1
|
Moniruzzaman M, Bezerra AB, Mohibullah M, Judd RL, Granneman JG, Easley CJ. Dynamic sampling from ex vivo adipose tissue using droplet-based microfluidics supports separate mechanisms for glycerol and fatty acid secretion. LAB ON A CHIP 2024; 24:5020-5031. [PMID: 39344798 DOI: 10.1039/d4lc00664j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pathologies in adipose (fat) tissue function are linked with human diseases such as diabetes, obesity, metabolic syndrome, and cancer. Dynamic, rapid release of metabolites has been observed in adipocyte cells and tissue, yet higher temporal resolution is needed to adequately study this process. In this work, a microfluidic device with precise and regular valve-automated droplet sampling, termed a microfluidic analog-to-digital converter (μADC), was used to sample secretions from ∼0.75 mm diameter adipose explants from mice, and on-chip salt water electrodes were used to merge sampled droplets with reagent droplets from two different fluorometric coupled enzyme assays. By integrating sampling and assays on-chip, either glycerol or non-esterified fatty acids (NEFA), or both, were quantified optically within merged 12 nanoliter droplets using a fluorescence microscope with as high as 20 second temporal resolution. Limits of detection were 6 μM for glycerol (70 fmol) and 0.9 μM for NEFA (10 fmol). Multiple ex vivo adipose tissue explants were analyzed with this system, all showing clear increases in lipolytic function after switching from feeding to fasting conditions. Enabled by high temporal resolution, lipolytic oscillations of both glycerol and NEFA were observed for the first time in the range of 0.2 to 1.6 min-1. Continuous wavelet transform (CWT) spectrograms and burst analyses (0.1 to 4.0 pmol bursts) revealed complex dynamics, with multiplexed assays (duplex for glycerol and NEFA) from the same explants showing mostly discordant bursts. These data support separate mechanisms of NEFA and glycerol release, although the connection to intracellular metabolic oscillations remains unknown. Overall, this device allowed automated and highly precise temporal sampling of tissue explants at high resolution and programmable downstream merging with multiple assay reagents, revealing unique biological information. Such device features should be applicable to various other tissue or spheroid types and to other assay formats.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Andresa B Bezerra
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Robert L Judd
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
2
|
Dagogo-Jack S, Asuzu P, Wan J, Grambergs R, Stentz F, Mandal N. Plasma Ceramides and Other Sphingolipids in Relation to Incident Prediabetes in a Longitudinal Biracial Cohort. J Clin Endocrinol Metab 2024; 109:2530-2540. [PMID: 38501230 PMCID: PMC11403313 DOI: 10.1210/clinem/dgae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT Sphingolipids are linked to the pathogenesis of type 2 diabetes. OBJECTIVE To test the hypothesis that plasma sphingolipid profiles predict incident prediabetes. DESIGN A case-control study nested in the Pathobiology of Prediabetes in a Biracial Cohort study, a 5-year follow-up study. SETTING Academic health center. PARTICIPANTS Normoglycemic adults enrolled in the Pathobiology of Prediabetes in a Biracial Cohort study. Assessments included oral glucose tolerance test, insulin sensitivity, and insulin secretion. Participants with incident prediabetes were matched in age, sex, and ethnicity with nonprogressors. INTERVENTIONS We assayed 58 sphingolipid species (ceramides, monohexosyl ceramides, sphingomyelins, and sphingosine) using liquid chromatography/tandem mass spectrometry in baseline plasma levels from participants and determined association with prediabetes risk. MAIN OUTCOME MEASURE The primary outcome was progression from normoglycemia to prediabetes, defined as impaired fasting glucose or impaired glucose tolerance. RESULTS The mean age of participants (N = 140; 50% Black, 50% female) was 48.1 ± 8.69 years, body mass index 30.1 ± 5.78 kg/m2, fasting plasma glucose 92.7 ± 5.84 mg/dL, and 2-hour plasma glucose 121 ± 23.3 mg/dL. Of the 58 sphingolipid species assayed, higher ratios of sphingomyelin C26:0/C26:1 (OR, 2.73 [95% CI, 1.172-4.408], P = .015) and ceramide C18:0/C18:1 (OR, 1.236 [95% CI, 1.042-1.466], P = .015) in baseline plasma specimens were significantly associated with progression to prediabetes during the 5-year follow-up period, after adjustments for age, race, sex, body mass index, fasting plasma glucose, 2-hour plasma glucose, insulin sensitivity, and insulin secretion. CONCLUSION We conclude that the saturated-to-monounsaturated ratios of long-chain ceramide C18:0/C18:1 and very-long-chain sphingomyelin C26:0/C26:1 are potential biomarkers of prediabetes risk among individuals with parental history of type 2 diabetes.
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard Grambergs
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
3
|
Sánchez-Terrón G, Martínez R, Delgado J, Molina J, Estévez M. Hepatoprotective mechanisms of pomegranate bioactives on a murine models affected by NAFLD as analysed by MS-based proteomics: The mitochondria in the eye of the storm. Food Res Int 2024; 192:114769. [PMID: 39147495 DOI: 10.1016/j.foodres.2024.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Deciphering the mechanisms underlying the direct association between fructose consumption and the onset and progression of non-alcoholic fatty liver disease (NAFLD), as well as the high prevalence of metabolic syndrome (MetS), is of great importance for adopting potential nutritional strategies. Thus, an evaluation of the impact of sustained high fructose consumption on the liver physiology of Wistar rats was made. Moreover, the effectiveness of a dietary pomegranate-derived supplement (P) at counteracting fructose-induced liver injury was also assessed. For unveiling the underlying mechanisms, an untargeted proteomic analysis of the livers from nineteen Wistar rats fed on a basal commercial feed and supplemented with either drinking water (C) (n = 6), 30 % (w/v) fructose in drinking water (F) (n = 7) or 30 % (w/v) fructose solution plus 0.2 % (w/v) P (F+P) (n = 6) was assessed. Fructose intake severely increased the abundance of several energy-production related-proteins, such as fructose-bisphosphate aldolase or fatty acid synthase, among others, as well as diminished the amount of another ones, such as carnitine O-palmitoyl transferase or different subunits of acyl-coenzyme A oxidase. These changes could facilitate mitochondrial disturbances and oxidative stress. Regarding the hepatic proteome of F, P extract restored mitochondrial homeostasis and strengthened endogenous antioxidant mechanisms diminishing the amount of proteins involved in process that could increase the oxidative status, as well as increasing both the quantity of several proteins involved in proteasome functionality, as expressing changes in the amount of certain RNA-splicing related-proteins, regarding F proteome.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain
| | - Remigio Martínez
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonosis and Emergent Diseases (ENZOEM Competitive Research Unit), Universidad de Córdoba (UCO, ROR-ID 05yc77b46), Córdoba, 14014, Spain
| | - Josué Delgado
- HISEALI Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Caceres 10003, Spain
| | - Javier Molina
- Gastroenterology and Hepatology, Hospital Universitario de Cáceres (HUC), Servicio Extremeño de Salud (SES), Junta de Extremadura, Caceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX, ROR-ID 0174shg90), Caceres 10003, Spain.
| |
Collapse
|
4
|
Guo Y, Yu H, Li Y, Zhang T, Xiong W, Wu X. Elucidating the genetic relationship between ulcerative colitis and diabetic kidney disease: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1435812. [PMID: 39211444 PMCID: PMC11358062 DOI: 10.3389/fendo.2024.1435812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Ulcerative colitis (UC) and diabetic kidney disease (DKD) are chronic disorders with multifaceted pathogenesis, posing significant challenges in clinical management. While substantial efforts have been made to investigate the individual causes of these diseases, the interplay between UC and DKD is not well understood. This study aims to elucidate the genetic association between UC and DKD through Mendelian randomization (MR) analysis, offering new insights into common biological pathways and potential clinical implications. Methods We conducted a bidirectional two-sample MR study utilizing data from large-scale genome-wide association studies (GWAS) for both UC and DKD. Instrumental variables (IVs) were meticulously selected according to genome-wide significance and stringent statistical criteria, ensuring robust causal inference. Various MR methodologies, including inverse variance weighting (IVW), were employed to assess the causal relationships between UC and DKD. Sensitivity analyses were also performed to validate the robustness of our findings. Results Our analysis revealed a significant causal relationship between genetic predisposition to UC and increased susceptibility to DKD. Specifically, individuals with a genetic susceptibility to UC exhibited a 17.3% higher risk of developing DKD. However, we found no evidence of a causal link between DKD and the risk of developing UC. Additionally, we identified shared genetic risk factors and molecular pathways linking UC and DKD, thereby highlighting potential therapeutic targets. Discussion This study underscores the intricate genetic interplay between UC and DKD, suggesting that individuals with UC may be at an elevated risk for developing DKD. Understanding these shared genetic pathways could facilitate the development of early detection strategies and targeted interventions for individuals at risk of DKD. Ultimately, these insights could lead to improved clinical outcomes for patients suffering from both conditions.
Collapse
Affiliation(s)
- Yaping Guo
- Xi’an Jiaotong University, Xi’an, China
- Yulin Hospital of Traditional Chinese Medicine, Yulin, China
| | - Hangxing Yu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Taijun Zhang
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Weijian Xiong
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xili Wu
- Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Zhao R, Wang W, Zhang W, Lu J, Liu Y, Guo J, Yang L, Zhang Z, He C, Gu X, Wang B. Effects of genetically proxied statins on diabetic nephropathy and retinopathy: a Mendelian randomization study. Sci Rep 2024; 14:16885. [PMID: 39043809 PMCID: PMC11266622 DOI: 10.1038/s41598-024-67800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
There is no reliable causal evidence for the effect of statins on diabetic nephropathy (DN) and diabetic retinopathy (DR), and the results of previous observational studies are contradictory. Genetic variants linked to low-density lipoprotein cholesterol (LDL-C) from a UK biobank genome-wide association study and located within a 100kb window around HMGCR were used to proxy statins, comparing with PCSK9 inhibitors (control). DN and DR genome-wide association study summary statistics were obtained from the FinnGen study. Secondary MR analyses and NHANES cross-sectional data were used for validation. Drug-target Mendelian randomization (MR) was applied to investigate the association between the genetically proxied inhibition of HMGCR and PCSK9 with DN and DR, p < 0.0125 was considered significant after Bonferroni Correction. To triangulate the findings, genetic variants of whole blood-derived targets gene expression (cis-eQTL) and plasma-derived protein (cis-pQTL) levels were used to perform secondary MR analyses and data from the National Health and Nutrition Examination Survey were used for cross-sectional analysis. Genetically proxied inhibition of HMGCR was associated with higher risks of DN and DR (DN: OR = 1.79, p = 0.01; DR: OR = 1.41, p = 0.004), while no such association was found for PCSK9. Secondary MR analyses confirmed these associations. Cross-sectional analysis revealed a positive link between statin use and DR incidence (OR = 1.26, p = 0.03) and a significant negative association with glomerular filtration rate (Beta = - 1.9, p = 0.03). This study provides genetic evidence that genetically proxied inhibition of HMGCR is associated with increased risks of DN/DR, and this effect may not be attributed to their LDL-C-lowering properties. For patients with diabetic dyslipidemia, PCSK9 inhibitors may be a preferable alternative.
Collapse
Affiliation(s)
- Ran Zhao
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - WeiLi Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Wen Zhang
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiaPeng Lu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Liu
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Guo
- Science and Technology Collaborating Center for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Yang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - ZeDan Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chang He
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - XinYi Gu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Wang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Mitchell CM, Stinson EJ, Chang DC, Krakoff J. A mixed meal tolerance test predicts onset of type 2 diabetes in Southwestern Indigenous adults. Nutr Diabetes 2024; 14:50. [PMID: 38987291 PMCID: PMC11237083 DOI: 10.1038/s41387-024-00269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND/OBJECTIVE To identify predictors of incident type 2 diabetes using a mixed meal tolerance test (MMTT). METHODS Adult Indigenous Americans without diabetes (n = 501) from a longitudinal cohort underwent at baseline a 4-h MMTT, measures of body composition, an oral glucose tolerance test, an intravenous glucose tolerance test for acute insulin response (AIR), and a hyperinsulinemic-euglycemic clamp for insulin action (M). Plasma glucose responses from the MMTT were quantified by the total and incremental area under the curve (AUC/iAUC). RESULTS At follow-up (median time 9.6 [inter-quartile range: 5.6-13.5] years), 169 participants were diagnosed with diabetes. Unadjusted Cox proportional hazards models, glucose AUC180-min (HR: 1.98, 95% CI: 1.67, 2.34, p < 0.0001), AUC240-min (HR: 1.93, 95% CI: 1.62, 2.31, p < 0.0001), and iAUC180-min (HR: 1.43, 95% CI: 1.20, 1.71, p < 0.0001) were associated with an increased risk of diabetes. After adjustment for covariates (age, sex, body fat percentage, M, AIR, Indigenous American heritage) in three subsequent models, AUC180-min (HR: 1.44, 95% CI: 1.10, 1.88, p = 0.007) and AUC240-min (HR: 1.41, 95% CI: 1.09, 1.84, p < 0.01) remained associated with increased risk of diabetes. CONCLUSIONS Glucose responses to a mixed meal predicted the development of type 2 diabetes. This indicates that a mixed nutritional challenge provides important information on disease risk. CLINICAL TRIAL REGISTRY ClinicalTrials.gov identifier : NCT00340132, NCT00339482.
Collapse
Affiliation(s)
- Cassie M Mitchell
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| | - Emma J Stinson
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Douglas C Chang
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| |
Collapse
|
8
|
Zhu L, Gu Y, Li J, Yu S, Wang J, Wu H, Meng G, Wang X, Zhang Q, Liu L, Sun S, Wang X, Zhou M, Jia Q, Song K, Liu Q, Niu K. Association of added sugar intake and its forms and sources with handgrip strength decline among middle-aged and older adults: A prospective cohort study. Clin Nutr 2024; 43:1609-1617. [PMID: 38781671 DOI: 10.1016/j.clnu.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE The consumption of added sugar has increased rapidly in recent years. Limited knowledge exists regarding the association between added sugar intake and muscle strength, although the latter is a predictor of physical disability in older adults. This study aimed to investigate the association between added sugar intake and longitudinal changes in handgrip strength among middle-aged and elderly Chinese adults. METHODS This prospective cohort study included 5298 adults aged 40 years and older (62.6% men) from the TCLSIH (Tianjin Chronic Low-grade Systemic Inflammation and Health) cohort study. Added sugar intake was obtained through a frequency questionnaire containing 100 items of food. Handgrip strength is measured annually using a handheld digital dynamometer. Multivariate linear regression models were used to examine the association between added sugars intake and the annual changes in handgrip strength and weight-adjusted handgrip strength. RESULTS In the fully adjusted model, the annual change in handgrip strength for one unit increase in total added sugar, solid added sugar, and liquid added sugar intake was -0.0353 kg, (95% confidence intervals (CI) -0.000148, -0.0000164; P = 0.01), -0.0348 kg (95% CI: -0.000227, -0.0000269; P = 0.01) and -0.0189 kg (95% CI -0.000187, 0.0000338; P = 0.17), respectively. Added sugar from bread and biscuits sources were remarkably associated with a decline in handgrip strength (β = -0.0498; 95%CI -0.00281, -0.000787) and (β = -0.0459; 95%CI 0.00158, 0.00733) (P < 0.01). CONCLUSIONS Our data suggest that the higher the intake of solid added sugars, but not liquid sugars, were associated with the declined handgrip strength in the Chinese middle-aged and elderly population. In addition, the consumption of added sugars from bread and biscuits sources was also associated with a decline in grip strength.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anatomy, Shandong Second Medical University, Weifang, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Jianguo Li
- Department of Anatomy, Shandong Second Medical University, Weifang, China
| | - Shuna Yu
- Department of Anatomy, Shandong Second Medical University, Weifang, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongmei Wu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ge Meng
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Anatomy, Shandong Second Medical University, Weifang, China; Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Kaijun Niu
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China; Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
9
|
Zhang J, Guo Y, Wei C, Yan Y, Shan H, Wu B, Wu F. A pharmacovigilance study of chronic kidney disease in diabetes mellitus patients with statin treatment by using the US Food and Drug Administration adverse event reporting system. Front Pharmacol 2024; 15:1363501. [PMID: 38974040 PMCID: PMC11224537 DOI: 10.3389/fphar.2024.1363501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Background Statins were regarded as a main medication for managing hypercholesterolemia. Administration of statin therapy could reduce the incidence of cardiovascular disease in individuals diagnosed with type 2 diabetes mellitus (DM), which was recognized by multipal clinical guidelines. But previous studies had conflicting results on whether the long-term use of statins could benefit the renal function in diabetic patients. Aim To evaluate the association between statin treatment and Chronic Kidney Disease in DM patients. Methods This is a retrospective disproportionality analysis and cohort study based on real-world data. All DM cases reported in US Food and Drug Administration adverse event reporting system (FAERS) between the first quarter of 2004 and the fourth quarter of 2022 were included. Disproportionality analyses were conducted by estimating the reporting odds ratio (ROR) and the information component (IC). We further compared the CKD odds ratio (OR) between the statins group and the other primary suspected drug group among the included diabetes mellitus cases. Results We finally included 593647 DM cases from FAERS, 5113 (5.31%) CKD cases in the statins group and 8810 (1.77%) CKD cases in the control group. Data analysis showed that the statins group showed a significant CKD signal (ROR: 3.11, 95% CI: 3.00-3.22; IC: 1.18, 95% CI: 1.07-1.29). In case group with two or more statins treatment history, the CKD signal was even stronger (ROR: 19.56, 95% CI: 18.10-21.13; IC: 3.70, 95% CI:3.44-3.93) compared with cases with one statin treatment history. Conclusion The impact of statin therapy on the progression of renal disease in individuals diagnosed with type 2 diabetes mellitus (DM) remains inconclusive. After data mining on the current FAERS dataset, we discovered significant signals between statin treatment and CKD in diabetic patients. Furthermore, the incidence rate of CKD was higher among DM patients who used statins compared to those who did not.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Guo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Wei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huifang Shan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Tamarit-Rodriguez J. Regulatory Role of Fatty Acid Metabolism on Glucose-Induced Changes in Insulin and Glucagon Secretion by Pancreatic Islet Cells. Int J Mol Sci 2024; 25:6052. [PMID: 38892240 PMCID: PMC11172437 DOI: 10.3390/ijms25116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
A detailed study of palmitate metabolism in pancreatic islets subject to different experimental conditions, like varying concentrations of glucose, as well as fed or starved conditions, has allowed us to explore the interaction between the two main plasma nutrients and its consequences on hormone secretion. Palmitate potentiates glucose-induced insulin secretion in a concentration-dependent manner, in a physiological range of both palmitate (0-2 mM) and glucose (6-20 mM) concentrations; at glucose concentrations lower than 6 mM, no metabolic interaction with palmitate was apparent. Starvation (48 h) increased islet palmitate oxidation two-fold, and the effect was resistant to its inhibition by glucose (6-20 mM). Consequently, labelled palmitate and glucose incorporation into complex lipids were strongly suppressed, as well as glucose-induced insulin secretion and its potentiation by palmitate. 2-bromostearate, a palmitate oxidation inhibitor, fully recovered the synthesis of complex lipids and insulin secretion. We concluded that palmitate potentiation of the insulin response to glucose is not attributable to its catabolic mitochondrial oxidation but to its anabolism to complex lipids: islet lipid biosynthesis is dependent on the uptake of plasma fatty acids and the supply of α-glycerol phosphate from glycolysis. Islet secretion of glucagon and somatostatin showed a similar dependence on palmitate anabolism as insulin. The possible mechanisms implicated in the metabolic coupling between glucose and palmitate were commented on. Moreover, possible mechanisms responsible for islet gluco- or lipotoxicity after a long-term stimulation of insulin secretion were also discussed. Our own data on the simultaneous stimulation of insulin, glucagon, and somatostatin by glucose, as well as their modification by 2-bromostearate in perifused rat islets, give support to the conclusion that increased FFA anabolism, rather than its mitochondrial oxidation, results in a potentiation of their stimulated release. Starvation, besides suppressing glucose stimulation of insulin secretion, also blocks the inhibitory effect of glucose on glucagon secretion: this suggests that glucagon inhibition might be an indirect or direct effect of insulin, but not of glucose. In summary, there seems to exist three mechanisms of glucagon secretion stimulation: 1. glucagon stimulation through the same secretion coupling mechanism as insulin, but in a different range of glucose concentrations (0 to 5 mM). 2. Direct or indirect inhibition by secreted insulin in response to glucose (5-20 mM). 3. Stimulation by increased FFA anabolism in glucose intolerance or diabetes in the context of hyperlipidemia, hyperglycemia, and hypo-insulinemia. These conclusions were discussed and compared with previous published data in the literature. Specially, we discussed the mechanism for inhibition of glucagon release by glucose, which was apparently contradictory with the secretion coupling mechanism of its stimulation.
Collapse
|
11
|
Huang KC, Chuang PY, Yang TY, Tsai YH, Li YY, Chang SF. Diabetic Rats Induced Using a High-Fat Diet and Low-Dose Streptozotocin Treatment Exhibit Gut Microbiota Dysbiosis and Osteoporotic Bone Pathologies. Nutrients 2024; 16:1220. [PMID: 38674910 PMCID: PMC11054352 DOI: 10.3390/nu16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Po-Yao Chuang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Tien-Yu Yang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yao-Hung Tsai
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yen-Yao Li
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| |
Collapse
|
12
|
Sheng R, Li Y, Wu Y, Liu C, Wang W, Han X, Li Y, Lei L, Jiang X, Zhang Y, Zhang Y, Li S, Hong B, Liu C, Xu Y, Si S. A pan-PPAR agonist E17241 ameliorates hyperglycemia and diabetic dyslipidemia in KKAy mice via up-regulating ABCA1 in islet, liver, and white adipose tissue. Biomed Pharmacother 2024; 172:116220. [PMID: 38308968 DOI: 10.1016/j.biopha.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved β-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.
Collapse
Affiliation(s)
- Ren Sheng
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chang Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS & PUMC, Beijing 100050, China
| | - Yinghong Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, CAMS & PUMC, Beijing 100050, China.
| |
Collapse
|
13
|
Wang W, Wang P, Zhu L, Liu B, Wei Q, Hou Y, Li X, Hu Y, Li W, Wang Y, Jiang C, Yang G, Wang J. An optimized fluorescent biosensor for monitoring long-chain fatty acyl-CoAs metabolism in vivo. Biosens Bioelectron 2024; 247:115935. [PMID: 38128319 DOI: 10.1016/j.bios.2023.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.
Collapse
Affiliation(s)
- Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Lixin Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Guangfu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China.
| |
Collapse
|
14
|
Lai C, Fu R, Huang C, Wang L, Ren H, Zhu Y, Zhang X. Healthy lifestyle decreases the risk of the first incidence of non-communicable chronic disease and its progression to multimorbidity and its mediating roles of metabolic components: a prospective cohort study in China. J Nutr Health Aging 2024; 28:100164. [PMID: 38306889 DOI: 10.1016/j.jnha.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVES To identify the influence of healthy lifestyles on the incidence of the first NCD (FNCD), multiple chronic conditions (MCCs), and the progression from FNCD to MCCs. DESIGN cohort study. SETTING Zhejiang, China PARTICIPANTS: 10566 subjects (55.5 ± 13.5 years, 43.1% male) free of NCDs at baseline from the Zhejiang Metabolic Syndrome prospective cohort. MEASUREMENTS Healthy lifestyle score (HLS) was developed by 6 common healthy lifestyle factors as smoking, alcohol drinking, physical activity, body mass index (BMI) and waist-to-hip ratio (WHR). Healthy lifestyle data and metabolic biomarkers collected via a face-to-face questionnaire-based interview, clinical health examination and routine biochemical determination. Biochemical variables were determined using biochemical auto-analyzer. Participants were stratified into four group based on the levels of HLS as ≤2, 3, 4 and ≥5. Multiple Cox proportional hazards model was applied to examine the relationship between HLS and the risk of FNCD, MCCs and the progression from FNCD to MCCs. The population-attributable fractions (PAF) were used to assess the attributable role of HLS. Mediating effect was examined by mediation package in R. RESULTS After a median of 9.92 years of follow-up, 1572 participants (14.9%) developed FNCD, and 149 (1.4%) developed MCCs. In the fully adjusted model, the higher HLS group (≥5) was associated with lower risk of FNCD (HR = 0.68 and 95% CI: 0.56-0.82), MCCs (HR = 0.31 and 95%CI: 0.14-0.69); and the progression from FNCD to MCCs (HR = 0.39 and 95%CI: 0.18-0.85). Metabolic components (TC, TG, HDL-C, LDC-C, FPG, and UA) played the mediating roles with the proportion ranging from 5.02% to 22.2% for FNCD and 5.94% to 20.1% for MCCs. PAFs (95%CI) for poor adherence to the overall healthy lifestyle (HLS ≤ 3) were 17.5% (11.2%, 23.7%) for FNCD, 42.9% (23.4%, 61.0%) for MCCs, and 37.0% (15.5%, 56.3%) for the progression from FNCD to MCCs. CONCLUSIONS High HLS decreases the risk of FNCD, MCCs, and the progression from FNCD to MCCs. These effects are partially mediated by metabolic components. Maintaining healthy lifestyles might reduce the disease burden of common chronic diseases.
Collapse
Affiliation(s)
- Chong Lai
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiyi Fu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Changzhen Huang
- Dongyang Traditional Chinese Medicine Hospital, Dong Yang, Zhejiang, People's Republic of China
| | - Lu Wang
- Basic Discipline of Chinese and Western Integrative, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Haiqing Ren
- Dongyang Traditional Chinese Medicine Hospital, Dong Yang, Zhejiang, People's Republic of China.
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
15
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
16
|
Bui AT, Chaudhari R, Bhati C, Wolver S, Patel S, Boyett S, Evans MC, Kamal H, Patel V, Forsgren M, Sanyal AJ, Kirkman D, Siddiqui MS. Reduced metabolic flexibility is a predictor of weight gain among liver transplant recipients. Liver Transpl 2024; 30:192-199. [PMID: 37146168 DOI: 10.1097/lvt.0000000000000169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023]
Abstract
Metabolic flexibility is the ability to match biofuel availability to utilization and is inversely associated with increased metabolic burden among liver transplant (LT) recipients. The present study evaluated the impact of metabolic flexibility on weight gain following LT. LT recipients were enrolled prospectively (n = 47) and followed for 6 months. Metabolic flexibility was measured using whole-room calorimetry and is expressed as a respiratory quotient (RQ). Peak RQ represents maximal carbohydrate metabolism and occurs in the post-prandial state, while trough RQ represents maximal fatty acid metabolism occurring in the fasted state. The clinical, metabolic, and laboratory characteristics of the study cohort of lost weight (n = 14) and gained weight (n = 33) were similar at baseline. Patients who lost weight were more likely to reach maximal RQ (maximal carbohydrate oxidation) early and rapidly transitioned to trough RQ (maximal fatty acid oxidation). In contrast, patients who gained weight had delayed time to peak RQ and trough RQ. In multivariate modeling, time to peak RQ (β-coefficient 0.509, p = 0.01), time from peak RQ to trough RQ (β-coefficient 0.634, p = 0.006), and interaction between time to peak RQ to trough RQ and fasting RQ (β-coefficient 0.447, p = 0.02) directly correlated with the severity of weight gain. No statistically significant relationship between peak RQ, trough RQ, and weight change was demonstrated. Inefficient transition between biofuels (carbohydrates and fatty acids) is associated with weight gain in LT recipients that is independent of clinical metabolic risk. These data offer novel insight into the physiology of obesity after LT with the potential to develop new diagnostics and therapeutics.
Collapse
Affiliation(s)
- Anh T Bui
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rahul Chaudhari
- Division of Gastroenterology and Hepatology, VCU, Richmond, Virginia, USA
| | - Chandra Bhati
- Division of Transplant Surgery, University of Maryland, Maryland, USA
| | - Susan Wolver
- Department of Internal Medicine, VCU, Richmond, Virginia, USA
| | - Samarth Patel
- Division of Gastroenterology and Hepatology, Lehigh Valley Hospital-Cedar Crest, Pennsylvania, USA
| | - Sherry Boyett
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Marie Claire Evans
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Hiba Kamal
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Vaishali Patel
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Mikael Forsgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden
| | - Arun J Sanyal
- Division of Gastroenterology and Hepatology, VCU, Richmond, Virginia, USA
| | - Danielle Kirkman
- Department of Kinesiology and Health Sciences, VCU, Richmond, Virginia, USA
| | - Mohammad Shadab Siddiqui
- Department of Statistical Sciences & Operations Research, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| |
Collapse
|
17
|
Engin AB. Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:131-166. [PMID: 39287851 DOI: 10.1007/978-3-031-63657-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The link between cellular exposure to fatty acid species and toxicity phenotypes remains poorly understood. However, structural characterization and functional profiling of human plasma free fatty acids (FFAs) analysis has revealed that FFAs are located either in the toxic cluster or in the cluster that is transcriptionally responsive to lipotoxic stress and creates genetic risk factors. Genome-wide short hairpin RNA screen has identified more than 350 genes modulating lipotoxicity. Hypertrophic adipocytes in obese adipose are both unable to expand further to store excess lipids in the diet and are resistant to the antilipolytic action of insulin. In addition to lipolysis, the inability of packaging the excess lipids into lipid droplets causes circulating fatty acids to reach toxic levels in non-adipose tissues. Deleterious effects of accumulated lipid in non-adipose tissues are known as lipotoxicity. Although triglycerides serve a storage function for long-chain non-esterified fatty acid and their products such as ceramide and diacylglycerols (DAGs), overloading of palmitic acid fraction of saturated fatty acids (SFAs) raises ceramide levels. The excess DAG and ceramide load create harmful effects on multiple organs and systems, inducing chronic inflammation in obesity. Thus, lipotoxic inflammation results in β cells death and pancreatic islets dysfunction. Endoplasmic reticulum stress stimuli induce lipolysis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk) 1/2 signaling in adipocytes. However, palmitic acid-induced endoplasmic reticulum stress-c-Jun N-terminal kinase (JNK)-autophagy axis in hypertrophic adipocytes is a pro-survival mechanism against endoplasmic reticulum stress and cell death induced by SFAs. Endoplasmic reticulum-localized acyl-coenzyme A (CoA): glycerol-3-phosphate acyltransferase (GPAT) enzymes are mediators of lipotoxicity, and inhibiting these enzymes has therapeutic potential for lipotoxicity. Lipotoxicity increases the number of autophagosomes, which engulf palmitic acid, and thus suppress the autophagic turnover. Fatty acid desaturation promotes palmitate detoxification and storages into triglycerides. As therapeutic targets of glucolipotoxicity, in addition to caloric restriction and exercise, there are four different pharmacological approaches, which consist of metformin, glucagon-like peptide 1 (GLP-1) receptor agonists, peroxisome proliferator-activated receptor-gamma (PPARγ) ligands thiazolidinediones, and chaperones are still used in clinical practice. Furthermore, induction of the brown fat-like phenotype with the mixture of eicosapentanoic acid and docosahexaenoic acid appears as a potential therapeutic application for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
18
|
Kim DM, Lee JH, Pan Q, Han HW, Shen Z, Eshghjoo S, Wu CS, Yang W, Noh JY, Threadgill DW, Guo S, Wright G, Alaniz R, Sun Y. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol Metab 2024; 79:101852. [PMID: 38092245 PMCID: PMC10772824 DOI: 10.1016/j.molmet.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE Obesity-associated chronic inflammation, aka meta-inflammation, is a key pathogenic driver for obesity-associated comorbidity. Growth hormone secretagogue receptor (GHSR) is known to mediate the effects of nutrient-sensing hormone ghrelin in food intake and fat deposition. We previously reported that global Ghsr ablation protects against diet-induced inflammation and insulin resistance, but the site(s) of action and mechanism are unknown. Macrophages are key drivers of meta-inflammation. To unravel the role of GHSR in macrophages, we generated myeloid-specific Ghsr knockout mice (LysM-Cre;Ghsrf/f). METHODS LysM-Cre;Ghsrf/f and control Ghsrf/f mice were subjected to 5 months of high-fat diet (HFD) feeding to induce obesity. In vivo, metabolic profiling of food intake, physical activity, and energy expenditure, as well as glucose and insulin tolerance tests (GTT and ITT) were performed. At termination, peritoneal macrophages (PMs), epididymal white adipose tissue (eWAT), and liver were analyzed by flow cytometry and histology. For ex vivo studies, bone marrow-derived macrophages (BMDMs) were generated from the mice and treated with palmitic acid (PA) or lipopolysaccharide (LPS). For in vitro studies, macrophage RAW264.7 cells with Ghsr overexpression or Insulin receptor substrate 2 (Irs2) knockdown were studied. RESULTS We found that Ghsr expression in PMs was increased under HFD feeding. In vivo, HFD-fed LysM-Cre;Ghsrf/f mice exhibited significantly attenuated systemic inflammation and insulin resistance without affecting food intake or body weight. Tissue analysis showed that HFD-fed LysM-Cre;Ghsrf/f mice have significantly decreased monocyte/macrophage infiltration, pro-inflammatory activation, and lipid accumulation, showing elevated lipid-associated macrophages (LAMs) in eWAT and liver. Ex vivo, Ghsr-deficient macrophages protected against PA- or LPS-induced pro-inflammatory polarization, showing reduced glycolysis, increased fatty acid oxidation, and decreased NF-κB nuclear translocation. At molecular level, GHSR metabolically programs macrophage polarization through PKA-CREB-IRS2-AKT2 signaling pathway. CONCLUSIONS These novel results demonstrate that macrophage GHSR plays a key role in the pathogenesis of meta-inflammation, and macrophage GHSR promotes macrophage infiltration and induces pro-inflammatory polarization. These exciting findings suggest that GHSR may serve as a novel immunotherapeutic target for the treatment of obesity and its associated comorbidity.
Collapse
Affiliation(s)
- Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Jong Han Lee
- Department of Marine Bioindustry, Hanseo University, Seosan 31962, South Korea; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Quan Pan
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Sahar Eshghjoo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Agilent technologies, Aanta Clara, CA 95051, USA
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Wanbao Yang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - David W Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Genome Sciences and Society, Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Gus Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Robert Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Tlaloc Therapeutics Inc., College Station, TX 77845, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Wang GL, Yuan HJ, Kong QQ, Zhang J, Han X, Gong S, Xu MT, He N, Luo MJ, Tan JH. High glucose exposure of preimplantation embryos causes glucose intolerance and insulin resistance in F1 and F2 male offspring. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166921. [PMID: 37879502 DOI: 10.1016/j.bbadis.2023.166921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Although studies suggest that maternal high glucose (HG) increases offspring susceptibility to type 2 diabetes mellitus (T2DM), the underlying mechanisms are largely unclear. We studied whether glucose levels in oviducts are elevated when pregestational diabetic females get pregnant and whether the oviductal HG (OVHG) would act directly on embryos to increase offspring's T2DM susceptibility. METHODS We established an in vivo model of OVHG by injecting female mice with streptozotocin (STZ) during the preimplantation period and an in vitro model of embryo culture with HG (ECHG) by culturing preimplantation embryos with HG, before examining glucose tolerance and insulin resistance (IR) in F1 and F2 offspring. FINDINGS Injection of female mice with STZ induced a lasting significant glucose elevation in blood and oviduct fluid during the preimplantation period. The glucose tolerance test showed that both the STZ-induced OVHG and the ECHG caused glucose intolerance in F1 male and F1-sired F2 male offspring but had no effect on female offspring. Insulin tolerance test and the analysis for IR-related gene expression and glycogen contents in liver and muscle revealed significant IR in these male offspring. INTERPRETATION This study provided evidence that HG can act directly on preimplantation embryos to increase offspring's T2DM susceptibility suggesting that the preimplantation period is a critical stage for transmission of mother's diabetes to offspring. FUND: This study was supported by grants from the China National Natural Science Foundation (Nos. 31772599, 32072738, 31702114, and 31902160), and the Natural Science Foundation of Shandong Province (Nos. ZR2022MC036, ZR2017BC025 and ZR2020QC102).
Collapse
Affiliation(s)
- Guo-Liang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Qiao-Qiao Kong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Jie Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Xiao Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Ming-Tao Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Nan He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, PR China.
| |
Collapse
|
20
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
21
|
Zhou X, Liu Z, Yang X, Feng J, Gins MS, Yan T, Han L, Zhang H. The Mechanism Underlying the Hypoglycemic Effect of Epimedin C on Mice with Type 2 Diabetes Mellitus Based on Proteomic Analysis. Nutrients 2023; 16:25. [PMID: 38201855 PMCID: PMC10780735 DOI: 10.3390/nu16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a worldwide public health problem. Epimedin C is considered one of the most important flavonoids in Epimedium, a famous edible herb in China and Southeast Asia that is traditionally used in herbal medicine to treat diabetes. In the present study, the therapeutic potential of epimedin C against T2DM was ascertained using a mouse model, and the mechanism underlying the hypoglycemic activity of epimedin C was explored using a label-free proteomic technique for the first time. Levels of fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance, as well as contents of malondialdehyde (MDA) and low-density lipoprotein cholesterol (LDL-C) in the 30 mg·kg-1 epimedin C group (EC30 group), were significantly lower than those in the model control group (MC group) (p < 0.05), while the contents of hepatic glycogen, insulin, and high-density lipoprotein cholesterol (HDL-C), as well as activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the EC30 group were notably higher than those in the MC group (p < 0.05). The structures of liver cells and tissues were greatly destroyed in the MC group, whereas the structures of cells and tissues were basically complete in the EC30 group, which were similar to those in the normal control group (NC group). A total of 92 differentially expressed proteins (DEPs) were enriched in the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In the EC30 vs. MC groups, the expression level of cytosolic phosphoenolpyruvate carboxykinase (Pck1) was down-regulated, while the expression levels of group XIIB secretory phospholipase A2-like protein (Pla2g12b), apolipoprotein B-100 (Apob), and cytochrome P450 4A14 (Cyp4a14) were up-regulated. According to the KEGG pathway assay, Pck1 participated in the gluconeogenesis and insulin signaling pathways, and Pla2g12b, Apob, and Cyp4a14 were the key proteins in the fat digestion and fatty acid degradation pathways. Pck1, Pla2g12b, Apob, and Cyp4a14 seemed to play important roles in the prevention and treatment of T2DM. In summary, epimedin C inhibited Pck1 expression to maintain FBG at a relatively stable level, promoted Pla2g12b, Apob, and Cyp4a14 expressions to alleviate liver lipotoxicity, and protected liver tissues and cells from oxidant stress possibly by its phenolic hydroxyl groups.
Collapse
Affiliation(s)
- Xuexue Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Ziqi Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Xiaohua Yang
- Research Station of Selenium-Enriched Tea of Shaanxi Province, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jing Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 119991, Russia;
| | - Murat Sabirovich Gins
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, Moscow 119991, Russia;
| | - Tingyu Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Lei Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| | - Huafeng Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Academician and Expert Workstations in Puer City of Yunnan Province, College of Food Engineering and Nutritional Science, Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, Shaanxi Normal University, Xi’an 710119, China (Z.L.); (T.Y.); (L.H.)
| |
Collapse
|
22
|
Klein RJ, Viana Rodriguez GM, Rotman Y, Brown RJ. Divergent pathways of liver fat accumulation, oxidation, and secretion in lipodystrophy versus obesity-associated NAFLD. Liver Int 2023; 43:2692-2700. [PMID: 37622286 DOI: 10.1111/liv.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND AIMS Fatty liver is common in obesity as well as in partial lipodystrophy (PL) syndromes, characterized by deficient adipose tissue. Insulin resistance is key to fatty liver pathogenesis in both entities. We aimed to compare the contributions of insulin resistance and adipose tissue to hepatic steatosis in PL and non-syndromic, obesity-associated non-alcoholic fatty liver disease (NS-NAFLD). METHODS In a cross-sectional comparison of people with NS-NAFLD (N = 73) and PL (N = 27), liver fat was measured by FibroScan® controlled attenuation parameter (CAP) and insulin resistance by HOMA-IR, Adipo-IR, and NMR-based LP-IR. RESULTS Insulin resistance was greater in PL versus NS-NAFLD by HOMA-IR (p = 0.005), Adipo-IR (p = 0.01) and LP-IR (p = 0.05) while liver fat was comparable (304 vs. 324 dB/m, p = 0.12). Liver fat correlated with HOMA-IR in both groups, but CAP values were lower by 32 dB/m in PL compared with NS-NAFLD for any given HOMA-IR. In contrast, Adipo-IR and LP-IR correlated with CAP only in the NS-NAFLD group, suggesting different pathways for fat accumulation. Plasma free fatty acids, reflecting substrate input from the adipose tissue, were comparable between groups. However, the levels of β-hydroxybutyrate, a marker of β-oxidation, and large triglyceride-rich lipoprotein particles, a marker of VLDL secretion, were both higher in PL (p < 0.001 for both). CONCLUSION Liver fat content was comparable in subjects with PL-associated NAFLD and NS-NAFLD, despite worse insulin resistance in partial lipodystrophy. Our data demonstrate higher triglyceride oxidation and export in PL, suggesting a compensatory shift of fat from liver storage into the circulation that does not occur in NS-NAFLD.
Collapse
Affiliation(s)
- Rachael J Klein
- Section on Translational Diabetes and Metabolic Syndromes, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gracia M Viana Rodriguez
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Brown
- Section on Translational Diabetes and Metabolic Syndromes, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Sidhu SK, Aleman JO, Heffron SP. Obesity Duration and Cardiometabolic Disease. Arterioscler Thromb Vasc Biol 2023; 43:1764-1774. [PMID: 37650325 PMCID: PMC10544713 DOI: 10.1161/atvbaha.123.319023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Cardiovascular disease risk is known to be influenced by both the severity of a risk factor and the duration of exposure (eg, LDL [low-density lipoprotein] cholesterol, tobacco smoke). However, this concept has been largely neglected within the obesity literature. While obesity severity has been closely linked with cardiometabolic diseases, the risk of developing these conditions among those with obesity may be augmented by greater obesity duration over the life span. Few longitudinal or contemporary studies have investigated the influence of both factors in combination-cumulative obesity exposure-instead generally focusing on obesity severity, often at a single time point, given ease of use and lack of established methods to encapsulate duration. Our review focuses on what is known about the influence of the duration of exposure to excess adiposity within the obesity-associated cardiometabolic disease risk equation by means of summarizing the hypothesized mechanisms for and evidence surrounding the relationships of obesity duration with diverse cardiovascular and metabolic disease. Through the synthesis of the currently available data, we aim to highlight the importance of a better understanding of the influence of obesity duration in cardiovascular and metabolic disease pathogenesis. We underscore the clinical importance of aggressive early attention to obesity identification and intervention to prevent the development of chronic diseases that arise from exposure to excess body weight.
Collapse
Affiliation(s)
- Sharnendra K. Sidhu
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jose O. Aleman
- Laboratory of Translational Obesity Research, Division of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
24
|
Jing J, Li J, Yan N, Li N, Liu X, Li X, Zhang J, Wang Q, Yang C, Qiu J, Liu X, Wang F, Zhao Y, Zhang Y. Increased TG Levels and HOMA-IR Score Are Associated With a High Risk of Prediabetes: A Prospective Study. Asia Pac J Public Health 2023; 35:413-419. [PMID: 37551032 DOI: 10.1177/10105395231191688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This study aimed to determine the association of blood lipid and insulin levels with the development of prediabetes. In this prospective cohort study, we collected and analyzed data related to demographic characteristics, lipid profiles, and insulin parameters at baseline (2008-2012) and at follow-up (2019-2020). A total of 1205 participants were included. The study found that maintained or elevated Homeostatic Model Assessment for Insulin Resistance (HOMO-IR) score and elevated triglyceride (TG) levels from baseline to follow-up were associated with an increased risk of prediabetes. However, the interaction between blood lipids and insulin had no significant effect on the risk of prediabetes. Our findings indicate that elevated TG or HOMA-IR levels are associated with an increased risk of prediabetes. These findings emphasize the need to formulate initiatives that can help reduce dyslipidemia to prevent the onset of prediabetes and diabetes.
Collapse
Affiliation(s)
- Jinyun Jing
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Juan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Ni Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Nan Li
- Ningxia Center for Disease Control and Prevention, Yinchuan, China
| | - Xiaowei Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
| | - Jiaxing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Qingan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Chan Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Department of Community Nursing, School of Nursing, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangwei Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Xiuying Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
| | - Faxuan Wang
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
- Department of Occupational and Environmental Hygiene, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Zhao
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia China
| |
Collapse
|
25
|
St. Clair JR, Westacott MJ, Miranda J, Farnsworth NL, Kravets V, Schleicher WE, Dwulet JM, Levitt CH, Heintz A, Ludin NWF, Benninger RKP. Restoring connexin-36 function in diabetogenic environments precludes mouse and human islet dysfunction. J Physiol 2023; 601:4053-4072. [PMID: 37578890 PMCID: PMC10508056 DOI: 10.1113/jp282114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
The secretion of insulin from β-cells in the islet of Langerhans is governed by a series of metabolic and electrical events, which can fail during the progression of type 2 diabetes (T2D). β-cells are electrically coupled via connexin-36 (Cx36) gap junction channels, which coordinates the pulsatile dynamics of [Ca2+ ] and insulin release across the islet. Factors such as pro-inflammatory cytokines and free fatty acids disrupt gap junction coupling under in vitro conditions. Here we test whether gap junction coupling and coordinated [Ca2+ ] dynamics are disrupted in T2D, and whether recovery of gap junction coupling can recover islet function. We examine islets from donors with T2D, from db/db mice, and islets treated with pro-inflammatory cytokines (TNF-α, IL-1β, IFN-ɣ) or free fatty acids (palmitate). We modulate gap junction coupling using Cx36 over-expression or pharmacological activation via modafinil. We also develop a peptide mimetic (S293) of the c-terminal regulatory site of Cx36 designed to compete against its phosphorylation. Cx36 gap junction permeability and [Ca2+ ] dynamics were disrupted in islets from both human donors with T2D and db/db mice, and in islets treated with pro-inflammatory cytokines or palmitate. Cx36 over-expression, modafinil treatment and S293 peptide all enhanced Cx36 gap junction coupling and protected against declines in coordinated [Ca2+ ] dynamics. Cx36 over-expression and S293 peptide also reduced apoptosis induced by pro-inflammatory cytokines. Critically, S293 peptide rescued gap junction coupling and [Ca2+ ] dynamics in islets from both db/db mice and a sub-set of T2D donors. Thus, recovering or enhancing Cx36 gap junction coupling can improve islet function in diabetes. KEY POINTS: Connexin-36 (Cx36) gap junction permeability and associated coordination of [Ca2+ ] dynamics is diminished in human type 2 diabetes (T2D) and mouse models of T2D. Enhancing Cx36 gap junction permeability protects against disruptions to the coordination of [Ca2+ ] dynamics. A novel peptide mimetic of the Cx36 c-terminal regulatory region protects against declines in Cx36 gap junction permeability. Pharmacological elevation in Cx36 or Cx36 peptide mimetic recovers [Ca2+ ] dynamics and glucose-stimulated insulin secretion in human T2D and mouse models of T2D.
Collapse
Affiliation(s)
- Joshua R St. Clair
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Matthew J Westacott
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Jose Miranda
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Nikki L Farnsworth
- Barbara Davis Center for Diabetes, University of Colorado
Denver | Anschutz Medical Campus, Aurora, CO
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Claire H Levitt
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Audrey Heintz
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Nurin WF Ludin
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Denver
| Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Diabetes, University of Colorado
Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
26
|
Zhang Y, Fang X, Shuang F, Chen G. Dexamethasone potentiates the insulin-induced Srebp-1c expression in primary rat hepatocytes. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Taylor R, Barnes A, Hollingsworth K, Irvine K, Solovyova A, Clark L, Kelly T, Martin-Ruiz C, Romeres D, Koulman A, Meek C, Jenkins B, Cobelli C, Holman R. Aetiology of Type 2 diabetes in people with a 'normal' body mass index: testing the personal fat threshold hypothesis. Clin Sci (Lond) 2023; 137:1333-1346. [PMID: 37593846 PMCID: PMC10472166 DOI: 10.1042/cs20230586] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Weight loss in overweight or obese individuals with Type 2 diabetes (T2D) can normalize hepatic fat metabolism, decrease fatty acid oversupply to β cells and restore normoglycaemia. One in six people has BMI <27 kg/m2 at diagnosis, and their T2D is assumed to have different aetiology. The Personal Fat Threshold hypothesis postulated differing individual thresholds for lipid overspill and adverse effects on β-cell function. To test this hypothesis, people with Type 2 diabetes and body mass index <27kg/m2 (n = 20) underwent repeated 5% weight loss cycles. Metabolic assessments were carried out at stable weight after each cycle and after 12 months. To determine how closely metabolic features returned to normal, 20 matched normoglycemic controls were studied once. Between baseline and 12 months: BMI fell (mean ± SD), 24.8 ± 0.4 to 22.5 ± 0.4 kg/m2 (P<0.0001) (controls: 21.5 ± 0.5); total body fat, 32.1 ± 1.5 to 27.6 ± 1.8% (P<0.0001) (24.6 ± 1.5). Liver fat content and fat export fell to normal as did fasting plasma insulin. Post-meal insulin secretion increased but remained subnormal. Sustained diabetes remission (HbA1c < 48 mmol/mol off all glucose-lowering agents) was achieved by 70% (14/20) by initial weight loss of 6.5 (5.5-10.2)%. Correction of concealed excess intra-hepatic fat reduced hepatic fat export, with recovery of β-cell function, glycaemic improvement in all and return to a non-diabetic metabolic state in the majority of this group with BMI <27 kg/m2 as previously demonstrated for overweight or obese groups. The data confirm the Personal Fat Threshold hypothesis: aetiology of Type 2 diabetes does not depend on BMI. This pathophysiological insight has major implications for management.
Collapse
Affiliation(s)
- Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Alison C. Barnes
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Kieren G. Hollingsworth
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Keaton M. Irvine
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Lucy Clark
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Tara Kelly
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Carmen Martin-Ruiz
- BioScreening Core Facility, Campus for Ageing and Vitality, Faculty of Medical Sciences, Newcastle University, U.K
| | - Davide Romeres
- Department of Endocrinology, University of Virginia, Charlottesville, VA, U.S.A
| | - Albert Koulman
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Cambridge, U.K
| | - Claire M. Meek
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Cambridge, U.K
- Wolfson Diabetes and Endocrine Centre, Cambridge Universities NHS Foundation Trust, Cambridge, U.K
| | - Benjamin Jenkins
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Box 289, Cambridge Biomedical Campus, Cambridge, U.K
| | - Claudio Cobelli
- Department of Woman and Child's Health, University of Padova, Italy
| | - Rury R. Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| |
Collapse
|
28
|
Xiao Y, Pietzner A, Rohwer N, Jung A, Rothe M, Weylandt KH, Elbelt U. Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia. Front Endocrinol (Lausanne) 2023; 14:1195247. [PMID: 37664847 PMCID: PMC10472135 DOI: 10.3389/fendo.2023.1195247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Dyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients. Methods 40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG < 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa). Results Mean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed. Conclusions In adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity.
Collapse
Affiliation(s)
- Yanan Xiao
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Adelheid Jung
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
| | | | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
29
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
30
|
Tian Y, Shi D, Liao H, Lu B, Pang Z. The role of Huidouba in regulating skeletal muscle metabolic disorders in prediabetic mice through AMPK/PGC-1α/PPARα pathway. Diabetol Metab Syndr 2023; 15:145. [PMID: 37391779 PMCID: PMC10314379 DOI: 10.1186/s13098-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/23/2023] [Indexed: 07/02/2023] Open
Abstract
Prediabetes is a transitional state between normal blood glucose levels and diabetes, but it is also a reversible process. At the same time, as one of the most important tissues in the human body, the metabolic disorder of skeletal muscle is closely related to prediabetes. Huidouba (HDB) is a clinically proven traditional Chinese medicine with significant effects in regulating disorders of glucose and lipid metabolism. Our study aimed to investigate the efficacy and mechanism of HDB in prediabetic model mice from the perspective of skeletal muscle. C57BL/6J mice (6 weeks old) were fed a high-fat diet (HFD) for 12 weeks to replicate the prediabetic model. Three concentrations of HDB were treated with metformin as a positive control. After administration, fasting blood glucose was measured as an indicator of glucose metabolism, as well as lipid metabolism indicators such as total triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C), free fatty acid (FFA), and lactate dehydrogenase (LDH). Muscle fat accumulation and glycogen accumulation were observed. The protein expression levels of p-AMPK, AMPK, PGC-1α, PPAR-α, and GLUT-4 were detected. After HDB treatment, fasting blood glucose was significantly improved, and TG, LDL-C, FFA, and LDH in serum and lipid accumulation in muscle tissue were significantly reduced. In addition, HDB significantly upregulated the expression levels of p-AMPK/AMPK, PGC-1α, PPAR-α, and GLUT-4 in muscle tissue. In conclusion, HDB can alleviate the symptoms of prediabetic model mice by promoting the AMPK/PGC-1α/PPARα pathway and upregulating the expression of GLUT-4 protein.
Collapse
Affiliation(s)
- Yu Tian
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Dongxu Shi
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Haiying Liao
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, PR China
- Key Laboratory of Ethnomedicine, Minzu University of China), Ministry of Education, Beijing, PR China
| |
Collapse
|
31
|
Cai Y, Liu S, Zeng F, Rao Z, Yan C, Xing Q, Chen Y. Exploring the protective effect of Sangggua Drink against type 2 diabetes mellitus in db/db mice using a network pharmacological approach and experimental validation. Heliyon 2023; 9:e18026. [PMID: 37483759 PMCID: PMC10362244 DOI: 10.1016/j.heliyon.2023.e18026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Sanggua Drink (SGD) is an experienced formula for clinical treatment of type 2 diabetes mellitus (T2DM). Network pharmacology and experiments were combined to explore the potential mechanism of action of SGD on T2DM. The material basis and action mechanism of SGD were investigated to reveal the active components of SGD, potential target prediction was conducted from TargetNet, PharmMapper; Cytoscape was used to construct PPI network and component-target-pathway (C-T-P) network diagram to interpret biological processes and enrich action pathways. 54 compounds and 41 key target proteins were screened, and a total of 98 signaling pathways were obtained. In vivo experiments, the levels of p-AMPK (P < 0.01), p-ACC and p-AKT were significantly increased in the mice with SGD intervention compared to the db/db mice, while level of FOXO1 were decreased. The results suggested that SGD might improve insulin resistance and glucose metabolism in T2DM mice by activating the AMPK/Akt signaling pathway.
Collapse
Affiliation(s)
- Yu Cai
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Simin Liu
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fei Zeng
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhiwei Rao
- Central Hospital of Xianning, The First Affiliate Hospital of Hubei University of Science, China
| | - Chunchao Yan
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qichang Xing
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yunzhong Chen
- Hubei Provincial Research Center for TCM Health Food Engineering, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
32
|
Casas-Deza D, Espina S, Martínez-Sapiña A, Del Moral-Bergos R, Garcia-Sobreviela MP, Lopez-Yus M, Calmarza P, Bernal-Monterde V, Arbones-Mainar JM. Triglyceride-rich lipoproteins and insulin resistance in patients with chronic hepatitis C receiving direct-acting antivirals. Atherosclerosis 2023; 375:59-66. [PMID: 37245427 DOI: 10.1016/j.atherosclerosis.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) interferes with carbohydrate and lipid metabolism causing cardiovascular disease and insulin resistance (IR). Direct-acting antivirals (DAAs) are highly effective for the eradication of HCV, with positive effects on metabolic health although paradoxically associated with increased total and LDL-cholesterol. The aims of this study were 1) to characterize dyslipidemia (lipoprotein content, number, and size) in naive HCV-infected individuals and 2) to evaluate the longitudinal association of metabolic changes and lipoparticle characteristics after DAA therapy. METHODS We conducted a prospective study with one-year follow-up. 83 naive outpatients treated with DAAs were included. Those co-infected with HBV or HIV were excluded. IR was analyzed using the HOMA index. Lipoproteins were studied by fast-protein liquid chromatography (FPLC) and Nuclear Magnetic Resonance Spectroscopy (NMR). RESULTS FPLC analysis showed that lipoprotein-borne HCV was only present in the VLDL region most enriched in APOE. There was a lack of association between HOMA and total cholesterol or cholesterol carried by LDL or HDL at baseline. Alternatively, a positive association was found between HOMA and total circulating triglycerides (TG), as well as with TG transported in VLDL, LDL, and HDL. HCV eradication with DAAs resulted in a strong and significant decrease in HOMA (-22%) and HDL-TG (-18%) after one-year follow-up. CONCLUSIONS HCV-dependent lipid abnormalities are associated with IR and DAA therapy can reverse this association. These findings may have potential clinical implications as the HDL-TG trajectory may inform the evolution of glucose tolerance and IR after HCV eradication.
Collapse
Affiliation(s)
- Diego Casas-Deza
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Silvia Espina
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Ana Martínez-Sapiña
- Clinical Microbiology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Pilar Calmarza
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Clinical Biochemistry Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto Salud Carlos III, 28029, Madrid, Spain
| | - Vanesa Bernal-Monterde
- Gastroenterology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain.
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, Miguel Servet University Hospital, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) Aragon, 50009, Zaragoza, Spain; Instituto Aragones de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Tao J, Guo P, Lai H, Peng H, Guo Z, Yuan Y, Yu X, Shen X, Liu J, Xier Z, Li G, Yang Y. TXLNG improves insulin resistance in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity. Mol Cell Endocrinol 2023; 568-569:111928. [PMID: 37028586 DOI: 10.1016/j.mce.2023.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Lipotoxicity contributes to insulin resistance and dysfunction of pancreatic β-cells. Insulin promotes 3T3-L1 preadipocyte differentiation and facilitates glucose entry into muscle, adipose, and other tissues. In this study, differential gene expression was analyzed using four datasets, and taxilin gamma (TXLNG) was the only shared downregulated gene in all four datasets. TXLNG expression was significantly reduced in obese subjects according to online datasets and in high-fat diet (HFD)-induced insulin-resistant (IR) mice according to experimental investigations. TXLNG overexpression significantly improved IR induced by HFD in mouse models by reducing body weight and epididymal adipose weight, decreasing mRNA expression of pro-inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), and reducing adipocyte size. High-glucose/high-insulin-stimulated adipocytes exhibited decreased TXLNG and increased signal transducer and activator of transcription 3 (STAT3) and activating transcription factor 4 (ATF4). IR significantly decreased glucose uptake, cell surface glucose transporter type 4 (GLUT4) levels, and Akt phosphorylation, while increasing the mRNA expression levels of IL-6 and TNF-α in adipocytes. However, these changes were significantly reversed by TXLNG overexpression, while they were exacerbated by TXLNG knockdown. TXLNG overexpression had no effect on ATF4 protein levels, while ATF4 overexpression increased ATF4 protein levels. Furthermore, ATF4 overexpression notably abolished the improvements in IR adipocyte dysfunction caused by TXLNG overexpression. In conclusion, TXLNG improves IR in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity.
Collapse
Affiliation(s)
- Jing Tao
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Peipei Guo
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Hongmei Lai
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Hui Peng
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Zitong Guo
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Yujuan Yuan
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Xiaolin Yu
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Xin Shen
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Jun Liu
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Zulipiyemu Xier
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Guoqing Li
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Yining Yang
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China.
| |
Collapse
|
34
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
35
|
Zheng Q, Zhu M, Zeng X, Liu W, Fu F, Li X, Liao G, Lu Y, Chen Y. Comparison of Animal Models for the Study of Nonalcoholic Fatty Liver Disease. J Transl Med 2023; 103:100129. [PMID: 36907553 DOI: 10.1016/j.labinv.2023.100129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases, and there is still no effective treatment for its advanced stage, nonalcoholic steatohepatitis (NASH). An ideal animal model of NAFLD/NASH is urgently needed for preclinical studies. However, the models reported previously are quite heterogeneous due to differences in animal strains, feed formulations, evaluation indicators, etc. Here, we report five NAFLD mouse models we developed in previous studies and comprehensively compared their characteristics. The high-fat diet (HFD) model is time-consuming and is characterized by early insulin resistance and slight liver steatosis at 12 weeks. Still, inflammation and fibrosis are rare, even at 22 weeks. The high fat, high fructose, and high cholesterol diet (FFC) exacerbates glucose and lipid metabolism disorders, showing distinct hypercholesterolemia, steatosis, and mild inflammation at 12 w. An FFC diet combined with streptozotocin (STZ) is a novel model that speeds up the process of lobular inflammation and fibrosis. The STAM model also used a combination of FFC and STZ but employs newborn mice and shows the fastest formation of fibrosis nodules. The HFD model is appropriate for the study of early NAFLD. FFC combined with STZ accelerates the pathological process of NASH and may be the most promising model for NASH research and drug development.
Collapse
Affiliation(s)
- Qing Zheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wen Liu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guangneng Liao
- Animal experimental center of West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P. R. China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
36
|
Luan G, Li L, Yue H, Li Y, Lü H, Wang Y. Phenols from Potentilla anserina L. Improve Insulin Sensitivity and Inhibit Differentiation in 3T3-L1 Adipocytes in Vitro. Chem Biodivers 2023; 20:e202200784. [PMID: 36717756 DOI: 10.1002/cbdv.202200784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Potentilla anserina L., a well-known perennial herb, is widely used in traditional Tibetan medicine and used as a delicious food in humans. The present investigation reports on the activity of P. anserina phenols (PAP) in regulating glycolipid metabolism in 3T3-L1 adipocytes. Insulin sensitivity tests showed that PAP improved insulin-stimulated glucose uptake by promoting the phosphorylation of serine/threonine kinase Akt. Moreover, an assay involving the differentiation of 3T3-L1 preadipocytes demonstrated that PAP also decreased the accumulation of lipid droplets by suppressing the expression of adipokines during the differentiation process. In addition, the underlying mechanism from the aspects of energy metabolism and oxidative stress is also discussed. The improvement in energy metabolism was supported by an increase in mitochondrial membrane potential (MMP) and intracellular ATP. Amelioration of oxidative stress was supported by decreased levels of intracellular reactive oxygen species (ROS). In summary, our findings suggest that PAP can ameliorate the disorder of glycolipid metabolism in insulin resistant 3T3-L1 adipocytes by improving energy metabolism and oxidative stress and might be an attractive candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Guangxiang Luan
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Linlin Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - Hongxia Yue
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Yongfang Li
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Huiling Lü
- Department of Pharmacy, Medical Institute of Qinghai University, Xining, 810016, Qinghai, China
| | - Yuwei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
37
|
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118:3434-3450. [PMID: 35880317 PMCID: PMC10202444 DOI: 10.1093/cvr/cvac120] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity and heart failure with preserved ejection fraction (HFpEF) represent two intermingling epidemics driving perhaps the greatest unmet health problem in cardiovascular medicine in the 21st century. Many patients with HFpEF are either overweight or obese, and recent data have shown that increased body fat and its attendant metabolic sequelae have widespread, protean effects systemically and on the cardiovascular system leading to symptomatic HFpEF. The paucity of effective therapies in HFpEF underscores the importance of understanding the distinct pathophysiological mechanisms of obese HFpEF to develop novel therapies. In this review, we summarize the current understanding of the cardiovascular and non-cardiovascular features of the obese phenotype of HFpEF, how increased adiposity might pathophysiologically contribute to the phenotype, and how these processes might be targeted therapeutically.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice. Nat Commun 2023; 14:390. [PMID: 36693830 PMCID: PMC9873739 DOI: 10.1038/s41467-023-35944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Statins play an important role in the treatment of diabetic nephropathy. Increasing attention has been given to the relationship between statins and insulin resistance, but many randomized controlled trials confirm that the therapeutic effects of statins on diabetic nephropathy are more beneficial than harmful. However, further confirmation of whether the beneficial effects of chronic statin administration on diabetic nephropathy outweigh the detrimental effects is urgently needed. Here, we find that long-term statin administration may increase insulin resistance, interfere with lipid metabolism, leads to inflammation and fibrosis, and ultimately fuel diabetic nephropathy progression in diabetic mice. Mechanistically, activation of insulin-regulated phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway leads to increased fatty acid synthesis. Furthermore, statins administration increases lipid uptake and inhibits fatty acid oxidation, leading to lipid deposition. Here we show that long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice.
Collapse
|
39
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
40
|
Spada C, Vu C, Raymond I, Tong W, Chuang CL, Walker C, Loomes K, Woodward DF, Poloso NJ. Bimatoprost promotes satiety and attenuates body weight gain in rats fed standard or obesity-promoting diets. Prostaglandins Leukot Essent Fatty Acids 2022; 187:102511. [PMID: 36399889 DOI: 10.1016/j.plefa.2022.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Bimatoprost is a synthetic prostamide F2α analog that down-regulates adipogenesis in vitro. This effect has been attributed to participation in a negative feedback loop that regulates anandamide-induced adipogenesis. A follow-on investigation has now been conducted into the broader metabolic effects of bimatoprost using rats under both normal state and obesity-inducing conditions. Chronic bimatoprost administration attenuated weight gain in a dose dependent-manner in rats fed either standard [max effect -7%] or obesity-promoting diets [max effect -23%] over a 9-10 week period. Consistent with these findings, bimatoprost promoted satiety as measured by decreased food intake [max effect, -7%], gastric emptying [max effect, -33-50%] and decreased circulating concentrations of the gut hormones, ghrelin and GLP-1 [max effect, -33-50%]. Additionally, subcutaneous, and visceral fat mass were distinctly affected by treatment [-30% diet independent]. Taken together, these results suggest that bimatoprost regulates energy homeostasis through promoting satiety and a decrease in food intake. These newly reported activities of bimatoprost reveal an additional method of metabolic disease intervention for potential therapeutic exploitation.
Collapse
Affiliation(s)
| | - Chau Vu
- Allergan Inc, Irvine, CA, United States of America
| | - Iona Raymond
- Allergan Inc, Irvine, CA, United States of America
| | - Warren Tong
- Allergan Inc, Irvine, CA, United States of America
| | | | | | | | | | | |
Collapse
|
41
|
Zhang L, Cui L, Li C, Zhao X, Lai X, Li J, Lv T. Serum free fatty acid elevation is related to acute kidney injury in primary nephrotic syndrome. Ren Fail 2022; 44:1236-1242. [PMID: 35912916 PMCID: PMC9347463 DOI: 10.1080/0886022x.2022.2105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The aim of this research was to examine the clinical characteristics of acute kidney injury (AKI) in primary nephrotic syndrome (NS) and discuss the relationship between serum lipids and AKI. A total of 1028 patients diagnosed with primary NS with renal biopsy results were enrolled in this study. The patients were divided into AKI (n = 81) and non-AKI (n = 947) groups, and their characteristics were compared using a propensity score analysis for the best matching. Serum free fatty acid (FFA) was an independent predictor for AKI in the postmatch samples (p = 0.011). No significant difference in FFA levels was observed among AKI stages or different pathological types in the AKI and non-AKI groups. The AUC (area under the ROC curve) was 0.63 for FFA levels to distinguish AKI. In primary NS, elevated FFA levels tend to be related to a high risk of AKI. FFAs have diagnostic value and may serve as biomarkers for AKI in NS.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Cui
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunmei Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoying Lai
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Teng Lv
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Lee YH, Kim HJ, You M, Kim HA. Red Pepper Seeds Inhibit Hepatic Lipid Accumulation by Inducing Autophagy via AMPK Activation. Nutrients 2022; 14:nu14204247. [PMID: 36296933 PMCID: PMC9608681 DOI: 10.3390/nu14204247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although the red pepper and its seeds have been studied for metabolic diseases, the effects and potential mechanisms of red pepper seed extract (RPS) on hepatic lipid accumulation are not yet completely understood. This study aimed to evaluate the inhibitory effect of RPS on hepatic lipid accumulation via autophagy. C57BL/6 mice were fed a high-fat diet (HFD) or a HFD supplemented with RPS. RPS treatment inhibited hepatic lipid accumulation by suppressing lipogenesis, inducing hepatic autophagic flux, and activating AMPK in HFD-fed mice. To investigate the effect of RPS on an oleic acid (OA)-induced hepatic steatosis cell model, HepG2 cells were incubated in a high-glucose medium and OA, followed by RPS treatment. RPS treatment decreased OA-induced lipid accumulation and reduced the expression of lipogenesis-associated proteins. Autophagic flux dramatically increased in the RPS-treated group. RPS phosphorylated AMPK in a dose-dependent manner, thereby dephosphorylated mTOR. Autophagy inhibition with 3-methyladenine (3-MA) antagonized RPS-induced suppression of lipogenesis-related protein expressions. Moreover, the knockdown of endogenous AMPK also antagonized the RPS-induced regulation of lipid accumulation and autophagy. Our findings provide new insights into the beneficial effects of RPS on hepatic lipid accumulation through the AMPK-dependent autophagy-mediated downregulation of lipogenesis.
Collapse
Affiliation(s)
- Young-Hyun Lee
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Korea
| | - Hwa-Jin Kim
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Korea
| | - Mikyoung You
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 28081, USA
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, Muan-gun 58554, Korea
- Correspondence:
| |
Collapse
|
43
|
Black HS. A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants (Basel) 2022; 11:2003. [PMID: 36290725 PMCID: PMC9598123 DOI: 10.3390/antiox11102003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 07/30/2023] Open
Abstract
The Greek physician, Aretaios, coined the term "diabetes" in the 1st Century A.D. "Mellitus" arose from the observation that the urine exhibits a sweetness due to its elevated glucose levels. Diabetes mellitus (DM) accounted for 6.7 million deaths globally in 2021 with expenditures of USD 966 billion. Mortality is predicted to rise nearly 10-fold by 2030. Oxidative stress, an imbalance between the generation and removal of reactive oxygen species (ROS), is implicated in the pathophysiology of diabetes. Whereas ROS are generated in euglycemic, natural insulin-regulated glucose metabolism, levels are regulated by factors that regulate cellular respiration, e.g., the availability of NAD-linked substrates, succinate, and oxygen; and antioxidant enzymes that maintain the cellular redox balance. Only about 1-2% of total oxygen consumption results in the formation of superoxide anion and hydrogen peroxide under normal reduced conditions. However, under hyperglycemic conditions, about 10% of the respiratory oxygen consumed may be lost as free radicals. Under hyperglycemic conditions, the two-reaction polyol pathway is activated. Nearly 30% of blood glucose can flux through this pathway-a major path contributing to NADH/NAD+ redox imbalance. Under these conditions, protein glycation and lipid peroxidation increase, and inflammatory cytokines are formed, leading to the further formation of ROS. As mitochondria are the major site of intracellular ROS, these organelles are subject to the deleterious effects of ROS themselves and eventually become dysfunctional-a milestone in Metabolic Syndrome (MetS) of which insulin resistance and diabetes predispose to cardiovascular disease.
Collapse
Affiliation(s)
- Homer S Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Zhang Y, Tian K, Chen G. Replenishment of vitamin A for 7 days partially restored hepatic gene expressions altered by its deficiency in rats. Front Nutr 2022; 9:999323. [PMID: 36276822 PMCID: PMC9583942 DOI: 10.3389/fnut.2022.999323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of vitamin A (VA) status on metabolism of Zucker rats with different genders and genotypes, and of short-term refeeding of a VA sufficient (VAS) diet on VA deficient (VAD) animals. First, male and female Zucker lean (ZL) and fatty (ZF) rats at weaning were fed a VAD or VAS diet for 8 weeks. Second, male VAD ZL rats were fed a VAS diet for 3 (VAD-VAS3d) or 7 (VAD-VAS7d) days. The body weight (BW), blood parameters, and hepatic expressions of genes for metabolism were determined. VA deficiency reduced BW gain in ZL and ZF rats of either gender. VAD ZL rats had lower plasma glucose, insulin, and leptin levels than VAS ZL rats. VAD-VAS3d and VAD-VAS7d rats had higher plasma glucose, insulin, and leptin levels than that in the VAD rats. The hepatic mRNA levels of Gck, Cyp26a1, Srebp-1c, Igf1, Rarb, Rxra, Rxrg, Pparg, and Ppard were lowered by VA deficiency. Refeeding of the VAS diet for 3 days restored the Gck and Cyp26a1 expressions, and for 7 days restored the Gck, Cyp26a1, Igf1, and Rxrb expressions significantly. The 7-day VA replenishment partially restored the hepatic gene expressions and metabolic changes in VAD ZL rats.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Kui Tian
- Department of Radiology, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN, United States
| |
Collapse
|
45
|
Meriin AB, Zaarur N, Roy D, Kandror KV. Egr1 plays a major role in the transcriptional response of white adipocytes to insulin and environmental cues. Front Cell Dev Biol 2022; 10:1003030. [PMID: 36246998 PMCID: PMC9554007 DOI: 10.3389/fcell.2022.1003030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
It is believed that insulin regulates metabolic functions of white adipose tissue primarily at the post-translational level via the PI3K-Akt-mediated pathway. Still, changes in transcription also play an important role in the response of white adipocytes to insulin and environmental signals. One transcription factor that is dramatically and rapidly induced in adipocytes by insulin and nutrients is called Early Growth Response 1, or Egr1. Among other functions, it directly binds to promoters of leptin and ATGL stimulating the former and inhibiting the latter. Furthermore, expression of Egr1 in adipocytes demonstrates cell autonomous circadian pattern suggesting that Egr1 not only mediates the effect of insulin and nutrients on lipolysis and leptin production but also, coordinates insulin action with endogenous circadian rhythms of adipose tissue.
Collapse
Affiliation(s)
- A. B. Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - N. Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - D. Roy
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - K. V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: K. V. Kandror,
| |
Collapse
|
46
|
The development of the Metabolic-associated Fatty Liver Disease during pharmacotherapy of mental disorders - a review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Metabolic-associated Fatty Liver Disease (MAFLD) is a term for Non-alcoholic Fatty Liver Disease (NAFLD) that highlights its association with components of the Metabolic Syndrome (MetS). MAFLD is becoming a clinically significant problem due to its increasing role in the pathogenesis of cryptogenic cirrhosis of the liver.
Material and methods: The resulting work is a review of the most important information on the risk of MAFLD development in the context of the use of particular groups of psychotropic drugs. The study presents the epidemiology, with particular emphasis on the population of psychiatric patients, pathophysiology and scientific reports analyzing the effect of the psychotropic medications on MAFLD development.
Results: The drugs that can have the greatest impact on the development of MAFLD are atypical antipsychotics, especially olanzapine, and mood stabilizers (MS) - valproic acid (VPA). Their effect is indirect, mainly through dysregulation of organism’s carbohydrate and lipid metabolism.
Conclusions: The population of psychiatric patients is particularly vulnerable to the development of MAFLD. At the root of this disorder lies the specificity of mental disorders, improper dietary habits, low level of physical activity and tendency to addictions. Also, the negative impact of the psychotropic drugs on the systemic metabolism indirectly contributes to the development of MAFLD. In order to prevent fatty liver disease, it is necessary to monitor metabolic and liver parameters regularly, and patients should be screened by ultrasound examination of the liver. There are also important preventive actions from the medical professionals, including education of patients and sensitizing to healthy lifestyle.
Collapse
|
47
|
Sheng CY, Son YH, Jang J, Park SJ. In vitro skeletal muscle models for type 2 diabetes. BIOPHYSICS REVIEWS 2022; 3:031306. [PMID: 36124295 PMCID: PMC9478902 DOI: 10.1063/5.0096420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus, a metabolic disorder characterized by abnormally elevated blood sugar, poses a growing social, economic, and medical burden worldwide. The skeletal muscle is the largest metabolic organ responsible for glucose homeostasis in the body, and its inability to properly uptake sugar often precedes type 2 diabetes. Although exercise is known to have preventative and therapeutic effects on type 2 diabetes, the underlying mechanism of these beneficial effects is largely unknown. Animal studies have been conducted to better understand the pathophysiology of type 2 diabetes and the positive effects of exercise on type 2 diabetes. However, the complexity of in vivo systems and the inability of animal models to fully capture human type 2 diabetes genetics and pathophysiology are two major limitations in these animal studies. Fortunately, in vitro models capable of recapitulating human genetics and physiology provide promising avenues to overcome these obstacles. This review summarizes current in vitro type 2 diabetes models with focuses on the skeletal muscle, interorgan crosstalk, and exercise. We discuss diabetes, its pathophysiology, common in vitro type 2 diabetes skeletal muscle models, interorgan crosstalk type 2 diabetes models, exercise benefits on type 2 diabetes, and in vitro type 2 diabetes models with exercise.
Collapse
Affiliation(s)
- Christina Y. Sheng
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | - Sung-Jin Park
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
48
|
Ma Q, Li Y, Zhao R, Tang Z, Li J, Chen C, Liu X, Hu Y, Wang T, Zhao B. Therapeutic mechanisms of mulberry leaves in type 2 diabetes based on metabolomics. Front Pharmacol 2022; 13:954477. [PMID: 36110521 PMCID: PMC9468646 DOI: 10.3389/fphar.2022.954477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Type 2 diabetes (T2D) is considered as one of the most significant metabolic syndromes worldwide, and the long-term use of the drugs already on the market for T2D often gives rise to some side effects. The mulberry leaf (ML), Morus alba L., has advantages in terms of its comprehensive therapeutic efficacy, which are characterized as multicomponent, multitarget, multipathway, and matching with the complex pathological mechanisms of diabetes. Methods: T2D rats were established by a high-fat diet combined with an intraperitoneal injection of streptozotocin; an evaluation of the hypoglycemic effects of the ML in combination with fasting blood glucose and other indicators, in addition to the utilization of metabolomics technology, was performed to analysis the metabolite changes in serum of rats. Results: MLs significantly reduced the fasting blood glucose of T2D rats, while improving the symptoms of polyphagia and polyuria. ML treatment altered the levels of various metabolites in the serum of T2D rats, which are involved in multiple metabolic pathways (amino acid metabolism, carbohydrate metabolism, and lipid metabolism), played a role in antioxidative stress and anti-inflammation, modulated immune and gluconeogenesis processes, and improved obesity as well as insulin resistance (IR). Conclusion: The ML contains a variety of chemical components, and metabolomic results have shown that MLs regulate multiple metabolic pathways to exert hypoglycemic effects, suggesting that MLs may have great promise in the development of new hypoglycemic drugs.
Collapse
Affiliation(s)
- Quantao Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruixue Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyan Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyao Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yujie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ting Wang, ; Baosheng Zhao,
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ting Wang, ; Baosheng Zhao,
| |
Collapse
|
49
|
Jiang C, Pan X, Luo J, Liu X, Zhang L, Liu Y, Lei G, Hu G, Li J. Alterations in Microbiota and Metabolites Related to Spontaneous Diabetes and Pre-Diabetes in Rhesus Macaques. Genes (Basel) 2022; 13:genes13091513. [PMID: 36140683 PMCID: PMC9498908 DOI: 10.3390/genes13091513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Spontaneous type 2 diabetes mellitus (T2DM) macaques are valuable resources for our understanding the pathological mechanism of T2DM. Based on one month’s fasting blood glucose survey, we identified seven spontaneous T2DM macaques and five impaired glucose regulation (IGR) macaques from 1408 captive individuals. FPG, HbA1c, FPI and IR values were significant higher in T2DM and IGR than in controls. 16S rRNA sequencing of fecal microbes showed the significantly greater abundance of Oribacterium, bacteria inhibiting the production of secondary bile acids, and Phascolarctobacterium, bacteria producing short-chain fatty acids was significantly lower in T2DM macaques. In addition, several opportunistic pathogens, such as Mogibacterium and Kocuria were significantly more abundant in both T2DM and IGR macaques. Fecal metabolites analysis based on UHPLC-MS identified 50 differential metabolites (DMs) between T2DM and controls, and 26 DMs between IGR and controls. The DMs were significantly enriched in the bile acids metabolism, fatty acids metabolism and amino acids metabolism pathways. Combining results from physiochemical parameters, microbiota and metabolomics, we demonstrate that the imbalance of gut microbial community leading to the dysfunction of glucose, bile acids, fatty acids and amino acids metabolism may contribute to the hyperglycaemia in macaques, and suggest several microbes and metabolites are potential biomarkers for T2DM and IGR macaques.
Collapse
Affiliation(s)
- Cong Jiang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xuan Pan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jinxia Luo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xu Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Lin Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yun Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Guanglun Lei
- SCU-SGHB Joint Laboratory on Non-Human Primates Research, Sichuan Green-House Biotech Co., Ltd., Meishan 620000, China
| | - Gang Hu
- SCU-SGHB Joint Laboratory on Non-Human Primates Research, Sichuan Green-House Biotech Co., Ltd., Meishan 620000, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
50
|
Dietary Supplementation with Sea Buckthorn Berry Puree Alters Plasma Metabolomic Profile and Gut Microbiota Composition in Hypercholesterolemia Population. Foods 2022; 11:foods11162481. [PMID: 36010480 PMCID: PMC9407212 DOI: 10.3390/foods11162481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Sea buckthorn berries have been reported to have beneficial effects on plasma lipid profile and cardiovascular health. This study aimed to investigate the impact of intervention with sea buckthorn berry puree on plasma metabolomics profile and gut microbiota in hypercholesterolemic subjects. A total of 56 subjects with hypercholesterolemia consumed 90 g of sea buckthorn berry puree daily for 90 days, and plasma metabolomic profile was studied at 0 (baseline), 45, and 90 days of intervention by using proton nuclear magnetic resonance spectroscopy (1H NMR). Gut microbiota composition was analyzed at the baseline and after 90 days of supplementation by using high-throughput sequencing. The plasma metabolic profile was significantly altered after 45 days of intervention as compared to the baseline (day 0). A clear trend of returning to the baseline metabolomic profile was observed in plasma when the intervention extended from 45 days to 90 days. Despite this, the levels of several key plasma metabolites such as glucose, lactate, and creatine were lowered at day 90 compared to the baseline levels, suggesting an improved energy metabolism in those patients. In addition, intervention with sea buckthorn puree enriched butyrate-producing bacteria and other gut microbes linked to lipid metabolisms such as Prevotella and Faecalibacterium while depleting Parasutterella associated with increased risks of cardiovascular disease. These findings indicate that sea buckthorn berries have potential in modulating energy metabolism and the gut microbiota composition in hypercholesterolemic patients.
Collapse
|