1
|
Santos AS, Santos-Bezerra DP, Ferreira LRP, Bando SY, Alves LI, Cunha-Neto E, da Silva MER. Relevance of Circulating microRNA, and their Association with Islet Cell Autoantibodies in Type 1 Diabetes Pathogenesis. Arch Med Res 2024; 56:103114. [PMID: 39489115 DOI: 10.1016/j.arcmed.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AIMS/HYPOTHESIS The role of microRNAs (miRNAs) in the pathogenesis and progression of type 1 diabetes (T1D) has been described, but data remain scarce and conflicting. OBJECTIVES To evaluate the potential biological involvement of miRNA expression in the immune response and beta cell function in T1D. METHODS We screened 10 serum miRNAs from 142 subjects divided into three groups: healthy individuals (control group; n = 52) and patients at different stages of T1D progression, from the initial immunological manifestation, presenting islet cell autoantibodies (AbP group; n = 39), to partial and severe beta cell damage in T1D (recent T1D group; n = 51). RESULTS Three miRNAs (miR-200c-3p, miR-301a-3p, and miR-382-5p) were highly expressed in the AbP and/or recent T1D groups compared to the control group. Furthermore, in the AbP group, miR-301a-3p and miR-382-5p were positively correlated with insulin autoantibody levels and miR-382-5p was negatively correlated with C-peptide levels. In the recent T1D group, miR-200c-3p expression was positively correlated with IA-2A levels. Enrichment analysis of differentially expressed miRNAs showed their involvement in immune response, inflammatory pathways, proliferation/survival/apoptosis mechanisms, bacterial and viral infection, and insulin resistance. CONCLUSION Our data indicated that miR-200c-3p, miR-301a-3p, and miR-382-5p might be involved in T1D pathogenesis. Proliferative, metabolic, and immune responses were main pathways associated with serum miRNA target genes.
Collapse
Affiliation(s)
- Aritania S Santos
- Laboratorio de Carboidratos e Radioimunoensaios, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ludmila Rodrigues Pinto Ferreira
- Department of Morphology, RNA Systems Biology Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Silvia Y Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Laís Isidoro Alves
- Laboratorio de Carboidratos e Radioimunoensaios, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, Institute for Investigation in Immunology (iii) INCT, São Paulo, Brazil
| | - Maria Elizabeth Rossi da Silva
- Laboratorio de Carboidratos e Radioimunoensaios, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Ahmadi F, Lotfi AS, Navaei-Nigjeh M, Kadivar M. Trimetazidine Preconditioning Potentiates the Effect of Mesenchymal Stem Cells Secretome on the Preservation of Rat Pancreatic Islet Survival and Function In Vitro. Appl Biochem Biotechnol 2023; 195:4796-4817. [PMID: 37184724 DOI: 10.1007/s12010-023-04532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture. With and without preconditioned hAD-MSCs' concentrated conditioned media (CCM) were added to the culture medium containing rat islets every 12 h for 24 and 48 h, after testing for selected cytokine concentrations (interleukin (IL)-4, IL-6, IL-13). Insulin content, glucose-stimulated insulin secretion, islet cell apoptosis, and mRNA expression of pro-apoptotic (BAX, BAK-1, and PUMA) and anti-apoptotic factors (BCL-2, BCL-xL, and XIAP) in rat islets were assessed after 24 and 48 h of culture. The protein level of IL-6 and IL-4 was significantly higher in TMZ-MSC-CM compared to MSC-non-CM. In rat isolated islets, normalized secreted insulin in the presence of 16.7 mM glucose was significantly higher in treated islet groups compared to control islets at both 24 and 48 h cultivation. Also, the percentage of apoptotic islet cells TMZ-MSC-CCM-treated islets was significantly lower compared to MSC-CM and MSC-CCM-treated islets in both 24 and 48 h cultivation. Consistent with the number of apoptotic cells, after 24 h culture, the expression of BCL-2 and BCL-xL genes in the control islets was lower than all treatment islet groups and in 48 h was lower than only TMZ-MSC-CM-treated islets. Also, the expression of the XIAP gene in control islets was significantly lower compared to the TMZ-MSC-CCM-treated islets at both at 24 and 48 h. In addition, mRNA level of the BAX gene in TMZ-MSC-CCM-treated islets was significantly lower compared to other groups at 48 h. Our findings revealed that TMZ proved to be more effective than DZ and could enhance the potential of hAD-MSCs-CM to improve the function and viability of islets prior to transplantation.
Collapse
Affiliation(s)
- Fariborz Ahmadi
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Soffer A, Mahly A, Padmanabhan K, Cohen J, Adir O, Loushi E, Fuchs Y, Williams SE, Luxenburg C. Apoptosis and tissue thinning contribute to symmetric cell division in the developing mouse epidermis in a nonautonomous way. PLoS Biol 2022; 20:e3001756. [PMID: 35969606 PMCID: PMC9410552 DOI: 10.1371/journal.pbio.3001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/25/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Mitotic spindle orientation (SO) is a conserved mechanism that governs cell fate and tissue morphogenesis. In the developing epidermis, a balance between self-renewing symmetric divisions and differentiative asymmetric divisions is necessary for normal development. While the cellular machinery that executes SO is well characterized, the extrinsic cues that guide it are poorly understood. Here, we identified the basal cell adhesion molecule (BCAM), a β1 integrin coreceptor, as a novel regulator of epidermal morphogenesis. In utero RNAi-mediated depletion of Bcam in the mouse embryo did not hinder β1 integrin distribution or cell adhesion and polarity. However, Bcam depletion promoted apoptosis, thinning of the epidermis, and symmetric cell division, and the defects were reversed by concomitant overexpression of the apoptosis inhibitor Xiap. Moreover, in mosaic epidermis, depletion of Bcam or Xiap induced symmetric divisions in neighboring wild-type cells. These results identify apoptosis and epidermal architecture as extrinsic cues that guide SO in the developing epidermis.
Collapse
Affiliation(s)
- Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adnan Mahly
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eidan Loushi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Fuchs
- Department of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Scott E. Williams
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
4
|
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022; 13:1815. [PMID: 35383192 PMCID: PMC8983715 DOI: 10.1038/s41467-022-29377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
The ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells. The putative targets of the two aptamers are transmembrane p24 trafficking protein 6 (TMED6) and clusterin (CLUS). When given systemically in immune deficient mice, these aptamers recognize the human islet graft producing a fluorescent signal proportional to the number of human islets transplanted. These aptamers cross-react with endogenous mouse β cells and allow monitoring the rejection of mouse islet allografts. Finally, once conjugated to saRNA specific for X-linked inhibitor of apoptosis (XIAP), they can efficiently transfect non-dissociated human islets, prevent early graft loss, and improve the efficacy of human islet transplantation in immunodeficient in mice.
Collapse
Affiliation(s)
- Dimitri Van Simaeys
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adriana De La Fuente
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Zoso
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victoria Kuznetsova
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Grilli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jimmy Caroli
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Subcutaneous transplantation of engineered islet/adipose-derived mesenchymal stem cell sheets in diabetic pigs with total pancreatectomy. Regen Ther 2021; 16:42-52. [PMID: 33521172 PMCID: PMC7810917 DOI: 10.1016/j.reth.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Intraportal islet transplantation is a promising therapeutic approach for patients with type 1 diabetes mellitus (T1DM). However, despite being minimally invasive, the method has some limitations, such as short-term graft loss, portal venous thrombosis, and difficulty in collecting adequate amounts of islets. Subcutaneous islet transplantation on adipose-derived mesenchymal stem cell (ADSC) sheets has been suggested to overcome these limitations, and in this study, we have examined its feasibility in T1DM pigs. Methods Inguinal subcutaneous fat was harvested from young pigs and then isolated and cultured adequate ADSCs to prepare sheets. Islets were isolated from the pancreases of mature pigs and seeded on the ADSC sheets. T1DM pigs were generated by total pancreatectomy, and ADSC sheets with transplanted islets were administered subcutaneously to the waist (n = 2). The effects of the islets on the ADSC sheets and on blood glucose levels were evaluated. Insulin secretion was measured by insulin stimulation index. Results Islet viability was higher on ADSCs compared to islets alone (91.8 ± 4.3 vs. 81.7 ± 4.1%). The insulin stimulation index revealed higher glucose sensitivity of islets on ADSC sheets compared to islets alone (2.8 ± 2.0 vs. 0.8 ± 0.3). After transplantation, the blood glucose levels of two pigs were within the normal range, and sensitive insulin secretion was confirmed by intravenous glucose tolerance tests. After graftectomy, decreased insulin secretion and hyperglycemia were observed. Conclusions Subcutaneous islet transplantation using ADSC sheets can regulate the blood glucose levels of T1DM pigs. The adipose-derived mesenchymal stem cell sheet is useful to protect the islets. Subcutaneous islet transplantation on sheet normalized blood glucose in diabetic pig. Subcutaneous islet transplantation on sheet can be a useful tool.
Collapse
Key Words
- ADSC, adipose-derived mesenchymal stem cell
- Adipose-derived mesenchymal stem cells
- CGM, continuous glucose monitor
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- H & E, hematoxylin and eosin
- HGF, hepatocyte growth factor
- HSP32, heat shock protein 32
- IBMIR, instant blood-mediated inflammatory reaction
- IEQ, islet equivalent
- IVGTT, intravenous glucose tolerance test
- Islet transplantation
- MEM, minimum essential medium
- MSC, mesenchymal stem cell
- PBS, phosphate-buffered saline
- Pig
- SD, standard deviation
- Subcutaneous
- T1DM, Type 1 diabetes mellitus
- TGF, transforming growth factor
- Type 1 diabetes mellitus
- UW, University of Wisconsin
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
|
6
|
Kh S, Haider KH. Stem Cells: A Renewable Source of Pancreatic β-Cells and Future for Diabetes Treatment. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Zbinden A, Urbanczyk M, Layland SL, Becker L, Marzi J, Bosch M, Loskill P, Duffy GP, Schenke-Layland K. Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic Extracellular Matrix. Tissue Eng Part A 2020; 27:977-991. [PMID: 33023407 DOI: 10.1089/ten.tea.2020.0250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of biomaterials and biomaterial functionalization is a promising approach to support pancreatic islet viability posttransplantation in an effort to reduce insulin dependence for patients afflicted with diabetes mellitus type 1. Extracellular matrix (ECM) proteins are known to impact numerous reparative functions in the body. Assessing how endogenously expressed pancreatic ECM proteins are affected by posttransplant-like hypoxic conditions may provide significant insights toward the development of tissue-engineered therapeutic strategies to positively influence β-cell survival, proliferation, and functionality. Here, we investigated the expression of three relevant groups of pancreatic ECM proteins in human native tissue, including basement membrane (BM) proteins (collagen type 4 [COL4], laminins [LAM]), proteoglycans (decorin [DCN], nidogen-1 [NID1]), and fibril-forming proteins (fibronectin [FN], collagen type 1 [COL1]). In an in vitro hypoxia model, we identified that ECM proteins were differently affected by hypoxic conditions, contributing to an overall loss of β-cell functionality. The use of a COL1 hydrogel as carrier material demonstrated a protective effect on β-cells mitigating the effect of hypoxia on proteoglycans as well as fibril-forming protein expression, supporting β-cell functionality in hypoxia. We further showed that providing endothelial cells (ECs) into the COL1 hydrogel improves β-cell response as well as the expression of relevant BM proteins. Our data show that β-cells benefit from a microenvironment composed of structure-providing COL1 with the incorporation of ECs to withstand the harsh conditions of hypoxia. Such hydrogels support β-cell survival and can serve as an initial source of ECM proteins to allow cell engraftment while preserving cell functionality posttransplantation. Impact statement Expression analysis identifies hypoxia-induced pathological changes in extracellular matrix (ECM) homeostasis as potential targets to support β-cell transplants by encapsulation in biomaterials for the treatment of diabetes mellitus. A collagen-1 hydrogel is shown to attenuate the effect of hypoxia on β-cells and their ECM expression. The functionalization of the hydrogel with endothelial cells increases the β-cell response to glucose and rescues essential basement membrane proteins.
Collapse
Affiliation(s)
- Aline Zbinden
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Max Urbanczyk
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lucas Becker
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Marzi
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Mariella Bosch
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Fraunhofer IGB, Stuttgart, Germany
| | - Garry P Duffy
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Department of Bioengineering, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University Tübingen, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Uhlemeyer C, Müller N, Grieß K, Wessel C, Schlegel C, Kuboth J, Belgardt BF. ATM and P53 differentially regulate pancreatic beta cell survival in Ins1E cells. PLoS One 2020; 15:e0237669. [PMID: 32810137 PMCID: PMC7437460 DOI: 10.1371/journal.pone.0237669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Pancreatic beta cell death is a hallmark of type 1 and 2 diabetes (T1D/T2D), but the underlying molecular mechanisms are incompletely understood. Key proteins of the DNA damage response (DDR), including tumor protein P53 (P53, also known as TP53 or TRP53 in rodents) and Ataxia Telangiectasia Mutated (ATM), a kinase known to act upstream of P53, have been associated with T2D. Here we test and compare the effect of ATM and P53 ablation on beta cell survival in the rat beta cell line Ins1E. We demonstrate that ATM and P53 differentially regulate beta cell apoptosis induced upon fundamentally different types of diabetogenic beta cell stress, including DNA damage, inflammation, lipotoxicity and endoplasmic reticulum (ER) stress. DNA damage induced apoptosis by treatment with the commonly used diabetogenic agent streptozotocin (STZ) is regulated by both ATM and P53. We show that ATM is a key STZ induced activator of P53 and that amelioration of STZ induced cell death by inhibition of ATM mainly depends on P53. While both P53 and ATM control lipotoxic beta cell apoptosis, ATM but not P53 fails to alter inflammatory beta cell death. In contrast, tunicamycin induced (ER stress associated) apoptosis is further increased by ATM knockdown or inhibition, but not by P53 knockdown. Our results reveal differential roles for P53 and ATM in beta cell survival in vitro in the context of four key pathophysiological types of diabetogenic beta cell stress, and indicate that ATM can use P53 independent signaling pathways to modify beta cell survival, dependent on the cellular insult.
Collapse
Affiliation(s)
- Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Kerstin Grieß
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Corinna Wessel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
9
|
de Souza BM, Rodrigues M, de Oliveira FS, da Silva LPA, Bouças AP, Portinho CP, Dos Santos BP, Camassola M, Rocha D, Lysakowski S, Martini J, Leitão CB, Nardi NB, Bauer AC, Crispim D. Improvement of human pancreatic islet quality after co-culture with human adipose-derived stem cells. Mol Cell Endocrinol 2020; 505:110729. [PMID: 31972330 DOI: 10.1016/j.mce.2020.110729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate whether co-culture of human islets with adipose-derived stem cells (ASCs) can improve islet quality and to evaluate which factors play a role in the protective effect of ASCs against islet dysfunction. Islets and ASCs were cultured in three experimental groups for 24 h, 48 h, and 72 h: 1) indirect co-culture of islets with ASC monolayer (Islets/ASCs); 2) islets alone; and 3) ASCs alone. Co-culture with ASCs improved islet viability and function in all culture time-points analyzed. VEGFA, HGF, IL6, IL8, IL10, CCL2, IL1B, and TNF protein levels were increased in supernatants of islet/ASC group compared to islets alone, mainly after 24 h. Moreover, VEGFA, IL6, CCL2, HIF1A, XIAP, CHOP, and NFKBIA genes were differentially expressed in islets from the co-culture condition compared to islets alone. In conclusion, co-culture of islets with ASCs promotes improvements in islet quality.
Collapse
Affiliation(s)
- Bianca M de Souza
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil.
| | - Michelle Rodrigues
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Fernanda S de Oliveira
- Laboratory of Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liana P A da Silva
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Ana P Bouças
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Ciro P Portinho
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Bruno P Dos Santos
- Laboratory for Tissue Bioengineering (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Melissa Camassola
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Dagoberto Rocha
- Post-Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Simone Lysakowski
- Organ Procurement Organization, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Juliano Martini
- Transplant Center, Surgery Department, Hospital Dom Vicente Scherer, Santa Casa de Misericórdia de Porto Alegre. Porto Alegre, RS, Brazil
| | - Cristiane B Leitão
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Nance B Nardi
- Laboratory for Stem Cells and Tissue Engineering, Post-Graduation Program in Cellular and Molecular Biology Applied to Health, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | - Andrea C Bauer
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Laboratory of Human Pancreatic Islet Biology, Endocrine Division, Hospital de Clınicas de Porto Alegre, Porto Alegre, Rio Grande do Sul (RS), Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Li X, Lang H, Li B, Zhang C, Sun N, Lin J, Zhang J. Change in Viability and Function of Pancreatic Islets after Coculture with Mesenchymal Stromal Cells: A Systemic Review and Meta-Analysis. J Diabetes Res 2020; 2020:5860417. [PMID: 32309447 PMCID: PMC7132593 DOI: 10.1155/2020/5860417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is no clear consensus on the effect of coculture of islets with mesenchymal stem cells (MSCs) on islet function and viability. METHODS We conducted a meta-analysis of relevant studies to evaluate the effect of coculture of islets with MSCs on the function and viability of islets, both in vitro and in vivo. We searched PubMed, Embase, and Web of Science databases for all relevant studies that compared the effect of coculture of islets with MSCs on the function and viability of islets (language of publication: English; reference period: January 2000-May 2019). Data pertaining to islet function and viability, concentrations of some cytokines, and in vivo experimental outcomes were extracted and compared. RESULTS Twenty-four articles were included in the meta-analysis. In comparison to islets cultured alone, coculture of islets with MSCs was associated with a significantly higher islet viability [weighted mean difference (WMD), -15.59; -22.34 to -8.83; P < 0.00001], insulin level (WMD, -5.74; -9.29 to -2.19; P = 0.002), insulin secretion index (WMD, -2.45; -3.70 to -1.21; P = 0.0001), and higher concentrations of interleukin-6 (WMD, -1225.66; -2044.47 to -406.86; P = 0.003) and vascular endothelial growth factor (WMD, -1.19; -2.25 to -0.14; P = 0.03). Direct coculture of islets and MSCs significantly increased islet viability (WMD, -19.82; -26.56 to -13.07; P < 0.00001). In the in vivo experiments, coculture of islets with MSCs induced lower fasting blood glucose level (on postoperative days 21 and 28, WMD, 102.60; 27.14 to 178.05; P = 0.008 and WMD, 121.19; 49.56 to 192.82; P = 0.0009) and better glucose tolerance (blood glucose at 30 minutes after intraperitoneal injection of glucose, WMD, 85.92; 5.33 to 166.51; P = 0.04). CONCLUSION Coculture of islets with MSCs improves insulin secretory function of islets and enhances islet viability. Direct coculture of two cells significantly increased islet viability. MSC-based strategy may be beneficial for clinical islet transplantation for type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xiaohang Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Hongxin Lang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory for Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, No. 77 Puhe Street, Shenbei New District, Shenyang, 110122 Liaoning Province, China
| | - Baifeng Li
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Chengshuo Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Ning Sun
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jianzhen Lin
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| | - Jialin Zhang
- Department of Hepatobiliary Surgery and Organ Transplant, First Affiliated Hospital, China Medical University, No. 155, Nanjing North Street, Shenyang, 110001 Liaoning Province, China
| |
Collapse
|
11
|
Samy KP, Gao Q, Davis RP, Song M, Fitch ZW, Mulvihill MS, MacDonald AL, Leopardi FV, How T, Williams KD, Devi GR, Collins BH, Luo X, Kirk AD. The role of human CD46 in early xenoislet engraftment in a dual transplant model. Xenotransplantation 2019; 26:e12540. [PMID: 31219218 PMCID: PMC6908747 DOI: 10.1111/xen.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane cofactor protein CD46 attenuates the complement cascade by facilitating cleavage of C3b and C4b. In solid organ xenotransplantation, organs expressing CD46 have been shown to resist hyperacute rejection. However, the incremental value of human CD46 expression for islet xenotransplantation remains poorly defined. METHODS This study attempted to delineate the role of CD46 in early neonatal porcine islet engraftment by comparing Gal-knocked out (GKO) and hCD46-transgenic (GKO/CD46) islets in a dual transplant model. Seven rhesus macaques underwent dual transplant and were sacrificed at 1 hour (n = 4) or 24 hours (n = 3). Both hemilivers were recovered and fixed for immunohistochemistry (CD46, insulin, neutrophil elastase, platelet, IgM, IgG, C3d, C4d, CD68, Caspase 3). Quantitative immunohistochemical analysis was performed using the Aperio Imagescope. RESULTS Within 1 hour of intraportal infusion of xenografts, no differences were observed between the two types of islets in terms of platelet, antibody, or complement deposition. Cellular infiltration and islet apoptotic activity were also similar at 1 hour. At 24 hours, GKO/CD46 islets demonstrated significantly less platelet deposition (P = 0.01) and neutrophil infiltration (P = 0.01) compared to GKO islets. In contrast, C3d (P = 0.38) and C4d (P = 0.45) deposition was equal between the two genotypes. CONCLUSIONS Our findings suggest that expression of hCD46 on NPIs potentially provides a measurable incremental survival advantage in vivo by reducing early thrombo-inflammatory events associated with instant blood-mediated inflammatory reaction (IBMIR) following intraportal islet infusion.
Collapse
Affiliation(s)
- Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Robert Patrick Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Michael S Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Andrea L MacDonald
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Frank V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Tam How
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Kyha D Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
12
|
Saravanan PB, Vasu S, Yoshimatsu G, Darden CM, Wang X, Gu J, Lawrence MC, Naziruddin B. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia 2019; 62:1901-1914. [PMID: 31372667 DOI: 10.1007/s00125-019-4950-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic islets produce non-coding microRNAs (miRNAs) that regulate islet cell function and survival. Our earlier investigations revealed that human islets undergo significant damage due to various types of stresses following transplantation and release miRNAs. Here, we sought to identify and validate exosomal miRNAs (exo-miRNAs) produced by human islets under conditions of cellular stress, preceding loss of cell function and death. We also aimed to identify islet stress signalling pathways targeted by exo-miRNAs to elucidate potential regulatory roles in islet cell stress. METHODS Human islets were subjected to proinflammatory cytokine and hypoxic cell stress and miRNA from exosomes was isolated for RNA sequencing and analysis. Stress-induced exo-miRNAs were evaluated for kinetics of expression and release by intact islets for up to 48 h exposure to cytokines and hypoxia. A subset of stress-induced exo-miRNAs were assessed for recovery and detection as biomarkers of islet cell stress in a diabetic nude mouse xenotransplant model and in patients undergoing total pancreatectomy with islet auto-transplantation (TPIAT). Genes and signalling pathways targeted by stress-induced exo-miRNAs were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and direct interactions of miRNAs with downstream signalling targets were validated in human islet cells using the miRNA Tests for Read Analysis and Prediction (MirTrap) system. RESULTS Global exo-miRNA sequencing revealed that 879 miRNA species were released from human islets and 190 islet exo-miRNAs were differentially expressed in response to proinflammatory cytokines, hypoxia or both. Release of exo-miRNAs hsa-miR-29b-3p and hsa-miR-216a-5p was detected within 6 h of exposure to cytokines and hypoxia. The remaining subset of stress-induced exo-miRNAs, including hsa-miR-148a-3p and islet cell damage marker hsa-miR-375, showed delayed release at 24-48 h, correlating with apoptosis and cell death. Stress and damage exo-miRNAs were significantly elevated in the circulation in human-to-mouse xenotransplant models and in human transplant recipients. Elevated blood exo-miRNAs negatively correlated with post-transplant islet function based on comparisons of stress and damage exo-miRNA indices with Secretory Unit of Islet Transplant Objects (SUITO) indices. KEGG analysis and further validation of exo-miRNA targets by MirTrap analysis revealed significant enrichment of islet mRNAs involved in phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase signalling pathways. CONCLUSIONS/INTERPRETATION The study identifies exo-miRNAs differentially expressed and released by islets in response to damage and stress. These exo-miRNAs could serve as potential biomarkers for assessing islet damage and predicting outcomes in islet transplantation. Notably, exo-miRNAs 29b-3p and 216a-5p could be detected in islets prior to damage-released miRNAs and indicators of cellular apoptosis and death. Thus, these stress-induced exo-miRNAs may have potential diagnostic value for detecting early islet stress prior to progressive loss of islet cell mass and function. Further investigations are warranted to investigate the utility of these exo-miRNAs as early indicators of islet cell stress during prediabetic conditions.
Collapse
Affiliation(s)
- Prathab Balaji Saravanan
- Division of Transplantation, Department of Surgery, Virginia Commonwealth University, Medical Center, Richmond, VA, USA
| | - Srividya Vasu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Gumpei Yoshimatsu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Carly M Darden
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Xuan Wang
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Jinghua Gu
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA
| | - Michael C Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, 3434 Live Oak Street, Dallas, TX, 75204, USA.
| | - Bashoo Naziruddin
- Islet Cell Laboratory, Baylor Simmons Transplant Institute, 3410 Worth Street, Suite 950, Dallas, TX, 75246, USA.
| |
Collapse
|
13
|
Shukla SK, Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 2019; 205:64-76. [PMID: 30342797 PMCID: PMC6372329 DOI: 10.1016/j.trsl.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) is the major pathway for intracellular protein degradation in most organs, including the heart. UPS controls many fundamental biological processes such as cell cycle, cell division, immune responses, antigen presentation, apoptosis, and cell signaling. The UPS not only degrades substrates but also regulates activity of gene transcription at the post-transcription level. Emerging evidence suggests that impairment of UPS function is sufficient to cause a number of cardiac diseases, including heart failure, cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis. Alterations in the expression of UPS components, changes in proteasomal peptidase activities and increased ubiquitinated and oxidized proteins have also been detected in diabetic cardiomyopathy (DCM). However, the pathophysiological role of the UPS in DCM has not been examined. Recently, in vitro and in vivo studies have proven highly valuable in assessing effects of various stressors on the UPS and, in some cases, suggesting a causal link between defective protein clearance and disease phenotypes in different cardiac diseases, including DCM. Translation of these findings to human disease can be greatly strengthened by corroboration of discoveries from experimental model systems using human heart tissue from well-defined patient populations. This review will summarize the general role of the UPS in different cardiac diseases, with major focus on DCM, and on recent advances in therapeutic development.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Khadija Rafiq
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Imamura H, Adachi T, Kin T, Ono S, Sakai Y, Adachi T, Soyama A, Hidaka M, Takatsuki M, Shapiro AJ, Eguchi S. An engineered cell sheet composed of human islets and human fibroblast, bone marrow-derived mesenchymal stem cells, or adipose-derived mesenchymal stem cells: An in vitro comparison study. Islets 2018; 10:e1445948. [PMID: 29608395 PMCID: PMC5989879 DOI: 10.1080/19382014.2018.1445948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We previously reported the utility of engineered cell sheets composed of human islets and supporting cells in vitro and in vivo. It is unclear which type of supporting cell is most suitable for constructing cell sheets with human islets. The present study aimed to compare human fibroblasts, bone marrow-derived mesenchymal stem cells (BM-MSCs), and adipose-derived mesenchymal stem cells (ADSCs) as a supporting source for cell sheets. METHODS Engineered cell sheets were fabricated with human islets using human fibroblasts, BM-MSCs, or ADSCs as supporting cells. The islet viability, recovery rate, glucose-stimulated insulin release (determined by the stimulation index), and cytokine secretion (TGF-β1, IL-6, and VEGF) of groups-including an islet-alone group as a control-were compared. RESULTS All three sheet groups consistently exhibited higher viability, recovery rate, and stimulation index values than the islet-alone group. The ADSC group showed the highest viability and recovery rate among the three sheet groups. There were no discernible differences in the stimulation index values of the groups. The fibroblast group exhibited significantly higher TGF-β1 values in comparison to the other groups. The IL-6 level of the ADSC group was more than five times higher than that of the other groups. The ADSC group showed the VEGF level; however, it did not differ from that of the BM-MSC group to a statistically significant extent. CONCLUSION Engineered cell sheets composed of islets and supporting cells had a cytoprotective effect on islets. These results suggest that individual cell types could be a more attractive source for crafting engineered cell sheets in comparison to islets alone.
Collapse
Affiliation(s)
- Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuya Kin
- Clinical Islet Transplantation Program, University of Alberta, Edmonton, Alberta, Canada
| | - Shinichiro Ono
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshiyuki Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - A.M. James Shapiro
- Clinical Islet Transplantation Program, University of Alberta, Edmonton, Alberta, Canada
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- CONTACT Susumu Eguchi, MD, PhD Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1–7–1 Sakamoto, Nagasaki 852–8501, Japan
| |
Collapse
|
15
|
Faleo G, Russ HA, Wisel S, Parent AV, Nguyen V, Nair GG, Freise JE, Villanueva KE, Szot GL, Hebrok M, Tang Q. Mitigating Ischemic Injury of Stem Cell-Derived Insulin-Producing Cells after Transplant. Stem Cell Reports 2017; 9:807-819. [PMID: 28803916 PMCID: PMC5599226 DOI: 10.1016/j.stemcr.2017.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
The advent of large-scale in vitro differentiation of human stem cell-derived insulin-producing cells (SCIPC) has brought us closer to treating diabetes using stem cell technology. However, decades of experiences from islet transplantation show that ischemia-induced islet cell death after transplant severely limits the efficacy of the therapy. It is unclear to what extent human SCIPC are susceptible to ischemia. In this study, we show that more than half of SCIPC die shortly after transplantation. Nutrient deprivation and hypoxia acted synergistically to kill SCIPC in vitro. Amino acid supplementation rescued SCIPC from nutrient deprivation, likely by providing cellular energy. Generating SCIPC under physiological oxygen tension of 5% conferred hypoxia resistance without affecting their differentiation or function. A two-pronged strategy of physiological oxygen acclimatization during differentiation and amino acid supplementation during transplantation significantly improved SCIPC survival after transplant. Stem cell-derived insulin-producing cells (SCIPC) are susceptible to ischemic injury Amino acid supplementation prevents nutrient-deprivation-induced SCIPC death Generation of SCIPC at physiological oxygen levels protects them against hypoxia Both strategies combined preserve SCIPC graft viability in vivo upon transplant
Collapse
Affiliation(s)
- Gaetano Faleo
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Steven Wisel
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Audrey V Parent
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gopika G Nair
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jonathan E Freise
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Karina E Villanueva
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gregory L Szot
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Li Y, Fan P, Ding XM, Tian XH, Feng XS, Yan H, Pan XM, Tian PX, Zheng J, Ding CG, Xue WJ. Polyglycolic Acid Fibrous Scaffold Improving Endothelial Cell Coating and Vascularization of Islet. Chin Med J (Engl) 2017; 130:832-839. [PMID: 28345548 PMCID: PMC5381318 DOI: 10.4103/0366-6999.202730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Improving islet graft revascularization has become a crucial task for prolonging islet graft survival. Endothelial cells (ECs) are the basis of new microvessels in an isolated islet, and EC coating has been demonstrated to improve the vascularization and survival of an islet. However, the traditional method of EC coating of islets has low efficiency in vitro. This study was conducted to evaluate the effect of a polyglycolic acid (PGA) scaffold on the efficiency of islet coating by ECs and the angiogenesis in the coated islet graft. Methods: A PGA fibrous scaffold was used for EC coating of islet culture and was evaluated for its efficiency of EC coating on islets and islet graft angiogenesis. Results: In in vitro experiments, we found that apoptosis index of ECs-coating islet in PGA group (27% ± 8%) was significantly lower than that in control group (83% ± 20%, P < 0.05) after 7 days culture. Stimulation index was significantly greater in the PGA group than in the control group at day 7 after ECs-coating (2.07 ± 0.31 vs. 1.80 ± 0.23, P < 0.05). vascular endothelial growth factor (VEGF) level in the PGA group was significantly higher than the coating in the control group after 7 days culture (52.10 ± 13.50 ng/ml vs. 16.30 ± 8.10 ng/ml, P < 0.05). Because of a tight, circumvallated, adhesive and three-dimensional growth microenvironment, islet cultured in a PGA scaffold had higher coating efficiency showing stronger staining intensity of enzyme than those in the control group after 14 days of culture following ECs-coating. For in vivo study, PGA scaffold significantly prolonged the average survival time of EC-coated islet graft after transplantation compared with control group (15.30 ± 5.60 days vs. 8.30 ± 2.45 days, P < 0.05). The angiogenesis and area of survived grafts were more in the PGA group compared with the control group by measuring the mean microvessel density (8.60 ± 1.21/mm2 vs. 5.20 ± 0.87/mm2, P < 0.05). In addition, expression of VEGF and tyrosin-protein kinase receptor (Tie-2) gene increased in PGA scaffold group than that in control group by real-time reverse transcription-polymerase chain reaction analysis. Conclusions: These results demonstrate that the efficiency of EC coating of islets was successfully increased by culturing ECs on a PGA scaffold. This method enhances the function, survival, and vascularization of isolated islets in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Hui Tian
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xin-Shun Feng
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Hang Yan
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Ming Pan
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Pu-Xun Tian
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Chen-Guang Ding
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
18
|
Yasuma T, Yano Y, D'Alessandro-Gabazza CN, Toda M, Gil-Bernabe P, Kobayashi T, Nishihama K, Hinneh JA, Mifuji-Moroka R, Roeen Z, Morser J, Cann I, Motoh I, Takei Y, Gabazza EC. Amelioration of Diabetes by Protein S. Diabetes 2016; 65:1940-51. [PMID: 27207541 DOI: 10.2337/db15-1404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/04/2016] [Indexed: 11/13/2022]
Abstract
Protein S is an anticoagulant factor that also regulates inflammation and cell apoptosis. The effect of protein S on diabetes and its complications is unknown. This study compared the development of diabetes between wild-type and transgenic mice overexpressing human protein S and the development of diabetic glomerulosclerosis between mice treated with and without human protein S and between wild-type and protein S transgenic mice. Mice overexpressing protein S showed significant improvements in blood glucose level, glucose tolerance, insulin sensitivity, and insulin secretion compared with wild-type counterparts. Exogenous protein S improved insulin sensitivity in adipocytes, skeletal muscle, and liver cell lines in db/db mice compared with controls. Significant inhibition of apoptosis with increased expression of BIRC3 and Bcl-2 and enhanced activation of Akt/PKB was induced by protein S in islet β-cells compared with controls. Diabetic wild-type mice treated with protein S and diabetic protein S transgenic mice developed significantly less severe diabetic glomerulosclerosis than controls. Patients with type 2 diabetes had significantly lower circulating free protein S than healthy control subjects. This study shows that protein S attenuates diabetes by inhibiting apoptosis of β-cells and the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Paloma Gil-Bernabe
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Josephine A Hinneh
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Rumi Mifuji-Moroka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Ziaurahman Roeen
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - John Morser
- Division of Hematology, Stanford School of Medicine, Stanford, CA
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology Institute for Genomic Biology and Department of Animal Sciences and Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Iwasa Motoh
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi, Japan Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Yoshiyuki Takei
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Edobashi, Japan Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi, Japan Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Edobashi, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi, Japan
| |
Collapse
|
19
|
Current Concepts of Using Pigs as a Source for Beta-Cell Replacement Therapy of Type 1 Diabetes. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Bai T, Wang F, Mellen N, Zheng Y, Cai L. Diabetic cardiomyopathy: role of the E3 ubiquitin ligase. Am J Physiol Endocrinol Metab 2016; 310:E473-83. [PMID: 26732687 DOI: 10.1152/ajpendo.00467.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of mortality in diabetes. As the number of cases of diabetes continues to rise, it is urgent to develop new strategies to protect against DCM, which is characterized by cardiac hypertrophy, increased apoptosis, fibrosis, and altered insulin metabolism. The E3 ubiquitin ligases (E3s), one component of the ubiquitin-proteasome system, play vital roles in all of the features of DCM listed above. They also modulate the activity of several transcription factors involved in the pathogenesis of DCM. In addition, the E3s degrade both insulin receptor and insulin receptor substrates and also regulate insulin gene transcription, leading to insulin resistance and insulin deficiency. Therefore, the E3s may be a driving force for DCM. This review summarizes currently available studies to analyze the roles of the E3s in DCM, enriches our knowledge of how DCM develops, and provides a novel strategy to protect heart from diabetes.
Collapse
Affiliation(s)
- Tao Bai
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Fan Wang
- Internal Medicine, People's Hospital of Jilin Province, Changchun, China; and
| | - Nicholas Mellen
- Kosair Children's Hospital Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville, Louisville, Kentucky
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, China;
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
21
|
Pachera N, Papin J, Zummo FP, Rahier J, Mast J, Meyerovich K, Cardozo AK, Herchuelz A. Heterozygous inactivation of plasma membrane Ca(2+)-ATPase in mice increases glucose-induced insulin release and beta cell proliferation, mass and viability. Diabetologia 2015; 58:2843-50. [PMID: 26362865 DOI: 10.1007/s00125-015-3745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Calcium plays an important role in the process of glucose-induced insulin release in pancreatic beta cells. These cells are equipped with a double system responsible for Ca(2+) extrusion--the Na/Ca exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). We have shown that heterozygous inactivation of NCX1 in mice increased glucose-induced insulin release and stimulated beta cell proliferation and mass. In the present study, we examined the effects of heterozygous inactivation of the PMCA on beta cell function. METHODS Biological and morphological methods (Ca(2+) imaging, Ca(2+) uptake, glucose metabolism, insulin release and immunohistochemistry) were used to assess beta cell function and proliferation in Pmca2 (also known as Atp2b2) heterozygous mice and control littermates ex vivo. Blood glucose and insulin levels were also measured to assess glucose metabolism in vivo. RESULTS Pmca (isoform 2) heterozygous inactivation increased intracellular Ca(2+) stores and glucose-induced insulin release. Moreover, increased beta cell proliferation, mass, viability and islet size were observed in Pmca2 heterozygous mice. However, no differences in beta cell glucose metabolism, proinsulin immunostaining and insulin content were observed. CONCLUSIONS/INTERPRETATION The present data indicates that inhibition of Ca(2+) extrusion from the beta cell and its subsequent intracellular accumulation stimulates beta cell function, proliferation and mass. This is in agreement with our previous results observed in mice displaying heterozygous inactivation of NCX, and indicates that inhibition of Ca(2+) extrusion mechanisms by small molecules in beta cells may represent a new approach in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie Pachera
- Laboratoire de Pharmacodynamie et de Thérapeutique, Bâtiment GE, Faculté de Médecine, Université Libre de Bruxelles (ULB), route de Lennik 808, B-1070, Bruxelles, Belgium
| | - Julien Papin
- Laboratoire de Pharmacodynamie et de Thérapeutique, Bâtiment GE, Faculté de Médecine, Université Libre de Bruxelles (ULB), route de Lennik 808, B-1070, Bruxelles, Belgium
| | - Francesco P Zummo
- Laboratoire de Pharmacodynamie et de Thérapeutique, Bâtiment GE, Faculté de Médecine, Université Libre de Bruxelles (ULB), route de Lennik 808, B-1070, Bruxelles, Belgium
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jacques Rahier
- Department of Pathology, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | - Jan Mast
- Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium
| | - Kira Meyerovich
- ULB Center for Diabetes Research, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - André Herchuelz
- Laboratoire de Pharmacodynamie et de Thérapeutique, Bâtiment GE, Faculté de Médecine, Université Libre de Bruxelles (ULB), route de Lennik 808, B-1070, Bruxelles, Belgium.
| |
Collapse
|
22
|
Hirabaru M, Kuroki T, Adachi T, Kitasato A, Ono S, Tanaka T, Matsushima H, Sakai Y, Soyama A, Hidaka M, Yamanouchi K, Takatsuki M, Okano T, Eguchi S. A Method for Performing Islet Transplantation Using Tissue-Engineered Sheets of Islets and Mesenchymal Stem Cells. Tissue Eng Part C Methods 2015; 21:1205-15. [PMID: 26066973 DOI: 10.1089/ten.tec.2015.0035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to have a protective effect on islet cells. Cell sheets developed using tissue engineering help maintain the function of the cells themselves. This study describes a tissue engineering approach using islets with MSC sheets to improve the therapeutic effect of islet transplantation. MSCs were obtained from Fischer 344 rats and engineered into cell sheets using temperature-responsive culture dishes. The islets obtained from Fischer 344 rats were seeded onto MSC sheets, and the islets with MSC sheets were harvested by low-temperature treatment after coculture. The functional activity of the islets with MSC sheets was confirmed by a histological examination, insulin secretion assay, and quantification of the levels of cytokines. The therapeutic effects of the islets with MSC sheets were investigated by transplanting the sheets at subcutaneous sites in severe combined immunodeficiency (SCID) mice with streptozotocin-induced diabetes. Improvement of islet function and viability was shown in situ on the MSC sheet, and the histological examination showed that the MSC sheet maintained adhesion factor on the surface. In the recipient mice, normoglycemia was maintained for at least 84 days after transplantation, and neovascularization was observed. These results demonstrated that islet transplantation in a subcutaneous site would be possible by using the MSC sheet as a scaffold for islets.
Collapse
Affiliation(s)
- Masataka Hirabaru
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Tamotsu Kuroki
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Tomohiko Adachi
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Amane Kitasato
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Shinichiro Ono
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Takayuki Tanaka
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Hajime Matsushima
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Yusuke Sakai
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Akihiko Soyama
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Masaaki Hidaka
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Kosho Yamanouchi
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| | - Teruo Okano
- 2 Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Shinjuku, Tokyo, Japan
| | - Susumu Eguchi
- 1 Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki, Japan
| |
Collapse
|
23
|
Bae UJ, Song MY, Jang HY, Lim JM, Lee SY, Ryu JH, Park BH. Emodin isolated from Rheum palmatum prevents cytokine-induced β-cell damage and the development of type 1 diabetes. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 2015; 21:619-27. [PMID: 25985365 DOI: 10.1038/nm.3862] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic beta cell death is a hallmark of type 1 (T1D) and type 2 (T2D) diabetes, but the molecular mechanisms underlying this aspect of diabetic pathology are poorly understood. Here we report that expression of the microRNA (miR)-200 family is strongly induced in islets of diabetic mice and that beta cell-specific overexpression of miR-200 in mice is sufficient to induce beta cell apoptosis and lethal T2D. Conversely, mir-200 ablation in mice reduces beta cell apoptosis and ameliorates T2D. We show that miR-200 negatively regulates a conserved anti-apoptotic and stress-resistance network that includes the essential beta cell chaperone Dnajc3 (also known as p58IPK) and the caspase inhibitor Xiap. We also observed that mir-200 dosage positively controls activation of the tumor suppressor Trp53 and thereby creates a pro-apoptotic gene-expression signature found in islets of diabetic mice. Consequently, miR-200-induced T2D is suppressed by interfering with the signaling of Trp53 and Bax, a proapoptotic member of the B cell lymphoma 2 protein family. Our results reveal a crucial role for the miR-200 family in beta cell survival and the pathophysiology of diabetes.
Collapse
|
25
|
Shin JY, Jeong JH, Han J, Bhang SH, Jeong GJ, Haque MR, Al-Hilal TA, Noh M, Byun Y, Kim BS. Transplantation of heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and antiapoptosis. Tissue Eng Part A 2015; 21:1024-35. [PMID: 25344077 DOI: 10.1089/ten.tea.2014.0022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although islet transplantation has been suggested as an alternative therapy for type 1 diabetes, there are efficiency concerns that are attributed to poor engraftment of transplanted islets. Hypoxic condition and delayed vasculogenesis induce necrosis and apoptosis of the transplanted islets. To overcome these limitations in islet transplantation, heterospheroids (HSs), which consist of rat islet cells (ICs) and human bone marrow-derived mesenchymal stem cells (hMSCs), were transplanted to the kidney and liver. The HSs cultured under the hypoxic condition system exhibited a significant increase in antiapoptotic gene expression in ICs. hMSCs in the HSs secreted angiogenic and antiapoptotic proteins. With the HS system, ICs and hMSCs were successfully located in the same area of the liver after transplantation of HSs through the portal vein, whereas the transplantation of islets and the dissociated hMSCs did not result in localization of transplanted ICs and hMSCs in the same area. HS transplantation resulted in an increase in angiogenesis at the transplantation area and a decrease in the apoptosis of transplanted ICs after transplantation into the kidney subcapsule compared with transplantation of islet cell clusters (ICCs). Insulin production levels of ICs were higher in the HS transplantation group compared with the ICC transplantation group. The HS system may be a more efficient transplantation method than the conventional methods for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Jung-Youn Shin
- 1 School of Chemical and Biological Engineering, Seoul National University , Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun S, Sun M, Zhang Y, Cheng C, Waqas M, Yu H, He Y, Xu B, Wang L, Wang J, Yin S, Chai R, Li H. In vivo overexpression of X-linked inhibitor of apoptosis protein protects against neomycin-induced hair cell loss in the apical turn of the cochlea during the ototoxic-sensitive period. Front Cell Neurosci 2014; 8:248. [PMID: 25278835 PMCID: PMC4166379 DOI: 10.3389/fncel.2014.00248] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/05/2014] [Indexed: 01/30/2023] Open
Abstract
Aminoglycoside-induced cochlear ototoxicity causes hair cell (HC) loss and results in hearing impairment in patients. Previous studies have developed the concept of an ototoxicity-sensitive period during which the cochleae of young mice are more vulnerable to auditory trauma than adults. Here, we compared neomycin-induced ototoxicity at the following four developmental ages in mice: postnatal day (P)1–P7, P8–P14, P15–P21, and P60–P66. We found that when neomycin was administered between P8 and P14, the auditory brainstem response threshold increase was significantly higher at low frequencies and HC loss was significantly greater in the apical turn of the cochlea compared to neomycin administration during the other age ranges. Quantitative real-time PCR (qPCR) data revealed that the expression of apoptotic markers, including Casp3 and Casp9, was significantly higher when neomycin was injected from P8 to P14, while the expression of the X-linked inhibitor of apoptosis protein (XIAP) gene was significantly higher when neomycin was injected from P60 to P66. Because XIAP expression was low during the neomycin-sensitive period, we overexpressed XIAP in mice and found that it could protect against neomycin-induced hearing loss at low frequencies and HC loss in the apical turn of the cochlea. Altogether, our findings demonstrate a protective role for XIAP against neomycin-induced hearing loss and HC loss in the apical turn of the cochlea during the ototoxic-sensitive period, and suggest that apoptotic factors mediate the effect of neomycin during the ototoxic-sensitive period.
Collapse
Affiliation(s)
- Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Mingzhi Sun
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Yanping Zhang
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University Nanjing, China
| | - Muhammad Waqas
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University Nanjing, China
| | - Huiqian Yu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Yingzi He
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Bo Xu
- Anesthesiology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Lei Wang
- Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan University Shanghai, China ; State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University Shanghai, China
| | - Jian Wang
- Department of Otolaryngology, The Sixth Hospital Affiliated to Shanghai Jiao Tong University Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology, The Sixth Hospital Affiliated to Shanghai Jiao Tong University Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University Nanjing, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan University Shanghai, China ; State Key Laboratory of Medical Neurobiology, Fudan University Shanghai, China
| |
Collapse
|
27
|
Fotino C, Molano RD, Ricordi C, Pileggi A. Transdisciplinary approach to restore pancreatic islet function. Immunol Res 2014; 57:210-21. [PMID: 24233663 DOI: 10.1007/s12026-013-8437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The focus of our research is on islet immunobiology. We are exploring novel strategies that could be of assistance in the treatment and prevention of type 1 diabetes, as well as in the restoration of metabolic control via transplantation of insulin producing cells (i.e., islet cells). The multiple facets of diabetes and β-cell replacement encompass different complementary disciplines, such as immunology, cell biology, pharmacology, and bioengineering, among others. Through their interaction and integration, a transdisciplinary dimension is needed in order to address and overcome all aspects of the complex puzzle toward a successful clinical translation of a biological cure for diabetes.
Collapse
|
28
|
Figliuzzi M, Bonandrini B, Silvani S, Remuzzi A. Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes. World J Stem Cells 2014; 6:163-172. [PMID: 24772243 PMCID: PMC3999774 DOI: 10.4252/wjsc.v6.i2.163] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Islet cell transplantation has therapeutic potential to treat type 1 diabetes, which is characterized by autoimmune destruction of insulin-producing pancreatic islet β cells. It represents a minimal invasive approach for β cell replacement, but long-term blood control is still largely unachievable. This phenomenon can be attributed to the lack of islet vasculature and hypoxic environment in the immediate post-transplantation period that contributes to the acute loss of islets by ischemia. Moreover, graft failures continue to occur because of immunological rejection, despite the use of potent immunosuppressive agents. Mesenchymal stem cells (MSCs) have the potential to enhance islet transplantation by suppressing inflammatory damage and immune mediated rejection. In this review we discuss the impact of MSCs on islet transplantation and focus on the potential role of MSCs in protecting islet grafts from early graft failure and from autoimmune attack.
Collapse
|
29
|
Lamb M, Laugenour K, Liang O, Alexander M, Foster CE, Lakey JRT. In Vitro Maturation of Viable Islets from Partially Digested Young Pig Pancreas. Cell Transplant 2014; 23:263-72. [DOI: 10.3727/096368912x662372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Isolation of islets from market-sized pigs is costly, with considerable islet losses from fragmentation occurring during isolation and tissue culture. Fetal and neonatal pigs yield insulin unresponsive islet-like cell clusters that become glucose-responsive after extended periods of time. Both issues impact clinical applicability and commercial scale-up. We have focused our efforts on a cost-effective scalable method of isolating viable insulin-responsive islets. Young Yorkshire pigs (mean age 20 days, range 4–30 days) underwent rapid pancreatectomy (<5 min) and partial digestion using low-dose collagenase, followed by in vitro culture at 37°C and 5% CO2 for up to 14 days. Islet viability was assessed using FDA/PI or Newport Green, and function was assessed using a glucose-stimulated insulin release (GSIR) assay. Islet yield was performed using enumeration of dithizonestained aliquots. The young porcine (YP) islet yield at dissociation was 12.6 ± 2.1 × 103 IEQ (mean ± SEM) per organ and increased to 33.3 ± 6.4 × 103 IEQ after 7 days of in vitro culture. Viability was 97.3 ± 7% at dissociation and remained over 90% viable after 11 days in tissue culture ( n = ns). Glucose responsiveness increased throughout maturation in culture. The stimulation index (SI) of the islets increased from 1.7 ± 2 on culture day 3 to 2.58 ± 0.5 on culture day 7. These results suggest that this method is both efficient and scalable for isolating and maturing insulin-responsive porcine islets in culture.
Collapse
Affiliation(s)
- Morgan Lamb
- Department of Surgery, University of California Irvine, Orange, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Kelly Laugenour
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Ouwen Liang
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | | | - Jonathan R. T. Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
30
|
Hypoxia as a target for tissue specific gene therapy. J Control Release 2013; 172:484-94. [DOI: 10.1016/j.jconrel.2013.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
31
|
Jaroch DB, Lu J, Madangopal R, Stull ND, Stensberg M, Shi J, Kahn JL, Herrera-Perez R, Zeitchek M, Sturgis J, Robinson JP, Yoder MC, Porterfield DM, Mirmira RG, Rickus JL. Mouse and human islets survive and function after coating by biosilicification. Am J Physiol Endocrinol Metab 2013; 305:E1230-40. [PMID: 24002572 PMCID: PMC3840215 DOI: 10.1152/ajpendo.00081.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9-15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice.
Collapse
Affiliation(s)
- David B Jaroch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Early innate inflammatory reaction strongly affects islet engraftment and survival after intrahepatic transplantation. This early immune response is triggered by ischemia-reperfusion injury and instant blood mediated inflammatory reaction (IBMIR) occurring hours and days after islet infusion. Evidence in both mouse model and in human counterpart suggest the involvement of coagulation, complement system, and proinflammatory chemokines/cytokines. Identification and targeting of pathway(s), playing a role as "master regulator(s)" in post-transplant detrimental inflammatory events, is now mandatory to improve islet transplantation success. This review will focus on inflammatory pathway(s) differentially modulated by islet isolation and mainly associated with the early post-transplant events. Moreover, we will take into account anti-inflammatory strategies that have been tested at 2 levels: on the graft, ex vivo, during islet culture (i.e., donor) and/or on the graft site, in vivo, early after islet infusion (i.e., recipient).
Collapse
Affiliation(s)
- Antonio Citro
- Beta Cell Biology Unit, Diabetes Research Institute, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy,
| | | | | |
Collapse
|
33
|
Abstract
Clinical islet transplantation has progressed considerably over the past 12 years, and >750 patients with type 1 diabetes have received islet transplants internationally over this time. Many countries are beginning to accept the transition from research to accepted and funded clinical care, especially for patients with brittle control that cannot be stabilized by more conventional means. Major challenges remain, including the need for more than one donor, and the requirement for potent, chronic immunosuppression. Combining immunological tolerance both to allo- and autoantigens, and a limitless expandable source of stem cell- or xenograft-derived insulin-secreting cells represent remaining hurdles in moving this effective treatment to a potential cure for all those with type 1 or 2 diabetes.
Collapse
Affiliation(s)
- Michael McCall
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | | |
Collapse
|
34
|
Tan BM, Zammit NW, Yam AO, Slattery R, Walters SN, Malle E, Grey ST. Baculoviral inhibitors of apoptosis repeat containing (BIRC) proteins fine-tune TNF-induced nuclear factor κB and c-Jun N-terminal kinase signalling in mouse pancreatic beta cells. Diabetologia 2013; 56:520-32. [PMID: 23250032 DOI: 10.1007/s00125-012-2784-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS For beta cells, contact with TNF-α triggers signalling cascades that converge on pathways important for cell survival and inflammation, specifically nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways. Here, we investigated the function of baculoviral inhibitors of apoptosis repeat containing (BIRC) proteins in regulating TNF signalling cascades. METHODS TNF regulation of Birc genes was studied by mRNA expression and promoter analysis. Birc gene control of cell signalling was studied in beta cell lines, and in islets from Birc2(-/-) and Birc3(-/-) mice, and from Birc3(-/-) Birc2Δ beta cell mice that selectively lack Birc2 and Birc3 (double knockout [DKO]). Islet function was tested by intraperitoneal glucose tolerance test and transplantation. RESULTS TNF-α selectively induced Birc3 in beta cells, which in turn was sufficient to drive and potentiate NF-κB reporter activity. Conversely, Birc3(-/-) islets exhibited delayed TNF-α-induced IκBα degradation with reduced expression of Ccl2 and Cxcl10. DKO islets showed a further delay in IκBα degradation kinetics. Surprisingly, DKO islets exhibited stimulus-independent and TNF-dependent hyperexpression of TNF target genes A20 (also known as Tnfaip3), Icam1, Ccl2 and Cxcl10. DKO islets showed hyperphosphorylation of the JNK-substrate, c-Jun, while a JNK-antagonist prevented increases of Icam1, Ccl2 and Cxcl10 expression. Proteosome blockade of MIN6 cells phenocopied DKO islets. DKO islets showed more rapid loss of glucose homeostasis when challenged with the inflammatory insult of transplantation. CONCLUSIONS/INTERPRETATION BIRC3 provides a feed-forward loop, which, with BIRC2, is required to moderate the normal speed of NF-κB activation. Paradoxically, BIRC2 and BIRC3 act as a molecular brake to rein in activation of the JNK signalling pathway. Thus BIRC2 and BIRC3 fine-tune NF-κB and JNK signalling to ensure transcriptional responses are appropriately matched to extracellular inputs. This control is critical for the beta cell's stress response.
Collapse
Affiliation(s)
- B M Tan
- Gene Therapy and Autoimmunity Group, Immunology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Eldor R, Abel R, Sever D, Sadoun G, Peled A, Sionov R, Melloul D. Inhibition of nuclear factor-κB activation in pancreatic β-cells has a protective effect on allogeneic pancreatic islet graft survival. PLoS One 2013; 8:e56924. [PMID: 23437272 PMCID: PMC3578930 DOI: 10.1371/journal.pone.0056924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/16/2013] [Indexed: 01/22/2023] Open
Abstract
Pancreatic islet transplantation, a treatment for type 1 diabetes, has met significant challenges, as a substantial fraction of the islet mass fails to engraft, partly due to death by apoptosis in the peri- and post-transplantation periods. Previous evidence has suggested that NF-κB activation is involved in cytokine-mediated β-cell apoptosis and regulates the expression of pro-inflammatory and chemokine genes. We therefore sought to explore the effects of β-cell-specific inhibition of NF-κB activation as a means of cytoprotection in an allogeneic model of islet transplantation. To this end, we used islets isolated from the ToI-β transgenic mouse, where NF-κB signalling can specifically and conditionally be inhibited in β-cells by expressing an inducible and non-degradable form of IκBα regulated by the tet-on system. Our results show that β-cell-specific blockade of NF-κB led to a prolonged islet graft survival, with a relative higher preservation of the engrafted endocrine tissue and reduced inflammation. Importantly, a longer delay in allograft rejection was achieved when mice were systemically treated with the proteasome inhibitor, Bortezomib. Our findings emphasize the contribution of NF-κB activation in the allograft rejection process, and suggest an involvement of the CXCL10/IP-10 chemokine. Furthermore, we suggest a potential, readily available therapeutic agent that may temper this process.
Collapse
Affiliation(s)
- Roy Eldor
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Roy Abel
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Dror Sever
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Gad Sadoun
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| | - Ronit Sionov
- Department of Biochemistry and Molecular Biology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Danielle Melloul
- Department of Endocrinology, Hadassah University Hospital, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
36
|
Chae HY, Lee M, Hwang HJ, Kim HA, Kang JG, Kim CS, Lee SJ, Ihm SH. Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets. Transpl Int 2013; 26:443-52. [DOI: 10.1111/tri.12052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/18/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Hee Young Chae
- Department of Internal Medicine; Hallym University College of Medicine; Chuncheon; Korea
| | - Minhyung Lee
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul; Korea
| | - Hyo Jeong Hwang
- Department of Internal Medicine; Hallym University College of Medicine; Chuncheon; Korea
| | - Hyun Ah Kim
- Department of Bioengineering; College of Engineering; Hanyang University; Seoul; Korea
| | - Jun Goo Kang
- Department of Internal Medicine; Hallym University College of Medicine; Chuncheon; Korea
| | - Chul Sik Kim
- Department of Internal Medicine; Hallym University College of Medicine; Chuncheon; Korea
| | - Seong Jin Lee
- Department of Internal Medicine; Hallym University College of Medicine; Chuncheon; Korea
| | - Sung-Hee Ihm
- Department of Internal Medicine; Hallym University College of Medicine; Chuncheon; Korea
| |
Collapse
|
37
|
Shapiro AMJ. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud 2012; 9:385-406. [PMID: 23804275 DOI: 10.1900/rds.2012.9.385] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, 2000 College Plaza, 8215 112th Street, Edmonton AB Canada T6G 2C8.
| |
Collapse
|
38
|
Davis NE, Hamilton D, Fontaine MJ. Harnessing the immunomodulatory and tissue repair properties of mesenchymal stem cells to restore β cell function. Curr Diab Rep 2012; 12:612-22. [PMID: 22869154 PMCID: PMC3767573 DOI: 10.1007/s11892-012-0305-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Islet cell transplantation has therapeutic potential to cure type 1 diabetes (T1D), which is characterized by autoimmune-mediated destruction of insulin-producing β cells. However, current success rates are limited by long-term decline in islet graft function resulting partially from poor revascularization and immune destruction. Mesenchymal stem cells (MSCs) have the potential to enhance islet transplantation and prevent disease progression by a multifaceted approach. MSCs have been shown to be effective at inhibiting inflammatory-mediated immune responses and at promoting tissue regeneration. The immunomodulatory and tissue repairing properties of MSCs may benefit β cell regeneration in the context of T1D. This review will elucidate how MSCs can minimize β cell damage by providing survival signals and simultaneously modulate the immune response by inhibiting activation, and proliferation of several immune cell types. In addition, MSCs can enhance islet graft revascularization, maintaining long-term β cell viability and function.
Collapse
Affiliation(s)
| | - Diana Hamilton
- Department of Pathology Stanford University School of Medicine
| | | |
Collapse
|
39
|
Lazard D, Vardi P, Bloch K. Induction of beta-cell resistance to hypoxia and technologies for oxygen delivery to transplanted pancreatic islets. Diabetes Metab Res Rev 2012; 28:475-84. [PMID: 22389124 DOI: 10.1002/dmrr.2294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypoxia is believed to be a crucial factor involved in cell adaptation to environmental stress. Islet transplantation, especially with immunoisolated islets, interrupts vascular connections, resulting in the substantially decreased delivery of oxygen and nutrients to islet cells. Insulin-producing pancreatic beta cells are known to be highly susceptible to oxygen deficiency. Such susceptibility to hypoxia is believed to be one of the main causes of beta-cell death in the post-transplantation period. Different strategies have been developed for the protection of beta cells against hypoxic injury and for oxygen delivery to transplanted islets. The enhancement of beta-cell defense properties against hypoxia has been achieved using various techniques such as gene transfection, drug supplementation, co-culturing with stem cells and cell selection. Technologies for oxygen delivery to transplanted islets include local neovascularization of subcutaneous sites, electrochemical and photosynthetic oxygen generation, oxygen refuelling of bio-artificial pancreas and whole body oxygenation by using hyperbaric therapy. Progress in the field of oxygen technologies for islet transplantation requires a multidisciplinary approach to explore and optimize the interaction between components of the biological system and different technological processes. This review article focuses mainly on the recently developed strategies for oxygenation and protection from hypoxic injury - to achieve stable and long-term normoglycaemia in diabetic patients with transplanted pancreatic islets.
Collapse
Affiliation(s)
- Daniel Lazard
- Diabetes and Obesity Research Laboratory, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | | | | |
Collapse
|
40
|
Sakata N, Goto M, Yoshimatsu G, Egawa S, Unno M. Utility of co-transplanting mesenchymal stem cells in islet transplantation. World J Gastroenterol 2011; 17:5150-5. [PMID: 22215938 PMCID: PMC3243880 DOI: 10.3748/wjg.v17.i47.5150] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
Islet transplantation is characterized by the transplantation of isolated islets from donor pancreata into a diabetic recipient. Although it is a viable choice in the treatment of insulin dependent diabetes mellitus, most patients (approximately 90%) require insulin five years after transplantation. Recently, the co-transplantation of mesenchymal stem cells (MSCs) and islets in animal studies has revealed the effectiveness of MSCs co-transplantation for improving islet function. The mechanisms underlying the beneficial impact of MSCs include immunomodulation and the promotion of angiogenesis. In this review, we discuss MSCs and how they support improved graft survival and function.
Collapse
|
41
|
Chae HY, Kang JG, Kim CS, Lee SJ, Lee M, Kang D, Jun HS, Ihm SH. Effect of glucagon-like peptide-1 gene expression on graft function in mouse islet transplantation. Transpl Int 2011; 25:242-9. [DOI: 10.1111/j.1432-2277.2011.01394.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Induction of protective genes leads to islet survival and function. J Transplant 2011; 2011:141898. [PMID: 22220267 PMCID: PMC3246756 DOI: 10.1155/2011/141898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/01/2011] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation is the most valid approach to the treatment of type 1 diabetes. However, the function of transplanted islets is often compromised since a large number of β cells undergo apoptosis induced by stress and the immune rejection response elicited by the recipient after transplantation. Conventional treatment for islet transplantation is to administer immunosuppressive drugs to the recipient to suppress the immune rejection response mounted against transplanted islets. Induction of protective genes in the recipient (e.g., heme oxygenase-1 (HO-1), A20/tumor necrosis factor alpha inducible protein3 (tnfaip3), biliverdin reductase (BVR), Bcl2, and others) or administration of one or more of the products of HO-1 to the donor, the islets themselves, and/or the recipient offers an alternative or synergistic approach to improve islet graft survival and function. In this perspective, we summarize studies describing the protective effects of these genes on islet survival and function in rodent allogeneic and xenogeneic transplantation models and the prevention of onset of diabetes, with emphasis on HO-1, A20, and BVR. Such approaches are also appealing to islet autotransplantation in patients with chronic pancreatitis after total pancreatectomy, a procedure that currently only leads to 1/3 of transplanted patients being diabetes-free.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The current review addresses a critical need in clinical islet transplantation, namely the routine transition from the requirement of two to four donors down to one donor per recipient. The ability to achieve single-donor islet transplantation will provide many more islet grafts for treatment of an ever-expanding patient base with type 1 diabetes (T1DM) with poor glycemic control. Avoiding exposure of recipients to multiple different donor human leukocyte associated (HLA) antigens is critical if risk of donor sensitization is to be avoided. This point is important as further islet or pancreas transplants in the remote future or the potential future need for a solid organ kidney transplant may become prohibitive if the recipient is sensitized. RECENT FINDINGS This review addresses systematically all areas that contribute to the success or failure of single-donor islet engraftment, beginning with donor-related factors, optimizing islet isolation and culture conditions, and describes a series of strategies in the treatment of the recipient to prevent inflammation, apoptosis, islet thrombosis, and improve metabolic functional outcome, all of which will lead to improved single-donor engraftment success. SUMMARY If single-donor islet transplantation can be achieved routinely, therapy will become more widely available, more accepted by the transplant community (currently pancreas transplantation requires only a single donor), and this situation will have a major impact overall as an effective treatment option in T1DM.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
44
|
Merani S, McCall M, Pawlick RL, Edgar RL, Davis J, Toso C, Emamaullee JA, Kin T, Shapiro AMJ. AEB071 (sotrastaurin) does not exhibit toxic effects on human islets in vitro, nor after transplantation into immunodeficient mice. Islets 2011; 3:338-43. [PMID: 21934354 DOI: 10.4161/isl.3.6.17766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AEB071 (AEB, sotrastaurin), a specific inhibitor of protein kinase C, reduces T-lymphocyte activation and cytokine release. AEB delays islet allograft rejection in rats and prevents rejection when combined with cyclosporine. Since many immunosuppressive agents have toxic effects on the function of transplanted islets, we investigated whether this was also the case with AEB. Human islets were transplanted into Rag-knockout mice randomly assigned to vehicle control, AEB or sirolimus treatment groups. Non-fasting blood glucose levels, body weight and glucose tolerance was measured in recipients. In a separate experiment, human islets were cultured in the presence of AEB and assayed for glucose dependent insulin secretion and level of β-cell apoptosis. Eighty-six percent of the AEB-treated recipients achieved normoglycemia following transplant (compared with none in sirolimus-treated group, p < 0.05). AEB-treated recipients exhibited similar glucose homeostasis as vehicle-treated controls, which was better than in sirolimus-treated recipients. Human islets cultured with AEB showed similar rates of β-cell apoptosis (p = 0.98 by one-way ANOVA) and glucose stimulated insulin secretion (p = 0.15) as those cultured with vehicle. These results suggest that AEB is not associated with toxic effects on islet engraftment or function. AEB appears to be an appropriate immunosuppressive candidate for clinical trials in islet transplantation.
Collapse
Affiliation(s)
- Shaheed Merani
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Improving islet engraftment by gene therapy. J Transplant 2011; 2011:594851. [PMID: 22132301 PMCID: PMC3202131 DOI: 10.1155/2011/594851] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Islet cell transplantation is currently the only feasible long-term treatment option for patients with type 1 diabetes. However, the majority of transplanted islets experience damage and apoptosis during the isolation process, a blood-mediated inflammatory microenvironment in the portal vein upon islet infusion, hypoxia induced by the low oxygenated milieu, and poor-revascularization-mediated lack of nutrients, and impaired hormone modulation in the local transplanted site. Strategies using genetic modification methods through overexpression or silencing of those proteins involved in promoting new formation of blood vessels or inhibition of apoptosis may overcome these hurdles and improve islet engraftment outcomes.
Collapse
|
46
|
Jahansouz C, Jahansouz C, Kumer SC, Brayman KL. Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation. J Transplant 2011; 2011:247959. [PMID: 22013505 PMCID: PMC3195999 DOI: 10.1155/2011/247959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored.
Collapse
Affiliation(s)
- Cyrus Jahansouz
- School of Medicine, University of Virginia, Charlottesville, VA 22102, USA
| | | | | | | |
Collapse
|
47
|
Wu H, Lu W, Mahato RI. Mesenchymal stem cells as a gene delivery vehicle for successful islet transplantation. Pharm Res 2011; 28:2098-109. [PMID: 21499838 PMCID: PMC3152657 DOI: 10.1007/s11095-011-0434-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/14/2011] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the efficacy of human bone marrow-derived mesenchymal stem cells (hBMSCs) as gene delivery vehicles to simultaneously express human hepatocyte growth factor (HGF) and interleukin 1 receptor antagonist (IL-1Ra) to improve the outcome of islet transplantation. METHODS Morphology and islet-binding affinity of hBMSCs were checked by microscope. The expression of target genes and endogenous genes was determined by ELISA. Protection of islets by hBMSCs was evaluated in vitro by Calcein-AM/Propidium Iodide staining and in vivo by allogeneic islet transplantation study. Function and revascularization of islets was evaluated by immune fluorescence study. RESULTS Non-donor-specific hBMSCs showed strong binding affinity to human islets and protected viability and function. Transduction of hBMSCs with adenovirus encoding human HGF and human IL-1Ra (Adv-hHGF-hIL-1Ra) prior to co-culturing with islets further protected from apoptotic cell death, helped maintain 3D structures and morphology, and enhanced insulin secretion. Transplantation of human islets reconstituted with Adv-hHGF-hIL-1Ra transduced hBMSCs under the kidney capsule of streptozotocin-induced diabetic non-obese diabetic/severe combined immunodeficient (NOD-SCID) mice reversed diabetes by reducing blood glucose levels to ≤ 200 mg/dL for up to 15 weeks and reduced the number of islets required to achieving normoglycemia. Blood glucose levels of mice transplanted with islets alone reversed to ≥ 500 mg/dL 4 weeks post-transplantation. CONCLUSIONS Results indentified hBMSCs as effective gene delivery vehicles to improve the outcome of islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S. Manassas, RM 224, Memphis, Tennessee 38103-3308, USA
| | | | | |
Collapse
|
48
|
Nguidjoe E, Sokolow S, Bigabwa S, Pachera N, D'Amico E, Allagnat F, Vanderwinden JM, Sener A, Manto M, Depreter M, Mast J, Joanny G, Montanya E, Rahier J, Cardozo AK, Eizirik DL, Schurmans S, Herchuelz A. Heterozygous inactivation of the Na/Ca exchanger increases glucose-induced insulin release, β-cell proliferation, and mass. Diabetes 2011; 60:2076-85. [PMID: 21659499 PMCID: PMC3142081 DOI: 10.2337/db10-0924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We have previously shown that overexpression of the Na-Ca exchanger (NCX1), a protein responsible for Ca(2+) extrusion from cells, increases β-cell programmed cell death (apoptosis) and reduces β-cell proliferation. To further characterize the role of NCX1 in β-cells under in vivo conditions, we developed and characterized mice deficient for NCX1. RESEARCH DESIGN AND METHODS Biologic and morphologic methods (Ca(2+) imaging, Ca(2+) uptake, glucose metabolism, insulin release, and point counting morphometry) were used to assess β-cell function in vitro. Blood glucose and insulin levels were measured to assess glucose metabolism and insulin sensitivity in vivo. Islets were transplanted under the kidney capsule to assess their performance to revert diabetes in alloxan-diabetic mice. RESULTS Heterozygous inactivation of Ncx1 in mice induced an increase in glucose-induced insulin release, with a major enhancement of its first and second phase. This was paralleled by an increase in β-cell proliferation and mass. The mutation also increased β-cell insulin content, proinsulin immunostaining, glucose-induced Ca(2+) uptake, and β-cell resistance to hypoxia. In addition, Ncx1(+/-) islets showed a two- to four-times higher rate of diabetes cure than Ncx1(+/+) islets when transplanted into diabetic animals. CONCLUSIONS Downregulation of the Na/Ca exchanger leads to an increase in β-cell function, proliferation, mass, and resistance to physiologic stress, namely to various changes in β-cell function that are opposite to the major abnormalities seen in type 2 diabetes. This provides a unique model for the prevention and treatment of β-cell dysfunction in type 2 diabetes and after islet transplantation.
Collapse
Affiliation(s)
- Evrard Nguidjoe
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Sophie Sokolow
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Serge Bigabwa
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Nathalie Pachera
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Eva D'Amico
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Florent Allagnat
- Laboratory of Neurophysiology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Jean-Marie Vanderwinden
- Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Abdullah Sener
- Institute of Interdisciplinary Research, Institute of Molecular Biology and Medicine (IRIBHM-IBMM), Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Mario Manto
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Marianne Depreter
- Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium
| | - Jan Mast
- Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium
| | - Geraldine Joanny
- Laboratory of Diabetes and Experimental Endocrinology, Institut d'Investigació Biomèdica de Bellvitge–University of Barcelona, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Eduard Montanya
- Laboratory of Diabetes and Experimental Endocrinology, Institut d'Investigació Biomèdica de Bellvitge–University of Barcelona, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Jacques Rahier
- Department of Pathology, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra K. Cardozo
- Laboratory of Neurophysiology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Décio L. Eizirik
- Laboratory of Neurophysiology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - Stéphane Schurmans
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
| | - André Herchuelz
- Laboratory of Pharmacology, Université Libre de Bruxelles, Faculté de Médecine, Brussels, Belgium
- Corresponding author: André Herchuelz,
| |
Collapse
|
49
|
Wu H, Ye Z, Mahato RI. Genetically modified mesenchymal stem cells for improved islet transplantation. Mol Pharm 2011; 8:1458-70. [PMID: 21707070 DOI: 10.1021/mp200135e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of adult stem cells for therapeutic purposes has met with great success in recent years. Among several types of adult stem cells, mesenchymal stem cells (MSCs) derived from bone marrow (BM) and other sources have gained popularity for basic research and clinical applications because of their therapeutic potential in treating a variety of diseases. Because of their tissue regeneration potential and immune modulation effect, MSCs were recently used as cell-based therapy to promote revascularization, increase pancreatic β-cell proliferation, and avoid allograft rejection in islet transplantation. Taking advantage of the recent progress in gene therapy, genetically modified MSCs can further enhance and expand the therapeutic benefit of primary MSCs while retaining their stem-cell-like properties. This review aims to gain a thorough understanding of the current obstacles to successful islet transplantation and discusses the potential role of primary MSCs before or after genetic modification in islet transplantation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | | | | |
Collapse
|
50
|
McCall M, Toso C, Emamaullee J, Pawlick R, Edgar R, Davis J, Maciver A, Kin T, Arch R, Shapiro AMJ. The caspase inhibitor IDN-6556 (PF3491390) improves marginal mass engraftment after islet transplantation in mice. Surgery 2011; 150:48-55. [PMID: 21596412 DOI: 10.1016/j.surg.2011.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/17/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Islet transplantation has become a viable option for selected type 1 diabetic patients; however, a significant portion need to return to exogenous insulin. The predominant factors include impaired islet engraftment and early islet loss. Caspase inhibition is a potent way to improve islet engraftment, but all tested compounds so far have not been clinically relevant. IDN-6556 (PF3491390) has already been used clinically and can be delivered orally with high portal vein concentrations. METHODS Mice were given a marginal mass islet graft of either mouse or human islets and treated with either IDN-6556 (10 or 20 mg/kg ip bid) or vehicle and followed for diabetes reversal. At 1 month post-transplant, mice were subjected to a glucose tolerance test and an assessment of graft mass. In separate experiments, human islets were cultured with IDN-6556 or vehicle to assess for islet survival and viability. RESULTS In both syngeneic mouse islets and human islets transplanted into immunodeficient mice, IDN-6556 (20 mg/kg) given for 7 days post-transplant led to a significantly enhanced rate of diabetes reversal as compared to vehicle. In addition, mice receiving caspase inhibitor displayed improved glucose tolerance and graft survival at the 1-month point. We also found protective effects in vitro for islet viability and marked reduction in apoptosis in vivo. CONCLUSION Taken together, these results demonstrate the effectiveness of caspase inhibition with IDN-6556 on islet transplantation and in particular islet engraftment and survival.
Collapse
Affiliation(s)
- Michael McCall
- Department of Surgery, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|