1
|
Shen XZ, Zhang YX, You QY. Case report of 18F-FDG PET/CT features of hypoglycemic encephalopathy. Medicine (Baltimore) 2023; 102:e34025. [PMID: 37327258 PMCID: PMC10270514 DOI: 10.1097/md.0000000000034025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
RATIONALE Hypoglycemia may cause diverse neurological manifestations, ranging from focal neurological deficits to irreversible coma. Severe and persistent hypoglycemia can lead to hypoglycemic encephalopathy (HE). Imaging findings of HE at different stages of 18F-FDG positron emission tomography/computed tomography (PET/CT) have rarely been reported. Herein, we describe a case of HE occurring in the medial frontal cortex, cerebellar cortex, and dentate nucleus using 18F-FDG PET/CT images from different periods. 18F-FDG PET/CT has a high value in displaying the lesion range and indicating the prognosis. PATIENT CONCERNS A 57-year-old male patient with type 2 diabetes (T2D) was transferred to the hospital with a history of unconsciousness for 1 night. The patient showed a significant decrease in blood glucose levels. DIAGNOSES The patient was initially diagnosed with a hypoglycemic coma. INTERVENTIONS The patient subsequently underwent a comprehensive treatment. The 18F-FDG PET/CT examination on the fifth day after admission revealed a significant symmetrical fluorodeoxyglucose (FDG)-positive accumulation in the bilateral medial frontal gyrus, cerebellar cortex, and dentate nucleus. A follow-up PET/CT examination 6 months later revealed hypometabolism in the bilateral medial frontal gyrus and no abnormalities in FDG uptake in the bilateral cerebellar cortex and dentate nucleus. OUTCOMES The patient condition was stable 6 months later, with a slow response, memory deterioration, occasional dizziness, and episodes of hypoglycemia. LESSONS HE lesions with a high metabolic status may be related to a metabolic compensation mechanism in response to gray matter loss. Some of the more severely damaged cells eventually die even after the blood sugar levels return to normal. Less damaged nerve cells can be recovered. 18F-FDG PET/CT has high value in indicating the lesion range and prognosis of HE.
Collapse
Affiliation(s)
- Xun-Ze Shen
- PET/CT Center, Shaoxing People’s Hospita, Shaoxing, Zhejiang Province, China
| | - Yan-Xing Zhang
- Department of Neurology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Qiao-Ying You
- Department of Endocrinology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| |
Collapse
|
2
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Jacob P, Nwokolo M, Cordon SM, Macdonald IA, Zelaya FO, Amiel SA, O'Daly O, Choudhary P. Altered functional connectivity during hypoglycaemia in type 1 diabetes. J Cereb Blood Flow Metab 2022; 42:1451-1462. [PMID: 35209745 PMCID: PMC9274862 DOI: 10.1177/0271678x221082911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Behavioural responses to hypoglycaemia require coordinated recruitment of broadly distributed networks of interacting brain regions. We investigated hypoglycaemia-related changes in brain connectivity in people without diabetes (ND) and with type 1 diabetes with normal (NAH) or impaired (IAH) hypoglycaemia awareness. Two-step hyperinsulinaemic hypoglycaemic clamps were performed in 14 ND, 15 NAH and 22 IAH participants. BOLD timeseries were acquired at euglycaemia (5.0 mmol/L) and hypoglycaemia (2.6 mmol/L), with symptom and counter-regulatory hormone measurements. We investigated hypoglycaemia-related connectivity changes using established seed regions for the default mode (DMN), salience (SN) and central executive (CEN) networks and regions whose activity is modulated by hypoglycaemia: the thalamus and right inferior frontal gyrus (RIFG). Hypoglycaemia-induced changes in the DMN, SN and CEN were evident in NAH (all p < 0.05), with no changes in ND or IAH. However, in IAH there was a reduction in connectivity between regions within the RIFG (p = 0.001), not evident in the ND or NAH groups. We conclude that hypoglycaemia induces coordinated recruitment of the DMN and SN in diabetes with preserved hypoglycaemia awareness which is absent in IAH and ND. Changes in connectivity in the RIFG, a region associated with attentional modulation, may be key in impaired hypoglycaemia awareness.
Collapse
Affiliation(s)
- Peter Jacob
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Munachiso Nwokolo
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Sally M Cordon
- School of Life Sciences, MRC-ARUK Centre of Excellence in Musculoskeletal Ageing, Nottingham University Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ian A Macdonald
- School of Life Sciences, MRC-ARUK Centre of Excellence in Musculoskeletal Ageing, Nottingham University Medical School, Queen's Medical Centre, Nottingham, UK
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stephanie A Amiel
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pratik Choudhary
- Diabetes Research Group (Denmark Hill), Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
4
|
van Meijel LA, van Asten JJA, Grandjean J, Heerschap A, Tack CJ, van der Graaf M, Wiegers EC, de Galan BE. Effect of lactate administration on cerebral blood flow during hypoglycemia in people with type 1 diabetes. BMJ Open Diabetes Res Care 2022; 10:10/2/e002401. [PMID: 35321886 PMCID: PMC8943734 DOI: 10.1136/bmjdrc-2021-002401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Impaired awareness of hypoglycemia, clinically reflected by the inability to timely detect hypoglycemia, affects approximately 25% of the people with type 1 diabetes. Both altered brain lactate handling and increased cerebral blood flow (CBF) during hypoglycemia appear to be involved in the pathogenesis of impaired awareness of hypoglycemia. Here we examine the effect of lactate on CBF during hypoglycemia. RESEARCH DESIGN AND METHODS Nine people with type 1 diabetes and normal awareness of hypoglycemia underwent two hyperinsulinemic euglycemic-hypoglycemic (3.0 mmol/L) glucose clamps in a 3T MR system, once with sodium lactate infusion and once with sodium chloride infusion. Global and regional changes in CBF were determined using pseudocontinuous arterial spin labeling. RESULTS Lactate (3.3±0.6 vs 0.9±0.2 mmol/L during lactate infusion vs placebo infusion, respectively) suppressed the counter-regulatory hormone responses to hypoglycemia. Global CBF increased considerably in response to intravenous lactate infusion but did not further increase during hypoglycemia. Lactate also blunted the hypoglycemia-induced regional redistribution of CBF towards the thalamus. CONCLUSIONS Elevated lactate levels enhance global CBF and blunt the thalamic CBF response during hypoglycemia in patients with type 1 diabetes, mimicking observations of impaired awareness of hypoglycemia. These findings suggest that alteration of CBF associated with lactate may play a role in some aspects of the development of impaired awareness of hypoglycemia. TRIAL REGISTRATION NUMBER NCT03730909.
Collapse
Affiliation(s)
- Lian A van Meijel
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Internal Medicine, Maxima Medical Centre, Veldhoven, The Netherlands
| | - Jack J A van Asten
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboudumc, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
| | - Cornelis J Tack
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Radboudumc, Nijmegen, The Netherlands
| | - Evita C Wiegers
- Department of Medical Imaging/Radiology, Radboudumc, Nijmegen, The Netherlands
- High Field MR Research Group, Department of Radiology, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
5
|
Matus A, Trout KK, Sawyer AM, Riegel B. Sleep and hypoglycaemia symptom perception in adults with type-1 diabetes mellitus: A mixed-methods review. J Adv Nurs 2021; 78:14-25. [PMID: 34212428 DOI: 10.1111/jan.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
AIMS The study aims to review, synthesize and integrate primary research on the relationship between sleep and hypoglycaemia symptom perception in adults with type-1 diabetes. DESIGN This mixed-methods review follows a convergent segregated approach to synthesis and integration of qualitative and quantitative evidence. DATA SOURCES With assistance of a biomedical librarian, a search of four databases was conducted (PubMed, CINAHL, Embase and PsycINFO) in June 2020. The review included primary research measuring sleep and hypoglycaemia symptom perception in adults (age ≥ 18 years) with type-1 diabetes in English. Studies that exclusively addressed children, type-2 diabetes or outcomes unrelated to sleep and hypoglycaemia symptom perception were excluded. REVIEW METHODS Screening focused on title and abstract review (n = 624). Studies not excluded after screening (n = 35) underwent full-text review. References of each study selected for inclusion (n = 6) were hand searched with one study added. All studies included in the review (n = 7) were critically appraised with JBI Critical Appraisal tools, and then data were extracted with systematic evaluation. RESULTS Quantitative synthesis found sleep reduces the magnitude of detectable symptoms and one's capacity to detect them. Qualitative synthesis found that individuals with type-1 diabetes perceive unpredictable severity, frequency and awareness of symptoms while asleep as an oppressive, lingering threat. Integration of findings highlights the troublesome duality of sleep's relationship with hypoglycaemia symptom perception. CONCLUSIONS Sleep presents a challenging time for individuals with type-1 diabetes. Further research examining the relationship between sleep and hypoglycaemia symptom perception is recommended as the number of studies limits this review. IMPACT Symptom perception is the main physiologic defense against severe hypoglycaemia in type-1 diabetes. This review found that sleep's relationship with hypoglycaemia symptoms has unique physiological and psychological components to address when providing comprehensive care. This review may inform future lines of inquiry that develop into interventions, improvements in practice and risk reduction for hypoglycaemia-related complications.
Collapse
Affiliation(s)
- Austin Matus
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly K Trout
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy M Sawyer
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Riegel
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.,International Center for Self-Care Research, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Almby KE, Lundqvist MH, Abrahamsson N, Kvernby S, Fahlström M, Pereira MJ, Gingnell M, Karlsson FA, Fanni G, Sundbom M, Wiklund U, Haller S, Lubberink M, Wikström J, Eriksson JW. Effects of Gastric Bypass Surgery on the Brain: Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia. Diabetes 2021; 70:1265-1277. [PMID: 33674408 PMCID: PMC8275889 DOI: 10.2337/db20-1172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by 18F-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
Collapse
Affiliation(s)
- Kristina E Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Niclas Abrahamsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sofia Kvernby
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Fahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Neurosciences and Department of Psychology, Uppsala University, Uppsala, Sweden
| | - F Anders Karlsson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Abstract
Chronic metabolic diseases, including diabetes and obesity, have become a major global health threat of the twenty-first century. Maintaining glucose homeostasis is essential for survival in mammals. Complex and highly coordinated interactions between glucose-sensing mechanisms and multiple effector systems are essential for controlling glucose levels in the blood. The central nervous system (CNS) plays a crucial role in regulating glucose homeostasis. Growing evidence indicates that disruption of glucose sensing in selective CNS areas, such as the hypothalamus, is closely interlinked with the pathogenesis of obesity and type 2 diabetes mellitus. However, the underlying intracellular mechanisms of glucose sensing in the hypothalamus remain elusive. Here, we review the current literature on hypothalamic glucose-sensing mechanisms and discuss the impact of alterations of these mechanisms on the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nal Ae Yoon
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabrina Diano
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Sampedro F, Stantonyonge N, Martínez-Horta S, Nan N, Camacho V, Chico A. Increased cerebral FDG-PET uptake in type 1 diabetes patients with impaired awareness of hypoglycaemia. J Neuroendocrinol 2021; 33:e12910. [PMID: 33176042 DOI: 10.1111/jne.12910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/26/2022]
Abstract
Approximately 20% of type 1 diabetes (T1D) patients have an impaired awareness of hypoglyceamia (IAH). IAH represents a risk factor for severe and recurrent hypoglycaemic events, which can lead to brain damage. Because no effective treatments are currently available to prevent IAH in this population, characterising the set of brain alterations associated with IAH may reveal novel preclinical diagnostic or therapeutic strategies. Using state-of-the art neuroimaging techniques, we compared 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) uptake at rest between 10 T1D patients with IAH and nine patients with normal awareness of hypoglycaemia (NAH). T1D-IAH patients showed a pattern of increased FDG-PET uptake with respect to NAH patients (P < .05 corrected). Topographically, glucose metabolism was increased in the frontal and precuneus regions. Importantly, within the IAH group, this abnormal hypermetabolism correlated with IAH severity. This hypermetabolic state appeared to be unrelated to compensatory mechanisms as a result of reduced grey matter density or a neuroinflammatory state. We observed an abnormal increase in FDG-uptake in T1D patients with IAH in brain regions strongly related to cognition. Because this hypermetabolic state correlated with IAH severity, its biological characterisation could reveal new preventive or therapeutic strategies. A possible mechanism could be that glucose transport is increased in hypoglycaemia unawareness to compensate for recurrent hypoglycaemia, although this need to be confirmed in further research.
Collapse
Affiliation(s)
- Frederic Sampedro
- Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurology Department, Movement Disorders Unit, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Nicole Stantonyonge
- Department of Endocrinology and Nutrition, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
| | - Saul Martínez-Horta
- Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Neurology Department, Movement Disorders Unit, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Nicoleta Nan
- Department of Biochemistry, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Valle Camacho
- Department of Nuclear Medicine, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Ana Chico
- Department of Endocrinology and Nutrition, Santa Creu i Sant Pau Hospital, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- CIBER Bioengineering, Biomaterials and Nanotechnology (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Pedro JR, Moura LIF, Valério-Fernandes Â, Baptista FI, Gaspar JM, Pinheiro BS, Lemos C, Kaufmann FN, Morgado C, Silva-Santos CSD, Tavares I, Ferreira SG, Carvalho E, Ambrósio AF, Cunha RA, Duarte JMN, Köfalvi A. Transient gain of function of cannabinoid CB 1 receptors in the control of frontocortical glucose consumption in a rat model of Type-1 diabetes. Brain Res Bull 2020; 161:106-115. [PMID: 32428627 DOI: 10.1016/j.brainresbull.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Here we aimed to unify some previous controversial reports on changes in both cannabinoid CB1 receptor (CB1R) expression and glucose metabolism in the forebrain of rodent models of diabetes. We determined how glucose metabolism and its modulation by CB1R ligands evolve in the frontal cortex of young adult male Wistar rats, in the first 8 weeks of streptozotocin-induced type-1 diabetes (T1D). We report that frontocortical CB1R protein density was biphasically altered in the first month of T1D, which was accompanied with a reduction of resting glucose uptake ex vivo in acute frontocortical slices that was normalized after eight weeks in T1D. This early reduction of glucose uptake in slices was also restored by ex vivo treatment with both the non-selective CB1R agonists, WIN55212-2 (500 nM) and the CB1R-selective agonist, ACEA (3 μM) while it was exacerbated by the CB1R-selective antagonist, O-2050 (500 nM). These results suggest a gain-of-function for the cerebrocortical CB1Rs in the control of glucose uptake in diabetes. Although insulin and IGF-1 receptor protein densities remained unaffected, phosphorylated GSKα and GSKβ levels showed different profiles 2 and 8 weeks after T1D induction in the frontal cortex. Altogether, the biphasic response in frontocortical CB1R density within a month after T1D induction resolves previous controversial reports on forebrain CB1R levels in T1D rodent models. Furthermore, this study also hints that cannabinoids may be useful to alleviate impaired glucoregulation in the diabetic cortex.
Collapse
Affiliation(s)
- Joana Reis Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liane I F Moura
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ângela Valério-Fernandes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana M Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bárbara S Pinheiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carla Morgado
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla S da Silva-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Arkansas Children's Research Institute, and Department of Geriatrics, University of Arkansas for Medical Sciences, Arkansas 72205, United States
| | - António F Ambrósio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Attila Köfalvi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
10
|
Ryan JP, Aizenstein HJ, Orchard TJ, Nunley KA, Karim H, Rosano C. Basal ganglia cerebral blood flow associates with psychomotor speed in adults with type 1 diabetes. Brain Imaging Behav 2019; 12:1271-1278. [PMID: 29164504 DOI: 10.1007/s11682-017-9783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes is associated with slower psychomotor speed, but the neural basis of this relationship is not yet understood. The basal ganglia are a set of structures that are vulnerable to small vessel disease, particularly in individuals with type 1 diabetes. Thus, we examined the relationship between psychomotor speed and resting state resting cerebral blood flow in a sample of adults with diabetes onset during childhood (≤ 17 years of age). The sample included 77 patients (39 M, 38 F) with a mean age of 47.43 ± 5.72 years, age of onset at 8.50 ± 4.26 years, and duration of disease of 38.92 ± 4.18 years. Resting cerebral blood flow was quantified using arterial spin labeling. After covarying for sex, years of education and normalized gray matter volume, slower psychomotor speed was associated with lower cerebral blood flow in bilateral caudate nucleus-thalamus and a region in the superior frontal gyrus. These results suggest that the basal ganglia and frontal cortex may underlie slower psychomotor speed in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- John P Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St., Pittsburgh, PA, 15213, USA.
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St., Pittsburgh, PA, 15213, USA
| | - Trevor J Orchard
- Department of Epidemiology, Diabetes and Lipid Research Building, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Karen A Nunley
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Helmet Karim
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Moura LIF, Lemos C, Ledent C, Carvalho E, Köfalvi A. Chronic insulinopenia/hyperglycemia decreases cannabinoid CB 1 receptor density and impairs glucose uptake in the mouse forebrain. Brain Res Bull 2019; 147:101-109. [PMID: 30721768 DOI: 10.1016/j.brainresbull.2019.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
Both endocannabinoids and insulin regulate peripheral and cerebral glucose homeostasis via convergent signaling pathways that are impacted by diabetes. Here we asked how glucose metabolism and important facets of insulin signaling are affected in the forebrain of cannabinoid CB1 receptor knockout mice (CB1R-KO) and their wild-type (WT) littermates, seven weeks after the induction of insulinopenia/hyperglycemia (diabetes) with intraperitoneal streptozotocin injection. Sham-injected animals served as control. Diabetes caused milder weight loss in the WT mice compared to the phenotypically ˜11% leaner CB1R-KO, while hyperglycemia was similar. Resting [3H]deoxyglucose uptake was significantly reduced by ˜20% in acute ex vivo frontocortical and hippocampal slices obtained from both the sham-injected CB1R-KO and the diabetic WT mice. Surprisingly, the third cohort, the diabetic CB1R-KO showed no further impairment in glucose uptake, as compared to the sham-injected CB1R-KO. Depolarization-induced [3H]deoxyglucose uptake was proportional to the respective resting values only in the cortex in all four cohorts. The dissipative metabolism of [14C]-U-glucose remained largely unaffected in all cohorts of animals. However, diabetes reduced cortical CB1R density by ˜20%, as assessed by Western blotting. Albeit the changes in insulin signaling did not reflect the glucose uptake profile in each cohort, there were significant interactions between diabetes and genotype. In conclusion, a chronic decrease or lack of CB1R expression reduces glucose uptake in the mouse brain. Additionally, diabetes failed to cause further impairment in cerebral glucose uptake in the CB1R-KO. These suggest that diabetic encephalopathy may be in part associated with lower CB1R expression.
Collapse
Affiliation(s)
- Liane I F Moura
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cristina Lemos
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Experimental Psychiatry Unit, Center for Psychiatry and Psychotherapy, Medical University Innsbruck, Austria
| | | | - Eugénia Carvalho
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Arkansas Children's Research Institute, Little Rock, Arkansas 72202, United States; The Portuguese Diabetes Association (APDP), Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Arkansas 72205, United States
| | - Attila Köfalvi
- CNC, Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
12
|
Lee JJ, Khoury N, Shackleford AM, Nelson S, Herrera H, Antenor-Dorsey JA, Semenkovich K, Shimony JS, Powers WJ, Cryer PE, Arbeláez AM. Dissociation Between Hormonal Counterregulatory Responses and Cerebral Glucose Metabolism During Hypoglycemia. Diabetes 2017; 66:2964-2972. [PMID: 28970283 PMCID: PMC5697948 DOI: 10.2337/db17-0574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/23/2017] [Indexed: 11/13/2022]
Abstract
Hypoglycemia is the most common complication of diabetes, causing morbidity and death. Recurrent hypoglycemia alters the cascade of physiological and behavioral responses that maintain euglycemia. The extent to which these responses are normally triggered by decreased whole-brain cerebral glucose metabolism (CMRglc) has not been resolved by previous studies. We measured plasma counterregulatory hormonal responses and whole-brain CMRglc (along with blood-to-brain glucose transport rates and brain glucose concentrations) with 1-[11C]-d-glucose positron emission tomography during hyperinsulinemic glucose clamps at nominal plasma glucose concentrations of 90, 75, 60, and 45 mg/dL (5.0, 4.2, 3.3, and 2.5 mmol/L) in 18 healthy young adults. Clear evidence of hypoglycemic physiological counterregulation was first demonstrated between 75 mg/dL (4.2 mmol/L) and 60 mg/dL (3.3 mmol/L) with increases in both plasma epinephrine (P = 0.01) and glucagon (P = 0.01). In contrast, there was no statistically significant change in CMRglc (P = 1.0) between 75 mg/dL (4.2 mmol/L) and 60 mg/dL (3.3 mmol/L), whereas CMRglc significantly decreased (P = 0.02) between 60 mg/dL (3.3 mmol/L) and 45 mg/dL (2.5 mmol/L). Therefore, the increased epinephrine and glucagon secretion with declining plasma glucose concentrations is not in response to a decrease in whole-brain CMRglc.
Collapse
Affiliation(s)
- John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Nadia Khoury
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Angela M Shackleford
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Suzanne Nelson
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Hector Herrera
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jo Ann Antenor-Dorsey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Katherine Semenkovich
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - William J Powers
- Department of Neurology, University of North Carolina, Chapel Hill, NC
| | - Philip E Cryer
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ana María Arbeláez
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
13
|
Dai Y, Zhao Y, Tomi M, Shin BC, Thamotharan S, Mazarati A, Sankar R, Wang EA, Cepeda C, Levine MS, Zhang J, Frew A, Alger JR, Clark PM, Sondhi M, Kositamongkol S, Leibovitch L, Devaskar SU. Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability. Endocrinology 2017; 158:936-949. [PMID: 28324109 PMCID: PMC5460805 DOI: 10.1210/en.2016-1816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice.
Collapse
Affiliation(s)
- Yun Dai
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Yuanzi Zhao
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Masatoshi Tomi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | | | - Raman Sankar
- Department of Pediatrics, Division of Neurology
- Department of Neurology
| | - Elizabeth A. Wang
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute
| | - Jingjing Zhang
- Department of Neurology
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute
| | - Andrew Frew
- Department of Neurology
- Ahmanson-Lovelace Brain Mapping Center
| | - Jeffry R. Alger
- Department of Neurology
- Ahmanson-Lovelace Brain Mapping Center
| | - Peter M. Clark
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Monica Sondhi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Sudatip Kositamongkol
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Leah Leibovitch
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center at the UCLA Children’s Discovery and Innovation Institute
| |
Collapse
|
14
|
Kochunov P, Wey HY, Fox PT, Lancaster JL, Davis MD, Wang DJJ, Lin AL, Bastarrachea RA, Andrade MCR, Mattern V, Frost P, Higgins PB, Comuzzie AG, Voruganti VS. Changes in Cerebral Blood Flow during an Alteration in Glycemic State in a Large Non-human Primate ( Papio hamadryas sp.). Front Neurosci 2017; 11:49. [PMID: 28261040 PMCID: PMC5306336 DOI: 10.3389/fnins.2017.00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of MedicineBaltimore, MA, USA; Research Imaging Institute, University of Texas Health Science Center at San AntonioSan Antonio, TX, USA; Southwest National Primate Research CenterSan Antonio, TX, USA
| | - Hsiao-Ying Wey
- Research Imaging Institute, University of Texas Health Science Center at San AntonioSan Antonio, TX, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Jack L Lancaster
- Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Michael D Davis
- Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Danny J J Wang
- Ahmanson-Lovelace Brain Mapping Center, University of California at Los AngelesLos Angeles, CA, USA; Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA
| | - Ai-Ling Lin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Raul A Bastarrachea
- Southwest National Primate Research CenterSan Antonio, TX, USA; Department of Genetics, Texas Biomedical Research InstituteSan Antonio, TX, USA
| | - Marcia C R Andrade
- Department of Genetics, Texas Biomedical Research InstituteSan Antonio, TX, USA; Center for Laboratory Animal Breeding, Oswaldo Cruz FoundationRio de Janeiro, Brazil
| | - Vicki Mattern
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Patrice Frost
- Southwest National Primate Research Center San Antonio, TX, USA
| | - Paul B Higgins
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Anthony G Comuzzie
- Southwest National Primate Research CenterSan Antonio, TX, USA; Department of Genetics, Texas Biomedical Research InstituteSan Antonio, TX, USA
| | - Venkata S Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill Kannapolis, NC, USA
| |
Collapse
|
15
|
Rooijackers HMM, Wiegers EC, Tack CJ, van der Graaf M, de Galan BE. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 2016; 73:705-22. [PMID: 26521082 PMCID: PMC4735263 DOI: 10.1007/s00018-015-2079-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Collapse
Affiliation(s)
- Hanne M M Rooijackers
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Martín-Timón I, del Cañizo-Gómez FJ. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J Diabetes 2015; 6:912-926. [PMID: 26185599 PMCID: PMC4499525 DOI: 10.4239/wjd.v6.i7.912] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/30/2014] [Accepted: 04/02/2015] [Indexed: 02/05/2023] Open
Abstract
Hypoglycemia unawareness (HU) is defined at the onset of neuroglycopenia before the appearance of autonomic warning symptoms. It is a major limitation to achieving tight diabetes and reduced quality of life. HU occurs in approximately 40% of people with type 1 diabetes mellitus (T1DM) and with less frequency in T2DM. Though the aetiology of HU is multifactorial, possible mechanisms include chronic exposure to low blood glucose, antecedent hypoglycaemia, recurrent severe hypoglycaemia and the failure of counter-regulatory hormones. Clinically it manifests as the inability to recognise impeding hypoglycaemia by symptoms, but the mechanisms and mediators remain largely unknown. Prevention and management of HU is complex, and can only be achieved by a multifactorial intervention of clinical care and structured patient education by the diabetes team. Less know regarding the impact of medications on the development or recognition of this condition in patients with diabetes. Several medications are thought to worsen or promote HU, whereas others may have an attenuating effect on the problem. This article reviews recent advances in how the brain senses and responds to hypoglycaemia, novel mechanisms by which people with insulin-treated diabetes develop HU and impaired counter-regulatory responses. The consequences that HU has on the person with diabetes and their family are also described. Finally, it examines the evidence for prevention and treatment of HU, and summarizes the effects of medications that may influence it.
Collapse
|
17
|
Lizarbe B, López-Larrubia P, Cerdán S. fDWI Evaluation of Hypothalamic Appetite Regulation Pathways in Mice Genetically Deficient in Leptin or Neuropeptide Y. Neurochem Res 2015; 40:2628-38. [DOI: 10.1007/s11064-015-1596-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
|
18
|
Zmyslowska A, Malkowski B, Fendler W, Borowiec M, Antosik K, Gnys P, Baranska D, Mlynarski W. Central nervous system PET-CT imaging reveals regional impairments in pediatric patients with Wolfram syndrome. PLoS One 2014; 9:e115605. [PMID: 25542043 PMCID: PMC4277290 DOI: 10.1371/journal.pone.0115605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022] Open
Abstract
Wolfram syndrome (WFS) is inherited as an autosomal recessive disease with main clinical features of diabetes mellitus, optic atrophy, diabetes insipidus and deafness. However, various neurological defects may also be detected. The aim of this study was to evaluate aspects of brain structure and function using PET-CT (positron emission tomography and computed tomography) and MRI (magnetic resonance imaging) in pediatric patients with WFS. Regional changes in brain glucose metabolism were measured using standardized uptake values (SUVs) based on images of (18F) fluorodeoxyglucose (FDG) uptake in 7 WFS patients aged 10.1-16.0 years (mean 12.9±2.4) and in 20 healthy children aged 3-17.9 years (mean 12.8±4.1). In all patients the diagnosis of WFS was confirmed by DNA sequencing of the WFS1 gene. Hierarchical clustering showed remarkable similarities of glucose uptake patterns among WFS patients and their differences from the control group. SUV data were subsequently standardized for age groups <13 years old and>13 years old to account for developmental differences. Reduced SUVs in WFS patients as compared to the control group for the bilateral brain regions such as occipital lobe (-1.24±1.20 vs. -0.13±1.05; p = 0.028) and cerebellum (-1.11±0.69 vs. -0.204±1.00; p = 0.036) were observed and the same tendency for cingulate (-1.13±1.05 vs. -0.15±1.12; p = 0.056), temporal lobe (-1.10±0.98 vs. -0.15±1.10; p = 0.057), parietal lobe (-1.06±1.20 vs. -0.08±1.08; p = 0.058), central region (-1.01±1.04 vs. -0.09±1.06; p = 0.060), basal ganglia (-1.05±0.74 vs. -0.20±1.07; p = 0.066) and mesial temporal lobe (-1.06±0.82 vs. -0.26±1.08; p = 0.087) was also noticed. After adjusting for multiple hypothesis testing, the differences in glucose uptake were non-significant. For the first time, regional differences in brain glucose metabolism among patients with WFS were shown using PET-CT imaging.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Bogdan Malkowski
- Department of Nuclear Medicine, Oncology Center, Bydgoszcz, Poland
| | - Wojciech Fendler
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Karolina Antosik
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Piotr Gnys
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | | | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Reno CM, Litvin M, Clark AL, Fisher SJ. Defective counterregulation and hypoglycemia unawareness in diabetes: mechanisms and emerging treatments. Endocrinol Metab Clin North Am 2013; 42:15-38. [PMID: 23391237 PMCID: PMC3568263 DOI: 10.1016/j.ecl.2012.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For people with diabetes, hypoglycemia remains the limiting factor in achieving glycemic control. This article reviews recent advances in how the brain senses and responds to hypoglycemia. Novel mechanisms by which individuals with insulin-treated diabetes develop hypoglycemia unawareness and impaired counterregulatory responses are outlined. Prevention strategies for reducing the incidence of hypoglycemia are discussed.
Collapse
Affiliation(s)
- Candace M. Reno
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University, St. Louis, MO
| | - Marina Litvin
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University, St. Louis, MO
| | - Amy L. Clark
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University, St. Louis, MO
| | - Simon J. Fisher
- Division of Endocrinology, Metabolism, & Lipid Research, Department of Medicine, Washington University, St. Louis, MO
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO
| |
Collapse
|
20
|
Abstract
Functional neuroimaging techniques can be used to study changes in regional brain activation, using changes in surrogate markers such as regional cerebral perfusion and rates of glucose uptake or metabolism. These approaches are shedding new light on two major health problems: the increasing burden of type 2 diabetes mellitus (T2DM), which is driven by the rising prevalence of insulin resistance and obesity; and recurrent intractable problematic hypoglycaemia, which is driven by the cognitive impairment that can occur in association with iatrogenic hypoglycaemic episodes. Some patients with diabetes mellitus lose awareness of being hypoglycaemic, which puts them at risk of severe hypoglycaemia as they are unlikely to take action to prevent the condition worsening. Involvement of corticolimbic brain and centres serving higher executive functions as well as the hypothalamus has been demonstrated in both situations and has implications for therapy. This Review describes the relevant principles of functional neuroimaging techniques and presents data supporting the notion that the dysregulation of central pathways involved in metabolic regulation, reward and appetite could contribute to problematic hypoglycaemia during therapy for diabetes mellitus and to insulin-resistant obesity and T2DM. Understanding these dysregulations could enable the development of novel clinical interventions.
Collapse
Affiliation(s)
- Yee-Seun Cheah
- Diabetes Research Group, Weston Education Centre, Denmark Hill Campus, King's College London, 10 Cutcombe Road, London SE5 9RJ, UK
| | | |
Collapse
|
21
|
Arnalich F, Maldifassi MC, Atienza G, Ciria E, Quesada A, Cedillo JL, Renart J, Codoceo R, Herruzo R, Montiel C. Decreased vascular endothelial growth factor response to acute hypoglycemia in type 2 diabetic patients with hypoglycemic coma. Cytokine 2011; 57:372-8. [PMID: 22209065 DOI: 10.1016/j.cyto.2011.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/06/2011] [Accepted: 12/05/2011] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Plasma vascular endothelial growth factor (VEGF) was shown to increase during acute hypoglycemia and could mediate rapid adaptation of the brain. In this study we examined the neuroendocrine response in patients with type 2 diabetes mellitus (T2DM) in hypoglycemic coma or with acute neuroglycopenic symptoms. METHODS We prospectively studied 135 consecutive T2DM patients admitted for severe hypoglycemia during a 2-year period. We collected clinical variables and measured plasma concentrations of VEGF, epinephrine, norepinephrine, cortisol and growth hormone at admission and 30min afterwards. RESULTS Thirty two patients developed hypoglycemic coma and 103 did not lose consciousness. Median plasma VEGF level of coma patients was 3.1-fold lower at baseline than that of non-coma patients, and even 5.3-fold lower 30min afterwards. Plasma epinephrine concentration was significantly lower just at baseline in coma patients. On the contrary, there were no differences in concentrations of the other hormones. Multivariate logistic regression analysis showed that VEGF concentration (OR 0.68; CI 0.51-0.95) was a protective factor against the development of coma. CONCLUSIONS VEGF and epinephrine responses to acute hypoglycemia are reduced in T2DM patients who develop hypoglycemic coma. An increased plasma VEGF concentration appeared to be a protective factor against the development of hypoglycemic coma.
Collapse
Affiliation(s)
- Francisco Arnalich
- Emergency Medicine Service, Internal Medicine Department, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Polakof S, Mommsen TP, Soengas JL. Glucosensing and glucose homeostasis: from fish to mammals. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:123-49. [PMID: 21871969 DOI: 10.1016/j.cbpb.2011.07.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/16/2022]
Abstract
This review is focused on two topics related to glucose in vertebrates. In a first section devoted to glucose homeostasis we describe how glucose levels fluctuate and are regulated in different classes of vertebrates. The detection of these fluctuations is essential for homeostasis and for other physiological processes such as regulation of food intake. The capacity of that detection is known as glucosensing, and the different mechanisms through which it occurs are known as glucosensors. Different glucosensor mechanisms have been demonstrated in different tissues and organs of rodents and humans whereas the information obtained for other vertebrates is scarce. In the second section of the review we describe the present knowledge regarding glucosensor mechanisms in different groups of vertebrates, with special emphasis in fish.
Collapse
Affiliation(s)
- Sergio Polakof
- INRA, UMR, UNH, CRNH Auvergne, Clermont-Ferrand, France.
| | | | | |
Collapse
|
23
|
Herzog RI, Sherwin RS, Rothman DL. Insulin-induced hypoglycemia and its effect on the brain: unraveling metabolism by in vivo nuclear magnetic resonance. Diabetes 2011; 60:1856-8. [PMID: 21709281 PMCID: PMC3121425 DOI: 10.2337/db11-0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Raimund I Herzog
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | |
Collapse
|
24
|
van de Ven KCC, de Galan BE, van der Graaf M, Shestov AA, Henry PG, Tack CJJ, Heerschap A. Effect of acute hypoglycemia on human cerebral glucose metabolism measured by ¹³C magnetic resonance spectroscopy. Diabetes 2011; 60:1467-73. [PMID: 21464446 PMCID: PMC3292319 DOI: 10.2337/db10-1592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of acute insulin-induced hypoglycemia on cerebral glucose metabolism in healthy humans, measured by (13)C magnetic resonance spectroscopy (MRS). RESEARCH DESIGN AND METHODS Hyperinsulinemic glucose clamps were performed at plasma glucose levels of 5 mmol/L (euglycemia) or 3 mmol/L (hypoglycemia) in random order in eight healthy subjects (four women) on two occasions, separated by at least 3 weeks. Enriched [1-(13)C]glucose 20% w/w was used for the clamps to maintain stable plasma glucose labeling. The levels of the (13)C-labeled glucose metabolites glutamate C4 and C3 were measured over time in the occipital cortex during the clamp by continuous (13)C MRS in a 3T magnetic resonance scanner. Time courses of glutamate C4 and C3 labeling were fitted using a one-compartment model to calculate metabolic rates in the brain. RESULTS Plasma glucose (13)C isotopic enrichment was stable at 35.1 ± 1.8% during euglycemia and at 30.2 ± 5.5% during hypoglycemia. Hypoglycemia stimulated release of counterregulatory hormones (all P < 0.05) and tended to increase plasma lactate levels (P = 0.07). After correction for the ambient (13)C enrichment values, label incorporation into glucose metabolites was virtually identical under both glycemic conditions. Calculated tricarboxylic acid cycle rates (V(TCA)) were 0.48 ± 0.03 μmol/g/min during euglycemia and 0.43 ± 0.08 μmol/g/min during hypoglycemia (P = 0.42). CONCLUSIONS These results indicate that acute moderate hypoglycemia does not affect fluxes through the main pathways of glucose metabolism in the brain of healthy nondiabetic subjects.
Collapse
Affiliation(s)
- Kim C C van de Ven
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Osundiji MA, Hurst P, Moore SP, Markkula SP, Yueh CY, Swamy A, Hoashi S, Shaw JS, Riches CH, Heisler LK, Evans ML. Recurrent hypoglycemia increases hypothalamic glucose phosphorylation activity in rats. Metabolism 2011; 60:550-6. [PMID: 20667558 PMCID: PMC3063198 DOI: 10.1016/j.metabol.2010.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The mechanisms underpinning impaired defensive counterregulatory responses to hypoglycemia that develop in some people with diabetes who suffer recurrent episodes of hypoglycemia are unknown. Previous work examining whether this is a consequence of increased glucose delivery to the hypothalamus, postulated to be the major hypoglycemia-sensing region, has been inconclusive. Here, we hypothesized instead that increased hypothalamic glucose phosphorylation, the first committed intracellular step in glucose metabolism, might develop following exposure to hypoglycemia. We anticipated that this adaptation might tend to preserve glucose flux during hypoglycemia, thus reducing detection of a falling glucose. We first validated a model of recurrent hypoglycemia in chronically catheterized (right jugular vein) rats receiving daily injections of insulin. We confirmed that this model of recurrent insulin-induced hypoglycemia results in impaired counterregulation, with responses of the key counterregulatory hormone, epinephrine, being suppressed significantly and progressively from the first day to the fourth day of insulin-induced hypoglycemia. In another cohort, we investigated the changes in brain glucose phosphorylation activity over 4 days of recurrent insulin-induced hypoglycemia. In keeping with our hypothesis, we found that recurrent hypoglycemia markedly and significantly increased hypothalamic glucose phosphorylation activity in a day-dependent fashion, with day 4 values 2.8 ± 0.6-fold higher than day 1 (P < .05), whereas there was no change in glucose phosphorylation activity in brain stem and frontal cortex. These findings suggest that the hypothalamus may adapt to recurrent hypoglycemia by increasing glucose phosphorylation; and we speculate that this metabolic adaptation may contribute, at least partly, to hypoglycemia-induced counterregulatory failure.
Collapse
Affiliation(s)
- Mayowa A Osundiji
- Department of Medicine and Institute of Metabolic Science, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The counterregulatory response to hypoglycemia is a complex and well-coordinated process. As blood glucose concentration declines, peripheral and central glucose sensors relay this information to central integrative centers to coordinate neuroendocrine, autonomic, and behavioral responses and avert the progression of hypoglycemia. Diabetes, both type 1 and type 2, can perturb these counterregulatory responses. Moreover, defective counterregulation in the setting of diabetes can progress to hypoglycemia unawareness. While the mechanisms that underlie the development of hypoglycemia unawareness are not completely known, possible causes include altered sensing of hypoglycemia by the brain and/or impaired coordination of responses to hypoglycemia. Further study is needed to better understand the intricacies of the counterregulatory response and the mechanisms contributing to the development of hypoglycemia unawareness.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
27
|
Graveling A, Frier B. Impaired awareness of hypoglycaemia: a review. DIABETES & METABOLISM 2010; 36 Suppl 3:S64-74. [DOI: 10.1016/s1262-3636(10)70470-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Choudhary P, Geddes J, Freeman JV, Emery CJ, Heller SR, Frier BM. Frequency of biochemical hypoglycaemia in adults with Type 1 diabetes with and without impaired awareness of hypoglycaemia: no identifiable differences using continuous glucose monitoring. Diabet Med 2010; 27:666-72. [PMID: 20546285 DOI: 10.1111/j.1464-5491.2010.03006.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Impaired awareness of hypoglycaemia (IAH) is a major risk factor for severe hypoglycaemia in Type 1 diabetes. Although biochemical hypoglycaemia is asserted to be more frequent in IAH, this has not been estimated accurately. The aim of this study was to use Continuous Glucose Monitoring (CGM) to quantify hypoglycaemia in IAH and evaluate its use in identifying impaired awareness of hypoglycaemia. METHODS Ninety-five patients with Type 1 diabetes were classified as having normal (n = 74) or impaired awareness (n = 21) using an established method of assessing hypoglycaemia awareness. Hypoglycaemia exposure was assessed prospectively over 9-12 months using weekly 4-point capillary home blood glucose monitoring (HBGM), 5 days of CGM and prospective reporting of severe hypoglycaemia. The frequencies of biochemical and severe hypoglycaemia were compared in patients with normal and impaired awareness of hypoglycaemia. RESULTS Patients with impaired awareness had a 3-fold higher incidence of severe hypoglycaemia than those with normal awareness [incidence rate ratio (IRR) 3.37 (95% CI 1.30-8.7); P = 0.01] and 1.6-fold higher incidence of hypoglycaemia on weekly HBGM [IRR 1.63 (95% CI 1.09-2.44); P = 0.02]. No significant differences were observed with CGM [IRR for sensor glucose < or = 3.0 mmol/l 1.47 (95% CI 0.91-2.39); P = 0.12; IRR for sensor glucose < or = 2.2 mmol/l 1.23 (95% CI 0.76-1.98); P = 0.40]. CONCLUSIONS Patients with Type 1 diabetes with impaired awareness had a 3-fold higher risk of severe hypoglycaemia and 1.6-fold higher incidence of biochemical hypoglycaemia measured with weekly glucose monitoring compared with normal awareness, but 5 days of CGM did not differentiate those with impaired from those with normal awareness.
Collapse
Affiliation(s)
- P Choudhary
- Academic Department of Diabetes, University of Sheffield, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
29
|
McNay EC, Cotero VE. Mini-review: impact of recurrent hypoglycemia on cognitive and brain function. Physiol Behav 2010; 100:234-8. [PMID: 20096711 DOI: 10.1016/j.physbeh.2010.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 01/09/2010] [Accepted: 01/11/2010] [Indexed: 01/03/2023]
Abstract
Recurrent hypoglycemia (RH), the most common side-effect of intensive insulin therapy for diabetes, is well established to diminish counter-regulatory responses to further hypoglycemia. However, despite significant patient concern, the impact of RH on cognitive and neural function remains controversial. Here we review the data from both human studies and recent animal studies regarding the impact of RH on cognitive, metabolic, and neural processes. Overall, RH appears to cause brain adaptations which may enhance cognitive performance and fuel supply when euglycemic but which pose significant threats during future hypoglycemic episodes.
Collapse
Affiliation(s)
- Ewan C McNay
- Department of Psychology and Center for Neuroscience Research, University at Albany, Albany, NY 12222, USA.
| | | |
Collapse
|
30
|
Bie-Olsen LG, Kjaer TW, Pedersen-Bjergaard U, Lonsdale MN, Holst JJ, Law I, Thorsteinsson B. Changes of cognition and regional cerebral activity during acute hypoglycemia in normal subjects: A H215O positron emission tomographic study. J Neurosci Res 2009; 87:1922-8. [DOI: 10.1002/jnr.22002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Correction for the effect of rising plasma glucose levels on quantification of MR(glc) with FDG-PET. J Cereb Blood Flow Metab 2009; 29:1059-67. [PMID: 19293824 DOI: 10.1038/jcbfm.2009.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Positron emission tomography (PET) using the tracer [18F]-fluorodeoxyglucose (FDG) is commonly used for measuring metabolic rate of glucose (MR(glc)) in the human brain. Conventional PET methods (e.g., the Patlak method) for quantifying MR(glc) assume the tissue transport and phosphorylation mechanisms to be in steady state during FDG uptake. As FDG and glucose use the same transporters and phosphorylation enzymes, changing blood glucose levels can change the rates of FDG transport and phosphorylation. Compartmental models were used to simulate the effect of rising arterial glucose, from normal to hyperglycemic levels on FDG uptake for a typical PET protocol. The subsequent errors on the values of MR(glc) calculated using the Patlak method were investigated, and a correction scheme based on measured arterial glucose concentration (G(p)) was evaluated. Typically, with a 40% rise in G(p) over the duration of the PET study, the true MR(glc) varied by only 1%; however, the Patlak method overestimated MR(glc) by 15%. The application of the correction reduced this error to approximately 2%. In general, the application of the correction resulted in values of MR(glc) consistently significantly closer to the true steady state calculation of MR(glc) independently of changes to the parameters defining the model.
Collapse
|
32
|
Musen G, Simonson DC, Bolo NR, Driscoll A, Weinger K, Raji A, Théberge J, Renshaw PF, Jacobson AM. Regional brain activation during hypoglycemia in type 1 diabetes. J Clin Endocrinol Metab 2008; 93:1450-7. [PMID: 18198228 PMCID: PMC2291497 DOI: 10.1210/jc.2007-2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Mechanisms underlying the brain response to hypoglycemia are not well understood. OBJECTIVE Our objective was to determine the blood glucose level at which the hypothalamus and other brain regions are activated in response to hypoglycemia in type 1 diabetic patients and control subjects. DESIGN This was a cross-sectional study evaluating brain activity using functional magnetic resonance imaging in conjunction with a hyperinsulinemic hypoglycemic clamp to lower glucose from euglycemia (90 mg/dl) to hypoglycemia (50 mg/dl). SETTING The study was performed at the Brain Imaging Center in the McLean Hospital. STUDY PARTICIPANTS Seven type 1 diabetic patients between 18 and 50 yr old and six matched control subjects were included in the study. INTERVENTION Hyperinsulinemic hypoglycemic clamp was performed. MAIN OUTCOME MEASURES Blood glucose level at peak hypothalamic activation, amount of regional brain activity during hypoglycemia in both groups, and difference in regional brain activation between groups were calculated. RESULTS The hypothalamic region activates at 68 +/- 9 mg/dl in control subjects and 76 +/- 8 mg/dl in diabetic patients during hypoglycemia induction. Brainstem, anterior cingulate cortex, uncus, and putamen were activated in both groups (P < 0.001). Each group also activated unique brain areas not active in the other group. CONCLUSIONS This application of functional magnetic resonance imaging can be used to identify the glucose level at which the hypothalamus is triggered in response to hypoglycemia and whether this threshold differs across patient populations. This study suggests that a core network of brain regions is recruited during hypoglycemia in both diabetic patients and control subjects.
Collapse
Affiliation(s)
- Gail Musen
- Research Division, Joslin Diabetes Center, 1 Joslin Place Room 350, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 2008; 149:1499-504. [PMID: 18187548 PMCID: PMC2276713 DOI: 10.1210/en.2007-1252] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our objective was to evaluate whether excessive brain glycogen deposition might follow episodes of acute hypoglycemia (AH) and thus play a role in the hypoglycemia-associated autonomic failure seen in diabetic patients receiving intensive insulin treatment. We determined brain glucose and glycogen recovery kinetics after AH and recurrent hypoglycemia (RH), an established animal model of counterregulatory failure. A single bout of insulin-induced AH or RH for 3 consecutive days was used to deplete brain glucose and glycogen stores in rats. After microwave fixation and glycogen extraction, regional recovery kinetics in the brain was determined using a biochemical assay. Both AH and RH treatments reduced glycogen levels in the cerebellum, cortex, and hypothalamus from control levels of 7.78 +/- 0.55, 5.4 +/- 0.38, and 4.45 +/- 0.37 micromol/g, respectively, to approximately 50% corresponding to a net glycogen utilization rate between 0.6 and 1.2 micromol/g.h. After hypoglycemia, glycogen levels returned to baseline within 6 h in both the AH and the RH group. However, recovery of brain glycogen tended to be faster in rats exposed to RH. This effect followed more rapid recovery of brain glucose levels in the RH group, despite similar blood glucose levels in both groups. There was no statistically significant increase above baseline glycogen levels in either group. In particular, brain glycogen was not increased 24 h after the last of recurrent episodes of hypoglycemia, when a significant counterregulatory defect could be documented during a hyperinsulinemic hypoglycemic clamp study. We conclude that glycogen supercompensation is not a major contributory factor to the pathogenesis of hypoglycemia-associated autonomic failure.
Collapse
Affiliation(s)
- Raimund I Herzog
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wessels AM, Scheltens P, Barkhof F, Heine RJ. Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes. Eur J Pharmacol 2008; 585:88-96. [PMID: 18396273 DOI: 10.1016/j.ejphar.2007.11.080] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/12/2007] [Accepted: 11/14/2007] [Indexed: 12/31/2022]
Abstract
Individuals with type 1 diabetes show mild performance deficits in a range of neuropsychological tests compared to healthy controls, but the mechanisms underlying this cognitive deterioration are still poorly understood. Basically, two diabetes-related mechanisms can be postulated: recurrent severe hypoglycaemia and/or chronic hyperglycaemia. Intensive insulin therapy in type 1 diabetes, resulting in a durable improvement of glycaemic control, has been shown to lower the risk of long-term microvascular and macrovascular complications. The down side of striving for strict glycaemic control is the considerably elevated risk of severe hypoglycaemia, sometimes leading to seizure or coma. While retrospective studies in adult patients with type 1 diabetes have suggested an association between a history of recurrent severe hypoglycaemia and a modest or even severe degree of cognitive impairment, large prospective studies have failed to confirm this association. Only fairly recently, better appreciation of the possible deleterious effects of chronic hyperglycaemia on brain function and structure is emerging. In addition, it can be hypothesized that hyperglycaemia associated microvascular changes in the brain are responsible for the cognitive decline in patients with type 1 diabetes. This review presents various pathophysiological considerations concerning the cognitive decline in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Alette M Wessels
- Department of Medical Psychology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Arbelaez AM, Powers WJ, Videen TO, Price JL, Cryer PE. Attenuation of counterregulatory responses to recurrent hypoglycemia by active thalamic inhibition: a mechanism for hypoglycemia-associated autonomic failure. Diabetes 2008; 57:470-5. [PMID: 18003752 PMCID: PMC2435187 DOI: 10.2337/db07-1329] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Hypoglycemia, the limiting factor in the glycemic management of diabetes, is the result of the interplay of therapeutic insulin excess and compromised glycemic defenses. The key feature of the latter is an attenuated sympathoadrenal response to hypoglycemia that typically follows an episode of recent antecedent iatrogenic hypoglycemia, a phenomenon termed hypoglycemia-associated autonomic failure (HAAF) in diabetes. We investigated the role of cerebral mechanisms in HAAF by measuring regional brain activation during recurrent hypoglycemia with attenuated counterregulatory responses and comparing it with initial hypoglycemia in healthy individuals. RESEARCH DESIGN AND METHODS We used [(15)O]water and positron emission tomography to measure regional cerebral blood flow as a marker of brain synaptic activity during hyperinsulinemic hypoglycemic clamps (55 mg/dl [3.0 mmol/l]) in the naïve condition (day 1) and after approximately 24 h of interval interprandial hypoglycemia (day 2) in nine healthy adults. RESULTS Interval hypoglycemia produced attenuated sympathoadrenal, symptomatic, and other counterregulatory responses to hypoglycemia on day 2, a model of HAAF. Synaptic activity in the dorsal midline thalamus during hypoglycemia was significantly greater on day 2 than day 1 (P = 0.004). CONCLUSIONS Greater synaptic activity associated with attenuated counterregulatory responses indicates that the dorsal midline thalamus plays an active inhibitory role in reducing sympathoadrenal and symptomatic responses to hypoglycemia when previous hypoglycemia has occurred, the key feature of HAAF in diabetes.
Collapse
Affiliation(s)
- Ana Maria Arbelaez
- Campus box 8127, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
36
|
Dunn JT, Cranston I, Marsden PK, Amiel SA, Reed LJ. Attenuation of amydgala and frontal cortical responses to low blood glucose concentration in asymptomatic hypoglycemia in type 1 diabetes: a new player in hypoglycemia unawareness? Diabetes 2007; 56:2766-73. [PMID: 17660265 DOI: 10.2337/db07-0666] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Loss of ability to recognize hypoglycemia (hypoglycemia unawareness) increases risk of severe hypoglycemia threefold in insulin-treated diabetes. We set out to investigate the cerebral correlates of unawareness in type 1 patients. RESEARCH DESIGN AND METHODS Regional changes in brain glucose kinetics were measured using [(18)F]-fluorodeoxyglucose (FDG) positron emission tomography (PET), in 13 men with type 1 diabetes--6 with hypoglycemia awareness and 7 with hypoglycemia unawareness--at euglycemia (5 mmol/l) and hypoglycemia (2.6 mmol/l), in random order. RESULTS Epinephrine responses to hypoglycemia were reduced in hypoglycemia unawareness (P < 0.0003), as were symptoms. Statistical parametric mapping (SPM) of FDG uptake using SPM2 at a statistical threshold of P < 0.005 showed increased FDG uptake in left amygdala in hypoglycemia awareness, but not in hypoglycemia unawareness (region of interest analysis -0.40 +/- 1.03 vs. 3.66 +/- 0.42, respectively; P = 0.007), and robust increase in bilateral ventral striatum during hypoglycemia (region of interest analysis hypoglycemia unawareness 3.52 +/- 1.02 vs. awareness 6.1 +/- 0.53; P = 0.054). Further analysis at the statistical threshold of P < 0.01 showed bilateral attenuated activation of brain stem regions and less deactivation in lateral orbitofrontal cortex in hypoglycemia unawareness. CONCLUSIONS Ventral striatal, amygdala, brain stem, and orbitofrontal responses to hypoglycemia indicate engagement of appetitive motivational networks, associated with integrated behavioral responses to hypoglycemia. Reduced responses in these networks in hypoglycemia unawareness, particularly failure of amygdala and orbifrontal cortex responses, suggest habituation of higher behavioral responses to hypoglycemia as a basis for unawareness. New approaches may be needed to restore awareness effectively in practice.
Collapse
Affiliation(s)
- Joel T Dunn
- Diabetes Research Group, King's College London School of Medicine, King's College, London, UK
| | | | | | | | | |
Collapse
|
37
|
Bingham EM, Dunn JT, Smith D, Sutcliffe-Goulden J, Reed LJ, Marsden PK, Amiel SA. Differential changes in brain glucose metabolism during hypoglycaemia accompany loss of hypoglycaemia awareness in men with type 1 diabetes mellitus. An [11C]-3-O-methyl-D-glucose PET study. Diabetologia 2005; 48:2080-9. [PMID: 16143864 DOI: 10.1007/s00125-005-1900-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 05/11/2005] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Hypoglycaemia unawareness in type 1 diabetes increases the risk of severe hypoglycaemia and impairs quality of life for people with diabetes. To explore the central mechanisms of hypoglycaemia awareness, we used [11C]-3-O-methyl-D-glucose (CMG) positron emission tomography (PET) to measure changes in global and regional brain glucose metabolism between euglycaemia and hypoglycaemia in aware and unaware diabetic subjects. MATERIALS AND METHODS Twelve men with type 1 diabetes, of whom six were characterised as aware and six as unaware of hypoglycaemia, underwent two CMG-PET brain scans while plasma glucose was controlled by insulin and glucose infusion either at euglycaemia (5 mmol/l) or at hypoglycaemia (2.6 mmol/l) in random order. RESULTS With hypoglycaemia, symptoms and sweating occurred only in the aware group. Brain glucose content fell in both groups (p=0.0002; aware, 1.18+/-0.45 to 0.02+/-0.2 mmol/l; unaware, 1.07+/-0.46 to 0.19+/-0.23 mmol/l), with a relative increase in tracer uptake in prefrontal cortical regions, including the anterior cingulate. No detectable differences were found between groups in global brain glucose transport parameters (K1, k2). The cerebral metabolic rate for glucose (CMRglc) showed a relative rise in the aware subjects (11.839+/-2.432 to 13.958+/-2.372) and a fall in the unaware subjects (from 12.457+/-1.938 to 10.16+/-0.801 micromol 100 g(-1) min(-1), p=0.043). CONCLUSIONS/INTERPRETATION Hypoglycaemia is associated with reduced brain glucose content in aware and unaware subjects, with a relative preservation of metabolism in areas associated with sympathetic activation. The relative rise in global glucose metabolic rate seen in aware subjects during hypoglycaemia contrasted with the relative fall in the unaware subjects and suggests that cortical neuronal activation is a necessary correlate of the state of hypoglycaemia awareness.
Collapse
Affiliation(s)
- E M Bingham
- Department of Diabetes, Endocrinology and Internal Medicine, Guy's, King's and St Thomas' School of Medicine, King's College, London, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Acute hypoglycaemia impairs cerebral function, and available data indicate that cognitive performance becomes impaired at a blood glucose level of 2.6-3.0 mmol/l in healthy subjects. Methodological problems limit comparisons between studies, but in general complex tasks are more sensitive to hypoglycaemia than simple tasks, and some cognitive abilities are completely abolished. The onset of hypoglycaemic cognitive dysfunction is immediate, but recovery may be considerably delayed. There is persuasive evidence of adaptation to hypoglycaemia, partly due to increased brain glucose uptake capacity, although other mechanisms may exist. Patients who are exposed to chronic or recurrent hypoglycaemia become remarkably tolerant to the state, but this is insufficient to prevent severe hypoglycaemia with neuroglycopenic decompensation, probably because symptomatic and counterregulatory responses adapt even more. During experimental hypoglycaemia, administration of non-glucose cerebral fuels preserves cognitive function. However, little progress has been made as yet towards protecting cognitive function during hypoglycaemia in clinical practice. The chronic effects of recurrent hypoglycaemia remain contentious. There are numerous case reports of hypoglycaemic brain damage and of cognitive deterioration attributed to repeated severe hypoglycaemia. The major prospective studies, including the Diabetes Control and Complications Trial, did not report cognitive declines in intensively treated patients, but had unrepresentative study populations and may have been too short to detect such effects. Structural and functional brain changes are not only associated with recurrent severe hypoglycaemia, but also with hyperglycaemia and early disease onset and may in part be due to hyperglycaemic microvascular disease. Children may be more prone to acute metabolic insults, and there is evidence of developmental disadvantage associated with hypoglycaemic episodes.
Collapse
|
39
|
Mastaitis JW, Wurmbach E, Cheng H, Sealfon SC, Mobbs CV. Acute induction of gene expression in brain and liver by insulin-induced hypoglycemia. Diabetes 2005; 54:952-8. [PMID: 15793232 DOI: 10.2337/diabetes.54.4.952] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The robust neuroendocrine counterregulatory responses induced by hypoglycemia protect the brain by restoring plasma glucose, but little is known about molecular responses to hypoglycemia that may also be neuroprotective. To clarify these mechanisms, we examined gene expression in hypothalamus, cortex, and liver 3 h after induction of mild hypoglycemia by a single injection of insulin, using cDNA microarray analysis and quantitative real-time PCR. Real-time PCR corroborated the induction of six genes (angiotensinogen, GLUT-1, inhibitor of kappaB, inhibitor of DNA binding 1 [ID-1], Ubp41, and mitogen-activated protein kinase phosphatase-1 [MKP-1]) by insulin-induced hypoglycemia in the hypothalamus: five of these six genes in cortex and three (GLUT-1, angiotensinogen, and MKP-1) in liver. The induction was due to hypoglycemia and not hyperinsulinemia, since fasting (characterized by low insulin and glucose) also induced these genes. Four of these genes (angiotensinogen, GLUT-1, ID-1, and MKP-1) have been implicated in enhancement of glucose availability, which could plausibly serve a neuroprotective role during acute hypoglycemia but, if persistent, could also cause glucose-sensing mechanisms to overestimate plasma glucose levels, potentially causing hypoglycemia-induced counterregulatory failure. Although using cDNA microarrays with more genes, or microdissection, would presumably reveal further responses to hypoglycemia, these hypoglycemia-induced genes represent useful markers to assess molecular mechanisms mediating cellular responses to hypoglycemia.
Collapse
Affiliation(s)
- Jason W Mastaitis
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
40
|
Schultes B, Kern W, Oltmanns K, Peters A, Gais S, Fehm HL, Born J. Differential adaptation of neurocognitive brain functions to recurrent hypoglycemia in healthy men. Psychoneuroendocrinology 2005; 30:149-61. [PMID: 15471613 DOI: 10.1016/j.psyneuen.2004.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 06/18/2004] [Accepted: 06/19/2004] [Indexed: 11/23/2022]
Abstract
Antecedent hypoglycemia is known to attenuate hormonal and symptomatic responses to subsequent hypoglycemia. Whether this pertains also to hypoglycemia-induced cognitive dysfunction is controversially discussed. Neurocognitive adaptation might essentially depend on the type of function. Here, we compared the influence of recurrent hypoglycemia in 15 healthy men on counterregulatory hormones, subjective symptoms of hypoglycemia, short-term memory performance (word recall), and performance on an auditory attention task (oddball). The attention task was also used to record event-related brain potential (ERP) indicators of stimulus processing. In each subject, three consecutive hypoglycemic clamps were performed, two on day 1 and the third on day 2. Neurocognitive testing was performed during baseline and at two different hypoglycemic plateaus (2.8 and 2.5 mmol/l) during the first and last clamp. As expected, hormonal responses were significantly reduced to the last as compared to the first hypoglycemia indicating adaptation. Subjective symptoms also decreased in response to recurrent hypoglycemia. Short-term memory performance deteriorated distinctly on the first hypoglycemic clamp, but maintained the normal level on the last clamp (P=0.006). Likewise, the impairment in reaction time (P=0.022) and response accuracy (P=0.005) was distinctly smaller on the last than first hypoglycemia. In parallel, the hypoglycemia-induced decrease in P3 amplitude (P=0.019) and the increase in P3 latency (P=0.049) were diminished with recurrent hypoglycemia, indicating that late stages of controlled stimulus processing likewise adapted. In contrast, the distinct decrease in amplitudes of the N1 and P2 components of the ERP (preceding the P3) was closely comparable in response to the first and last hypoglycemia (P>0.3). Together results indicate an adaptation to recurrent hypoglycemia for signs of controlled stimulus processing presumably involving hippocampo-prefrontocortical circuitry, while earlier automatic stages of processing appear to be spared.
Collapse
Affiliation(s)
- B Schultes
- Department of Internal Medicine I, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Young JK, McKenzie JC. GLUT2 immunoreactivity in Gomori-positive astrocytes of the hypothalamus. J Histochem Cytochem 2004; 52:1519-24. [PMID: 15505347 PMCID: PMC3957823 DOI: 10.1369/jhc.4a6375.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A specialized subtype of astrocyte, the Gomori-positive (GP) astrocyte, is unusually abundant and prominent in the arcuate nucleus of the hypothalamus. GP astrocytes possess cytoplasmic granules derived from degenerating mitochondria. GP granules are highly stained by Gomori's chrome alum hematoxylin stain, by the Perl's reaction for iron, or by toluidine blue. The source of the oxidative stress causing mitochondrial damage in GP astrocytes is uncertain, but such damage could arise from the oxidative metabolism of glucose transported into astrocytes by high-capacity GLUT2 glucose transporters. In accord with this hypothesis, the reported anatomical distribution of astrocytes staining positively for GLUT2 glucose transporters closely matches that of GP astrocytes. To examine whether or not these two staining procedures detect the same population of astrocytes, immunocytochemistry was performed on semithin sections to detect GLUT2 protein and sections were then stained with toluidine blue to detect GP granules. It was determined that GP astrocytes are frequently immunoreactive for the GLUT2 transporter protein. These data support the possibility that GP astrocytes may have an important influence upon the reactivity of the hypothalamus to glucose and that a specialized glucose metabolism may in part underlie the development of mitochondrial abnormalities in hypothalamic GP astrocytes.
Collapse
Affiliation(s)
- John K Young
- Department of Anatomy, Howard University College of Medicine, 520 W Street, N.W., Washington, DC 20059, USA.
| | | |
Collapse
|
42
|
Knudsen GM, Rostrup E, Hasselbalch SG. Quantitative PET for assessment of cerebral blood flow and glucose consumption under varying physiological conditions. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Affiliation(s)
- Philip E Cryer
- Division of Endocrinology, Metabolism, and Lipid Research, the General Clinical Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Teves D, Videen TO, Cryer PE, Powers WJ. Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci U S A 2004; 101:6217-21. [PMID: 15026569 PMCID: PMC395949 DOI: 10.1073/pnas.0307048101] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 02/05/2004] [Indexed: 12/30/2022] Open
Abstract
Studies in humans implicate the medial prefrontal cortex (MPFC) in complex cognitive and emotional states. We measured regional cerebral blood flow (CBF) four times each during euglycemia (5.2 +/- 0.2 mmol/liter) and hypoglycemia (3.0 +/- 0.3 mmol/liter) in nine normal human volunteers. Autonomic responses during hypoglycemia were manifested by increases in neurogenic symptoms, heart rate, and plasma levels of epinephrine, norepinephrine, and pancreatic polypeptide. Typical symptoms of hypoglycemia were mild, and none reflected evidence of cognitive or emotional stress. Quantitative CBF fell 6-8% in the cerebrum, brainstem, and cerebellum. Analysis of regional CBF differences identified neuronal activation during hypoglycemia in bilateral MPFC (areas 24 and 32) and bilateral thalamus. These results provide evidence that the MPFC participates in the autonomic responses to simple physiological stimuli in humans.
Collapse
Affiliation(s)
- Denise Teves
- Division of Endocrinology, Metabolism, and Lipid Research of the Department of Internal Medicine, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
45
|
McNay EC, Sherwin RS. Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes 2004; 53:418-25. [PMID: 14747293 DOI: 10.2337/diabetes.53.2.418] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of recurrent hypoglycemia (RH) on cognition in human subjects remain controversial, perhaps in part due to difficulty in completely controlling previous hypoglycemic history. We used a model of RH in nondiabetic and diabetic rats to examine the effects of short-term (3 h daily for 3 days) RH on subsequent hippocampally dependent spatial memory, tested either at euglycemia or under acute hypoglycemia. Hippocampal metabolism was simultaneously measured using microdialysis. Antecedent RH improved task performance (79 +/- 2% alternation in nondiabetic RH animals vs. 63 +/- 3% in controls; P < 0.001) at euglycemia, accompanied by reversal of the task-associated dip (20 +/- 1% below baseline) in hippocampal extracellular fluid (ECF) glucose seen in control animals. RH rats also had a larger rise in hippocampal ECF glucose, after intraperitoneal glucose injection, than did controls. However, RH animals tested at acute hypoglycemia ( approximately 2.8 mmol/l) performed significantly worse than control animals. Results were similar in diabetic and nondiabetic rats. Our data suggest that RH causes improvement in subsequent cognitive performance at euglycemia, accompanied by alterations in cognitive metabolism. When glucose availability is limited, complex cognitive functioning seems to be adversely effected in RH animals, perhaps to better maintain and preserve basic brain functions.
Collapse
Affiliation(s)
- Ewan C McNay
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut, USA.
| | | |
Collapse
|
46
|
|
47
|
Abstract
Iatrogenic hypoglycemia causes recurrent morbidity in most people with type 1 diabetes and many with type 2 diabetes, and it is sometimes fatal. The barrier of hypoglycemia generally precludes maintenance of euglycemia over a lifetime of diabetes and thus precludes full realization of euglycemia's long-term benefits. While the clinical presentation is often characteristic, particularly for the experienced individual with diabetes, the neurogenic and neuroglycopenic symptoms of hypoglycemia are nonspecific and relatively insensitive; therefore, many episodes are not recognized. Hypoglycemia can result from exogenous or endogenous insulin excess alone. However, iatrogenic hypoglycemia is typically the result of the interplay of absolute or relative insulin excess and compromised glucose counterregulation in type 1 and advanced type 2 diabetes. Decrements in insulin, increments in glucagon, and, absent the latter, increments in epinephrine stand high in the hierarchy of redundant glucose counterregulatory factors that normally prevent or rapidly correct hypoglycemia. In insulin-deficient diabetes (exogenous) insulin levels do not decrease as glucose levels fall, and the combination of deficient glucagon and epinephrine responses causes defective glucose counterregulation. Reduced sympathoadrenal responses cause hypoglycemia unawareness. The concept of hypoglycemia-associated autonomic failure in diabetes posits that recent antecedent hypoglycemia causes both defective glucose counterregulation and hypoglycemia unawareness. By shifting glycemic thresholds for the sympathoadrenal (including epinephrine) and the resulting neurogenic responses to lower plasma glucose concentrations, antecedent hypoglycemia leads to a vicious cycle of recurrent hypoglycemia and further impairment of glucose counterregulation. Thus, short-term avoidance of hypoglycemia reverses hypoglycemia unawareness in most affected patients. The clinical approach to minimizing hypoglycemia while improving glycemic control includes 1) addressing the issue, 2) applying the principles of aggressive glycemic therapy, including flexible and individualized drug regimens, and 3) considering the risk factors for iatrogenic hypoglycemia. The latter include factors that result in absolute or relative insulin excess: drug dose, timing, and type; patterns of food ingestion and exercise; interactions with alcohol and other drugs; and altered sensitivity to or clearance of insulin. They also include factors that are clinical surrogates of compromised glucose counterregulation: endogenous insulin deficiency; history of severe hypoglycemia, hypoglycemia unawareness, or both; and aggressive glycemic therapy per se, as evidenced by lower HbA(1c) levels, lower glycemic goals, or both. In a patient with hypoglycemia unawareness (which implies recurrent hypoglycemia) a 2- to 3-week period of scrupulous avoidance of hypoglycemia is advisable. Pending the prevention and cure of diabetes or the development of methods that provide glucose-regulated insulin replacement or secretion, we need to learn to replace insulin in a much more physiological fashion, to prevent, correct, or compensate for compromised glucose counterregulation, or both if we are to achieve near-euglycemia safely in most people with diabetes.
Collapse
Affiliation(s)
- Philip E Cryer
- Division of Endocrinology, Diabetes and Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
48
|
McCall AL. Diabetes mellitus and the central nervous system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:415-53. [PMID: 12420366 DOI: 10.1016/s0074-7742(02)51012-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anthony L McCall
- University of Virginia School of Medicine, Division of Endocrinology & Metabolism, Department of Internal Medicine, UVA Health System, Charlottesville, Virginia 22908, USA
| |
Collapse
|