1
|
Horton WB, Love KM, Gregory JM, Liu Z, Barrett EJ. Metabolic and vascular insulin resistance: partners in the pathogenesis of cardiovascular disease in diabetes. Am J Physiol Heart Circ Physiol 2025; 328:H1218-H1236. [PMID: 40257392 PMCID: PMC12172477 DOI: 10.1152/ajpheart.00826.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Vascular insulin resistance has emerged as a pivotal factor in the genesis of cardiovascular disease (CVD) in people with diabetes. It forms a complex pathogenic partnership with metabolic insulin resistance to significantly amplify the CVD risk of diabetes and other affected populations. Metabolic insulin resistance (characterized by quantitatively diminished insulin action on glucose metabolism in skeletal muscle, liver, and adipose tissue) is a hallmark of diabetes, obesity, and related conditions. In contrast, vascular insulin resistance is a less appreciated and not well-quantified complication of these conditions. Importantly, an impaired vascular response to insulin contributes directly to vascular dysfunction and over 40 years of research has convincingly shown that vascular and metabolic insulin resistance synergize to create an environment that predisposes individuals to CVD. In this review, we examine the multifaceted vascular actions of insulin, including its roles in regulating blood pressure, blood flow, endothelial health, and arterial stiffness. We also examine how these processes become disrupted in the setting of vascular insulin resistance, which subsequently undermines endothelial function, compromises tissue microvascular perfusion, and promotes vascular rigidity and atherosclerosis. We then highlight potential therapeutic strategies with demonstrated efficacy to improve vascular insulin sensitivity in people with diabetes and suggest that targeting disordered vascular insulin signaling holds promise not only for refining the functional understanding of vascular insulin resistance but also for developing innovative treatments with potential to reduce CVD risk and improve cardiovascular outcomes in people with diabetes.
Collapse
Affiliation(s)
- William B. Horton
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
| | - Kaitlin M. Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
| | - Justin M. Gregory
- Ian M. Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University School of Medicine; Nashville, TN
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
| | - Eugene J. Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine; Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine; Charlottesville, VA
| |
Collapse
|
2
|
Katsanos CS, Tran L, Hoffman N, Roust LR, De Filippis E, Mandarino LJ, Johnsson K, Belohlavek M, Buras MR. Impaired Suppression of Plasma Lipid Extraction and its Partitioning Away from Muscle by Insulin in Humans with Obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598550. [PMID: 38915696 PMCID: PMC11195248 DOI: 10.1101/2024.06.11.598550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Context Humans with obesity and insulin resistance exhibit lipid accumulation in skeletal muscle, but the underlying biological mechanisms responsible for the accumulation of lipid in the muscle of these individuals remain unknown. Objective We investigated how plasma insulin modulates the extraction of circulating triglycerides (TGs) and non-esterified fatty acids (NEFAs) from ingested and endogenous origin in the muscle of lean, insulin-sensitive humans (Lean-IS) and contrasted these responses to those in humans with obesity and insulin resistance (Obese-IR). Methods The studies were performed in a postprandial state associated with steady-state plasma TG concentrations. The arterio-venous blood sampling technique was employed to determine the extraction of circulating lipids across the forearm muscle before and after insulin infusion. We distinguished kinetics of TGs and NEFAs from ingested origin from those from endogenous origin across muscle by incorporating stable isotope-labeled triolein in the ingested fat. Results Insulin infusion rapidly suppressed the extraction of plasma TGs from endogenous, but not ingested, origin in the muscle of the Lean-IS, but this response was absent in the muscle of the Obese-IR. Furthermore, in the muscle of the Lean-IS, insulin infusion decreased the extraction of circulating NEFAs from both ingested and endogenous origin; however, this response was absent for NEFAs from ingested origin in the muscle of the Obese-IR subjects. Conclusions Partitioning of circulating lipids away from the skeletal muscle when plasma insulin increases during the postprandial period is impaired in humans with obesity and insulin resistance.
Collapse
|
3
|
Calcaterra V, Magenes VC, Bianchi A, Rossi V, Gatti A, Marin L, Vandoni M, Zuccotti G. How Can Promoting Skeletal Muscle Health and Exercise in Children and Adolescents Prevent Insulin Resistance and Type 2 Diabetes? Life (Basel) 2024; 14:1198. [PMID: 39337980 PMCID: PMC11433096 DOI: 10.3390/life14091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Skeletal muscle secretome, through its paracrine and endocrine functions, contributes to the maintenance and regulation of overall physiological health. We conducted a narrative review on the role of skeletal muscle and exercise in maintaining glucose homeostasis, driving insulin resistance (IR), and preventing type 2 diabetes in pediatric populations, especially in the context of overweight and obesity. Myokines such as interleukin (IL)-6, IL-8, and IL-15, as well as irisin, myonectin, and myostatin, appear to play a crucial role in IR. Skeletal muscle can also become a target of obesity-induced and IR-induced inflammation. In the correlation between muscle, IR, and inflammation, the role of infiltration of the immune cells and the microvasculature may also be considered. It remains unclear which exercise approach is the best; however, combining aerobic exercise with resistance training seems to be the most effective strategy for managing IR, with high-intensity activities offering superior metabolic benefits and long-term adherence. Encouraging daily participation in enjoyable and engaging exercise is key for long-term commitment and effective glucose metabolism management. Promoting physical activity in children and adolescents must be a top priority for public health, not only in terms of individual quality of life and well-being but also for community health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Vittoria Carlotta Magenes
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alessandro Gatti
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Luca Marin
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
4
|
Brayner B, Keske MA, Roberts-Thomson KM, Parker L, Betik AC, Thomas HJ, Mason S, Way KL, Livingstone KM, Hamilton DL, Kaur G. Short-term high-calorie high-fat feeding induces hyperinsulinemia and blunts skeletal muscle microvascular blood flow in healthy humans. Am J Physiol Endocrinol Metab 2024; 327:E42-E54. [PMID: 38717363 DOI: 10.1152/ajpendo.00070.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and prediabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF before impairing insulin-stimulated glucose disposal. It is not known whether this occurs in humans. We investigated the temporal impact of a 7-day high-calorie high-fat (HCHF) diet intervention (+52% kJ; 41% fat) on fasting and postprandial cardiometabolic outcomes in 14 healthy adults (18-37 yr). Metabolic health and vascular responses to a mixed-meal challenge (MMC) were measured at pre (day 0)-, mid (day 4)- and post (day 8)-intervention. There were no significant differences in body weight, body fat %, fasting blood glucose, and fasting plasma insulin concentrations at pre-, mid- and postintervention. Compared with preintervention there was a significant increase in insulin (but not glucose) total area under the curve in response to the MMC at midintervention (P = 0.041) and at postintervention (P = 0.028). Unlike at pre- and midintervention, at postintervention muscle MBF decreased at 60 min (P = 0.024) and 120 min (P = 0.023) after the MMC. However, macrovascular blood flow was significantly increased from 0 to 60 min (P < 0.001) and 120 min (P < 0.001) after the MMC at pre-, mid- and postintervention. Therefore, short-term HCHF feeding in healthy individuals leads to elevated postprandial insulin but not glucose levels and a blunting of meal-induced skeletal muscle MBF responses but not macrovascular blood flow responses.NEW & NOTEWORTHY This is the first study to investigate skeletal muscle microvascular blood flow (MBF) responses in humans after short-term high-calorie high-fat (HCHF) diet. The main findings were that HCHF diet causes elevated postprandial insulin in healthy individuals within 3 days and blunts meal-induced muscle MBF within 7 days, despite no impairments in postprandial glucose or macrovascular blood flow.
Collapse
Affiliation(s)
- Barbara Brayner
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Hannah J Thomas
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Shaun Mason
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kimberley L Way
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Exercise Physiology and Cardiovascular Health Lab, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Balgobin S, Basak S, Teoh CW, Noone D. Hypertension in diabetes. Pediatr Nephrol 2024; 39:1739-1758. [PMID: 37831122 DOI: 10.1007/s00467-023-06163-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Diabetes mellitus, a disease that affects hundreds of millions of people worldwide, is increasing in prevalence in all age groups, including children and adolescents. Much of the morbidity and mortality associated with diabetes is closely related to hypertension, often coincident with diabetes. Comorbid hypertension and diabetes often worsen the outcomes of each other, likely rooted in some overlapping pathogenic mechanisms. In this educational review, we will discuss the shared pathophysiology of diabetes and hypertension, particularly in regard to inflammation and oxidative stress, the sympathetic nervous system, vascular remodeling, and the renin-angiotensin-aldosterone system (RAAS). We will also review current hypertension diagnosis and management guidelines from many international jurisdictions for both adult and paediatric populations in the setting of diabetes. Many of these guidelines highlight the use and utility of RAAS blockers in this clinical scenario; however, on review of the evidence for their use, several meta-analyses and systematic reviews fail to demonstrate superiority of RAAS blockers over other anti-hypertensive medications. Finally, we discuss several new anti-hypertensive medications, review their mechanisms of action, and highlight some of the evidence for their use in the setting of hypertension and diabetes.
Collapse
Affiliation(s)
- Steve Balgobin
- Division of Paediatric Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Sanjukta Basak
- Pediatric Endocrinologist, BC Children's Hospital, Vancouver, BC, Canada
- Division of Endocrinology & Metabolism, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chia Wei Teoh
- Division of Paediatric Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Damien Noone
- Division of Paediatric Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Szablewski L. Changes in Cells Associated with Insulin Resistance. Int J Mol Sci 2024; 25:2397. [PMID: 38397072 PMCID: PMC10889819 DOI: 10.3390/ijms25042397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Insulin is a polypeptide hormone synthesized and secreted by pancreatic β-cells. It plays an important role as a metabolic hormone. Insulin influences the metabolism of glucose, regulating plasma glucose levels and stimulating glucose storage in organs such as the liver, muscles and adipose tissue. It is involved in fat metabolism, increasing the storage of triglycerides and decreasing lipolysis. Ketone body metabolism also depends on insulin action, as insulin reduces ketone body concentrations and influences protein metabolism. It increases nitrogen retention, facilitates the transport of amino acids into cells and increases the synthesis of proteins. Insulin also inhibits protein breakdown and is involved in cellular growth and proliferation. On the other hand, defects in the intracellular signaling pathways of insulin may cause several disturbances in human metabolism, resulting in several chronic diseases. Insulin resistance, also known as impaired insulin sensitivity, is due to the decreased reaction of insulin signaling for glucose levels, seen when glucose use in response to an adequate concentration of insulin is impaired. Insulin resistance may cause, for example, increased plasma insulin levels. That state, called hyperinsulinemia, impairs metabolic processes and is observed in patients with type 2 diabetes mellitus and obesity. Hyperinsulinemia may increase the risk of initiation, progression and metastasis of several cancers and may cause poor cancer outcomes. Insulin resistance is a health problem worldwide; therefore, mechanisms of insulin resistance, causes and types of insulin resistance and strategies against insulin resistance are described in this review. Attention is also paid to factors that are associated with the development of insulin resistance, the main and characteristic symptoms of particular syndromes, plus other aspects of severe insulin resistance. This review mainly focuses on the description and analysis of changes in cells due to insulin resistance.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Carter KJ, Ward AT, Al-Subu A, Wilson AD, Zevin EL, Serlin RC, Eldridge M, Wieben O, Schrage WG. An oral glucose tolerance test does not affect cerebral blood flow: role of NOS. Am J Physiol Regul Integr Comp Physiol 2023; 325:R759-R768. [PMID: 37842740 PMCID: PMC11178292 DOI: 10.1152/ajpregu.00169.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Animal data indicate that insulin triggers a robust nitric oxide synthase (NOS)-mediated dilation in cerebral arteries similar to the peripheral tissue vasodilation observed in healthy adults. Insulin's role in regulating cerebral blood flow (CBF) in humans remains unclear but may be important for understanding the links between insulin resistance, diminished CBF, and poor brain health outcomes. We tested the hypothesis that an oral glucose challenge (oral glucose tolerance test, OGTT), which increases systemic insulin and glucose, would acutely increase CBF in healthy adults due to NOS-mediated vasodilation, and that changes in CBF would be greater in anterior regions where NOS expression or activity may be greater. In a randomized, single-blind approach, 18 young healthy adults (24 ± 5 yr) underwent magnetic resonance imaging (MRI) with a placebo before and after an OGTT (75 g glucose), and 11 of these adults also completed an NG-monomethyl-l-arginine (l-NMMA) visit. Four-dimensional (4-D) flow MRI quantified macrovascular CBF and arterial spin labeling (ASL) quantified microvascular perfusion. Subjects completed baseline imaging with a placebo (or l-NMMA), then consumed an OGTT followed by MRI scans and blood sampling every 10-15 min for 90 min. Contrary to our hypothesis, total CBF (P = 0.17) and global perfusion (P > 0.05) did not change at any time point up to 60 min after the OGTT, and no regional changes were detected. l-NMMA did not mediate any effect of OGTT on CBF. These data suggest that insulin-glucose challenge does not acutely alter CBF in healthy adults.
Collapse
Affiliation(s)
- Katrina J Carter
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| | - Aaron T Ward
- Deparment of Center for Health Disparities Research, University of Wisconsin, Madison, Wisconsin, United States
| | - Awni Al-Subu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Allen D Wilson
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Erika L Zevin
- Department of Pediatrics, University School of Medicine, Indianapolis, Indiana, United States
| | - Ronald C Serlin
- Department of Educational Psychology, University of Wisconsin, Madison, Wisconsin, United States
| | - Marlowe Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, United States
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin, United States
| |
Collapse
|
8
|
Pepe GJ, Albrecht ED. Microvascular Skeletal-Muscle Crosstalk in Health and Disease. Int J Mol Sci 2023; 24:10425. [PMID: 37445602 DOI: 10.3390/ijms241310425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Hughes A, Francis T, Marjoram L, Rooney JH, Ellison-Hughes G, Pollock R, Curtis MJ, Cape A, Larsen M, Phillips BE, Atherton PJ, Smith K, Witard OC. The effect of combined β-lactoglobulin supplementation and resistance exercise training prior to limb immobilisation on muscle protein synthesis rates in healthy young adults: study protocol for a randomised controlled trial. Trials 2023; 24:401. [PMID: 37312095 DOI: 10.1186/s13063-023-07329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The decline in skeletal muscle mass experienced following a short-term period (days to weeks) of muscle disuse is mediated by impaired rates of muscle protein synthesis (MPS). Previous RCTs of exercise or nutrition prehabilitation interventions designed to mitigate disuse-induced muscle atrophy have reported limited efficacy. Hence, the aim of this study is to investigate the impact of a complex prehabilitation intervention that combines β-lactoglobulin (a novel milk protein with a high leucine content) supplementation with resistance exercise training on disuse-induced changes in free-living integrated rates of MPS in healthy, young adults. METHODS/DESIGN To address this aim, we will recruit 24 healthy young (18-45 years) males and females to conduct a parallel, double-blind, 2-arm, randomised placebo-controlled trial. The intervention group will combine a 7-day structured resistance exercise training programme with thrice daily dietary supplementation with 23 g of β-lactoglobulin. The placebo group will combine the same training programme with an energy-matched carbohydrate (dextrose) control. The study protocol will last 16 days for each participant. Day 1 will be a familiarisation session and days 2-4 will be the baseline period. Days 5-11 represent the 'prehabilitation period' whereby participants will combine resistance training with their assigned dietary supplementation regimen. Days 12-16 represent the muscle disuse-induced 'immobilisation period' whereby participants will have a single leg immobilised in a brace and continue their assigned dietary supplementation regimen only (i.e. no resistance training). The primary endpoint of this study is the measurement of free-living integrated rates of MPS using deuterium oxide tracer methodology. Measurements of MPS will be calculated at baseline, over the 7-day prehabilitation period and over the 5-day immobilisation period separately. Secondary endpoints include measurements of muscle mass and strength that will be collected on days 4 (baseline), 11 (end of prehabilitation) and 16 (end of immobilisation). DISCUSSION This novel study will establish the impact of a bimodal prehabilitation strategy that combines ß-lactoglobulin supplementation and resistance exercise training in modulating MPS following a short-term period of muscle disuse. If successful, this complex intervention may be translated to clinical practice with application to patients scheduled to undergo, for example, hip or knee replacement surgery. TRIAL REGISTRATION NCT05496452. Registered on August 10, 2022. PROTOCOL VERSION 16-12-2022/1.
Collapse
Affiliation(s)
- Alix Hughes
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Lindsey Marjoram
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Jessica H Rooney
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | | | - Ross Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Michael J Curtis
- School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Angela Cape
- Clinical Trials Unit, King's College London, London, UK
| | | | | | | | - Kenneth Smith
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
| |
Collapse
|
10
|
Cohen JB, Mitchell GF, Gill D, Burgess S, Rahman M, Hanff T, Ramachandran VS, Mutalik K, Townsend RR, Chirinos JA. Arterial Stiffness and Diabetes Risk in Framingham Heart Study and UK Biobank. Circ Res 2022; 131:545-554. [PMID: 35946401 PMCID: PMC7613487 DOI: 10.1161/circresaha.122.320796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Microvascular damage from large artery stiffness (LAS) in pancreatic, hepatic, and skeletal muscles may affect glucose homeostasis. Our goal was to evaluate the association between LAS and the risk of type 2 diabetes using prospectively collected, carefully phenotyped measurements of LAS as well as Mendelian randomization analyses. METHODS Carotid-femoral pulse wave velocity (CF-PWV) and brachial and central pulse pressure were measured in 5676 participants of the FHS (Framingham Heart Study) without diabetes. We used Cox proportional hazards regression to evaluate the association of CF-PWV and pulse pressure with incident diabetes. We subsequently performed 2-sample Mendelian randomization analyses evaluating the associations of genetically predicted brachial pulse pressure with type 2 diabetes in the UKBB (United Kingdom Biobank). RESULTS In FHS, individuals with higher CF-PWV were older, more often male, and had higher body mass index and mean arterial pressure compared to those with lower CF-PWV. After a median follow-up of 7 years, CF-PWV and central pulse pressure were associated with an increased risk of new-onset diabetes (per SD increase, multivariable-adjusted CF-PWV hazard ratio, 1.36 [95% CI, 1.03-1.76]; P=0.030; central pulse pressure multivariable-adjusted CF-PWV hazard ratio, 1.26 [95% CI, 1.08-1.48]; P=0.004). In United Kingdom Biobank, genetically predicted brachial pulse pressure was associated with type 2 diabetes, independent of mean arterial pressure (adjusted odds ratio, 1.16 [95% CI, 1.00-1.35]; P=0.049). CONCLUSIONS Using prospective cohort data coupled with Mendelian randomization analyses, we found evidence supporting that greater LAS is associated with increased risk of developing diabetes. LAS may play an important role in glucose homeostasis and may serve as a useful marker of future diabetes risk.
Collapse
Affiliation(s)
- Jordana B. Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mahboob Rahman
- Department of Medicine, Case Western University, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas Hanff
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vasan S. Ramachandran
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Raymond R. Townsend
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio A. Chirinos
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Is vascular insulin resistance an early step in diet-induced whole-body insulin resistance? Nutr Diabetes 2022; 12:31. [PMID: 35676248 PMCID: PMC9177754 DOI: 10.1038/s41387-022-00209-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
There is increasing evidence that skeletal muscle microvascular (capillary) blood flow plays an important role in glucose metabolism by increasing the delivery of glucose and insulin to the myocytes. This process is impaired in insulin-resistant individuals. Studies suggest that in diet-induced insulin-resistant rodents, insulin-mediated skeletal muscle microvascular blood flow is impaired post-short-term high fat feeding, and this occurs before the development of myocyte or whole-body insulin resistance. These data suggest that impaired skeletal muscle microvascular blood flow is an early vascular step before the onset of insulin resistance. However, evidence of this is still lacking in humans. In this review, we summarise what is known about short-term high-calorie and/or high-fat feeding in humans. We also explore selected animal studies to identify potential mechanisms. We discuss future directions aimed at better understanding the ‘early’ vascular mechanisms that lead to insulin resistance as this will provide the opportunity for much earlier screening and timing of intervention to assist in preventing type 2 diabetes.
Collapse
|
12
|
Norton L, Shannon C, Gastaldelli A, DeFronzo RA. Insulin: The master regulator of glucose metabolism. Metabolism 2022; 129:155142. [PMID: 35066003 DOI: 10.1016/j.metabol.2022.155142] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023]
Abstract
Insulin is the master regulator of glucose, lipid, and protein metabolism. Following ingestion of an oral glucose load or mixed meal, the plasma glucose concentration rises, insulin secretion by the beta cells is stimulated and the hyperinsulinemia, working in concert with hyperglycemia, causes: (i) suppression of endogenous (primarily reflects hepatic) glucose production, (ii) stimulation of glucose uptake by muscle, liver, and adipocytes, (iii) inhibition of lipolysis leading to a decline in plasma FFA concentration which contributes to the suppression of hepatic glucose production and augmentation of muscle glucose uptake, and (iv) vasodilation in muscle, which contributes to enhanced muscle glucose disposal. Herein, the integrated physiologic impact of insulin to maintain normal glucose homeostasis is reviewed and the molecular basis of insulin's diverse actions in muscle, liver, adipocytes, and vasculature are discussed.
Collapse
Affiliation(s)
- Luke Norton
- Diabetes Division, UT Health, San Antonio, TX, United States of America
| | - Chris Shannon
- Diabetes Division, UT Health, San Antonio, TX, United States of America
| | - Amalia Gastaldelli
- Diabetes Division, UT Health, San Antonio, TX, United States of America; Cardiometabolic Risk Unit Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Ralph A DeFronzo
- Diabetes Division, UT Health, San Antonio, TX, United States of America.
| |
Collapse
|
13
|
Liu J, Aylor KW, Chai W, Barrett EJ, Liu Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am J Physiol Endocrinol Metab 2022; 322:E293-E306. [PMID: 35128961 PMCID: PMC8897003 DOI: 10.1152/ajpendo.00240.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Insulin increases muscle microvascular perfusion, which contributes to its metabolic action in muscle, but this action is impaired in obesity. Metformin improves endothelial function beyond its glucose lowering effects. We aim to examine whether metformin could prevent microvascular insulin resistance and endothelial dysfunction during the development of obesity. Adult male rats were fed a high-fat diet (HFD) with or without simultaneous metformin administration for either 2 or 4 wk. Insulin's metabolic and microvascular actions were determined using a combined euglycemic-hyperinsulinemic clamp and contrast-enhanced ultrasound approach. Compared with chow-fed controls, HFD feeding increased body adiposity without excess body weight gain, and this was associated with a marked decrease in insulin-mediated whole body glucose disposal and abolishment of insulin-induced muscle microvascular recruitment. Simultaneous administration of metformin fully rescued insulin-induced muscle microvascular recruitment as early as 2 wk and normalized insulin-mediated whole body glucose disposal at week 4. The divergent responses between insulin's microvascular and metabolic actions seen at week 2 were accompanied with reduced endothelial oxidative stress and vascular inflammation, and improved endothelial function and vascular insulin signaling in metformin-treated rats. In conclusions, metformin could prevent the development of microvascular insulin resistance and endothelial dysfunction by alleviating endothelial oxidative stress and vascular inflammation during obesity development.NEW & NOTEWORTHY Muscle microvascular insulin action contributes to insulin-mediated glucose use. Microvascular insulin resistance is an early event in diet-induced obesity and is associated with vascular inflammation. Metformin effectively reduces endothelial oxidative stress, improves endothelial function, and prevents microvascular insulin resistance during obesity development. These may contribute to metformin's salutary diabetes prevention and cardiovascular protective actions.
Collapse
Affiliation(s)
- Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
14
|
Russell RD, Roberts-Thomson KM, Hu D, Greenaway T, Betik AC, Parker L, Sharman JE, Richards SM, Rattigan S, Premilovac D, Wadley GD, Keske MA. Impaired postprandial skeletal muscle vascular responses to a mixed meal challenge in normoglycaemic people with a parent with type 2 diabetes. Diabetologia 2022; 65:216-225. [PMID: 34590175 DOI: 10.1007/s00125-021-05572-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Microvascular blood flow (MBF) increases in skeletal muscle postprandially to aid in glucose delivery and uptake in muscle. This vascular action is impaired in individuals who are obese or have type 2 diabetes. Whether MBF is impaired in normoglycaemic people at risk of type 2 diabetes is unknown. We aimed to determine whether apparently healthy people at risk of type 2 diabetes display impaired skeletal muscle microvascular responses to a mixed-nutrient meal. METHODS In this cross-sectional study, participants with no family history of type 2 diabetes (FH-) for two generations (n = 18), participants with a positive family history of type 2 diabetes (FH+; i.e. a parent with type 2 diabetes; n = 16) and those with type 2 diabetes (n = 12) underwent a mixed meal challenge (MMC). Metabolic responses (blood glucose, plasma insulin and indirect calorimetry) were measured before and during the MMC. Skeletal muscle large artery haemodynamics (2D and Doppler ultrasound, and Mobil-O-graph) and microvascular responses (contrast-enhanced ultrasound) were measured at baseline and 1 h post MMC. RESULTS Despite normal blood glucose concentrations, FH+ individuals displayed impaired metabolic flexibility (reduced ability to switch from fat to carbohydrate oxidation vs FH-; p < 0.05) during the MMC. The MMC increased forearm muscle microvascular blood volume in both the FH- (1.3-fold, p < 0.01) and FH+ (1.3-fold, p < 0.05) groups but not in participants with type 2 diabetes. However, the MMC increased MBF (1.9-fold, p < 0.01), brachial artery diameter (1.1-fold, p < 0.01) and brachial artery blood flow (1.7-fold, p < 0.001) and reduced vascular resistance (0.7-fold, p < 0.001) only in FH- participants, with these changes being absent in FH+ and type 2 diabetes. Participants with type 2 diabetes displayed significantly higher vascular stiffness (p < 0.001) compared with those in the FH- and FH+ groups; however, vascular stiffness did not change during the MMC in any participant group. CONCLUSIONS/INTERPRETATION Normoglycaemic FH+ participants display impaired postprandial skeletal muscle macro- and microvascular responses, suggesting that poor vascular responses to a meal may contribute to their increased risk of type 2 diabetes. We conclude that vascular insulin resistance may be an early precursor to type 2 diabetes in humans, which can be revealed using an MMC.
Collapse
Affiliation(s)
- Ryan D Russell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Donghua Hu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Timothy Greenaway
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Stephen M Richards
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Love KM, Barrett EJ, Malin SK, Reusch JEB, Regensteiner JG, Liu Z. Diabetes pathogenesis and management: the endothelium comes of age. J Mol Cell Biol 2021; 13:500-512. [PMID: 33787922 PMCID: PMC8530521 DOI: 10.1093/jmcb/mjab024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Endothelium, acting as a barrier, protects tissues against factors that provoke insulin resistance and type 2 diabetes and itself responds to the insult of insulin resistance inducers with altered function. Endothelial insulin resistance and vascular dysfunction occur early in the evolution of insulin resistance-related disease, can co-exist with and even contribute to the development of metabolic insulin resistance, and promote vascular complications in those affected. The impact of endothelial insulin resistance and vascular dysfunction varies depending on the blood vessel size and location, resulting in decreased arterial plasticity, increased atherosclerosis and vascular resistance, and decreased tissue perfusion. Women with insulin resistance and diabetes are disproportionately impacted by cardiovascular disease, likely related to differential sex-hormone endothelium effects. Thus, reducing endothelial insulin resistance and improving endothelial function in the conduit arteries may reduce atherosclerotic complications, in the resistance arteries lead to better blood pressure control, and in the microvasculature lead to less microvascular complications and more effective tissue perfusion. Multiple diabetes therapeutic modalities, including medications and exercise training, improve endothelial insulin action and vascular function. This action may delay the onset of type 2 diabetes and/or its complications, making the vascular endothelium an attractive therapeutic target for type 2 diabetes and potentially type 1 diabetes.
Collapse
MESH Headings
- Age Factors
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/ethnology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Comorbidity
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Exercise
- Female
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Male
- Racial Groups
- Risk Factors
- Sex Factors
Collapse
Affiliation(s)
- Kaitlin M Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
- Division of Endocrinology, Metabolism and Nutrition, Rutgers University, New Brunswick, NJ, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
- Institute of Translational Medicine and Research, Rutgers University, New Brunswick, NJ, USA
| | - Jane E B Reusch
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Judith G Regensteiner
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Keske MA, Przewlocka-Kosmala M, Woznicka AK, Mysiak A, Jankowska EA, Ponikowski P, Kosmala W. Role of skeletal muscle perfusion and insulin resistance in the effect of dietary sodium on heart function in overweight. ESC Heart Fail 2021; 8:5304-5315. [PMID: 34551207 PMCID: PMC8712816 DOI: 10.1002/ehf2.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aims Weight excess and insulin resistance predispose to heart failure. High sodium consumption may contribute to the development of cardiac impairment in insulin‐resistant individuals by promoting inadequate skeletal muscle microvascular perfusion response to insulin. We sought to investigate the association of dietary sodium reduction with muscle perfusion, insulin sensitivity, and cardiac function in overweight/obese insulin‐resistant (O‐IR) normotensive subjects. Methods and results Fifty O‐IR individuals with higher than recommended sodium intake were randomized to usual or reduced sodium diet for 8 weeks; 25 lean, healthy subjects served as controls for pre‐intervention measurements. Echocardiography and muscle perfusion were performed during fasting and under stable euglycaemic–hyperinsulinaemic clamp conditions. O‐IR patients demonstrated subclinical cardiac dysfunction as evidenced by lower left ventricular global longitudinal strain (GLS), e′ tissue velocity, and left atrial strain and reduced muscle perfusion. The intervention arm showed improvements in insulin resistance [glucose infusion rate (GIR)], GLS, e′, atrial strain, and muscle perfusion in fasting conditions, as well as improved responses of GLS and muscle perfusion to insulin during clamp. Significant interactions were found between the allocation to low‐salt diet and improvement in muscle perfusion on change in GIR at follow‐up (P = 0.030), and between improvement in muscle perfusion and change in GIR on change in GLS response to insulin at follow‐up (P = 0.026). Mediation analysis revealed that the relationship between the reduction of sodium intake and improvement in GLS was mediated by improvements in muscle perfusion and GIR (decrease in beta coefficient from −0.29 to −0.16 after the inclusion of mediator variables to the model). Conclusions The reduction of dietary sodium in the normotensive O‐IR population improves cardiac function, and this effect may be associated with the concomitant improvements in skeletal muscle perfusion and insulin resistance. These findings might contribute to refining heart failure preventive strategies.
Collapse
Affiliation(s)
- Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Anna K Woznicka
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Mysiak
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Kosmala
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
17
|
Broatch JR, O'Riordan SF, Keske MA, Betik AC, Bishop DJ, Halson SL, Parker L. Reduced post-exercise muscle microvascular perfusion with compression is offset by increased muscle oxygen extraction: Assessment by contrast-enhanced ultrasound. FASEB J 2021; 35:e21499. [PMID: 33811697 DOI: 10.1096/fj.202002205rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/11/2022]
Abstract
The microvasculature is important for both health and exercise tolerance in a range of populations. However, methodological limitations have meant changes in microvascular blood flow are rarely assessed in humans during interventions designed to affect skeletal muscle blood flow such as the wearing of compression garments. The aim of this study is, for the first time, to use contrast-enhanced ultrasound to directly measure the effects of compression on muscle microvascular blood flow alongside measures of femoral artery blood flow and muscle oxygenation following intense exercise in healthy adults. It was hypothesized that both muscle microvascular and femoral artery blood flows would be augmented with compression garments as compared with a control condition. Ten recreationally active participants completed two repeated-sprint exercise sessions, with and without lower-limb compression tights. Muscle microvascular blood flow, femoral arterial blood flow (2D and Doppler ultrasound), muscle oxygenation (near-infrared spectroscopy), cycling performance, and venous blood samples were measured/taken throughout exercise and the 1-hour post-exercise recovery period. Compared with control, compression reduced muscle microvascular blood volume and attenuated the exercise-induced increase in microvascular velocity and flow immediately after exercise and 1 hour post-exercise. Compression increased femoral artery diameter and augmented the exercise-induced increase in femoral arterial blood flow during exercise. Markers of blood oxygen extraction in muscle were increased with compression during and after exercise. Compression had no effect on blood lactate, glucose, or exercise performance. We provide new evidence that lower-limb compression attenuates the exercise-induced increase in skeletal muscle microvascular blood flow following exercise, despite a divergent increase in femoral artery blood flow. Decreased muscle microvascular perfusion is offset by increased muscle oxygen extraction, a potential mechanism allowing for the maintenance of exercise performance.
Collapse
Affiliation(s)
- James R Broatch
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,Australia Institute of Sport, Canberra, ACT, Australia
| | - Shane F O'Riordan
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,Australia Institute of Sport, Canberra, ACT, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
18
|
Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors. Metabolites 2021; 11:metabo11060338. [PMID: 34070362 PMCID: PMC8228969 DOI: 10.3390/metabo11060338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) is a group of metabolic abnormalities, which together lead to increased risk of coronary heart disease (CHD) and type 2 diabetes mellitus (T2DM), as well as reduced quality of life. Dietary nitrate, betalains and anthocyanins may improve risk factors for MetS and reduce the risk of development of CHD and T2DM. Beetroot is a rich source of dietary nitrate, and anthocyanins are present in high concentrations in blackcurrants. This narrative review considers the efficacy of beetroot and blackcurrant compounds as potential agents to improve MetS risk factors, which could lead to decreased risk of CHD and T2DM. Further research is needed to establish the mechanisms through which these outcomes may occur, and chronic supplementation studies in humans may corroborate promising findings from animal models and acute human trials.
Collapse
|
19
|
Yao C, Huang K, Shen R, Chen Q, Tian Z, Xia Z, Lin X, Wu G, Chen Z. Insulin product decreases risk of varicose vein: Evidence from a Mendelian randomization study. VASCULAR INVESTIGATION AND THERAPY 2021. [DOI: 10.4103/2589-9686.323983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Parker L, Morrison DJ, Wadley GD, Shaw CS, Betik AC, Roberts‐Thomson K, Kaur G, Keske MA. Prior exercise enhances skeletal muscle microvascular blood flow and mitigates microvascular flow impairments induced by a high‐glucose mixed meal in healthy young men. J Physiol 2020; 599:83-102. [DOI: 10.1113/jp280651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Glenn D. Wadley
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Christopher S. Shaw
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Andrew C. Betik
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Katherine Roberts‐Thomson
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN) School of Exercise and Nutrition Sciences Deakin University Geelong Australia
| |
Collapse
|
21
|
Park LK, Parks EJ, Pettit-Mee RJ, Woodford ML, Ghiarone T, Smith JA, Sales ARK, Martinez-Lemus LA, Manrique-Acevedo C, Padilla J. Skeletal muscle microvascular insulin resistance in type 2 diabetes is not improved by eight weeks of regular walking. J Appl Physiol (1985) 2020; 129:283-296. [PMID: 32614687 DOI: 10.1152/japplphysiol.00174.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We aimed to examine whether individuals with type 2 diabetes (T2D) exhibit suppressed leg vascular conductance and skeletal muscle capillary perfusion in response to a hyperinsulinemic-euglycemic clamp and to test whether these two variables are positively correlated. Subsequently, we examined whether T2D-associated skeletal muscle microvascular insulin resistance, as well as overall vascular dysfunction, would be ameliorated by an 8-wk walking intervention (45 min at 60% of heart rate reserve, 5 sessions/week). We report that, relative to healthy subjects, overweight and obese individuals with T2D exhibit depressed insulin-stimulated increases in leg vascular conductance, skeletal muscle capillary perfusion, and Akt phosphorylation. Notably, we found that within individuals with T2D, those with lesser increases in leg vascular conductance in response to insulin exhibited the lowest increases in muscle capillary perfusion, suggesting that limited muscle capillary perfusion may be, in part, linked to the impaired ability of the upstream resistance vessels to dilate in response to insulin. Furthermore, we show that the 8-wk walking intervention, which did not evoke weight loss, was insufficient to ameliorate skeletal muscle microvascular insulin resistance in previously sedentary, overweight/obese subjects with T2D, despite high adherence and tolerance. However, the walking intervention did improve (P < 0.05) popliteal artery flow-mediated dilation (+4.52%) and reduced HbA1c (-0.75%). It is possible that physical activity interventions that are longer in duration, engage large muscle groups with recruitment of the maximum number of muscle fibers, and lead to a robust reduction in metabolic risk factors may be required to overhaul microvascular insulin resistance in T2D.NEW & NOTEWORTHY This report provides evidence that in sedentary subjects with type 2 diabetes diminished insulin-stimulated increases in leg vascular conductance and ensuing blunted capillary perfusion in skeletal muscle are not restorable by increased walking alone. More innovative physical activity interventions that ultimately result in a robust mitigation of metabolic risk factors may be vital for reestablishing skeletal muscle microvascular insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Allan R K Sales
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
22
|
Parker L, Morrison DJ, Betik AC, Roberts-Thomson K, Kaur G, Wadley GD, Shaw CS, Keske MA. High-glucose mixed-nutrient meal ingestion impairs skeletal muscle microvascular blood flow in healthy young men. Am J Physiol Endocrinol Metab 2020; 318:E1014-E1021. [PMID: 32286881 DOI: 10.1152/ajpendo.00540.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oral glucose ingestion leads to impaired muscle microvascular blood flow (MBF), which may contribute to acute hyperglycemia-induced insulin resistance. We investigated whether incorporating lipids and protein into a high-glucose load would prevent postprandial MBF dysfunction. Ten healthy young men (age, 27 yr [24, 30], mean with lower and upper bounds of the 95% confidence interval; height, 180 cm [174, 185]; weight, 77 kg [70, 84]) ingested a high-glucose (1.1 g/kg glucose) mixed-nutrient meal (10 kcal/kg; 45% carbohydrate, 20% protein, and 35% fat) in the morning after an overnight fast. Femoral arterial blood flow was measured via Doppler ultrasound, and thigh MBF was measured via contrast-enhanced ultrasound, before meal ingestion and 1 h and 2 h postprandially. Blood glucose and plasma insulin were measured at baseline and every 15 min throughout the 2-h postprandial period. Compared with baseline, thigh muscle microvascular blood volume, velocity, and flow were significantly impaired at 60 min postprandial (-25%, -27%, and -46%, respectively; all P < 0.05) and to a greater extent at 120 min postprandial (-37%, -46%, and -64%; all P < 0.01). Heart rate and femoral arterial diameter, blood velocity, and blood flow were significantly increased at 60 min and 120 min postprandial (all P < 0.05). Higher blood glucose area under the curve was correlated with greater MBF dysfunction (R2 = 0.742; P < 0.001). Ingestion of a high-glucose mixed-nutrient meal impairs MBF in healthy individuals for up to 2 h postprandial.
Collapse
Affiliation(s)
- Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Dale J Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Katherine Roberts-Thomson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
23
|
Premilovac D, Blackwood SJ, Ramsay CJ, Keske MA, Howells DW, Sutherland BA. Transcranial contrast-enhanced ultrasound in the rat brain reveals substantial hyperperfusion acutely post-stroke. J Cereb Blood Flow Metab 2020; 40:939-953. [PMID: 32063081 PMCID: PMC7181087 DOI: 10.1177/0271678x20905493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Direct and real-time assessment of cerebral hemodynamics is key to improving our understanding of cerebral blood flow regulation in health and disease states such as stroke. While a number of sophisticated imaging platforms enable assessment of cerebral perfusion, most are limited either spatially or temporally. Here, we applied transcranial contrast-enhanced ultrasound (CEU) to measure cerebral perfusion in real-time through the intact rat skull before, during and after ischemic stroke, induced by intraluminal filament middle cerebral artery occlusion (MCAO). We demonstrate expected decreases in cortical and striatal blood volume, flow velocity and perfusion during MCAO. After filament retraction, blood volume and perfusion increased two-fold above baseline, indicative of acute hyperperfusion. Adjacent brain regions to the ischemic area and the contralateral hemisphere had increased blood volume during MCAO. We assessed our data using wavelet analysis to demonstrate striking vasomotion changes in the ischemic and contralateral cortices during MCAO and reperfusion. In conclusion, we demonstrate the application of CEU for real-time assessment of cerebral hemodynamics and show that the ischemic regions exhibit striking hyperemia post-MCAO. Whether this post-stoke hyperperfusion is sustained long-term and contributes to stroke severity is not known.
Collapse
Affiliation(s)
- Dino Premilovac
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Sarah J Blackwood
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Ciaran J Ramsay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David W Howells
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
24
|
Phillips SM, Martinson W. Nutrient-rich, high-quality, protein-containing dairy foods in combination with exercise in aging persons to mitigate sarcopenia. Nutr Rev 2020; 77:216-229. [PMID: 30561677 DOI: 10.1093/nutrit/nuy062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenic declines in muscle mass and function contribute to the risk of falls, reduced mobility, and progression to frailty in older persons. Mitigation of sarcopenia can be achieved by consumption of higher quality protein in sufficient quantities, which current research suggests are greater than the recommended intakes of approximately 0.8 g/kg bodyweight/d. In addition, higher levels of physical activity and participation in exercise to support cardiovascular fitness and musculoskeletal function work additively with protein in attenuating sarcopenia. This narrative review provides evidence to support a recommendation for per-meal protein targets in older persons that are underpinned by knowledge of muscle protein turnover. Based on work examining acute dose-responses of muscle protein synthesis (MPS) to protein, a proposed per-meal target for protein intakes is set at approximately 0.4-0.6 g protein/kg bodyweight/meal for older persons. Habitual patterns of dietary protein intake tend to emphasize a skewed protein distribution, which would not maximize muscle anabolism. Observational studies show that more even patterns of protein intake are associated with increased muscle mass and improved muscle function. A food-based approach to achieving these protein targets would be advantageous, and the nutrient density of the protein-containing foods would be particularly important for older persons. Dairy foods provide high-quality protein and contain several nutrients of concern for older persons. This brief review provides an overview of the science underpinning why dairy foods should be a point of nutritional emphasis for older persons. Practical suggestions are provided for implementation of dairy foods into dietary patterns to meet the protein and other nutrient targets for older persons.
Collapse
Affiliation(s)
- Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
25
|
Roberts-Thomson KM, Betik AC, Premilovac D, Rattigan S, Richards SM, Ross RM, Russell RD, Kaur G, Parker L, Keske MA. Postprandial microvascular blood flow in skeletal muscle: Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp. Clin Exp Pharmacol Physiol 2019; 47:725-737. [PMID: 31868941 DOI: 10.1111/1440-1681.13237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis. Over the past number of decades, research has demonstrated that insulin has an important role in vasodilating the vasculature in skeletal muscle in response to an insulin infusion (hyperinsulinaemic-euglycaemic clamp) or following the ingestion of a meal. This vascular action of insulin is pivotal for glucose disposal in skeletal muscle, as insulin-stimulated vasodilation increases the delivery of both glucose and insulin to the myocyte. Notably, in insulin-resistant states such as obesity and type 2 diabetes, this vascular response of insulin in skeletal muscle is significantly impaired. Whereas the majority of work in this field has focussed on the action of insulin alone on skeletal muscle microvascular blood flow and myocyte glucose metabolism, there is less understanding of how the consumption of a meal may affect skeletal muscle blood flow. This is in part due to complex variations in glucose and insulin dynamics that occurs postprandially-with changes in humoral concentrations of glucose, insulin, amino acids, gut and pancreatic peptides-compared to the hyperinsulinaemic-euglycaemic clamp. This review will address the emerging body of evidence to suggest that postprandial blood flow responses in skeletal muscle may be a function of the nutritional composition of a meal.
Collapse
Affiliation(s)
- Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dino Premilovac
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Renee M Ross
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
26
|
West S, Smail O, Bond B. The acute influence of sucrose consumption with and without vitamin C co-ingestion on microvascular reactivity in healthy young adults. Microvasc Res 2019; 126:103906. [DOI: 10.1016/j.mvr.2019.103906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
|
27
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
28
|
Emanuel AL, Meijer RI, van Poelgeest E, Spoor P, Serné EH, Eringa EC. Contrast-enhanced ultrasound for quantification of tissue perfusion in humans. Microcirculation 2019; 27:e12588. [PMID: 31465606 PMCID: PMC7050534 DOI: 10.1111/micc.12588] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Contrast-enhanced ultrasound is an imaging technique that can be used to quantify microvascular blood volume and blood flow of vital organs in humans. It relies on the use of microbubble contrast agents and ultrasound-based imaging of microbubbles. Over the past decades, both ultrasound contrast agents and experimental techniques to image them have rapidly improved, as did experience among investigators and clinicians. However, these improvements have not yet resulted in uniform guidelines for CEUS when it comes to quantification of tissue perfusion in humans, preventing its uniform and widespread use in research settings. The objective of this review is to provide a methodological overview of CEUS and its development, the influences of hardware and software settings, type and dosage of ultrasound contrast agent, and method of analysis on CEUS-derived perfusion data. Furthermore, we will discuss organ-specific imaging challenges, advantages, and limitations of CEUS.
Collapse
Affiliation(s)
- Anna L Emanuel
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Rick I Meijer
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Erik van Poelgeest
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Pien Spoor
- Department of Physiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Erik H Serné
- Department of Internal Medicine, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam University Medical Center, Location VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Hu D, Remash D, Russell RD, Greenaway T, Rattigan S, Squibb KA, Jones G, Premilovac D, Richards SM, Keske MA. Impairments in Adipose Tissue Microcirculation in Type 2 Diabetes Mellitus Assessed by Real-Time Contrast-Enhanced Ultrasound. Circ Cardiovasc Imaging 2019; 11:e007074. [PMID: 29650791 DOI: 10.1161/circimaging.117.007074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/22/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND In obesity and type 2 diabetes mellitus (T2D), adipose tissue expansion (because of larger adipocytes) results in reduced microvascular density which is thought to lead to adipocyte hypoxia, inflammation, and reduced nutrient delivery to the adipocyte. Adipose tissue microvascular responses in humans with T2D have not been extensively characterized. Furthermore, it has not been determined whether impaired microvascular responses in human adipose tissue are most closely associated with adiposity, inflammation, or altered metabolism. METHODS AND RESULTS Overnight-fasted healthy controls (n=24, 9 females/15 males) and people with T2D (n=21, 8 females/13 males) underwent a body composition scan (dual-energy X-ray absorptiometry), an oral glucose challenge (50 g glucose) and blood analysis of clinical chemistries and inflammatory markers. Abdominal subcutaneous adipose tissue microvascular responses were measured by contrast-enhanced ultrasound at baseline and 1-hour post-oral glucose challenge. Adipose tissue microvascular blood volume was significantly elevated in healthy subjects 1-hour post-oral glucose challenge; however, this effect was absent in T2D. Adipose tissue microvascular blood flow was lower in people with T2D at baseline and was significantly blunted post-oral glucose challenge compared with controls. Adipose tissue microvascular blood flow was negatively associated with truncal fat (%), glucoregulatory function, fasting triglyceride and nonesterified fatty acid levels, and positively associated with insulin sensitivity. Truncal fat (%), systolic blood pressure, and insulin sensitivity were the only correlates with microvascular blood volume. Systemic inflammation was not associated with adipose tissue microvascular responses. CONCLUSIONS Impaired microvascular function in adipose tissue during T2D is not conditionally linked to systemic inflammation but is associated with other characteristics of the metabolic syndrome (obesity, insulin resistance, hyperglycemia, and dyslipidemia).
Collapse
Affiliation(s)
- Donghua Hu
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Devika Remash
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Ryan D Russell
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Timothy Greenaway
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Stephen Rattigan
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Kathryn A Squibb
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Graeme Jones
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Dino Premilovac
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Stephen M Richards
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.)
| | - Michelle A Keske
- Menzies Institute for Medical Research (D.H., R.D.R., S.R., K.A.S., G.J., S.M.R., M.A.K.) and School of Medicine (D.R., T.G., D.P., S.M.R.), University of Tasmania, Hobart, TAS Australia; Department of Health and Human Performance, College of Health Services, University of Texas Rio Grande Valley, Brownsville TX, (R.D.R.); Royal Hobart Hospital, TAS, Australia (T.G.); Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia (M.A.K.); and Department of Pharmacology, Anhui Medical University, Hefei, China (D.H.).
| |
Collapse
|
30
|
Asmar M, Asmar A, Simonsen L, Dela F, Holst JJ, Bülow J. GIP-induced vasodilation in human adipose tissue involves capillary recruitment. Endocr Connect 2019; 8:806-813. [PMID: 31063975 PMCID: PMC6590203 DOI: 10.1530/ec-19-0144] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) in combination with hyperinsulinemia increase blood flow and triglyceride clearance in subcutaneous abdominal adipose tissue in lean humans. The present experiments were performed to determine whether the increase involves capillary recruitment. Eight lean healthy volunteers were studied before and after 1 h infusion of GIP or saline during a hyperglycemic-hyperinsulinemic clamp, raising plasma glucose and insulin to postprandial levels. Subcutaneous abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique, and microvascular blood volume was determined by contrast-enhanced ultrasound imaging. During infusion of saline and the clamp, both ATBF (2.7 ± 0.5 mL/min 100 g/tissue) and microvascular blood volume remained unchanged throughout the experiments. During GIP infusion and the clamp, ATBF increased ~fourfold to 11.4 ± 1.9 mL/min 100 g/tissue, P < 0.001. Likewise, the contrast-enhanced ultrasound signal intensity, a measure of the microvascular blood volume, increased significantly 1 h after infusion of GIP and the clamp (P = 0.003), but not in the control experiments. In conclusion, the increase in ATBF during GIP infusion involves recruitment of capillaries in healthy lean subjects, which probably increases the interaction of circulating lipoproteins with lipoprotein lipase, thus promoting adipose tissue lipid uptake.
Collapse
Affiliation(s)
- Meena Asmar
- Department of Endocrinology, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to M Asmar:
| | - Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Nerup N, Ambrus R, Lindhe J, Achiam MP, Jeppesen PB, Svendsen LB. The effect of glucagon‐like peptide‐1 and glucagon‐like peptide‐2 on microcirculation: A systematic review. Microcirculation 2019; 26:e12367. [DOI: 10.1111/micc.12367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolaj Nerup
- Department of Surgical GastroenterologyRigshospitaletCopenhagen University Hospital Copenhagen Ø Denmark
| | - Rikard Ambrus
- Department of Surgical GastroenterologyRigshospitaletCopenhagen University Hospital Copenhagen Ø Denmark
| | - Joanna Lindhe
- Department of Surgical GastroenterologyRigshospitaletCopenhagen University Hospital Copenhagen Ø Denmark
| | - Michael P. Achiam
- Department of Surgical GastroenterologyRigshospitaletCopenhagen University Hospital Copenhagen Ø Denmark
| | - Palle B. Jeppesen
- Department of Medical GastroenterologyRigshospitaletCopenhagen University Hospital Copenhagen Ø Denmark
| | - Lars B. Svendsen
- Department of Surgical GastroenterologyRigshospitaletCopenhagen University Hospital Copenhagen Ø Denmark
| |
Collapse
|
32
|
Muscle Insulin Resistance and the Inflamed Microvasculature: Fire from Within. Int J Mol Sci 2019; 20:ijms20030562. [PMID: 30699907 PMCID: PMC6387226 DOI: 10.3390/ijms20030562] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin is a vascular hormone and regulates vascular tone and reactivity. Muscle is a major insulin target that is responsible for the majority of insulin-stimulated glucose use. Evidence confirms that muscle microvasculature is an important insulin action site and critically regulates insulin delivery to muscle and action on myocytes, thereby affecting insulin-mediated glucose disposal. Insulin via activation of its signaling cascade in the endothelial cells increases muscle microvascular perfusion, which leads to an expansion of the endothelial exchange surface area. Insulin’s microvascular actions closely couple with its metabolic actions in muscle and blockade of insulin-mediated microvascular perfusion reduces insulin-stimulated muscle glucose disposal. Type 2 diabetes is associated with chronic low-grade inflammation, which engenders both metabolic and microvascular insulin resistance through endocrine, autocrine and paracrine actions of multiple pro-inflammatory factors. Here, we review the crucial role of muscle microvasculature in the regulation of insulin action in muscle and how inflammation in the muscle microvasculature affects insulin’s microvascular actions as well as metabolic actions. We propose that microvascular insulin resistance induced by inflammation is an early event in the development of metabolic insulin resistance and eventually type 2 diabetes and its related cardiovascular complications, and thus is a potential therapeutic target for the prevention or treatment of obesity and diabetes.
Collapse
|
33
|
Walsh LK, Ghiarone T, Olver TD, Medina-Hernandez A, Edwards JC, Thorne PK, Emter CA, Lindner JR, Manrique-Acevedo C, Martinez-Lemus LA, Padilla J. Increased endothelial shear stress improves insulin-stimulated vasodilatation in skeletal muscle. J Physiol 2018; 597:57-69. [PMID: 30328623 DOI: 10.1113/jp277050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity. ABSTRACT The vasodilator actions of insulin contribute to glucose uptake by skeletal muscle, and previous studies have demonstrated that acute and chronic physical activity improves insulin-stimulated vasodilatation and glucose uptake. Because this effect of exercise primarily manifests in vascular beds highly perfused during exercise, it has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. Accordingly, herein we tested the hypothesis that increased shear stress, in the absence of muscle contraction, can acutely render the vascular endothelium more insulin-responsive. To test this hypothesis, complementary experiments were conducted using (1) cultured endothelial cells, (2) isolated and pressurized skeletal muscle arterioles from swine, and (3) humans. In cultured endothelial cells, 1 h of increased shear stress from 3 to 20 dynes cm-2 caused a significant shift in insulin signalling characterized by greater activation of eNOS relative to MAPK. Similarly, isolated arterioles exposed to 1 h of intraluminal shear stress (20 dynes cm-2 ) subsequently exhibited greater insulin-induced vasodilatation compared to arterioles kept under no-flow conditions. Finally, we found in humans that increased leg blood flow induced by unilateral limb heating for 1 h subsequently augmented insulin-stimulated popliteal artery blood flow and muscle perfusion. In aggregate, these findings across models (cells, isolated arterioles and humans) support the hypothesis that elevated shear stress causes the vascular endothelium to become more insulin-responsive and thus are consistent with the notion that shear stress may be a principal mechanism by which physical activity enhances insulin-stimulated vasodilatation.
Collapse
Affiliation(s)
- Lauren K Walsh
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | | | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, MO, USA.,Diabetes and Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
34
|
Frank S, Jbaily A, Hinshaw L, Basu R, Basu A, Szeri AJ. Modeling the acute effects of exercise on insulin kinetics in type 1 diabetes. J Pharmacokinet Pharmacodyn 2018; 45:829-845. [PMID: 30392154 DOI: 10.1007/s10928-018-9611-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023]
Abstract
Our objective is to develop a physiology-based model of insulin kinetics to understand how exercise alters insulin concentrations in those with type 1 diabetes (T1D). We reveal the relationship between the insulin absorption rate ([Formula: see text]) from subcutaneous tissue, the insulin delivery rate ([Formula: see text]) to skeletal muscle, and two physiological parameters that characterize the tissue: the perfusion rate (Q) and the capillary permeability surface area (PS), both of which increase during exercise because of capillary recruitment. We compare model predictions to experimental observations from two pump-wearing T1D cohorts [resting subjects ([Formula: see text]) and exercising subjects ([Formula: see text])] who were each given a mixed-meal tolerance test and a bolus of insulin. Using independently measured values of Q and PS from literature, the model predicts that during exercise insulin concentration increases by 30% in plasma and by 60% in skeletal muscle. Predictions reasonably agree with experimental observations from the two cohorts, without the need for parameter estimation by curve fitting. The insulin kinetics model suggests that the increase in surface area associated with exercise-induced capillary recruitment significantly increases [Formula: see text] and [Formula: see text], which explains why insulin concentrations in plasma and skeletal muscle increase during exercise, ultimately enhancing insulin-dependent glucose uptake. Preventing hypoglycemia is of paramount importance in determining the proper insulin dose during exercise. The presented model provides mechanistic insight into how exercise affects insulin kinetics, which could be useful in guiding the design of decision support systems and artificial pancreas control algorithms.
Collapse
Affiliation(s)
- Spencer Frank
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Abdulrahman Jbaily
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ling Hinshaw
- Division of Endocrinology, Mayo Clinic, Rochester, MI, USA
| | - Rita Basu
- Division of Endocrinology, Mayo Clinic, Rochester, MI, USA.,Department of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ananda Basu
- Division of Endocrinology, Mayo Clinic, Rochester, MI, USA.,Department of Endocrinology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew J Szeri
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.,Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Russell RD, Hu D, Greenaway T, Sharman JE, Rattigan S, Richards SM, Keske MA. Oral glucose challenge impairs skeletal muscle microvascular blood flow in healthy people. Am J Physiol Endocrinol Metab 2018; 315:E307-E315. [PMID: 29763373 DOI: 10.1152/ajpendo.00448.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skeletal muscle microvascular (capillary) blood flow increases in the postprandial state or during insulin infusion due to dilation of precapillary arterioles to augment glucose disposal. This effect occurs independently of changes in large artery function. However, acute hyperglycemia impairs vascular function, causes insulin to vasoconstrict precapillary arterioles, and causes muscle insulin resistance in vivo. We hypothesized that acute hyperglycemia impairs postprandial muscle microvascular perfusion, without disrupting normal large artery hemodynamics, in healthy humans. Fifteen healthy people (5 F/10 M) underwent an oral glucose challenge (OGC, 50 g glucose) and a mixed-meal challenge (MMC) on two separate occasions (randomized, crossover design). At 1 h, both challenges produced a comparable increase (6-fold) in plasma insulin levels. However, the OGC produced a 1.5-fold higher increase in blood glucose compared with the MMC 1 h postingestion. Forearm muscle microvascular blood volume and flow (contrast-enhanced ultrasound) were increased during the MMC (1.3- and 1.9-fold from baseline, respectively, P < 0.05 for both) but decreased during the OGC (0.7- and 0.6-fold from baseline, respectively, P < 0.05 for both) despite a similar hyperinsulinemia. Both challenges stimulated brachial artery flow (ultrasound) and heart rate to a similar extent, as well as yielding comparable decreases in diastolic blood pressure and total vascular resistance. Systolic blood pressure and aortic stiffness remained unaltered by either challenge. Independently of large artery hemodynamics, hyperglycemia impairs muscle microvascular blood flow, potentially limiting glucose disposal into skeletal muscle. The OGC reduced microvascular blood flow in muscle peripherally and therefore may underestimate the importance of skeletal muscle in postprandial glucose disposal.
Collapse
Affiliation(s)
- Ryan D Russell
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- Department of Health and Human Performance, College of Health Affairs, University of Texas Rio Grande Valley , Brownsville, Texas
| | - Donghua Hu
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Timothy Greenaway
- Royal Hobart Hospital , Hobart, Tasmania , Australia
- School of Medicine, University of Tasmania , Hobart, Tasmania , Australia
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
| | - Stephen M Richards
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- School of Medicine, University of Tasmania , Hobart, Tasmania , Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania , Hobart, Tasmania , Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition. Deakin University , Geelong, Victoria , Australia
| |
Collapse
|
36
|
Chen YC, Edinburgh RM, Hengist A, Smith HA, Walhin JP, Betts JA, Thompson D, Gonzalez JT. Venous blood provides lower glucagon-like peptide-1 concentrations than arterialized blood in the postprandial but not the fasted state: Consequences of sampling methods. Exp Physiol 2018; 103:1200-1205. [DOI: 10.1113/ep087118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023]
|
37
|
Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018; 217:2273-2289. [PMID: 29622564 PMCID: PMC6028526 DOI: 10.1083/jcb.201802095] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022] Open
Abstract
Insulin is the paramount anabolic hormone, promoting carbon energy deposition in the body. Its synthesis, quality control, delivery, and action are exquisitely regulated by highly orchestrated intracellular mechanisms in different organs or "stations" of its bodily journey. In this Beyond the Cell review, we focus on these five stages of the journey of insulin through the body and the captivating cell biology that underlies the interaction of insulin with each organ. We first analyze insulin's biosynthesis in and export from the β-cells of the pancreas. Next, we focus on its first pass and partial clearance in the liver with its temporality and periodicity linked to secretion. Continuing the journey, we briefly describe insulin's action on the blood vasculature and its still-debated mechanisms of exit from the capillary beds. Once in the parenchymal interstitium of muscle and adipose tissue, insulin promotes glucose uptake into myofibers and adipocytes, and we elaborate on the intricate signaling and vesicle traffic mechanisms that underlie this fundamental function. Finally, we touch upon the renal degradation of insulin to end its action. Cellular discernment of insulin's availability and action should prove critical to understanding its pivotal physiological functions and how their failure leads to diabetes.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Xu X, Wu L, Lu ZQ, Xia P, Zhu XP, Gao X. Effects of tetramethylpyrazine phosphate on pancreatic islet microcirculation in SD rats. J Endocrinol Invest 2018; 41:411-419. [PMID: 28918509 DOI: 10.1007/s40618-017-0748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
Abstract
PURPOSES Abnormal islet microcirculation impetus the insulin production and accelerates progression of Type 1 and 2 diabetes. In this study, we investigated whether tetramethylpyrazine phosphate (TMPP), a vasoactive substance, could regulate the islet microcirculation and insulin concentration and improve glycaemia in SD rats. METHODS SD rats were randomly divided into two groups, the control and TMPP groups. Each group was further divided into three subgroups according to the intravenous injection of either saline, 15 or 30% glucose. The non-radioactive microsphere technique was adopted to measure the organ blood flow. Nitric oxide synthase (NOS) blocker L-NAME was used to address whether NO was involved in mediating the vasoactive effects of TMPP. RESULTS In the TMPP group, TMPP increased the PBF (pancreatic blood flow), IBF (islet blood flow), and fIBF (fraction of islet blood flow out of pancreatic blood flow) by 57, 76 and 47%, respectively, after 30% glucose infusion, compared with the control, indicating that TMPP could regulate islet microcirculation. Furthermore, TMPP induced a 66% elevation of IBF and 37% of fIBF in the 30% glucose subgroups than the 15% ones. In 30% glucose-treated subgroups, TMPP improved the blood glucose concentration by 10%, compared with the control (19.3 ± 0.64 vs 17.32 ± 0.56 mmol/l, P < 0.05), without influencing the insulin secretion. Blocking NO formation prevented the enhanced PBF and IBF, evoking by TMPP with 30% glucose. CONCLUSIONS TMPP can regulate the pancreatic islet microcirculation and possess a hypoglycemia effect after glucose infusion through affecting the islet microcirculation.
Collapse
Affiliation(s)
- X Xu
- Department of Endocrinology and Metabolism, Affiliated Zhongshan Hospital of Fudan University, NO. 180, Feng Lin Road, Xu Hui District, Shanghai, 200032, People's Republic of China
- Institute of Chronic Metabolic Diseases of Fudan University, NO. 130, Dong An Road, Xu Hui District, Shanghai, 200032, People's Republic of China
| | - L Wu
- Department of Geriatrics, Affiliated Zhongshan Hospital of Fudan University, Shanghai, 200032, People's Republic of China
| | - Z Q Lu
- Department of Endocrinology and Metabolism, Affiliated Zhongshan Hospital of Fudan University, NO. 180, Feng Lin Road, Xu Hui District, Shanghai, 200032, People's Republic of China
| | - P Xia
- Department of Endocrinology and Metabolism, Affiliated Zhongshan Hospital of Fudan University, NO. 180, Feng Lin Road, Xu Hui District, Shanghai, 200032, People's Republic of China
- Institute of Chronic Metabolic Diseases of Fudan University, NO. 130, Dong An Road, Xu Hui District, Shanghai, 200032, People's Republic of China
| | - X P Zhu
- Department of Endocrinology and Metabolism, Affiliated Zhongshan Hospital of Fudan University, NO. 180, Feng Lin Road, Xu Hui District, Shanghai, 200032, People's Republic of China
- Institute of Chronic Metabolic Diseases of Fudan University, NO. 130, Dong An Road, Xu Hui District, Shanghai, 200032, People's Republic of China
| | - X Gao
- Department of Endocrinology and Metabolism, Affiliated Zhongshan Hospital of Fudan University, NO. 180, Feng Lin Road, Xu Hui District, Shanghai, 200032, People's Republic of China.
- Institute of Chronic Metabolic Diseases of Fudan University, NO. 130, Dong An Road, Xu Hui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
39
|
Williams IM, Valenzuela FA, Kahl SD, Ramkrishna D, Mezo AR, Young JD, Wells KS, Wasserman DH. Insulin exits skeletal muscle capillaries by fluid-phase transport. J Clin Invest 2018; 128:699-714. [PMID: 29309051 PMCID: PMC5785264 DOI: 10.1172/jci94053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Before insulin can stimulate myocytes to take up glucose, it must first move from the circulation to the interstitial space. The continuous endothelium of skeletal muscle (SkM) capillaries restricts insulin's access to myocytes. The mechanism by which insulin crosses this continuous endothelium is critical to understand insulin action and insulin resistance; however, methodological obstacles have limited understanding of endothelial insulin transport in vivo. Here, we present an intravital microscopy technique to measure the rate of insulin efflux across the endothelium of SkM capillaries. This method involves development of a fully bioactive, fluorescent insulin probe, a gastrocnemius preparation for intravital microscopy, an automated vascular segmentation algorithm, and the use of mathematical models to estimate endothelial transport parameters. We combined direct visualization of insulin efflux from SkM capillaries with modeling of insulin efflux kinetics to identify fluid-phase transport as the major mode of transendothelial insulin efflux in mice. Model-independent experiments demonstrating that insulin movement is neither saturable nor affected by insulin receptor antagonism supported this result. Our finding that insulin enters the SkM interstitium by fluid-phase transport may have implications in the pathophysiology of SkM insulin resistance as well as in the treatment of diabetes with various insulin analogs.
Collapse
Affiliation(s)
- Ian M. Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | - Adam R. Mezo
- Lilly Research Laboratories, Indianapolis, Indiana, USA
| | - Jamey D. Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, and
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| | - K. Sam Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Tan AW, Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Patrie JT, Aylor KW, Basu A, Liu Z. GLP-1 and Insulin Recruit Muscle Microvasculature and Dilate Conduit Artery Individually But Not Additively in Healthy Humans. J Endocr Soc 2018; 2:190-206. [PMID: 29568814 PMCID: PMC5841186 DOI: 10.1210/js.2017-00446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) and insulin increase muscle microvascular perfusion, thereby increasing tissue endothelial surface area and nutrient delivery. OBJECTIVE To examine whether GLP-1 and insulin act additively on skeletal and cardiac microvasculature and conduit artery. DESIGN Healthy adults underwent three study protocols in random order. SETTING Clinical Research Unit at the University of Virginia. METHODS Overnight-fasted participants received an intravenous infusion of GLP-1 (1.2 pmol/kg/min) or normal saline for 150 minutes with or without a 2-hour euglycemic insulin clamp (1 mU/kg/min) superimposed from 30 minutes onward. Skeletal and cardiac muscle microvascular blood volume (MBV), flow velocity, and flow; brachial artery diameter, flow velocity, and blood flow; and pulse wave velocity (PWV) were measured. RESULTS GLP-1 significantly increased skeletal and cardiac muscle MBV and microvascular blood flow (MBF) after 30 minutes; these remained elevated at 150 minutes. Insulin also increased skeletal and cardiac muscle MBV and MBF. Addition of insulin to GLP-1 did not further increase skeletal and cardiac muscle MBV and MBF. GLP-1 and insulin increased brachial artery diameter and blood flow, but this effect was not additive. Neither GLP-1, insulin, nor GLP-1 and insulin altered PWV. Combined GLP-1 and insulin infusion did not result in higher whole-body glucose disposal. CONCLUSION GLP-1 and insulin at physiological concentrations acutely increase skeletal and cardiac muscle microvascular perfusion and dilate conduit artery in healthy adults; these effects are not additive. Thus, GLP-1 and insulin may regulate skeletal and cardiac muscle endothelial surface area and nutrient delivery under physiological conditions.
Collapse
Affiliation(s)
- Alvin W.K. Tan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433
| | - Sharmila C. Subaran
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Matthew A. Sauder
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Linda A. Jahn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Dale E. Fowler
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - James T. Patrie
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Ananda Basu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
41
|
Mertz KH, Bülow J, Holm L. Contrast-enhanced ultrasound using bolus injections of contrast agent for assessment of postprandial microvascular blood volume in human skeletal muscle. Clin Physiol Funct Imaging 2017; 38:864-871. [DOI: 10.1111/cpf.12496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/05/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Kenneth H. Mertz
- Institute of Sports Medicine and Orthopedic Surgery M81; Bispebjerg Hospital; Birmingham UK
| | - Jacob Bülow
- Institute of Sports Medicine and Orthopedic Surgery M81; Bispebjerg Hospital; Birmingham UK
| | - Lars Holm
- Institute of Sports Medicine and Orthopedic Surgery M81; Bispebjerg Hospital; Birmingham UK
- School of Sport; Exercise and Rehabilitation Sciences; University of Birmingham; Birmingham UK
| |
Collapse
|
42
|
Lucero AA, Addae G, Lawrence W, Neway B, Credeur DP, Faulkner J, Rowlands D, Stoner L. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy. Exp Physiol 2017; 103:90-100. [DOI: 10.1113/ep086537] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Adam A. Lucero
- School of Sport & Exercise; Massey University; Wellington New Zealand
| | - Gifty Addae
- School of Public Health; Harvard; Boston MA USA
| | | | | | | | - James Faulkner
- Department of Sport and Exercise; University of Winchester; Winchester UK
| | - David Rowlands
- School of Sport & Exercise; Massey University; Wellington New Zealand
| | - Lee Stoner
- School of Sport & Exercise; Massey University; Wellington New Zealand
- Department of Exercise and Sport Science; University of North Carolina at Chapel Hill; NC USA
| |
Collapse
|
43
|
Irace C, Messiniti V, Tassone B, Cortese C, Barrett EJ, Gnasso A. Evidence for congruent impairment in micro and macrovascular function in type 1 diabetes. PLoS One 2017; 12:e0187525. [PMID: 29131837 PMCID: PMC5683560 DOI: 10.1371/journal.pone.0187525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/21/2017] [Indexed: 01/22/2023] Open
Abstract
Diabetes affects large and small vessels through mechanisms only partially known. In the present study, we evaluated the function of capillaries and large arteries in subjects with type 1 diabetes mellitus (T1DM) to study the effect of chronic hyperglycemia in the absence of other cardiovascular risk factors. Twenty-five subjects with T1DM and 12 healthy age-matched controls were enrolled. Nine patients had mild or moderate retinopathy. Contrast enhanced ultrasound was used to measure perfusion of the deep forearm flexor muscle of the non-dominant arm at rest (baseline) and after an ischemic stimulus (reactive hyperemia). Perfusion was expressed as Video Intensity (VI) in arbitrary unit (a.u.)/mm2. The time to reach peak VI after ischemia was also recorded. The function of large arteries was evaluated using flow-mediated vasodilation (FMD). VI was significantly lower in T1DM compared to control subjects both at baseline (0.22±0.16 vs 0.44±0.35 a.u./mm2, p<0.05), and after ischemia (0.33±0.24 vs 0.68±0.46 a.u./mm2, p<0.05). The time to reach peak VI after ischemia was markedly longer in T1DM (5.6±2.2 vs 4.0±1.7 seconds, p<0.02). These differences were more marked in T1DM subjects with retinopathy. FMD was lower in TIDM patients compared to controls (5.4±6.4 vs 10.7±4.5%, p<0.01). The present findings demonstrate that T1DM patients have defective peripheral skeletal muscle perfusion both at rest and after ischemia compared with control subjects. Low muscle perfusion associates with low FMD of the brachial artery. Furthermore, T1DM subjects with retinopathy have the least muscle perfusion and blunted response to hyperemia compared to T1DM without retinopathy.
Collapse
Affiliation(s)
- Concetta Irace
- Department of Health Science, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valentina Messiniti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Bruno Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Claudio Cortese
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Agostino Gnasso
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- * E-mail:
| |
Collapse
|
44
|
Blackwood SJ, Dwyer RM, Bradley EA, Keske MA, Richards SM, Rattigan S. Determination of Skeletal Muscle Microvascular Flowmotion with Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2013-2023. [PMID: 28655467 DOI: 10.1016/j.ultrasmedbio.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Most methods of assessing flowmotion (rhythmic oscillation of blood flow through tissue) are limited to small sections of tissue and are invasive in tissues other than skin. To overcome these limitations, we adapted the contrast-enhanced ultrasound (CEUS) technique to assess microvascular flowmotion throughout a large region of tissue, in a non-invasive manner and in real time. Skeletal muscle flowmotion was assessed in anaesthetised Sprague Dawley rats, using CEUS and laser Doppler flowmetry (LDF) for comparison. Wavelet transformation of CEUS and LDF data was used to quantify flowmotion. The α-adrenoceptor antagonist phentolamine was infused to predictably blunt the neurogenic component of flowmotion. Both techniques identified similar flowmotion patterns, validating the use of CEUS to assess flowmotion. This study demonstrates for the first time that the novel technique of CEUS can be adapted for determination of skeletal muscle flowmotion in large regions of skeletal muscle.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| | - Renee M Dwyer
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Eloise A Bradley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michelle A Keske
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
45
|
Sjøberg KA, Frøsig C, Kjøbsted R, Sylow L, Kleinert M, Betik AC, Shaw CS, Kiens B, Wojtaszewski JFP, Rattigan S, Richter EA, McConell GK. Exercise Increases Human Skeletal Muscle Insulin Sensitivity via Coordinated Increases in Microvascular Perfusion and Molecular Signaling. Diabetes 2017; 66:1501-1510. [PMID: 28292969 DOI: 10.2337/db16-1327] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/08/2017] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a major health risk, and although exercise clearly improves skeletal muscle insulin sensitivity, the mechanisms are unclear. Here we show that initiation of a euglycemic-hyperinsulinemic clamp 4 h after single-legged exercise in humans increased microvascular perfusion (determined by contrast-enhanced ultrasound) by 65% in the exercised leg and 25% in the rested leg (P < 0.05) and that leg glucose uptake increased 50% more (P < 0.05) in the exercised leg than in the rested leg. Importantly, infusion of the nitric oxide synthase inhibitor l-NG-monomethyl-l-arginine acetate (l-NMMA) into both femoral arteries reversed the insulin-stimulated increase in microvascular perfusion in both legs and abrogated the greater glucose uptake in the exercised compared with the rested leg. Skeletal muscle phosphorylation of TBC1D4 Ser318 and Ser704 and glycogen synthase activity were greater in the exercised leg before insulin and increased similarly in both legs during the clamp, and l-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4 and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand.
Collapse
Affiliation(s)
- Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Christian Frøsig
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Andrew C Betik
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Christopher S Shaw
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Stephen Rattigan
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Glenn K McConell
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Hildebrandt W, Schwarzbach H, Pardun A, Hannemann L, Bogs B, König AM, Mahnken AH, Hildebrandt O, Koehler U, Kinscherf R. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS). PLoS One 2017; 12:e0172771. [PMID: 28273102 PMCID: PMC5342194 DOI: 10.1371/journal.pone.0172771] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Background Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Methods Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. Results During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. Conclusions In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
- * E-mail:
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Anita Pardun
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Lena Hannemann
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Björn Bogs
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Alexander M. König
- Department of Diagnostic and Interventional Radiology, University Hospital of Giessen and Marburg (UKGM) University, Baldingerstraße, Marburg, Germany
| | - Andreas H. Mahnken
- Department of Diagnostic and Interventional Radiology, University Hospital of Giessen and Marburg (UKGM) University, Baldingerstraße, Marburg, Germany
| | - Olaf Hildebrandt
- Department of Sleep Medicine, Division of Pneumology, Internal Medicine, University Hospital of Giessen and Marburg (UKGM) Baldingerstraße, Marburg, Germany
| | - Ulrich Koehler
- Department of Sleep Medicine, Division of Pneumology, Internal Medicine, University Hospital of Giessen and Marburg (UKGM) Baldingerstraße, Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
47
|
Keske MA, Dwyer RM, Russell RD, Blackwood SJ, Brown AA, Hu D, Premilovac D, Richards SM, Rattigan S. Regulation of microvascular flow and metabolism: An overview. Clin Exp Pharmacol Physiol 2016; 44:143-149. [DOI: 10.1111/1440-1681.12688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Michelle A Keske
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Renee M Dwyer
- School of Medicine University of Tasmania Hobart Tas. Australia
| | - Ryan D Russell
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Sarah J Blackwood
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Aascha A Brown
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Donghua Hu
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Dino Premilovac
- School of Medicine University of Tasmania Hobart Tas. Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| |
Collapse
|
48
|
Sydow K, Mondon CE, Cooke JP. Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med 2016. [DOI: 10.1191/1358863x05vm604oa] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The insulin resistance syndrome (IRS) is considered to be a new target of risk-reduction therapy. The IRS is a cluster of closely associated and interdependent abnormalities and clinical outcomes that occur more commonly in insulin-resistant/hyperinsulinemic individuals. This syndrome predisposes individuals to type 2 diabetes, cardiovascular diseases, essential hypertension, certain forms of cancer, polycystic ovary syndrome, nonalcoholic fatty liver disease, and sleep apnea. In patients at high risk for cardiovascular diseases, endothelial dysfunction is observed in morphologically intact vessels even before the onset of clinically manifest vascular disease. Indeed, there are several lines of evidence that indicate that endothelial function is compromised in situations where there is reduced sensitivity to endogenous insulin. It is well established that a decreased bioavailability of nitric oxide (NO) contributes to endothelial dysfunction. Furthermore, NO may modulate insulin sensitivity. Activation of NO synthase (NOS) augments blood flow to insulin-sensitive tissues (i.e. skeletal muscle, liver, adipose tissue), and its activity is impaired in insulin resistance. Inhibition of NOS reduces the microvascular delivery of nutrients and blunts insulin-stimulated glucose uptake in skeletal muscle. Furthermore, induction of hypertension by administration of the NOS inhibitor NG-monomethyl-L-arginine is also associated with insulin resistance in rats. Increased levels of asymmetric dimethylarginine (ADMA) are associated with endothelial vasodilator dysfunction and increased risk of cardiovascular diseases. An intriguing relationship exists between insulin resistance and ADMA. Plasma levels of ADMA are positively correlated with insulin resistance in nondiabetic, normotensive people. New basic research insights that provide possible mechanisms underlying the development of insulin resistance in the setting of impaired NO bioavailability will be discussed.
Collapse
Affiliation(s)
- Karsten Sydow
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA,
| | - Carl E Mondon
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - John P Cooke
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
49
|
Velasco A, Solow E, Price A, Wang Z, Arbique D, Arbique G, Adams-Huet B, Schwedhelm E, Lindner JR, Vongpatanasin W. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans. Am J Physiol Heart Circ Physiol 2016; 311:H118-24. [PMID: 27199121 PMCID: PMC4967201 DOI: 10.1152/ajpheart.00237.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
Abstract
Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5-20 mg/day) or metoprolol succinate (100-300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level.
Collapse
Affiliation(s)
- Alejandro Velasco
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Solow
- Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Angela Price
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhongyun Wang
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Debbie Arbique
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary Arbique
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Edzard Schwedhelm
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Jonathan R Lindner
- Knight Cardiovascular Center, Oregon Health and Science University, Portland, Oregon
| | - Wanpen Vongpatanasin
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas; Rheumatology Division, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
50
|
Mahmoud AM, Brown MD, Phillips SA, Haus JM. Skeletal Muscle Vascular Function: A Counterbalance of Insulin Action. Microcirculation 2016; 22:327-47. [PMID: 25904196 DOI: 10.1111/micc.12205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Insulin is a vasoactive hormone that regulates vascular homeostasis by maintaining balance of endothelial-derived NO and ET-1. Although there is general agreement that insulin resistance and the associated hyperinsulinemia disturb this balance, the vascular consequences for hyperinsulinemia in isolation from insulin resistance are still unclear. Presently, there is no simple answer for this question, especially in a background of mixed reports examining the effects of experimental hyperinsulinemia on endothelial-mediated vasodilation. Understanding the mechanisms by which hyperinsulinemia induces vascular dysfunction is essential in advancing treatment and prevention of insulin resistance-related vascular complications. Thus, we review literature addressing the effects of hyperinsulinemia on vascular function. Furthermore, we give special attention to the vasoregulatory effects of hyperinsulinemia on skeletal muscle, the largest insulin-dependent organ in the body. This review also characterizes the differential vascular effects of hyperinsulinemia on large conduit vessels versus small resistance microvessels and the effects of metabolic variables in an effort to unravel potential sources of discrepancies in the literature. At the cellular level, we provide an overview of insulin signaling events governing vascular tone. Finally, we hypothesize a role for hyperinsulinemia and insulin resistance in the development of CVD.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael D Brown
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shane A Phillips
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|