1
|
Su K, Zhao SL, Yang WX, Lo CS, Chenier I, Liao MC, Pang YC, Peng JZ, Miyata KN, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. NRF2 Deficiency Attenuates Diabetic Kidney Disease in Db/Db Mice via Down-Regulation of Angiotensinogen, SGLT2, CD36, and FABP4 Expression and Lipid Accumulation in Renal Proximal Tubular Cells. Antioxidants (Basel) 2023; 12:1715. [PMID: 37760019 PMCID: PMC10525648 DOI: 10.3390/antiox12091715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.
Collapse
Affiliation(s)
- Ke Su
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Shui-Ling Zhao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Wen-Xia Yang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Min-Chun Liao
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Yu-Chao Pang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jun-Zheng Peng
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Kana N. Miyata
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Francois Cailhier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean Ethier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Jean-Baptiste Lattouf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Département de Pathologie et Biologie Cellulaire, Université de Montréal, 5415 Boul. de l’Assomption, Montréal, QC H1T 2M4, Canada;
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, WAC 709, Boston, MA 02114, USA;
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| | - John S. D. Chan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Département de Médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC H2X 0A9, Canada; (K.S.); (S.-L.Z.); (W.-X.Y.); (C.-S.L.); (I.C.); (M.-C.L.); (Y.-C.P.); (J.-Z.P.); (K.N.M.); (J.-F.C.); (J.E.); (J.-B.L.)
| |
Collapse
|
2
|
Chung JY, Ma Y, Zhang D, Bickerton HH, Stokes E, Patel SB, Tse HM, Feduska J, Welner RS, Banerjee RR. Pancreatic islet cell type-specific transcriptomic changes during pregnancy and postpartum. iScience 2023; 26:106439. [PMID: 37020962 PMCID: PMC10068570 DOI: 10.1016/j.isci.2023.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Pancreatic β-cell mass expands during pregnancy and regresses in the postpartum period in conjunction with dynamic metabolic demands on maternal glucose homeostasis. To understand transcriptional changes driving these adaptations in β-cells and other islet cell types, we performed single-cell RNA sequencing on islets from virgin, late gestation, and early postpartum mice. We identified transcriptional signatures unique to gestation and the postpartum in β-cells, including induction of the AP-1 transcription factor subunits and other genes involved in the immediate-early response (IEGs). In addition, we found pregnancy and postpartum-induced changes differed within each endocrine cell type, and in endothelial cells and antigen-presenting cells within islets. Together, our data reveal insights into cell type-specific transcriptional changes responsible for adaptations by islet cells to pregnancy and their resolution postpartum.
Collapse
Affiliation(s)
- Jin-Yong Chung
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Yongjie Ma
- Department of Pharmacology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Dingguo Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hayden H. Bickerton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Eric Stokes
- Department of Pharmacology, University of Colorado Denver/Anschutz, Aurora, CO 80045, USA
| | - Sweta B. Patel
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Hubert M. Tse
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Feduska
- Department of Microbiology, the University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Rob S. Welner
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Ronadip R. Banerjee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
3
|
Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1223-1233. [PMID: 36700987 DOI: 10.1007/s00210-023-02401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.
Collapse
|
4
|
Yoshihara E. Adapting Physiology in Functional Human Islet Organogenesis. Front Cell Dev Biol 2022; 10:854604. [PMID: 35557947 PMCID: PMC9086403 DOI: 10.3389/fcell.2022.854604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of three-dimensional (3D)-structured functional human islets is expected to be an alternative cell source for cadaveric human islet transplantation for the treatment of insulin-dependent diabetes. Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer infinite resources for newly synthesized human islets. Recent advancements in hPSCs technology have enabled direct differentiation to human islet-like clusters, which can sense glucose and secrete insulin, and those islet clusters can ameliorate diabetes when transplanted into rodents or non-human primates (NHPs). However, the generated hPSC-derived human islet-like clusters are functionally immature compared with primary human islets. There remains a challenge to establish a technology to create fully functional human islets in vitro, which are functionally and transcriptionally indistinguishable from cadaveric human islets. Understanding the complex differentiation and maturation pathway is necessary to generate fully functional human islets for a tremendous supply of high-quality human islets with less batch-to-batch difference for millions of patients. In this review, I summarized the current progress in the generation of 3D-structured human islets from pluripotent stem cells and discussed the importance of adapting physiology for in vitro functional human islet organogenesis and possible improvements with environmental cues.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Xu Y, Tian J, Kang Q, Yuan H, Liu C, Li Z, Liu J, Li M. Knockout of Nur77 Leads to Amino Acid, Lipid, and Glucose Metabolism Disorders in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:864631. [PMID: 35547009 PMCID: PMC9084189 DOI: 10.3389/fendo.2022.864631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Orphan nuclear receptor Nur77 has been reported to be implicated in a diverse range of metabolic processes, including carbohydrate metabolism and lipid metabolism. However, the detailed mechanism of Nur77 in the regulation of metabolic pathway still needs to be further investigated. In this study, we created a global nur77 knockout zebrafish model by CRISPR/Cas9 technique, and then performed whole-organism RNA sequencing analysis in wildtype and nur77-deficient zebrafish to dissect the genetic changes in metabolic-related pathways. We found that many genes involved in amino acid, lipid, and carbohydrate metabolism changed by more than twofold. Furthermore, we revealed that nur77-/- mutant displayed increased total cholesterol (TC) and triglyceride (TG), alteration in total amino acids, as well as elevated glucose. We also demonstrated that the elevated glucose was not due to the change of glucose uptake but was likely caused by the disorder of glycolysis/gluconeogenesis and the impaired β-cell function, including downregulated insb expression, reduced β-cell mass, and suppressed insulin secretion. Importantly, we also verified that targeted expression of Nur77 in the β cells is sufficient to rescue the β-cell defects in global nur77-/- larvae zebrafish. These results provide new information about the global metabolic network that Nur77 signaling regulates, as well as the role of Nur77 in β-cell function.
Collapse
Affiliation(s)
- Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Juanjuan Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hang Yuan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chengdong Liu
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhehui Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Mingyu Li, ; Jie Liu,
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Mingyu Li, ; Jie Liu,
| |
Collapse
|
6
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Aggarwal R, Peng Z, Zeng N, Silva J, He L, Chen J, Debebe A, Tu T, Alba M, Chen CY, Stiles EX, Hong H, Stiles BL. Chronic Exposure to Palmitic Acid Down-Regulates AKT in Beta-Cells through Activation of mTOR. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:130-145. [PMID: 34619135 PMCID: PMC8759041 DOI: 10.1016/j.ajpath.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
High circulating lipids occurring in obese individuals and insulin-resistant patients are considered a contributing factor to type 2 diabetes. Exposure to high lipid concentration is proposed to both protect and damage beta-cells under different circumstances. Here, by feeding mice a high-fat diet (HFD) for 2 weeks to up to 14 months, the study showed that HFD initially causes the beta-cells to expand in population, whereas long-term exposure to HFD is associated with failure of beta-cells and the inability of animals to respond to glucose challenge. To prevent the failure of beta-cells and the development of type 2 diabetes, the molecular mechanisms that underlie this biphasic response of beta-cells to lipid exposure were explored. Using palmitic acid (PA) in cultured beta-cells and islets, the study demonstrated that chronic exposure to lipids leads to reduced viability and inhibition of cell cycle progression concurrent with down-regulation of a pro-growth/survival kinase AKT, independent of glucose. This AKT down-regulation by PA is correlated with the induction of mTOR/S6K activity. Inhibiting mTOR activity with rapamycin induced Raptor and restored AKT activity, allowing beta-cells to gain proliferation capacity that was lost after HFD exposure. In summary, a novel mechanism in which lipid exposure may cause the dipole effects on beta-cell growth was elucidated, where mTOR acts as a lipid sensor. These mechanisms can be novel targets for future therapeutic developments.
Collapse
Affiliation(s)
- Richa Aggarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Zhechu Peng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Ni Zeng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Joshua Silva
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Lina He
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jingyu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Anketse Debebe
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Taojian Tu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chien-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Eileen X. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Handan Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California,Address correspondence to Bangyan L. Stiles, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033.
| |
Collapse
|
8
|
Turkmen AZ, Nurten A, Erguven M, Bilge E. Effects of scopolamine treatment and consequent convulsion development in c‑fos expression in fed, fasted, and refed mice. Acta Neurobiol Exp (Wars) 2021; 81:264-270. [PMID: 34672296 DOI: 10.21307/ane-2021-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fasting, anticholinergics, and seizures affect c‑fos activation in the brain. Additionally, antimuscarinic treated fasted animals develop convulsion soon after re‑feeding. Therefore, we assessed whether c‑fos expression changes in fed, fasting, and refed animals and how scopolamine treatment affects these changes. We further assessed whether there is a change in c‑fos expression after convulsions. For this purpose, BALB/c mice fasted for 1, 3, 6, 12, 24 and 48 h periods were used. The animals were treated with saline or scopolamine. Half\r\nof the animals treated with saline or scopolamine were given food 20 min after injection. All animals were observed for development of convulsions for 30 min. At the end of this period, the brains of all animals were removed, and the percentage of c‑fos active cells in the hypothalamus was determined immunohistochemically. Convulsions occurred within 1‑48 h of fasting, after scopolamine treatment and re‑feeding. Compared to fed animals, c‑fos expression was not significantly changed in those undergoing different fasting periods, but significantly decreased after 12 h fasting. After animals were allowed to eat, c‑fos activation significantly increased in the 1, 3, 6 and 12 refed‑saline groups and decreased in the 48 refed‑saline group. Scopolamine treatment in 1‑24 h fasted animals increased c‑fos expression, but decreased in 48 h fasted animals. Whereas convulsion development in scopolamine‑treated 3, 6, 12 and 24 h refed animals suppressed c‑fos expression. These results demonstrate that re‑feeding and scopolamine treatment induces neuronal activity in the hypothalamus, while scopolamine induced convulsions after food intake suppressed the c‑fos activity.
Collapse
Affiliation(s)
- Asli Zengin Turkmen
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey;
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Mine Erguven
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydın University, Istanbul, Turkey
| | - Emine Bilge
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Garcia DI, Hurst KE, Bradshaw A, Janakiraman H, Wang C, Camp ER. High-Fat Diet Drives an Aggressive Pancreatic Cancer Phenotype. J Surg Res 2021; 264:163-172. [PMID: 33838401 DOI: 10.1016/j.jss.2020.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/31/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Emerging evidence indicates associations between high-fat diet (HFD), metabolic syndrome (MetS), and increased risk of pancreatic cancer. However, individual components of an HFD that increase cancer risk have not been isolated. In addition, a specific pattern of cytokine elevation by which MetS drives pancreatic tumor progression is not well described. We hypothesized that oleic acid (OA), a major component of HFD, would augment pancreatic neoplastic processes. METHODS An orthotopic pancreatic cancer model with Panc02 cells was used to compare the effect of low-fat diet to OA-based HFD on cancer progression. Tumors were quantitated, analyzed by immunohistochemistry. In addition, serum cytokine levels were quantitated. Proliferation, migration assays, and expression of epithelial-to-mesenchymal transition factors were evaluated on Panc02 and MiaPaCa-2 pancreatic cancer cells cultured in high concentrations of OA. RESULTS HFD tumor-bearing mice (n = 8) had an 18% weight increase (P < 0.001) and increased tumor burden (P < 0.05) compared with the low-fat diet tumor-bearing group (n = 6). HFD tumors had significantly increased angiogenesis (P < 0.001) and decreased apoptosis (P < 0.05). Serum of HFD mice demonstrated increased levels of glucagon and glucagon-like peptide-1. Two pancreatic cancer cell lines cultured in OA demonstrated significant increases in proliferation (P < 0.001) and a >2.5-fold increase in cell migration (P < 0.001) when treated with OA. Panc02 treated with OA had increased expression of epithelial-to-mesenchymal transition factors SNAI-1 (Snail) and Zeb-1(P < 0.01). CONCLUSIONS High-fat conditions in vitro and in vivo resulted in an aggressive pancreatic cancer phenotype. Our data support further investigations elucidating molecular pathways augmented by MetS conditions to identify novel therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Denise I Garcia
- Department of Surgery, Charleston, South Carolina; Department of Hollings Cancer Center, Charleston, South Carolina
| | - Katie E Hurst
- Department of Surgery, Charleston, South Carolina; Department of Hollings Cancer Center, Charleston, South Carolina
| | - Alexandra Bradshaw
- Department of Surgery, Charleston, South Carolina; Department of Hollings Cancer Center, Charleston, South Carolina
| | - Harinarayanan Janakiraman
- Department of Surgery, Charleston, South Carolina; Department of Hollings Cancer Center, Charleston, South Carolina
| | - Cindy Wang
- Department of Surgery, Charleston, South Carolina; Department of Hollings Cancer Center, Charleston, South Carolina
| | - E Ramsay Camp
- Department of Surgery, Charleston, South Carolina; Department of Hollings Cancer Center, Charleston, South Carolina; Department of Ralph H. Johnson VA Medical Center, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
10
|
Zhang C, Zhang B, Zhang X, Sun G, Sun X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front Pharmacol 2020; 11:587457. [PMID: 33328994 PMCID: PMC7728612 DOI: 10.3389/fphar.2020.587457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Orphan nuclear receptors are important members of the nuclear receptor family and may regulate cell proliferation, metabolism, differentiation, and apoptosis. NR4As, a subfamily of orphan nuclear receptors, have been reported to play key roles in carbohydrate and lipid metabolism and energy homeostasis. Popularity of obesity has resulted in a series of metabolic diseases such as diabetes and its complications. While imbalance of energy intake and expenditure is the main cause of obesity, the concrete mechanism of obesity has not been fully understood. It has been reported that NR4As have significant regulatory effects on energy homeostasis and diabetes and are expected to become new targets for discovering drugs for metabolic syndrome. A number of studies have demonstrated that abnormalities in metabolism induced by altered levels of NR4As may contribute to numerous diseases, such as chronic inflammation, tumorigenesis, diabetes and its complications, atherosclerosis, and other cardiovascular diseases. However, systematic reviews focusing on the roles of NR4As in mediating energy homeostasis and diabetes remain limited. Therefore, this article reviews the structure and regulation of NR4As and their critical function in energy homeostasis and diabetes, as well as small molecules that may regulate NR4As. Our work is aimed at providing valuable support for the research and development of drugs targeting NR4As for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019; 8:cells8111373. [PMID: 31683815 PMCID: PMC6912296 DOI: 10.3390/cells8111373] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
The Nr4a family of nuclear hormone receptors is composed of three members-Nr4a1/Nur77, Nr4a2/Nurr1 and Nr4a3/Nor1. While currently defined as ligandless, these transcription factors have been shown to regulate varied processes across a host of tissues. Of particular interest, the Nr4a family impinge, in a tissue dependent fashion, on cellular proliferation, apoptosis and fuel utilization. The regulation of these processes occurs through both nuclear and non-genomic pathways. The purpose of this review is to provide a balanced perspective of the tissue specific and Nr4a family member specific, effects on cellular proliferation, apoptosis and fuel utilization.
Collapse
|
12
|
NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci U S A 2019; 116:11299-11308. [PMID: 31110021 DOI: 10.1073/pnas.1902490116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle plays a central role in the control of metabolism and exercise tolerance. Analysis of muscle enhancers activated after exercise in mice revealed the orphan nuclear receptor NURR1/NR4A2 as a prominent component of exercise-responsive enhancers. We show that exercise enhances the expression of NURR1, and transgenic overexpression of NURR1 in skeletal muscle enhances physical performance in mice. NURR1 expression in skeletal muscle is also sufficient to prevent hyperglycemia and hepatic steatosis, by enhancing muscle glucose uptake and storage as glycogen. Furthermore, treatment of obese mice with putative NURR1 agonists increases energy expenditure, improves glucose tolerance, and confers a lean phenotype, mimicking the effects of exercise. These findings identify a key role for NURR1 in governance of skeletal muscle glucose metabolism, and reveal a transcriptional link between exercise and metabolism. Our findings also identify NURR1 agonists as possible exercise mimetics with the potential to ameliorate obesity and other metabolic abnormalities.
Collapse
|
13
|
Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca 2+ signaling and the development of diabetes. Mol Metab 2019; 21:1-12. [PMID: 30630689 PMCID: PMC6407368 DOI: 10.1016/j.molmet.2018.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The divalent cation Calcium (Ca2+) regulates a wide range of processes in disparate cell types. Within insulin-producing β-cells, increases in cytosolic Ca2+ directly stimulate insulin vesicle exocytosis, but also initiate multiple signaling pathways. Mediated through activation of downstream kinases and transcription factors, Ca2+-regulated signaling pathways leverage substantial influence on a number of critical cellular processes within the β-cell. Additionally, there is evidence that prolonged activation of these same pathways is detrimental to β-cell health and may contribute to Type 2 Diabetes pathogenesis. SCOPE OF REVIEW This review aims to briefly highlight canonical Ca2+ signaling pathways in β-cells and how β-cells regulate the movement of Ca2+ across numerous organelles and microdomains. As a main focus, this review synthesizes experimental data from in vitro and in vivo models on both the beneficial and detrimental effects of Ca2+ signaling pathways for β-cell function and health. MAJOR CONCLUSIONS Acute increases in intracellular Ca2+ stimulate a number of signaling cascades, resulting in (de-)phosphorylation events and activation of downstream transcription factors. The short-term stimulation of these Ca2+ signaling pathways promotes numerous cellular processes critical to β-cell function, including increased viability, replication, and insulin production and secretion. Conversely, chronic stimulation of Ca2+ signaling pathways increases β-cell ER stress and results in the loss of β-cell differentiation status. Together, decades of study demonstrate that Ca2+ movement is tightly regulated within the β-cell, which is at least partially due to its dual roles as a potent signaling molecule.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Özdemir S, Altun S, Özkaraca M, Ghosi A, Toraman E, Arslan H. Cypermethrin, chlorpyrifos, deltamethrin, and imidacloprid exposure up-regulates the mRNA and protein levels of bdnf and c-fos in the brain of adult zebrafish (Danio rerio). CHEMOSPHERE 2018; 203:318-326. [PMID: 29626809 DOI: 10.1016/j.chemosphere.2018.03.190] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study is to investigate the toxicity effects of frequently used pesticides, involving cypermethrin, deltamethrin, chlorpyrifos and imidacloprid, on the expression of bdnf and c-fos genes in zebrafish brain tissues. Therefore, brain tissues exposed to intoxication was primarily analyzed by indirect immunofluorescence assay. Afterwards, the mRNA transcription levels of BNDF and c-fos genes and the protein levels were measured by qRT-PCR and Western blotting, respectively. The data of the immunofluorescence assay revealed intensive immunopositivity for bdnf and c-fos genes in the tissues exposed to pesticide intoxication in comparison to the control group (p<0.05). Moreover, the transcription levels of BNDF and c-fos genes, and protein levels were elevated following the intoxication (p<0.05, p<0.01, and p<0.001, respectively). These results showed that the exposure to the acute cypermethrin, deltamethrin, chlorpyrifos and imidacloprid intoxication disrupted the normal neuronal activity, resulting in neurotoxic effect, also DNA-binding Increasing c-fos activation, an oncoprotein from the family of the Nuclear Proteins, is also true of the knowledge that these chemicals are oncogenic in zebrafish brain tissues. Thus, the use of these pesticides poses a potential neuronal and oncogenic risk to the non-target organisms.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey.
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Atena Ghosi
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
15
|
Kukushkin NV. Taking memory beyond the brain: Does tobacco dream of the mosaic virus? Neurobiol Learn Mem 2018; 153:111-116. [PMID: 29396326 DOI: 10.1016/j.nlm.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Memory is typically defined through animal behavior, but this point of view may limit our understanding of many related processes in diverse biological systems. The concept of memory can be broadened meaningfully by considering it from the perspective of time and homeostasis. On the one hand, this theoretical angle can help explain and predict the behavior of various non-neural systems such as insulin-secreting cells, plants, or signaling cascades. On the other hand, it emphasizes biological continuity between neural phenomena, such as synaptic plasticity, and their evolutionary precursors in cellular signaling.
Collapse
Affiliation(s)
- Nikolay V Kukushkin
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY 10003, USA.
| |
Collapse
|
16
|
Amoasii L, Olson EN, Bassel-Duby R. Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029843. [PMID: 28432117 DOI: 10.1101/cshperspect.a029843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise represents an energetic challenge to whole-body homeostasis. In skeletal muscle, exercise activates a variety of signaling pathways that culminate in the nucleus to regulate genes involved in metabolism and contractility; however, much remains to be learned about the transcriptional effectors of exercise. Mediator is a multiprotein complex that links signal-dependent transcription factors and other transcriptional regulators with the basal transcriptional machinery, thereby serving as a transcriptional "hub." In this article, we discuss recent studies highlighting the role of Mediator subunits in metabolic regulation and glucose metabolism, as well as exercise responsiveness. Elucidation of the roles of Mediator subunits in metabolic control has revealed new mechanisms and molecular targets for the modulation of metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 7539-9148
| |
Collapse
|
17
|
Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J Diabetes Res 2018; 2018:9363461. [PMID: 30013988 PMCID: PMC6022324 DOI: 10.1155/2018/9363461] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a transcriptional factor of the nuclear orphan receptor (NR4A) superfamily that has sparked interest across different research fields in recent years. Several studies have demonstrated that ligand-independent NR4A1 is an immediate-early response gene and the protein product is rapidly induced by a variety of stimuli. Hyperfunction or dysfunction of NR4A1 is implicated in various metabolic processes, including carbohydrate metabolism, lipid metabolism, and energy balance, in major metabolic tissues, such as liver, skeletal muscle, pancreatic tissues, and adipose tissues. No endogenous ligands for NR4A1 have been identified, but numerous compounds that bind and activate or inactivate nuclear NR4A1 or induce cytoplasmic localization of NR4A1 have been identified. This review summarizes recent advances in our understanding of the molecular biology and physiological functions of NR4A1. And we focus on the physiological functions of NR4A1 receptor to the development of the metabolic diseases, with a special focus on the impact on carbohydrate and lipid metabolism in skeletal muscle, liver, adipose tissue, and islet.
Collapse
Affiliation(s)
- Lei Zhang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Qun Wang
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Wen Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Fangyan Liu
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, China
| |
Collapse
|
18
|
Lo CS, Shi Y, Chenier I, Ghosh A, Wu CH, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous Nuclear Ribonucleoprotein F Stimulates Sirtuin-1 Gene Expression and Attenuates Nephropathy Progression in Diabetic Mice. Diabetes 2017; 66:1964-1978. [PMID: 28424160 PMCID: PMC5482081 DOI: 10.2337/db16-1588] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
We investigated the mechanism of heterogeneous nuclear ribonucleoprotein F (hnRNP F) renoprotective action in a type 2 diabetes (T2D) mouse model (db/db). Immortalized rat renal proximal tubular cells (IRPTCs) and kidneys from humans with T2D were also studied. The db/db mice developed hyperglycemia, oxidative stress, and nephropathy at age 20 weeks compared with their db/m littermates. These abnormalities, with the exception of hyperglycemia, were attenuated in db/dbhnRNP F-transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs. Sirtuin-1, Foxo3α, and catalase expression were significantly decreased in RPTCs from db/db mice and normalized in db/dbhnRNP F-Tg mice. In vitro, hnRNP F overexpression stimulated Sirtuin-1 and Foxo3α with downregulation of acetylated p53 expression and prevented downregulation of Sirtuin-1 and Foxo3α expression in IRPTCs by high glucose plus palmitate. Transfection of Sirtuin-1 small interfering RNA prevented hnRNP F stimulation of Foxo3α and downregulation of acetylated p53 expression. hnRNP F stimulated Sirtuin-1 transcription via hnRNP F-responsive element in the Sirtuin-1 promoter. Human T2D kidneys exhibited more RPTC apoptosis and lower expression of hnRNP F, SIRTUIN-1, and FOXO3α than nondiabetic kidneys. Our results demonstrate that hnRNP F protects kidneys against oxidative stress and nephropathy via stimulation of Sirtuin-1 expression and signaling in diabetes.
Collapse
MESH Headings
- Acetylation
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Case-Control Studies
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Fibrosis
- Forkhead Box Protein O3
- Gene Expression Regulation/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Kidney/pathology
- Kidney Tubules, Proximal/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Oxidative Stress
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Leptin/genetics
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Anindya Ghosh
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Chin-Han Wu
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Francois Cailhier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean Ethier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Baptiste Lattouf
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Janos G Filep
- Centre de recherche, Hôpital Maisonneuve-Rosemont and Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Zong C, Qin D, Yu C, Gao P, Chen J, Lu S, Zhang Y, Liu Y, Yang Y, Pu Z, Li X, Fu Y, Guan Q, Wang X. The stress-response molecule NR4A1 resists ROS-induced pancreatic β-cells apoptosis via WT1. Cell Signal 2017; 35:129-139. [PMID: 28342843 DOI: 10.1016/j.cellsig.2017.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023]
Abstract
Pancreatic β-cells often face endoplasmic reticulum stress and/or ROS-associated oxidative stress under adverse conditions. Our previous work has verified that NR4A1 protects pancreatic β-cells from ER-stress induced apoptosis. However, It remains unknown whether NR4A1 is able to protect pancreatic β-cells against ROS-associated oxidative stress. In the present study, our data showed that NR4A1 protein expression rapidly increased in MIN6 cells upon H2O2 treatment, and overexpression of NR4A1 in MIN6 cells conferred resistance to cell apoptosis induced by H2O2. These results were further substantiated in isolated islets from mice infected with an adenovirus overexpressing NR4A1. 8-hydroxy-2'-deoxyguanosine (8-OHdG) was used as a biomarker for oxidative stress or a marker for ROS damage. We found that the 8-OHdG level in the islets from NR4A1 knockout mice fed with high-fat diet was much higher than that in the islets from parental control mice; and higher apoptotic rate was observed in the islets from NR4A1 KO mice compared to control mice. Further investigation of underlying mechanisms of NR4A1's protective effects showed that NR4A1 overexpression in MIN6 cells reduced Caspase 3 activation caused by H2O2, and increased expression of WT1 and SOD1. There is a putative NR4A1 binding site (-1118bp to -1111bp) in WT1 promoter; our data demonstrated that NR4A1 protein physically associates with the WT1 promoter, and enhanced WT1 promoter transactivation and knockdown of WT1 in MIN6 cells induced apoptosis. These findings suggest that NR4A1 protects pancreatic β-cells against H2O2 mediated apoptosis by up-regulating WT1 expression.
Collapse
Affiliation(s)
- Chen Zong
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Dandan Qin
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Cong Yu
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Peng Gao
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China; Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
| | - Jicui Chen
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Sumei Lu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China
| | - Yuchao Zhang
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Yuantao Liu
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Yingfeng Yang
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Zeqing Pu
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China
| | - Xia Li
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China.
| | - Yuchang Fu
- The Department of Nutrition Sciences, University of Alabama at Birmingham, AL 35294, United States.
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Xiangdong Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan 250012, Shandong, China; Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan 250012, Shandong, China.
| |
Collapse
|
20
|
Reynolds MS, Hancock CR, Ray JD, Kener KB, Draney C, Garland K, Hardman J, Bikman BT, Tessem JS. β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am J Physiol Endocrinol Metab 2016; 311:E186-201. [PMID: 27221116 DOI: 10.1152/ajpendo.00022.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
Abstract
β-Cell insulin secretion is dependent on proper mitochondrial function. Various studies have clearly shown that the Nr4a family of orphan nuclear receptors is essential for fuel utilization and mitochondrial function in liver, muscle, and adipose. Previously, we have demonstrated that overexpression of Nr4a1 or Nr4a3 is sufficient to induce proliferation of pancreatic β-cells. In this study, we examined whether Nr4a expression impacts pancreatic β-cell mitochondrial function. Here, we show that β-cell mitochondrial respiration is dependent on the nuclear receptors Nr4a1 and Nr4a3. Mitochondrial respiration in permeabilized cells was significantly decreased in β-cells lacking Nr4a1 or Nr4a3. Furthermore, respiration rates of intact cells deficient for Nr4a1 or Nr4a3 in the presence of 16 mM glucose resulted in decreased glucose mediated oxygen consumption. Consistent with this reduction in respiration, a significant decrease in glucose-stimulated insulin secretion rates is observed with deletion of Nr4a1 or Nr4a3. Interestingly, the changes in respiration and insulin secretion occur without a reduction in mitochondrial content, suggesting decreased mitochondrial function. We establish that knockdown of Nr4a1 and Nr4a3 results in decreased expression of the mitochondrial dehydrogenase subunits Idh3g and Sdhb. We demonstrate that loss of Nr4a1 and Nr4a3 impedes production of ATP and ultimately inhibits glucose-stimulated insulin secretion. These data demonstrate for the first time that the orphan nuclear receptors Nr4a1 and Nr4a3 are critical for β-cell mitochondrial function and insulin secretion.
Collapse
Affiliation(s)
- Merrick S Reynolds
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Chad R Hancock
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Jason D Ray
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Kyle B Kener
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Carrie Draney
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Kevin Garland
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Jeremy Hardman
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| | - Benjamin T Bikman
- Physiology and Developmental Biology Department, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jeffery S Tessem
- Nutrition, Dietetics, and Food Science Department, College of Life Sciences, Brigham Young University, Provo, Utah; and
| |
Collapse
|
21
|
Ray JD, Kener KB, Bitner BF, Wright BJ, Ballard MS, Barrett EJ, Hill JT, Moss LG, Tessem JS. Nkx6.1-mediated insulin secretion and β-cell proliferation is dependent on upregulation of c-Fos. FEBS Lett 2016; 590:1791-803. [PMID: 27164028 DOI: 10.1002/1873-3468.12208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/02/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Understanding the molecular pathways that enhance β-cell proliferation, survival, and insulin secretion may be useful to improve treatments for diabetes. Nkx6.1 induces proliferation through the Nr4a nuclear receptors, and improves insulin secretion and survival through the peptide hormone VGF. Here we demonstrate that Nkx6.1-mediated upregulation of Nr4a1, Nr4a3, and VGF is dependent on c-Fos expression. c-Fos overexpression results in activation of Nkx6.1 responsive genes and increases β-cell proliferation, insulin secretion, and cellular survival. c-Fos knockdown impedes Nkx6.1-mediated β-cell proliferation and insulin secretion. These data demonstrate that c-Fos is critical for Nkx6.1-mediated expansion of functional β-cell mass.
Collapse
Affiliation(s)
- Jason D Ray
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Kyle B Kener
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Benjamin F Bitner
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Brent J Wright
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Matthew S Ballard
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Emily J Barrett
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Jonathon T Hill
- Physiology and Developmental Biology Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Larry G Moss
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC, USA
| | - Jeffery S Tessem
- Nutrition, Dietetics and Food Science Department, College of Life Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
22
|
Yu C, Cui S, Zong C, Gao W, Xu T, Gao P, Chen J, Qin D, Guan Q, Liu Y, Fu Y, Li X, Wang X. The Orphan Nuclear Receptor NR4A1 Protects Pancreatic β-Cells from Endoplasmic Reticulum (ER) Stress-mediated Apoptosis. J Biol Chem 2015; 290:20687-20699. [PMID: 26157144 PMCID: PMC4543630 DOI: 10.1074/jbc.m115.654863] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 11/06/2022] Open
Abstract
The role of NR4A1 in apoptosis is controversial. Pancreatic β-cells often face endoplasmic reticulum (ER) stress under adverse conditions such as high free fatty acid (FFA) concentrations and sustained hyperglycemia. Severe ER stress results in β-cell apoptosis. The aim of this study was to analyze the role of NR4A1 in ER stress-mediated β-cell apoptosis and to characterize the related mechanisms. We confirmed that upon treatment with the ER stress inducers thapsigargin (TG) or palmitic acid (PA), the mRNA and protein levels of NR4A1 rapidly increased in both MIN6 cells and mouse islets. NR4A1 overexpression in MIN6 cells conferred resistance to cell loss induced by TG or PA, as assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and TUNEL assays indicated that NR4A1 overexpression also protected against ER stress-induced apoptosis. This conclusion was further confirmed by experiments exploiting siRNA to knockdown NR4A1 expression in MIN6 cells or exploiting NR4A1 knock-out mice. NR4A1 overexpression in MIN6 cells reduced C/EBP homologous protein (CHOP) expression and Caspase3 activation induced by TG or PA. NR4A1 overexpression in MIN6 cells or mouse islets resulted in Survivin up-regulation. A critical regulatory element was identified in Survivin promoter (-1872 bp to -1866 bp) with a putative NR4A1 binding site; ChIP assays demonstrated that NR4A1 physically associates with the Survivin promoter. In conclusion, NR4A1 protects pancreatic β-cells against ER stress-mediated apoptosis by up-regulating Survivin expression and down-regulating CHOP expression, which we termed as "positive and negative regulation."
Collapse
Affiliation(s)
- Cong Yu
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Shang Cui
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Chen Zong
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Weina Gao
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Tongfu Xu
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Peng Gao
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Jicui Chen
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Dandan Qin
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Qingbo Guan
- The Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Jinan, China, 250021
| | - Yuantao Liu
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, China, 266071
| | - Yuchang Fu
- The Department of Nutrition Sciences, University of Alabama at Birmingham, Alabama 35294
| | - Xia Li
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012.
| | - Xiangdong Wang
- The Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012; Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan, China 250012.
| |
Collapse
|
23
|
Ojo OO, Srinivasan DK, Owolabi BO, Flatt PR, Abdel-Wahab YH. Beneficial effects of tigerinin-1R on glucose homeostasis and beta cell function in mice with diet-induced obesity-diabetes. Biochimie 2015; 109:18-26. [DOI: 10.1016/j.biochi.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
|
24
|
Min AK, Bae KH, Jung YA, Choi YK, Kim MJ, Kim JH, Jeon JH, Kim JG, Lee IK, Park KG. Orphan nuclear receptor Nur77 mediates fasting-induced hepatic fibroblast growth factor 21 expression. Endocrinology 2014; 155:2924-31. [PMID: 24885573 DOI: 10.1210/en.2013-1758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fasting-induced hepatic hormone, fibroblast growth factor 21 (FGF21), is a potential candidate for the treatment of metabolic syndromes. Although peroxisome proliferator-activated receptor (PPAR)α is known to play a major role in the induction of hepatic FGF21 expression, other fasting-induced transcription factors that induce FGF21 expression have not yet been fully studied. In the present study, we investigated whether the fasting-induced activation of the orphan nuclear receptor Nur77 increases hepatic FGF21 expression. We found that fasting induced hepatic Nur77 and FGF21 expression. Glucagon and forskolin increased Nur77 and FGF21 expression in vivo and in vitro, respectively, and adenovirus-mediated overexpression of Nur77 (Ad-Nur77) increased FGF21 expression in vitro and in vivo. Moreover, knockdown of endogenous Nur77 expression by siRNA-Nur77 abolished the effect of forskolin on FGF21 expression. The results of ChIP assays, EMSA, and mutagenesis analysis showed that Nur77 bound to the putative NBRE of the FGF21 promoter in cultured hepatocytes and fasting induced Nur77 binding to the FGF21 promoter in vivo. Knockdown of PPARα partially inhibited forskolin-induced FGF21 expression, suggesting PPARα involvement in glucagon-stimulated FGF21 expression. In addition, double knockdown of PPARα and Nur77 further diminished FGF21 expression in cultured hepatocytes. In conclusion, this study shows that Nur77 mediates fasting-induced hepatic FGF21 expression, and suggests an alternative mechanism via which hepatic FGF21 transcription is mediated under fasting conditions.
Collapse
Affiliation(s)
- Ae-Kyung Min
- Division of Endocrinology and Metabolism (A.-K.M., K.-H.B., Y.-K.C., M.-J.K., J.-H.K., J.-H.J., J.-G.K., I.-K.L., K.-G.P.) Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 700-721, South Korea; Division of Endocrinology and Metabolism (Y.-A.J.), Department of Internal Medicine, Keimyung University School of Medicine, Daegu 700-712, South Korea; Brain Korea 21 Plus Project for Bio-Medical Convergence Program for Creative Talent (I.-K.L.), Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Daems C, Martin LJ, Brousseau C, Tremblay JJ. MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1. Mol Endocrinol 2014; 28:886-98. [PMID: 24694307 DOI: 10.1210/me.2013-1407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Leydig cell steroidogenesis is controlled by the pituitary gonadotropin LH that activates several signaling pathways, including the Ca(2+)/calmodulin kinase I (CAMKI) pathway. In other tissues, CAMKI regulates the activity of the myocyte enhancer factor 2 (MEF2) transcription factors. MEF2 factors are essential regulators of cell differentiation and organogenesis in numerous tissues but their expression and role in the mammalian gonad had not been explored. Here we show that MEF2 factors are expressed in a sexually dimorphic pattern in the mouse gonad. MEF2 factors are present in the testis throughout development and into adulthood but absent from the ovary. In the testis, MEF2 was localized mainly in the nucleus of both somatic lineages, the supporting Sertoli cells and the steroidogenic Leydig cells. In Leydig cells, MEF2 was found to activate the expression of Nr4a1, a nuclear receptor important for hormone-induced steroidogenesis. In these cells MEF2 also cooperates with forskolin and CAMKI to enhance Nr4a1 promoter activity via two MEF2 elements (-318 and -284 bp). EMSA confirmed direct binding of MEF2 to these elements whereas chromatin immunoprecipitation revealed that MEF2 recruitment to the proximal Nr4a1 promoter was increased following hormonal stimulation. Modulation of endogenous MEF2 protein level (small interfering RNA-mediated knockdown) or MEF2 activity (MEF2-Engrailed active dominant negative) led to a significant decrease in Nr4a1 mRNA levels in Leydig cells. All together, our results identify MEF2 as a novel testis-specific transcription factor, supporting a role for this factor in male sex differentiation and function. MEF2 was also positioned upstream of NR4A1 in a regulatory cascade controlling Leydig cell gene expression.
Collapse
Affiliation(s)
- Caroline Daems
- Reproduction, Mother and Child Health (C.D., L.J.M., C.B., J.J.T., Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada, G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | | | | | | |
Collapse
|
26
|
Gao W, Fu Y, Yu C, Wang S, Zhang Y, Zong C, Xu T, Liu Y, Li X, Wang X. Elevation of NR4A3 expression and its possible role in modulating insulin expression in the pancreatic beta cell. PLoS One 2014; 9:e91462. [PMID: 24638142 PMCID: PMC3956668 DOI: 10.1371/journal.pone.0091462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background NR4A3/NOR-1 is a member of the NR4A orphan nuclear receptor subfamily, which contains early response genes that sense and respond to a variety of stimuli in the cellular environment. The role of NR4A3 in insulin expression in pancreatic beta cells remains unknown. Methods Dynamic changes in NR4A3 were examined in a pancreatic beta-cell line, MIN6, treated with thapsigargin (TG), palmitate (PA), tunicamycin (TM), and dithiothreitol (DTT), chemicals that produce cell stress and even apoptosis. We exploited virus infection techniques to induce expression of NR4A3 or three deletion mutants, and determined expression of insulin and insulin regulatory genes in MIN6 cells. Results TG and PA, two endoplasmic reticulum (ER) stress inducers, were able to induce unfolded protein response (UPR) activation and elevation of NR4A3 expression in MIN6 cells, whereas TM and DTT, two other ER stress inducers, were able to induce UPR activation but not NR4A3 elevation. MIN6 cells over-expressing NR4A3 protein after adenoviral infection exhibited reduced transcription of the insulin genes Ins1 and Ins2, and reduced insulin protein secretion, which were negatively correlated with NR4A3 expression levels. Functional analysis of different deletion mutants of NR4A3 showed that deleting the activation domain AF1 or the DNA-binding domain abolished the down-regulation of insulin transcription by NR4A3 in MIN6 cells, indicating that this down-regulative role was closely related to the NR4A3 trans-activation activity. Over-expression of NR4A3 in MIN6 cells resulted in reduced mRNA transcription of the insulin positive-regulation genes, Pdx1 and NeuroD1. Conclusion Some ER stress inducers, such as TG or PA, are able to elevate NR4A3 expression in MIN6 cells, while others, such as TM or DTT, are not. Over-expression of NR4A3 in MIN6 cells results in down-regulation of insulin gene transcription and insulin secretion. NR4A3 reduces insulin gene expression by modulating the expression of Pdx1 and NeuroD1.
Collapse
Affiliation(s)
- Weina Gao
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cong Yu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Shunke Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Yuchao Zhang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Chen Zong
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Tongfu Xu
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
| | - Yong Liu
- The Institute for Nutritional Sciences, Chinese Academy of Science, Shanghai, China
| | - Xia Li
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
- * E-mail: (XL); (XW)
| | - Xiangdong Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China
- Key Laboratory of Protein Sciences for Chronic Degenerative Diseases in Universities of Shandong (Shandong University), Jinan, China
- * E-mail: (XL); (XW)
| |
Collapse
|
27
|
Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013; 56:2203-12. [PMID: 23842730 DOI: 10.1007/s00125-013-2993-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/19/2013] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.
Collapse
Affiliation(s)
- Valeria Nesca
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Close AF, Rouillard C, Buteau J. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. DIABETES & METABOLISM 2013; 39:478-84. [PMID: 24075454 DOI: 10.1016/j.diabet.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/23/2023]
Abstract
Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes.
Collapse
Affiliation(s)
- A F Close
- Department of AFNS, University of Alberta and Alberta Diabetes Institute, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
| | | | | |
Collapse
|
29
|
Pearen MA, Goode JM, Fitzsimmons RL, Eriksson NA, Thomas GP, Cowin GJ, Wang SCM, Tuong ZK, Muscat GEO. Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism, and endurance. Mol Endocrinol 2013; 27:1897-917. [PMID: 24065705 DOI: 10.1210/me.2013-1205] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD(+)/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance.
Collapse
Affiliation(s)
- Michael A Pearen
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Soriguer F, García-Escobar E, Morcillo S, García-Fuentes E, Rodríguez de Fonseca F, Olveira G, Rojo-Martínez G. Mediterranean diet and the Spanish paradox. A hypothesis. Med Hypotheses 2013; 80:150-5. [DOI: 10.1016/j.mehy.2012.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 11/26/2022]
|
31
|
Scholar Award Recipient Dr. Jean Buteau Investigates the Role of Glucagon-Like Peptide-1 in β-Cell Neogenesis. Can J Diabetes 2012. [DOI: 10.1016/j.jcjd.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol Appl Pharmacol 2012; 264:274-83. [DOI: 10.1016/j.taap.2012.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
|
33
|
Genome-wide identification of palmitate-regulated immediate early genes and target genes in pancreatic beta-cells reveals a central role of NF-κB. Mol Biol Rep 2012; 39:6781-9. [PMID: 22302392 DOI: 10.1007/s11033-012-1503-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/24/2012] [Indexed: 12/17/2022]
Abstract
Free fatty acid-induced pancreatic β-cell dysfunction plays a key role in the pathogenesis of type 2 diabetes. We conducted gene expression microarray analysis to comprehensively investigate the transcription machinery of palmitate-regulated genes in pancreatic β-cells in vitro. In particular, mouse pancreatic βTC3 cells were treated with palmitate in the presence or absence of cycloheximide (CHX), which blocks protein synthesis and thereby allows us to distinguish immediate early genes (IEGs) from their target genes. The microarray experiments identified 34 palmitate-regulated IEGs and 74 palmitate-regulated target genes. In silico promoter analysis revealed that transcription factor binding sites for NF-κB were over-represented, regulating approximately one-third of the palmitate-regulated target genes. In cells treated with CHX, nfkb1 showed an up-regulation by palmitate, suggesting that NF-κB could be an IEG. Functional enrichment analysis of 27 palmitate-regulated genes with NF-κB binding sites showed an over-representation of genes involved in immune response, inflammatory response, defense response, taxis, regulation of cell proliferation, and regulation of cell death pathways. Electrophoretic mobility shift assay showed that palmitate stimulates NF-κB activity both in the presence and absence of CHX. In conclusion, by identifying IEGs and target genes, the present study depicted a comprehensive view of transcription machinery underlying palmitate-induced inflammation and cell proliferation/death in pancreatic β-cells and our data demonstrated the central role of NF-κB.
Collapse
|
34
|
Lefebvre B, Vandewalle B, Balavoine AS, Queniat G, Moerman E, Vantyghem MC, Le Bacquer O, Gmyr V, Pawlowski V, Kerr-Conte J, Pattou F. Regulation and functional effects of ZNT8 in human pancreatic islets. J Endocrinol 2012; 214:225-32. [PMID: 22582094 DOI: 10.1530/joe-12-0071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zinc ions are essential for the formation of insulin crystals in pancreatic β cells, thereby contributing to packaging efficiency of stored insulin. Zinc fluxes are regulated through the SLC30A (zinc transporter, ZNT) family. Here, we investigated the effect of metabolic stress associated with the prediabetic state (zinc depletion, glucotoxicity, and lipotoxicity) on ZNT expression and human pancreatic islet function. Both zinc depletion and lipotoxicity (but not glucotoxicity) downregulated ZNT8 (SLC30A8) expression and altered the glucose-stimulated insulin secretion index (GSIS). ZNT8 overexpression in human islets protected them from the decrease in GSIS induced by tetrakis-(2-pyridylmethyl) ethylenediamine and palmitate but not from cell death. In addition, zinc supplementation decreased palmitate-induced human islet cell death without restoring GSIS. Altogether, we showed that ZNT8 expression responds to variation in zinc and lipid levels in human β cells, with repercussions on insulin secretion. Prospects for increasing ZNT8 expression and/or activity may prove beneficial in type 2 diabetes in humans.
Collapse
|
35
|
Briand O, Helleboid-Chapman A, Ploton M, Hennuyer N, Carpentier R, Pattou F, Vandewalle B, Moerman E, Gmyr V, Kerr-Conte J, Eeckhoute J, Staels B, Lefebvre P. The nuclear orphan receptor Nur77 is a lipotoxicity sensor regulating glucose-induced insulin secretion in pancreatic β-cells. Mol Endocrinol 2012; 26:399-413. [PMID: 22301783 DOI: 10.1210/me.2011-1317] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The NR4A orphan nuclear receptors Nur77, Nurr1, and Nor1 exert multiple cellular and metabolic functions. These transcriptional regulators are activated in response to extracellular stresses, including lipotoxic fatty acids (FA) and proinflammatory cytokines. The contribution of NR4As to β-cell pathophysiology is, however, unknown. We have therefore examined the role of NR4As as downstream contributors to FA-induced β-cell dysfunctions. Human pancreatic islets and insulinoma β-cells were used to determine transcriptional programs elicited by NR4A, which were compared to those triggered by palmitate treatment. Functional studies evaluated the consequence of an increased NR4A expression on insulin biosynthesis and secretion and cell viability in insulinoma β-cells. FA and cytokine treatment increased NR4A expression in pancreatic β-cells, with Nur77 being most highly inducible in murine β-cells. Nur77, Nurr1, or Nor1 modulated common and distinct clusters of genes involved notably in cation homeostasis and insulin gene transcription. By altering zinc homeostasis, insulin gene transcription, and secretion, Nur77 was found to be a major transcriptional mediator of part of FA-induced β-cell dysfunctions. The repressive role of Nur77 in insulin gene regulation was tracked down to protein-protein interaction with FoxO1, a pivotal integrator of the insulin gene regulatory network. The present study identifies a member of the NR4A nuclear receptor subclass, Nur77/NR4A1, as a modulator of pancreatic β-cell biology. Together with its previously documented role in liver and muscle, its role in β-cells establishes Nur77 as an important integrator of glucose metabolism.
Collapse
Affiliation(s)
- Olivier Briand
- Institut Pasteur de Lille, Faculté de Médecine de Lille-Pôle Recherche; Institut National de la Santé et de la Recherche Médicale (INSERM) U1011-Bâtiment J&K; Boulevard du Pr Leclerc, Lille cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pearen MA, Eriksson NA, Fitzsimmons RL, Goode JM, Martel N, Andrikopoulos S, Muscat GEO. The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. Mol Endocrinol 2012; 26:372-84. [PMID: 22282471 DOI: 10.1210/me.2011-1274] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal muscle, this resulted in a marked increase in: 1) myoglobin expression, 2) mitochondrial DNA and density, 3) oxidative enzyme staining, and 4) genes/proteins encoding subunits of electron transport chain complexes. This was associated with significantly increased type IIA and IIX myosin heavy chain mRNA and proteins and decreased type IIB myosin heavy chain mRNA and protein. The contractile protein/fiber type remodeling driving the acquisition of the oxidative type II phenotype was associated with 1) the significantly increased expression of myocyte-specific enhancer factor 2C, and phospho-histone deacetylase 5, and 2) predominantly cytoplasmic HDAC5 staining in the Tg-Nor-1 mice. Moreover, the Nor-1 transgenic line displayed significant improvements in glucose tolerance, oxygen consumption, and running endurance (in the absence of increased insulin sensitivity), consistent with increased oxidative capacity of skeletal muscle. We conclude that skeletal muscle fiber type is not only regulated by exercise-sensitive calcineurin-induced signaling cascade but also by NR signaling pathways that operate at the nexus that coordinates muscle performance and metabolic capacity in this major mass tissue.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Ijiri D, Matsubara T, Kanai Y, Hirabayashi M. Increased expression of NOR-1 mRNA in the skeletal muscles of cold-exposed neonatal chicks. Anim Sci J 2011; 83:331-7. [PMID: 22515693 DOI: 10.1111/j.1740-0929.2011.00957.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor subfamily 4, group A (NR4A) subgroup orphan receptors are rapidly induced by various physiological stimuli and have been suggested to regulate oxidative metabolism and muscle mass in mammalian skeletal muscle. The results showed that the NR4A subgroup orphan receptor, NOR-1 (NR4A3), was acutely increased in skeletal muscles of neonatal chicks in response to short-term cold exposure. The increased NOR-1 gene expression was concomitant with cold-induced changes in gene expression of both myostatin and proliferator-activated receptor-gamma coactivator-1 (PGC-1α), and the increase in skeletal muscle mass. These observations suggest that NOR-1 might play a role in controlling skeletal muscle growth in cold-exposed neonatal chicks.
Collapse
Affiliation(s)
- Daichi Ijiri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
38
|
Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL, Cnop M. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 2010; 53:1395-405. [PMID: 20369226 DOI: 10.1007/s00125-010-1707-y] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/27/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Beta cell failure is a crucial component in the pathogenesis of type 2 diabetes. One of the proposed mechanisms of beta cell failure is local inflammation, but the presence of pancreatic islet inflammation in type 2 diabetes and the mechanisms involved remain under debate. METHODS Chemokine and cytokine expression was studied by microarray analysis of laser-capture microdissected islets from pancreases obtained from ten non-diabetic and ten type 2 diabetic donors, and by real-time PCR of human islets exposed to oleate or palmitate at 6 or 28 mmol/l glucose. The cellular source of the chemokines was analysed by immunofluorescence of pancreatic sections from individuals without diabetes and with type 2 diabetes. RESULTS Microarray analysis of laser-capture microdissected beta cells showed increased chemokine and cytokine expression in type 2 diabetes compared with non-diabetic controls. The inflammatory response in type 2 diabetes was mimicked by exposure of non-diabetic human islets to palmitate, but not to oleate or high glucose, leading to the induction of IL-1beta, TNF-alpha, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-C motif) ligand 2 (CCL2). Interference with IL-1beta signalling abolished palmitate-induced cytokine and chemokine expression but failed to prevent lipotoxic human islet cell death. Palmitate activated nuclear factor kappaB (NF-kappaB) in human pancreatic beta and non-beta cells, and chemically induced endoplasmic reticulum stress caused cytokine expression and NF-kappaB activation similar to that occurring with palmitate. CONCLUSIONS/INTERPRETATION Saturated-fatty-acid-induced NF-kappaB activation and endoplasmic reticulum stress may contribute to IL-1beta production and mild islet inflammation in type 2 diabetes. This inflammatory process does not contribute to lipotoxicity ex vivo, but may lead to local chemokine release.
Collapse
Affiliation(s)
- M Igoillo-Esteve
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The complementary disciplines of genomics and proteomics offer better insights into the molecular mechanisms of diseases. While genomics hunts for defining our static genetic substrate, proteomics explores the structure and function of proteins expressed by a cell or tissue type under specified conditions. In the past decade, proteomics has been revolutionized by the application of techniques such as two-dimensional gel electrophoresis (2DGE), mass spectrometry (MS), and protein arrays. These techniques have tremendous potential for biomarker development, target validation, diagnosis, prognosis, and optimization of treatment in medical care, especially in the field of islet and diabetes research. This chapter will highlight the contributions of proteomic technologies toward the dissection of complex network of signaling molecules regulating islet function, the identification of potential biomarkers, and the understanding of mechanisms involved in the pathogenesis of diabetes.
Collapse
|
40
|
Pearen MA, Muscat GEO. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 2010; 24:1891-903. [PMID: 20392876 DOI: 10.1210/me.2010-0015] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous members of the nuclear hormone receptor (NR) superfamily have been demonstrated to regulate metabolic function in a cell- and tissue-specific manner. This review brings together recent studies that have associated members of the NR superfamily, the orphan NR4A subgroup, with the regulation of metabolic function and disease. The orphan NR4A subgroup includes Nur77 (NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3). Expression of these receptors is induced in multiple tissues by a diverse range of stimuli, including stimuli associated with metabolic function, such as: β-adrenoceptor agonists, cold, fatty acids, glucose, insulin, cholesterol, and thiazolidinediones. In vitro and in vivo gain- and loss-of-function studies in major metabolic tissues (including skeletal muscle, adipose, and liver cells and tissues) have associated the NR4A subgroup with specific aspects of lipid, carbohydrate, and energy homeostasis. Most excitingly, although these orphan receptors do not have known endogenous ligands, several small molecule agonists have recently been identified. The preliminary studies reviewed in this manuscript suggest that therapeutic exploitation of the NR4A subgroup may show utility against dyslipidemia, obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
41
|
Frigerio F, Brun T, Bartley C, Usardi A, Bosco D, Ravnskjaer K, Mandrup S, Maechler P. Peroxisome proliferator-activated receptor alpha (PPARalpha) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism. Diabetologia 2010; 53:331-40. [PMID: 19908022 DOI: 10.1007/s00125-009-1590-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/18/2009] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells chronically exposed to fatty acids may lose specific functions and even undergo apoptosis. Generally, lipotoxicity is triggered by saturated fatty acids, whereas unsaturated fatty acids induce lipodysfunction, the latter being characterised by elevated basal insulin release and impaired glucose responses. The peroxisome proliferator-activated receptor alpha (PPARalpha) has been proposed to play a protective role in this process, although the cellular mechanisms involved are unclear. METHODS We modulated PPARalpha production in INS-1E beta cells and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3 days in the presence of 0.4 mmol/l oleate. RESULTS In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARalpha. Conversely, PPARalpha upregulation preserved glucose-stimulated insulin secretion, essentially by increasing the response at a stimulatory concentration of glucose (15 mmol/l), a protection we also observed in human islets. The protective effect was associated with restored glucose oxidation rate and upregulation of the anaplerotic enzyme pyruvate carboxylase. PPARalpha overproduction increased both beta-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. CONCLUSIONS/INTERPRETATION PPARalpha protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnover.
Collapse
Affiliation(s)
- F Frigerio
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Qi D, Cai K, Wang O, Li Z, Chen J, Deng B, Qian L, Le Y. Fatty acids induce amylin expression and secretion by pancreatic beta-cells. Am J Physiol Endocrinol Metab 2010; 298:E99-E107. [PMID: 19843871 DOI: 10.1152/ajpendo.00242.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amylin is the major component of pancreatic amyloid, which is implicated in the development of type 2 diabetes. It is costored with insulin in the secretory granules of pancreatic beta-cells and cosecreted with insulin following stimulation with glucose. Here, we investigate the effect of fatty acids (FAs) on amylin expression and secretion by beta-cells and explore the underlying mechanisms. Palmitate and oleate dose-dependently induced amylin mRNA accumulation in murine pancreatic beta-cell line MIN6 and primary pancreatic islets. the inductive effect of FAs on amylin expression is independent of glucose concentration. FAs upregulated amylin expression at the transcriptional level, and FAs must be metabolized to induce amylin expression. FAs also significantly induced human amylin promoter activation. Pretreatment of MIN6 cells with Ca(2+) chelator (EGTA, BAPTA-AM) PKC inhibitor Gö-6976 or protein synthesis inhibitor cycloheximide significantly inhibited FA-induced amylin mRNA expression. Transcription factors cAMP-responsive element-binding protein, pancreatic and duodenal homeobox factor-1, and peroxisome proliferator-activated receptor were not involved in FA-induced amylin expression. Palmitate and oleate both increased amylin and insulin release from MIN6 cells and stimulated amylin expression but had no effect on insulin expression. Mice refed with Intralipid had significantly higher levels of plasma FFA, amylin, and insulin than those refed with saline. These data demonstrate that FAs differently regulate amylin and insulin expression and induce both amylin and insulin release. Ca(2+) and PKC signaling pathways and de novo-synthesized protein(s) were involved in FA-induced amylin expression. Induction of amylin production and release by FA may contribute to its biological functions under physiological conditions.
Collapse
Affiliation(s)
- Dongfei Qi
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Weyrich P, Staiger H, Stancáková A, Schäfer SA, Kirchhoff K, Ullrich S, Ranta F, Gallwitz B, Stefan N, Machicao F, Kuusisto J, Laakso M, Fritsche A, Häring HU. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced beta-cell function in non-diabetic subjects. BMC MEDICAL GENETICS 2009; 10:77. [PMID: 19682370 PMCID: PMC2741445 DOI: 10.1186/1471-2350-10-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/14/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuron-derived orphan receptor (Nor) 1, nuclear receptor (Nur) 77, and nuclear receptor-related protein (Nurr) 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or beta-cell dysfunction. METHODS We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs) rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies >or= 0.05) covering 100% of genetic variation within the NR4A3 locus (with D' = 1.0, r2 >or= 0.9) and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT), and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506). SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265) for replication. RESULTS All five SNPs were in Hardy-Weinberg equilibrium (p >or= 0.7, all). The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT), AUCC C-peptide-to-AUC Gluc ratio and the AUC Ins30-to-AUC Gluc30 ratio with rs12686676 reaching the level of significance (p <or= 0.03, all; additive model). The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p <or= 0.03, additive model). There was no consistent association with glucose tolerance or insulin resistance in both study cohorts. CONCLUSION We conclude that common genetic variation within the NR4A3 locus determines insulin secretion. Thus, NR4A3 represents a novel candidate gene for beta-cell function which was not covered by the SNP arrays of recent genome-wide association studies for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Peter Weyrich
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Short-term modulation of extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun NH2-terminal kinase in pancreatic islets by glucose and palmitate: possible involvement of ceramide. Pancreas 2009; 38:585-92. [PMID: 19295452 DOI: 10.1097/mpa.0b013e31819fef03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. METHODS Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. RESULTS Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. CONCLUSIONS Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.
Collapse
|
45
|
Kanzleiter T, Wilks D, Preston E, Ye J, Frangioudakis G, Cooney GJ. Regulation of the nuclear hormone receptor nur77 in muscle: influence of exercise-activated pathways in vitro and obesity in vivo. Biochim Biophys Acta Mol Basis Dis 2009; 1792:777-82. [PMID: 19447175 DOI: 10.1016/j.bbadis.2009.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/20/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022]
Abstract
Regular physical exercise is well known to improve glucose and lipid metabolism in skeletal muscle. However, the transcription factors regulating these adaptive changes are not well-characterised. Recently the nuclear orphan receptor nur77 was shown to be induced by exercise and linked to regulation of metabolic gene expression in skeletal muscle. In this study we investigated the regulation of nur77 in muscle by different exercise-activated pathways. Nur77 expression was found to be responsive to adrenergic stimulation and calcium influx, but not to activation of the AMP dependent kinase. These results identify the adrenergic-cyclic AMP-PKA pathway to be the most potent activator of nur77 expression in muscle and therefore the likely cause of increased expression after exercise. We also identified nur77 expression to be reduced in the muscle of obese/insulin resistant rats after high fat feeding. Furthermore exposure to fatty acids, insulin or inflammation was not the cause of decreased nur77 expression in insulin resistant muscle. This suggests a reduced responsiveness to adrenergic stimulation as the likely cause of diminished nur77 expression in muscle of high fat fed rats, which has been observed in obese/insulin resistant individuals. Our results suggest adrenergic stimulation as the most important stimulus for nur77 expression and point to a significant role for this transcription factor in adaptive changes in muscle after exercise and in insulin resistant states.
Collapse
Affiliation(s)
- Timo Kanzleiter
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Vock C, Gleissner M, Klapper M, Döring F. Oleate regulates genes controlled by signaling pathways of mitogen-activated protein kinase, insulin, and hypoxia. Nutr Res 2009; 28:681-9. [PMID: 19083476 DOI: 10.1016/j.nutres.2008.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/18/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Oleate (C18:1) is, besides palmitate (C16:0), the most abundant fatty acid in the human diet, and its involvement in the development of insulin resistance is broadly discussed. Because its influence on gene expression is poorly defined in mammalian cells, we performed whole genome expression profiling and quantitative real-time polymerase chain reaction in the human hepatocyte cell line HepG2 to identify oleate-regulated genes. In this respect, HepG2 cells were exposed for 24 hours to a physiologic concentration of oleate coupled to bovine serum albumin (BSA) (200 micromol/L) or BSA alone. Subsequent microarray analysis revealed 14 genes that were significantly (single-sided permutational t test, P < .05) regulated after oleate treatment. To decipher the functional and regulatory connections of these genes, a text mining approach combined with transcription factor binding site analysis was performed using Genomatix BiblioSphere (Munich, Germany) and MatInspector (Munich, Germany). The oleate-inducible genes encoding early growth response 1, c-fos, S-phase kinase-associated protein 2, and splicing factor 2 are mapped into a network, which is controlled by signaling pathways of mitogen-activated protein kinase, insulin, or hypoxia. Comparative in silico promoter analysis revealed putative regulation of oleate-sensitive genes through v-ets erythroblastosis virus E26 oncogene homolog 1 and retinoid X receptor family. In sum, a physiologic oleate concentration modulates genes expression in a very sensitive way as 14 genes were regulated.
Collapse
Affiliation(s)
- Christina Vock
- Molecular Nutrition, Institute of Human Nutrition and Food Research, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel, Germany
| | | | | | | |
Collapse
|
47
|
Shea J, French CR, Bishop J, Martin G, Roebothan B, Pace D, Fitzpatrick D, Sun G. Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men. Am J Clin Nutr 2009; 89:407-15. [PMID: 19056584 DOI: 10.3945/ajcn.2008.25970] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Obesity is caused by the excessive accumulation of adipose tissue as a result of a chronic energy surplus. Little is known regarding the molecular mechanisms involved in the response to an energy surplus in human adipose tissue at the genomic level. OBJECTIVE The objective was to investigate changes in the transcriptome of abdominal subcutaneous adipose tissue after a positive energy challenge induced by overfeeding in both lean and obese subjects to identify novel obesity candidate genes. DESIGN A total of 26 men were recruited and classified on the basis of percentage body fat (measured by dual-energy X-ray absorptiometry) as lean (<20%) or obese (>25%) to participate in the baseline comparison. Sixteen men participated in the overfeeding study (8 lean and 8 obese). Adipose tissue biopsy samples were collected from all subjects at the subumbilical region. Global gene expression profiles were determined at baseline and after a 7-d hypercaloric diet at 40% above normal energy requirements by using whole human genome DNA microarrays. RESULTS Overfeeding induced differential expression in 45 genes. Six genes displayed a significant interaction effect between adiposity status and overfeeding treatment, including transferrin (TF), stearoyl-CoA desaturase (SCD), transaldolase 1 (TALDO1), cathepsin C (CTSC), insulin receptor substrate 2 (IRS2), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4). Overfeeding resulted in changes in expression of these genes in lean subjects, whereas no significant changes were evident in obese subjects. CONCLUSIONS Differential expression of these 6 genes may represent a protective mechanism at the molecular level in lean subjects in response to an energy surplus. These genes represent valuable candidates for downstream studies related to obesity.
Collapse
Affiliation(s)
- Jennifer Shea
- Discipline of Genetics and Medicine, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Soto-Guzman A, Robledo T, Lopez-Perez M, Salazar EP. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells. Mol Cell Endocrinol 2008; 294:81-91. [PMID: 18775472 DOI: 10.1016/j.mce.2008.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022]
Abstract
GPR40 and GPR120 are G-protein-coupled receptors that can be activated by medium- and long-chain fatty acids. GPR40 is expressed in several breast cancer cell lines and its stimulation with oleic acid (OA) induces cell proliferation. However, the signal transduction pathways activated by OA have not been studied in detail. Our results demonstrate that both GPR40 and GPR120 are expressed in MCF-7 cells. Stimulation of MCF-7 and MDA-MB-231 cells with OA promoted the phosphorylation of ERK1/2 at Thr-202 and Tyr-204 and the formation of AP-1-DNA complex in a fashion dependent of Src kinase activity and EGFR transactivation. Furthermore, proliferation induced by OA is restricted to breast cancer cells in a fashion dependent of ERK1/2 activation and matrix metalloproteinases. In summary, our data indicate that proliferation induced by OA is restricted to breast cancer cells, and that ERK1/2 activation and AP-1-DNA complex formation are mediated by Src family kinases and transactivation of EGFR.
Collapse
Affiliation(s)
- Adriana Soto-Guzman
- Departamento de Biologia Celular, Cinvestav-IPN, San Pedro Zacatenco, Mexico, DF 07360, Mexico
| | | | | | | |
Collapse
|
49
|
Burghardt H, López-Bermejo A, Baumgartner B, Ibáñez L, Vendrell J, Ricart W, Palacín M, Fernández-Real JM, Zorzano A. The nuclear receptor coactivator AIB3 is a modulator of HOMA beta-cell function in nondiabetic children. Clin Endocrinol (Oxf) 2008; 69:730-6. [PMID: 18462265 DOI: 10.1111/j.1365-2265.2008.03232.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The amplified in breast cancer-3 protein (AIB3) is a nuclear coactivator involved in proliferation, apoptosis and development. AIB3 loss of function causes deficient insulin secretion in mice, indicating that AIB3 participates in beta-cell regulation. Our objective was to evaluate genetic variants located on AIB3 associated with beta-cell function in children and to analyse the effect of AIB3 overexpression on gene expression in insulin 1 (INS-1) beta-pancreatic cells. DESIGN Polymorphisms from AIB3 were genotyped in 148 children with normal or low birthweights for gestational age. The effect of AIB3 overexpression on gene expression was analysed by real-time polymerase chain reaction (PCR) in INS-1 cells. RESULTS AIB3 variants were associated with homeostasis model assessment of beta-cell function (HOMA-beta-cell) in children with normal or low birthweights for gestational age, but not with HOMA of insulin resistance (HOMA-IR), or with birthweight. AIB3 overexpression increased the expression of genes involved in signalling, such as IRS-1, IRS-2, IGF-II receptor or Foxo1, or of genes that control insulin secretion, such as Cplx2, Glut2 or Kv3.1 in INS-1 cells. CONCLUSIONS Our results suggest that AIB3 contributes to the maintenance of beta-cell function in nondiabetic children and regulates gene expression in INS-1 cells.
Collapse
Affiliation(s)
- Hans Burghardt
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Maintenance of body temperature is achieved partly by modulating lipolysis by a network of complex regulatory mechanisms. Lipolysis is an integral part of the glycerolipid/free fatty acid (GL/FFA) cycle, which is the focus of this review, and we discuss the significance of this pathway in the regulation of many physiological processes besides thermogenesis. GL/FFA cycle is referred to as a "futile" cycle because it involves continuous formation and hydrolysis of GL with the release of heat, at the expense of ATP. However, we present evidence underscoring the "vital" cellular signaling roles of the GL/FFA cycle for many biological processes. Probably because of its importance in many cellular functions, GL/FFA cycling is under stringent control and is organized as several composite short substrate/product cycles where forward and backward reactions are catalyzed by separate enzymes. We believe that the renaissance of the GL/FFA cycle is timely, considering the emerging view that many of the neutral lipids are in fact key signaling molecules whose production is closely linked to GL/FFA cycling processes. The evidence supporting the view that alterations in GL/FFA cycling are involved in the pathogenesis of "fatal" conditions such as obesity, type 2 diabetes, and cancer is discussed. We also review the different enzymatic and transport steps that encompass the GL/FFA cycle leading to the generation of several metabolic signals possibly implicated in the regulation of biological processes ranging from energy homeostasis, insulin secretion and appetite control to aging and longevity. Finally, we present a perspective of the possible therapeutic implications of targeting this cycling.
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal Diabetes Research Center, CR-CHUM, Montreal, Quebec, Canada H1W 4A4.
| | | |
Collapse
|