Pase), an enzyme that plays a key role in glucose homeostasis. PUFA inhibit, whereas SFA and monounsaturated fatty acids induce the expression of the Glc-6-Pase gene. Palmitate and oleate are the most abundant fatty acid species in circulation during food deprivation in mammals. Although dietary fats have been shown to modulate the expression of genes involved in both lipid and carbohydrate metabolism in liver, little is known regarding the molecular mechanism of transcriptional response of the Glc-6-Pase gene to long-chain fatty acids. Using H4IIE hepatoma cells and hepatocytes from adult rats, we investigated the mechanism of the induction of this gene by palmitate and oleate. Both of these fatty acids stimulated Glc-6-Pase gene transcription but did not affect the stability of its mRNA. In transient transfection assays, transcription from the Glc-6-Pase gene promoter was markedly enhanced by both palmitate and oleate but not by arachidonate. Chromatin immunoprecipitation analysis was used to show that palmitate induced the recruitment of an array of transcription factors viz hepatic nuclear factor(NF)-4alpha, CAAT/enhancer binding proteinbeta, PPARalpha, chicken ovalbumin upstream promoter transcription factor (COUP-TF), cAMP regulatory element binding protein, and NF-kappaB to this gene promoter. Although it is presently unclear how these various transcription factors interact at this promoter, the data are consistent with the view that multiple regulatory elements in the Glc-6-Pase gene promoter are responsible for the modulation of gene transcription by fatty acids.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4935, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gautier-Stein A, Zitoun C, Lalli E, Mithieux G, Rajas F. Transcriptional Regulation of the Glucose-6-phosphatase Gene by cAMP/Vasoactive Intestinal Peptide in the Intestine. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Gautier-Stein A, Zitoun C, Lalli E, Mithieux G, Rajas F. Transcriptional Regulation of the Glucose-6-phosphatase Gene by cAMP/Vasoactive Intestinal Peptide in the Intestine. J Biol Chem 2006; 281:31268-78. [PMID: 16893891 DOI: 10.1074/jbc.m603258200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gluconeogenesis is induced in both the liver and intestine by increased cAMP levels. However, hepatic and intestinal glucose production can have opposite effects on glucose homeostasis. Glucose release into the portal vein by the intestine increases glucose uptake and reduces food intake. In contrast, glucose production by the liver contributes to hyperglycemia in type II diabetes. Glucose-6-phosphatase (Glc6Pase) is the key enzyme of gluconeogenesis in both the liver and intestine. Here we specify the cAMP/protein kinase A regulation of the Glc6Pase gene in the intestine compared with the liver. Similarly to the liver, the molecular mechanism of cAMP/protein kinase A regulation involves cAMP-response element-binding protein, HNF4alpha, CAAT/enhancer-binding protein, and HNF1. In contrast to the situation in the liver, we find that different isoforms of CAAT/enhancer-binding protein and HNF1 contribute to the specific regulation of the Glc6Pase gene in the intestine. Moreover, we show that cAMP-response element binding modulator specifically contributes to the regulation of the Glc6Pase gene in the intestine but not in the liver. These results allow us to identify intestine-specific regulators of the Glc6Pase gene and to improve the understanding of the differences in the regulation of gluconeogenesis in the intestine compared with the liver.
Collapse
|
36
|
Carrière V, Le Gall M, Gouyon-Saumande F, Schmoll D, Brot-Laroche E, Chauffeton V, Chambaz J, Rousset M. Intestinal glucose-dependent expression of glucose-6-phosphatase: involvement of the aryl receptor nuclear translocator transcription factor. J Biol Chem 2005; 280:20094-101. [PMID: 15767253 DOI: 10.1074/jbc.m502192200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-6-phosphatase (G6Pase) catalyzes the release of glucose from glucose 6-phosphate. This enzyme was mainly studied in the liver, but while detected in the small intestine little is known about the regulation of its intestinal expression. This study describes the mechanisms of the glucose-dependent regulation of G6Pase expression in intestinal cells. Results obtained in vivo and in Caco-2/TC7 enterocytes showed that glucose increases the G6Pase mRNA level. In Caco-2/TC7 cells, glucose stabilized G6Pase mRNA and activated the transcription of the gene, meaning that glucose-dependent G6Pase expression involved both transcriptional and post-transcriptional mechanisms. Reporter-gene studies showed that, although the -299/+57 region of the human G6Pase promoter was sufficient to trigger the glucose response in the hepatoma cell line HepG2, the -1157/-1133 fragment was required for maximal activation of glucose-6-phosphatase gene transcription in Caco-2/TC7 cells. This fragment binds the aryl receptor nuclear translocator (ARNT), cAMP-responsive element-binding protein, and upstream stimulatory factor transcription factors. The DNA binding activity of these transcription factors was increased in nuclear extracts of differentiated cells from the intestinal villus of mice fed sugar-rich diets as compared with mice fed a no-sugar diet. A direct implication of ARNT in the activation of G6Pase gene transcription by glucose has been observed in Caco-2/TC7 cells using RNA interference experiments. These results support a physiological role for G6Pase in the control of nutrient absorption in the small intestine.
Collapse
|
37
|
Metón I, Caseras A, Fernández F, Baanante IV. Molecular cloning of hepatic glucose-6-phosphatase catalytic subunit from gilthead sea bream (Sparus aurata): response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp Biochem Physiol B Biochem Mol Biol 2005; 138:145-53. [PMID: 15193269 DOI: 10.1016/j.cbpc.2004.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/26/2004] [Accepted: 03/01/2004] [Indexed: 11/27/2022]
Abstract
To examine the relationship between structure and function of glucose-6-phosphatase (G6Pase) in fish, we undertook molecular cloning and modulation of G6Pase expression by starvation and refeeding on diets with different nutrient composition in the liver of the carnivorous fish, Sparus aurata. A cDNA encoding the full-length G6Pase catalytic subunit from the liver of S. aurata was isolated. This cDNA encodes a 350-amino acid protein, with low homology to the mammalian G6Pase, although it contains most of the key residues required for catalysis. Based on hydrophobicity and membrane structure prediction, we propose a model containing nine-transmembrane regions for S. aurata G6Pase. Northern blots showed that refeeding after a prolonged starvation rapidly reverses the glucose/glucose-6-phosphate substrate cycle flux in the fish liver through decreased G6Pase expression and strong glucokinase (GK) induction. The effect of refeeding different diets on G6Pase and GK expression, indicated that hepatic intermediary metabolism of fish fed diets with low protein/high carbohydrate diets is impelled towards utilization of dietary carbohydrates, by means of modulation of GK mRNA levels rather than G6Pase expression. These findings challenge the role attributed to dysregulation of G6Pase or GK expression in the low ability of carnivorous fish to metabolise glucose.
Collapse
Affiliation(s)
- Isidoro Metón
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Avgda. Diagonal 643, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Donkin S, Hammon H. Chapter 15 Hepatic gluconeogenesis in developing ruminants. BIOLOGY OF GROWING ANIMALS 2005. [DOI: 10.1016/s1877-1823(09)70022-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Gautier-Stein A, Mithieux G, Rajas F. A Distal Region Involving Hepatocyte Nuclear Factor 4α and CAAT/Enhancer Binding Protein Markedly Potentiates the Protein Kinase A Stimulation of the Glucose-6-Phosphatase Promoter. Mol Endocrinol 2005; 19:163-74. [PMID: 15388792 DOI: 10.1210/me.2004-0105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractGlucose-6-phosphatase (Glc6Pase) is the last enzyme of gluconeogenesis and is only expressed in the liver, kidney, and small intestine. In these tissues, the mRNA and its activity are increased when cAMP levels increased (e.g. in fasting or diabetes). We first report that a proximal region (within −200 bp relative to the transcription start site) and a distal region (−694/−500 bp) are both required for a potent cAMP and a protein kinase A (PKA) responsiveness of the Glc6Pase promoter. Using different molecular approaches, we demonstrate that hepatocyte nuclear factor (HNF4α), CAAT/ enhancer-binding protein-α (C/EBPα), C/EBPβ, and cAMP response element-binding protein (CREB) are involved in the potentiated PKA responsiveness: in the distal region, via one HNF4α- and one C/EBP-binding sites, and in the proximal region, via two HNF4α and two CREB-binding sites. We also show that HNF4α, C/EBPα, and C/EBPβ are constitutively bound to the endogenous Glc6Pase gene, whereas CREB and CREB-binding protein (CBP) will be bound to the gene upon stimulation by cAMP. These data strongly suggest that the cAMP responsiveness of the Glc6Pase promoter requires a tight cooperation between a proximal and a distal region, which depends on the presence of several HNF4α-, C/EBP-, and CREB-binding sites, therefore involving an intricate association of hepatic and ubiquitous transcription factors.
Collapse
Affiliation(s)
- Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, Unité 449/Institut National de la Recherche Agronomique 1235/Université Claude Bernard Lyon 1, Insitut Fédératif de Recherche Laennec, 69372 Lyon cedex 08, France.
| | | | | |
Collapse
|
40
|
Mithieux G, Rajas F, Gautier-Stein A. A Novel Role for Glucose 6-Phosphatase in the Small Intestine in the Control of Glucose Homeostasis. J Biol Chem 2004; 279:44231-4. [PMID: 15302872 DOI: 10.1074/jbc.r400011200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gilles Mithieux
- INSERM Unit 449, INRA 1235, Université Claude Bernard Lyon I, Faculté de Médecine Laennec, Rue Guillaume Paradin, 69372 Lyon, 08, France.
| | | | | |
Collapse
|
41
|
Basu R, Basu A, Johnson CM, Schwenk WF, Rizza RA. Insulin dose-response curves for stimulation of splanchnic glucose uptake and suppression of endogenous glucose production differ in nondiabetic humans and are abnormal in people with type 2 diabetes. Diabetes 2004; 53:2042-50. [PMID: 15277384 DOI: 10.2337/diabetes.53.8.2042] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To determine whether the insulin dose-response curves for suppression of endogenous glucose production (EGP) and stimulation of splanchnic glucose uptake (SGU) differ in nondiabetic humans and are abnormal in type 2 diabetes, 14 nondiabetic and 12 diabetic subjects were studied. Glucose was clamped at approximately 9.5 mmol/l and endogenous hormone secretion inhibited by somatostatin, while glucagon and growth hormone were replaced by an exogenous infusion. Insulin was progressively increased from approximately 150 to approximately 350 and approximately 700 pmol/l by means of an exogenous insulin infusion, while EGP, SGU, and leg glucose uptake (LGU) were measured using the splanchnic and leg catheterization methods, combined with a [3-3H]glucose infusion. In nondiabetic subjects, an increase in insulin from approximately 150 to approximately 350 pmol/l resulted in maximal suppression of EGP, whereas SGU continued to increase (P < 0.001) when insulin was increased to approximately 700 pmol/l. In contrast, EGP progressively decreased (P < 0.001) and SGU progressively increased (P < 0.001) in the diabetic subjects as insulin increased from approximately 150 to approximately 700 pmol/l. Although EGP was higher (P < 0.01) in the diabetic than nondiabetic subjects only at the lowest insulin concentration, SGU was lower (P < 0.01) in the diabetic subjects at all insulin concentrations tested. On the other hand, in contrast to LGU and overall glucose disposal, the increment in SGU in response to both increments in insulin did not differ in the diabetic and nondiabetic subjects, implying a right shifted but parallel dose-response curve. These data indicate that the dose-response curves for suppression of glucose production and stimulation of glucose uptake differ in nondiabetic subjects and are abnormal in people with type 2 diabetes. Taken together, these data also suggest that agents that enhance SGU in diabetic patients (e.g. glucokinase activators) are likely to improve glucose tolerance.
Collapse
Affiliation(s)
- Rita Basu
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
42
|
Hornbuckle LA, Everett CA, Martin CC, Gustavson SS, Svitek CA, Oeser JK, Neal DW, Cherrington AD, O'Brien RM. Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ. Am J Physiol Endocrinol Metab 2004; 286:E795-808. [PMID: 14722027 DOI: 10.1152/ajpendo.00455.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently compared the regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo (Hornbuckle LA, Edgerton DS, Ayala JE, Svitek CA, Neal DW, Cardin S, Cherrington AD, and O'Brien RM. Am J Physiol Endocrinol Metab 281: E713-E725, 2001). In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. Here, we demonstrate, again using pancreatic-clamped, conscious dogs, that glucagon is a candidate for the factor responsible for this selective induction. Thus glucagon stimulated G-6-Pase catalytic subunit but not G-6-P transporter gene expression in vivo. Furthermore, cAMP stimulated endogenous G-6-Pase catalytic subunit gene expression in HepG2 cells but had no effect on G-6-P transporter gene expression. The cAMP response element (CRE) that mediates this induction was identified through transient transfection of HepG2 cells with G-6-Pase catalytic subunit-chloramphenicol acetyltransferase fusion genes. Gel retardation assays demonstrate that this CRE binds several transcription factors including CRE-binding protein and CCAAT enhancer-binding protein.
Collapse
Affiliation(s)
- Lauri A Hornbuckle
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mithieux G, Bady I, Gautier A, Croset M, Rajas F, Zitoun C. Induction of control genes in intestinal gluconeogenesis is sequential during fasting and maximal in diabetes. Am J Physiol Endocrinol Metab 2004; 286:E370-5. [PMID: 14559723 DOI: 10.1152/ajpendo.00299.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied in rats the expression of genes involved in gluconeogenesis from glutamine and glycerol in the small intestine (SI) during fasting and diabetes. From Northern blot and enzymatic studies, we report that only phosphoenolpyruvate carboxykinase (PEPCK) activity is induced at 24 h of fasting, whereas glucose-6-phosphatase (G-6-Pase) activity is induced only from 48 h. Both genes then plateau, whereas glutaminase and glycerokinase strikingly rebound between 48 and 72 h. The two latter genes are fully expressed in streptozotocin-diabetic rats. From arteriovenous balance and isotopic techniques, we show that the SI does not release glucose at 24 h of fasting and that SI gluconeogenesis contributes to 35% of total glucose production in 72-h-fasted rats. The new findings are that 1) the SI can quantitatively account for up to one-third of glucose production in prolonged fasting; 2) the induction of PEPCK is not sufficient by itself to trigger SI gluconeogenesis; 3) G-6-Pase likely plays a crucial role in this process; and 4) glutaminase and glycerokinase may play a key potentiating role in the latest times of fasting and in diabetes.
Collapse
Affiliation(s)
- Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale 449, Faculté Laennec, 69372 Lyon, France.
| | | | | | | | | | | |
Collapse
|
44
|
Massillon D, Arinze IJ, Xu C, Bone F. Regulation of glucose-6-phosphatase gene expression in cultured hepatocytes and H4IIE cells by short-chain fatty acids: role of hepatic nuclear factor-4alpha. J Biol Chem 2003; 278:40694-701. [PMID: 12915406 DOI: 10.1074/jbc.m303182200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms underlying dietary nutrient regulation of glucose-6-phosphatase (Glc-6-Pase) gene expression are not well understood. Here we investigated the effects of short-chain fatty acids on the expression of this gene in primary cultures of rat hepatocytes and H4IIE hepatoma cells. Propionate, butyrate, valerate, and caproate induced severalfold increases in the expression of Glc-6-Pase mRNA. In reporter gene assays, propionate, valerate, caproate, and also octanoate increased Glc-6-Pase promoter activity by 6-16-fold. Butyrate, by itself, had little or no effect on promoter activity, but it induced a robust increase (45-fold) in promoter activity in cells co-transfected with a plasmid expressing the transcription factor HNF-4alpha (alpha isoforms of hepatic nuclear factor 4). HNF-4alpha also enhanced promoter activity induced by other short-chain fatty acids. A dominant negative form of HNF-4alpha abrogated the fatty acid-induced promoter activity, a finding that accentuates a role for HNF-4alpha in the transcription process studied here. In cells transfected with HNF-4alpha, short-chain fatty acids and trichostatin A, an inhibitor of histone deacetylase, synergistically enhanced promoter activity, suggesting that hyperacetylation of histones is an important component of the transactivation of the Glc-6-Pase gene promoter by HNF-4alpha. Region-751/-466 of this promoter contains seven putative HNF-4alpha-binding motifs. Binding of HNF-4alpha to this region was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays, indicating that HNF-4alpha is recruited to the Glc-6-Pase gene promoter during short-chain fatty acid-induced transcription from this promoter.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin/metabolism
- DNA-Binding Proteins
- Fatty Acids, Volatile/metabolism
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Genes, Reporter
- Glucose-6-Phosphatase/biosynthesis
- Glucose-6-Phosphatase/genetics
- Hepatocyte Nuclear Factor 4
- Hepatocytes/enzymology
- Histone Deacetylases/metabolism
- Histones/metabolism
- Hydroxamic Acids/pharmacology
- Models, Genetic
- Phosphoproteins/physiology
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Rats
- Time Factors
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Duna Massillon
- Departments of Nutrition and Physiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA.
| | | | | | | |
Collapse
|
45
|
Gautier-Stein A, Domon-Dell C, Calon A, Bady I, Freund JN, Mithieux G, Rajas F. Differential regulation of the glucose-6-phosphatase TATA box by intestine-specific homeodomain proteins CDX1 and CDX2. Nucleic Acids Res 2003; 31:5238-46. [PMID: 12954759 PMCID: PMC203330 DOI: 10.1093/nar/gkg747] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glucose-6-phosphatase (Glc6Pase), the last enzyme of gluconeogenesis, is only expressed in the liver, kidney and small intestine. The expression of the Glc6Pase gene exhibits marked specificities in the three tissues in various situations, but the molecular basis of the tissue specificity is not known. The presence of a consensus binding site of CDX proteins in the minimal Glc6Pase gene promoter has led us to consider the hypothesis that these intestine-specific CDX factors could be involved in the Glc6Pase-specific expression in the small intestine. We first show that the Glc6Pase promoter is active in both hepatic HepG2 and intestinal CaCo2 cells. Using gel shift mobility assay, mutagenesis and competition experiments, we show that both CDX1 and CDX2 can bind the minimal promoter, but only CDX1 can transactivate it. Consistently, intestinal IEC6 cells stably overexpressing CDX1 exhibit induced expression of the Glc6Pase protein. We demonstrate that a TATAAAA sequence, located in position -31/-25 relating to the transcription start site, exhibits separable functions in the preinitiation of transcription and the transactivation by CDX1. Disruption of this site dramatically suppresses both basal transcription and the CDX1 effect. The latter may be restored by inserting a couple of CDX- binding sites in opposite orientation similar to that found in the sucrase-isomaltase promoter. We also report that the specific stimulatory effect of CDX1 on the Glc6Pase TATA-box, compared to CDX2, is related to the fact that CDX1, but not CDX2, can interact with the TATA-binding protein. Together, these data strongly suggest that CDX proteins could play a crucial role in the specific expression of the Glc6Pase gene in the small intestine. They also suggest that CDX transactivation might be essential for intestine gene expression, irrespective of the presence of a functional TATA box.
Collapse
Affiliation(s)
- Amandine Gautier-Stein
- INSERM U.449, Faculté de Médecine Laennec, Rue Guillaume Paradin, 69372 Lyon cedex 08, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In vitro studies have established that free fatty acids (FFAs) are important regulators of hepatic glucose metabolism. FFAs can increase hepatic glucose release by increasing the amount and activity of glucose-6-phosphatase and multiple gluconeogenic enzymes. Elevated FFAs can also potentially decrease hepatic glucose uptake by decreasing hepatic glucokinase activity. In vivo studies in both animals and humans have shown a close correlation between changes in plasma FFAs and endogenous glucose production (EGP). Intervention studies have established that changes in plasma FFAs are accompanied by changes in the relative contribution of gluconeogenesis and glycogenolysis to EGP. The effects of a change in FFAs on EGP itself are more evident when compensatory changes in insulin secretion are prevented or when insulin secretion is impaired (eg, diabetes mellitus). The effects of elevated FFAs on splanchnic glucose uptake are less clear, in that they appear to have no effect in nondiabetic humans and may impair uptake in people with type 2 diabetes.
Collapse
Affiliation(s)
- Pankaj Shah
- Mayo Clinic and Foundation, 200 First Street SW, Room 5-194 Joseph, Rochester, MN 55905, USA
| | | | | |
Collapse
|
47
|
Caseras A, Metón I, Vives C, Egea M, Fernández F, Baanante IV. Nutritional regulation of glucose-6-phosphatase gene expression in liver of the gilthead sea bream (Sparus aurata). Br J Nutr 2002; 88:607-14. [PMID: 12493082 DOI: 10.1079/bjn2002701] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To examine the role of glucose-6-phosphatase (G6Pase) in glucose homeostasis in the diabetes-like experimental model of carnivorous fish, we analysed postprandial variations and the effect of starvation, ration size and diet composition on the regulation of G6Pase expression at the enzyme activity and mRNA level in the liver of gilthead sea bream (Sparus aurata). G6Pase expression increased in long-term starved or energy-restricted fish. In contrast to data reported for other fish species, short-term regulation of G6Pase expression was found in regularly fed S. aurata. G6Pase mRNA levels were lowest between 4 and 15 h after food intake, whereas minimal enzyme activity was observed 10-15 h postprandially. Alterations of plasma glucose levels affect G6Pase in mammals. However, the carbohydrate content of the diet did not affect hepatic expression of G6Pase in S. aurata, suggesting that a different molecular mechanism is involved in the control of G6Pase expression in fish. Although G6Pase was unaffected, high-carbohydrate low-protein diets increased glucokinase (GK) expression and thus allowed a metabolic adaptation favouring glycolysis over gluconeogenesis. Interestingly, only the nutritional conditions that promoted variations in the blood glucose levels resulted in changes in the hepatic expression of G6Pase. These findings indicate a concerted regulation of G6Pase and GK expression and suggest that the direction and rate of the glucose-glucose-6-phosphate substrate cycle flux is finely regulated in the liver of S. aurata, challenging the role attributed to deficient regulation of G6Pase or GK expression in the low ability of carnivorous fish to metabolize glucose.
Collapse
Affiliation(s)
- A Caseras
- Department de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Rajas F, Gautier A, Bady I, Montano S, Mithieux G. Polyunsaturated fatty acyl coenzyme A suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4 alpha. J Biol Chem 2002; 277:15736-44. [PMID: 11864989 DOI: 10.1074/jbc.m200971200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glucose-6-phosphatase confers on gluconeogenic tissues the capacity to release endogenous glucose in blood. The expression of its gene is modulated by nutritional mechanisms dependent on dietary fatty acids, with specific inhibitory effects of polyunsaturated fatty acids (PUFA). The presence of consensus binding sites of hepatocyte nuclear factor 4 (HNF4) in the -1640/+60 bp region of the rat glucose-6-phosphatase gene has led us to consider the hypothesis that HNF4 alpha could be involved in the regulation of glucose-6-phosphatase gene transcription by long chain fatty acid (LCFA). Our results have shown that the glucose-6-phosphatase promoter activity is specifically inhibited in the presence of PUFA in HepG2 hepatoma cells, whereas saturated LCFA have no effect. In HeLa cells, the glucose-6-phosphatase promoter activity is induced by the co-expression of HNF4 alpha or HNF1 alpha. PUFA repress the promoter activity only in HNF4 alpha-cotransfected HeLa cells, whereas they have no effects on the promoter activity in HNF1 alpha-cotransfected HeLa cells. From gel shift mobility assays, deletion, and mutagenesis experiments, two specific binding sequences have been identified that appear able to account for both transactivation by HNF4 alpha and regulation by LCFA in cells. The binding of HNF4 alpha to its cognate sites is specifically inhibited by polyunsaturated fatty acyl coenzyme A in vitro. These data strongly suggest that the mechanism by which PUFA suppress the glucose-6-phosphatase gene transcription involves an inhibition of the binding of HNF4 alpha to its cognate sites in the presence of polyunsaturated fatty acyl-CoA thioesters.
Collapse
Affiliation(s)
- Fabienne Rajas
- INSERM U. 449, Faculté de Médecine Laennec, Rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose.
Collapse
Affiliation(s)
- Emile van Schaftingen
- Laboratoire de Chimie Physiologique, UCL and ICP, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | |
Collapse
|
50
|
Patel S, Lochhead PA, Rena G, Sutherland C. Antagonistic effects of phorbol esters on insulin regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) but not glucose-6-phosphatase gene expression. Biochem J 2001; 359:611-9. [PMID: 11672436 PMCID: PMC1222183 DOI: 10.1042/0264-6021:3590611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucose-6-phosphatase (G6Pase) and insulin-like growth factor-binding protein-1 (IGFBP-1) genes contain a homologous promoter sequence that is required for gene repression by insulin. Interestingly, this element interacts with members of the forkhead family of transcription factors [e.g. HNF3 (hepatic nuclear factor 3), FKHR (forkhead in rhabdomyosarcoma)] in vitro, while insulin promotes the phosphorylation and inactivation of FKHR in a phosphatidylinositol 3-kinase- and protein kinase B (PKB)-dependent manner. This mechanism has been proposed to underlie insulin action on G6Pase and IGFBP-1 gene transcription. However, we find that treatment of cells with phorbol esters mimics the effect of insulin on G6Pase, but not IGFBP-1, gene expression. Indeed, phorbol ester treatment actually blocks the ability of insulin to repress IGFBP-1 gene expression. In addition, the action of phorbol esters is significantly reduced by inhibition of the p42/p44 mitogen-activated protein (MAP) kinase pathway. However insulin-induced phosphorylation of PKB or FKHR is not affected by the presence of phorbol esters. Therefore we suggest that activation of p42/p44 MAP kinases will reduce the sensitivity of the IGFBP-1 gene promoter, but not the G6Pase gene promoter, to insulin. Importantly, the activation of PKB and phosphorylation of FKHR is not, in itself, sufficient to reduce IGFBP-1 gene expression in the presence of phorbol esters.
Collapse
Affiliation(s)
- S Patel
- Division of Cell Signalling, School of Life Sciences, WTB/MSI Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|