1
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
2
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
4
|
Yousefzadeh MJ, Huerta Guevara AP, Postmus AC, Flores RR, Sano T, Jurdzinski A, Angelini L, McGowan SJ, O’Kelly RD, Wade EA, Gonzalez-Espada LV, Henessy-Wack D, Howard S, Rozgaja TA, Trussoni CE, LaRusso NF, Eggen BJ, Jonker JW, Robbins PD, Niedernhofer LJ, Kruit JK. Failure to repair endogenous DNA damage in β-cells causes adult-onset diabetes in mice. AGING BIOLOGY 2023; 1:20230015. [PMID: 38124711 PMCID: PMC10732477 DOI: 10.59368/agingbio.20230015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in β-cells can drive β-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in β-cells. Mice harboring Ercc1-deficient β-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in β-cells and a significant loss of β-cell mass. Using electron microscopy, we identified β-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some β-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in β-cells also resulted in loss of β-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient β-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive β-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Ana P. Huerta Guevara
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea C. Postmus
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rafael R. Flores
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Tokio Sano
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Angelika Jurdzinski
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luise Angelini
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Sara J. McGowan
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Ryan D. O’Kelly
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Erin A. Wade
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Lisa V. Gonzalez-Espada
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Danielle Henessy-Wack
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Shannon Howard
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Tania A. Rozgaja
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
| | - Christy E. Trussoni
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bart J.L. Eggen
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W. Jonker
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul D. Robbins
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter FL, 33458, USA
- Department of Biochemistry, Molecular Biology and Biophysics and Institute on the Biology of Aging and Metabolism, University of Minnesota, 6-155 Jackson Hall, 321 Church St., Minneapolis, MN 55455, USA
| | - Janine K. Kruit
- Department of Pediatrics, Section Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Hayden H, Klopf J, Ibrahim N, Knöbl V, Sotir A, Mekis R, Nowikovsky K, Eilenberg W, Neumayer C, Brostjan C. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm. Free Radic Biol Med 2023; 206:94-105. [PMID: 37353175 DOI: 10.1016/j.freeradbiomed.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.
Collapse
Affiliation(s)
- Hubert Hayden
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Klopf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nahla Ibrahim
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Viktoria Knöbl
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Anna Sotir
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ronald Mekis
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Karin Nowikovsky
- Institute of Physiology, Pathophysiology and Biophysics, Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna and University Hospital Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
7
|
Abo-Shady AM, Gheda SF, Ismail GA, Cotas J, Pereira L, Abdel-Karim OH. Antioxidant and Antidiabetic Activity of Algae. Life (Basel) 2023; 13:460. [PMID: 36836817 PMCID: PMC9964347 DOI: 10.3390/life13020460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Currently, algae arouse a growing interest in the pharmaceutical and cosmetic area due to the fact that they have a great diversity of bioactive compounds with the potential for pharmacological and nutraceutical applications. Due to lifestyle modifications brought on by rapid urbanization, diabetes mellitus, a metabolic illness, is the third largest cause of death globally. The hunt for an efficient natural-based antidiabetic therapy is crucial to battling diabetes and the associated consequences due to the unfavorable side effects of currently available antidiabetic medications. Finding the possible advantages of algae for the control of diabetes is crucial for the creation of natural drugs. Many of algae's metabolic processes produce bioactive secondary metabolites, which give algae their diverse chemical and biological features. Numerous studies have demonstrated the antioxidant and antidiabetic benefits of algae, mostly by blocking carbohydrate hydrolyzing enzyme activity, such as α-amylase and α-glucosidase. Additionally, bioactive components from algae can lessen diabetic symptoms in vivo. Therefore, the current review concentrates on the role of various secondary bioactive substances found naturally in algae and their potential as antioxidants and antidiabetic materials, as well as the urgent need to apply these substances in the pharmaceutical industry.
Collapse
Affiliation(s)
| | - Saly Farouk Gheda
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan Ahmed Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - João Cotas
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Omnia Hamdy Abdel-Karim
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
8
|
Stancill JS, Corbett JA. Hydrogen peroxide detoxification through the peroxiredoxin/thioredoxin antioxidant system: A look at the pancreatic β-cell oxidant defense. VITAMINS AND HORMONES 2022; 121:45-66. [PMID: 36707143 PMCID: PMC10058777 DOI: 10.1016/bs.vh.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS), such as hydrogen peroxide, are formed when molecular oxygen obtains additional electrons, increasing its reactivity. While low concentrations of hydrogen peroxide are necessary for regulation of normal cellular signaling events, high concentrations can be toxic. To maintain this balance between beneficial and deleterious concentrations of hydrogen peroxide, cells utilize antioxidants. Our recent work supports a primary role for peroxiredoxin, thioredoxin, and thioredoxin reductase as the oxidant defense pathway used by insulin-producing pancreatic β-cells. These three players work in an antioxidant cycle based on disulfide exchange, with oxidized targets ultimately being reduced using electrons provided by NADPH. Peroxiredoxins also participate in hydrogen peroxide-based signaling through disulfide exchange with redox-regulated target proteins. This chapter will describe the catalytic mechanisms of thioredoxin, thioredoxin reductase, and peroxiredoxin and provide an in-depth look at the roles these enzymes play in antioxidant defense pathways of insulin-secreting β-cells. Finally, we will evaluate the physiological relevance of peroxiredoxin-mediated hydrogen peroxide signaling as a regulator of β-cell function.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
9
|
Stancill JS, Hansen PA, Mathison AJ, Schmidt EE, Corbett JA. Deletion of Thioredoxin Reductase Disrupts Redox Homeostasis and Impairs β-Cell Function. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac034. [PMID: 35873655 PMCID: PMC9301323 DOI: 10.1093/function/zqac034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as mediators of pancreatic β-cell damage. While β-cells are thought to be vulnerable to oxidative damage, we have shown, using inhibitors and acute depletion, that thioredoxin reductase, thioredoxin, and peroxiredoxins are the primary mediators of antioxidant defense in β-cells. However, the role of this antioxidant cycle in maintaining redox homeostasis and β-cell survival in vivo remains unclear. Here, we generated mice with a β-cell specific knockout of thioredoxin reductase 1 (Txnrd1fl/fl; Ins1Cre/+ , βKO). Despite blunted glucose-stimulated insulin secretion, knockout mice maintain normal whole-body glucose homeostasis. Unlike pancreatic islets with acute Txnrd1 inhibition, βKO islets do not demonstrate increased sensitivity to ROS. RNA-sequencing analysis revealed that Txnrd1-deficient β-cells have increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated genes, and altered expression of genes involved in heme and glutathione metabolism, suggesting an adaptive response. Txnrd1-deficient β-cells also have decreased expression of factors controlling β-cell function and identity which may explain the mild functional impairment. Together, these results suggest that Txnrd1-knockout β-cells compensate for loss of this essential antioxidant pathway by increasing expression of Nrf2-regulated antioxidant genes, allowing for protection from excess ROS at the expense of normal β-cell function and identity.
Collapse
Affiliation(s)
| | - Polly A Hansen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Edward E Schmidt
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MN 59717, USA,Redox Biology Laboratory, University of Veterinary Medicine, Budapest 1078, Hungary
| | | |
Collapse
|
10
|
Haghani F, Arabnezhad MR, Mohammadi S, Ghaffarian-Bahraman A. Aloe vera and Streptozotocin-Induced Diabetes Mellitus. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:174-187. [PMID: 35287334 PMCID: PMC8908758 DOI: 10.1007/s43450-022-00231-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is defined as prolonged hyperglycemia, which can harm the eyes, kidneys, and cardiovascular and neurological systems. Herbal agents and their derived supplements have been used for treatment of diabetes mellitus as a part of integrated complementary medicine for centuries. Numerous studies have considered Aloe vera (L.) Burm.f, Xanthorrhoeaceae, as an alternative medicine due to its abundant bioactive chemicals, such as alkaloids, anthraquinones, and enthrones, with therapeutical properties including antioxidant, anti-inflammatory, neuro-protective, and anti-diabetic effects. Aloe vera has received considerable attention in traditional medicine for the treatment of several diseases including diabetes mellitus. Numerous studies have investigated the effects of herbal agents on diabetes mellitus using a streptozotocin-induced diabetic model. Thereby, this article reviews the effects of Aloe vera prescription on streptozotocin-induced diabetes mellitus to provide a clear insight into the role of this medicinal plant in several biological functions, such as antioxidant, wound healing, anti-inflammatory, anti-hyperglycemic, and anti-hyperlipidemic in diabetic models. Graphical abstract ![]()
Collapse
Affiliation(s)
- Fatemeh Haghani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Salman Mohammadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
11
|
Chiorcea-Paquim AM. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC-ECD Determination. Molecules 2022; 27:1620. [PMID: 35268721 PMCID: PMC8911600 DOI: 10.3390/molecules27051620] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG)-the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC-ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal
| |
Collapse
|
12
|
Dinić S, Arambašić Jovanović J, Uskoković A, Mihailović M, Grdović N, Tolić A, Rajić J, Đorđević M, Vidaković M. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management. Front Endocrinol (Lausanne) 2022; 13:1006376. [PMID: 36246880 PMCID: PMC9554708 DOI: 10.3389/fendo.2022.1006376] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
The biggest drawback of a current diabetes therapy is the treatment of the consequences not the cause of the disease. Regardless of the diabetes type, preservation and recovery of functional pancreatic beta cells stands as the biggest challenge in the treatment of diabetes. Free radicals and oxidative stress are among the major mediators of autoimmune destruction of beta cells in type 1 diabetes (T1D) or beta cell malfunction and death provoked by glucotoxicity and insulin resistance in type 2 diabetes (T2D). Additionally, oxidative stress reduces functionality of beta cells in T2D by stimulating their de-/trans-differentiation through the loss of transcription factors critical for beta cell development, maturity and regeneration. This review summarizes up to date clarified redox-related mechanisms involved in regulating beta cell identity and death, underlining similarities and differences between T1D and T2D. The protective effects of natural antioxidants on the oxidative stress-induced beta cell failure were also discussed. Considering that oxidative stress affects epigenetic regulatory mechanisms involved in the regulation of pancreatic beta cell survival and insulin secretion, this review highlighted huge potential of epigenetic therapy. Special attention was paid on application of the state-of-the-art CRISPR/Cas9 technology, based on targeted epigenome editing with the purpose of changing the differentiation state of different cell types, making them insulin-producing with ability to attenuate diabetes. Clarification of the above-mentioned mechanisms could provide better insight into diabetes etiology and pathogenesis, which would allow development of novel, potentially more efficient therapeutic strategies for the prevention or reversion of beta cell loss.
Collapse
|
13
|
Henriksen T, Weimann A, Larsen EL, Poulsen HE. Quantification of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output. Free Radic Biol Med 2021; 172:350-357. [PMID: 34166769 DOI: 10.1016/j.freeradbiomed.2021.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Among markers for oxidative stress urinary excretion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydro-guanosine (8-oxoGuo) have been widely used in controlled and epidemiological studies, and are considered to represent intracellular markers of oxidation of DNA and RNA in the entire organism, respectively. Although being non-invasive, urinary methods have shortcomings. There is no established method for analysis of 8-oxodGuo and 8-oxoGuo in plasma and the few plasma values presented in the literature vary greatly. We here present a liquid chromatography mass spectrometry method with full validation for analysis of 8-oxodGuo and 8-oxoGuo in plasma. Further, we investigated the basis for our previously physiological model and show that a single plasma sample can be used to estimate the 24-h production of 8-oxoGuo, whereas we challenge the use of urinary 8-oxodGuo/creatinine ratio or plasma 8-oxodGuo as measures of oxidative stress.
Collapse
Affiliation(s)
- Trine Henriksen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Emil List Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Health Science Faculty, University of Copenhagen, Denmark; Department of Endochrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
14
|
Lorente L, Martín MM, González-Rivero AF, Pérez-Cejas A, Abreu-González P, Sabatel R, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A, García-Marín V. High Serum DNA and RNA Oxidative Damage in Non-surviving Patients with Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 33:90-96. [PMID: 31598840 DOI: 10.1007/s12028-019-00864-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE One study found higher leukocytes 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in patients with spontaneous intracerebral hemorrhage (ICH) than in healthy subjects due to the oxidation of guanosine from deoxyribonucleic acid (DNA). The objective of this study was to determine whether there is an association between oxidative damage of serum DNA and ribonucleic acid (RNA) and mortality in patients with ICH. METHODS In this observational and prospective study, patients with severe supratentorial ICH (defined as Glasgow Coma Scale < 9) were included from six Intensive Care Units of Spanish hospitals. At the time of severe ICH diagnosis, concentrations in serum of malondialdehyde (as lipid peroxidation biomarker) and of the three oxidized guanine species (OGS) (8-hydroxyguanosine from RNA, 8-hydroxyguanine from DNA or RNA, and 8-OHdG from DNA) were determined. Thirty-day mortality was considered the end-point study. RESULTS Serum levels of OGS (p < 0.001) and malondialdehyde (p = 0.002) were higher in non-surviving (n = 46) than in surviving patients (n = 54). There was an association of serum OGS levels with serum malondialdehyde levels (rho = 0.36; p = 0.001) and 30-day mortality (OR = 1.568; 95% CI 1.183-2.078; p = 0.002). CONCLUSIONS The novel and most important finding of our study was that serum OGS levels in ICH patients are associated with mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, 38010, Santa Cruz de Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Rafael Sabatel
- Department of Radiology, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, 38713, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez no. 17-19, 46004, Valencia, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr, Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Association Between DNA and RNA Oxidative Damage and Mortality of Patients with Traumatic Brain Injury. Neurocrit Care 2021; 32:790-795. [PMID: 31385181 DOI: 10.1007/s12028-019-00800-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The hyperoxidative state in traumatic brain injury (TBI) could produce oxidative damage on the ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). Oxidative damage to nucleic acids in TBI patients has been studied, and higher concentrations of 8-OHdG were found in postmortem brain samples of subjects who died following TBI than in subjects who died from sudden cardiac death. Thus, the objective of this study was to determine whether there is an association between serum DNA and RNA oxidative damage and mortality in TBI patients. METHODS We included patients with severe isolated TBI defined as a lower score than 9 points in the Glasgow Coma Scale (GCS) and lower than 9 points in non-cranial aspects in the Injury Severity Score. We determined serum concentrations of the three oxidized guanine species (OGS) (8-OHdG from DNA, 8-hydroxyguanosine from RNA, and 8-hydroxyguanine from DNA or RNA) and malondialdehyde (to estimate lipid peroxidation) on the day of TBI. Mortality at 30 days was the end-point study. RESULTS We found higher serum concentrations of OGS (p < 0.001) and malondialdehyde (p < 0.001) in non-surviving (n = 34) than in surviving patients (n = 90), an association between serum OGS levels and 30-day mortality after control for CGS, age, and computed tomography findings (OR = 1.397; 95% CI = 1.137-1.716; p = 0.001), and a positive correlation between serum levels of OGS and malondialdehyde (rho = 0.24; p = 0.01). CONCLUSIONS To our knowledge, our study is the largest series reporting data on DNA oxidative damage in TBI patients and is the first reporting DNA and RNA oxidative damage in TBI patients associating lipid peroxidation and mortality.
Collapse
|
16
|
Tumor risk biomarkers and physical activity in type 2 diabetes, patients with colorectal cancer and individuals without diabetes. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Stancill JS, Corbett JA. The Role of Thioredoxin/Peroxiredoxin in the β-Cell Defense Against Oxidative Damage. Front Endocrinol (Lausanne) 2021; 12:718235. [PMID: 34557160 PMCID: PMC8453158 DOI: 10.3389/fendo.2021.718235] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress is hypothesized to play a role in pancreatic β-cell damage, potentially contributing to β-cell dysfunction and death in both type 1 and type 2 diabetes. Oxidative stress arises when naturally occurring reactive oxygen species (ROS) are produced at levels that overwhelm the antioxidant capacity of the cell. ROS, including superoxide and hydrogen peroxide, are primarily produced by electron leak during mitochondrial oxidative metabolism. Additionally, peroxynitrite, an oxidant generated by the reaction of superoxide and nitric oxide, may also cause β-cell damage during autoimmune destruction of these cells. β-cells are thought to be susceptible to oxidative damage based on reports that they express low levels of antioxidant enzymes compared to other tissues. Furthermore, markers of oxidative damage are observed in islets from diabetic rodent models and human patients. However, recent studies have demonstrated high expression of various isoforms of peroxiredoxins, thioredoxin, and thioredoxin reductase in β-cells and have provided experimental evidence supporting a role for these enzymes in promoting β-cell function and survival in response to a variety of oxidative stressors. This mini-review will focus on the mechanism by which thioredoxins and peroxiredoxins detoxify ROS and on the protective roles of these enzymes in β-cells. Additionally, we speculate about the role of this antioxidant system in promoting insulin secretion.
Collapse
|
18
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Gallo S, Raji A, Calle RA, Pong A, Meyer C. The effects of ertugliflozin on β-cell function: Pooled analysis from four phase 3 randomized controlled studies. Diabetes Obes Metab 2020; 22:2267-2275. [PMID: 32700393 DOI: 10.1111/dom.14149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
AIM To identify potential predictors and mediators of changes in β-cell function in response to ertugliflozin treatment in people with type 2 diabetes mellitus (T2DM). PARTICIPANTS AND METHODS Data from patients with T2DM randomized to ertugliflozin (5 or 15 mg; observations from both doses were pooled) or placebo in four phase 3 clinical studies (clinicaltrials.gov: NCT01958671, NCT02226003, NCT02036515, NCT02099110) were pooled and analysed. Change from baseline in β-cell function at week 26 was assessed, and its potential predictors and mediators were analysed using linear and multiple regression analyses. RESULTS Compared with placebo, ertugliflozin improved β-cell function when assessed by mean percent change from baseline in homeostatic model assessment of β-cell function (HOMA-%β; ertugliflozin: 14.7%, 95% confidence interval [CI] 12.3, 17.1; placebo: -0.4%, 95% CI -3.4, 2.5], but not when assessed by change in C-peptide index following a mixed meal tolerance test. Change in HOMA-%β correlated with change from baseline in glycated haemoglobin (HbA1c) and treatment with ertugliflozin, and weakly with change from baseline in body weight. In the ertugliflozin group, change in HOMA-%β correlated with baseline fasting plasma glucose (FPG; r = 0.235, P < 0.001), baseline HbA1c (r = 0.138, P < 0.001), baseline homeostatic model assessment of insulin resistance (HOMA-IR; r = 0.162, P < 0.01), and baseline HOMA-%β (r = -0.321, P < 0.001) in linear regression analyses. Multiple regression analyses yielded similar results. DISCUSSION In people with T2DM, ertugliflozin treatment improved fasting β-cell function, but no effect on postprandial β-cell function was observed in this analysis. Improvement in HOMA-%β was predicted by high baseline FPG, HbA1c, HOMA-IR, and low baseline HOMA-%β, and mediated by ertugliflozin treatment, and improved HbA1c and body weight.
Collapse
Affiliation(s)
- Silvina Gallo
- Clinical Development and Operation, Pfizer Pharma GmbH, Berlin, Germany
| | - Annaswamy Raji
- Global Clinical Development: Diabetes, Endocrinology & Women's Health, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Roberto A Calle
- Internal Medicine Research Unit, Worldwide Research, Development & Medical, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Annpey Pong
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., Kenilworth, New Jersey
| | - Christian Meyer
- Scientific Affairs, Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
20
|
Stancill JS, Happ JT, Broniowska KA, Hogg N, Corbett JA. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1004-R1013. [PMID: 32292063 DOI: 10.1152/ajpregu.00011.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both reactive nitrogen and oxygen species (RNS and ROS), such as nitric oxide, peroxynitrite, and hydrogen peroxide, have been implicated as mediators of pancreatic β-cell damage during the pathogenesis of autoimmune diabetes. While β-cells are thought to be vulnerable to oxidative damage due to reportedly low levels of antioxidant enzymes, such as catalase and glutathione peroxidase, we have shown that they use thioredoxin reductase to detoxify hydrogen peroxide. Thioredoxin reductase is an enzyme that participates in the peroxiredoxin antioxidant cycle. Peroxiredoxins are expressed in β-cells and, when overexpressed, protect against oxidative stress, but the endogenous roles of peroxiredoxins in the protection of β-cells from oxidative damage are unclear. Here, using either glucose oxidase or menadione to continuously deliver hydrogen peroxide, or the combination of dipropylenetriamine NONOate and menadione to continuously deliver peroxynitrite, we tested the hypothesis that β-cells use peroxiredoxins to detoxify both of these reactive species. Either pharmacological peroxiredoxin inhibition with conoidin A or specific depletion of cytoplasmic peroxiredoxin 1 (Prdx1) using siRNAs sensitizes INS 832/13 cells and rat islets to DNA damage and death induced by hydrogen peroxide or peroxynitrite. Interestingly, depletion of peroxiredoxin 2 (Prdx2) had no effect. Together, these results suggest that β-cells use cytoplasmic Prdx1 as a primary defense mechanism against both ROS and RNS.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John T Happ
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Sanchez M, Hoang S, Kannengiesser C, Potier L, Hadjadj S, Marre M, Roussel R, Velho G, Mohammedi K. Leukocyte Telomere Length, DNA Oxidation, and Risk of Lower-Extremity Amputation in Patients With Long-standing Type 1 Diabetes. Diabetes Care 2020; 43:828-834. [PMID: 31988064 DOI: 10.2337/dc19-0973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/01/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Telomere shortening and DNA oxidation are associated with premature vascular aging, which may be involved in lower-extremity amputation (LEA). We sought to investigate whether leukocyte telomere length (LTL) and plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidation, were associated with LEA in subjects with type 1 diabetes at high vascular risk. RESEARCH DESIGN AND METHODS LTL (quantitative PCR) and plasma 8-OHdG concentrations (immunoassay method) were assessed at baseline in the GENEDIAB (Génétique de la Néphropathie Diabétique) type 1 diabetes cohort. Logistic and Cox proportional hazards regression models were fitted to estimate odds ratio (OR) (at baseline) and hazard ratio (HR) (during follow-up), with related 95% CI, by increasing biomarker tertiles (T1, T2, T3). RESULTS Among 478 participants (56% male, mean ± SD age 45 ± 12 years and diabetes duration 29 ± 10 years), 84 patients had LEA at baseline. Baseline history of LEA was associated with shorter LTL (OR for T2 vs. T1 0.62 [95% CI 0.32-1.22] and for T3 vs. T1 0.41 [0.20-0.84]) but not with plasma 8-OHdG (1.16 [0.56-2.39] and 1.24 [0.61-2.55], respectively). New cases of LEA occurred in 34 (12.3%) participants during the 10-year follow-up. LTL were shorter (HR T2 vs. T1 0.25 [95% CI 0.08-0.67] and T3 vs. T1 0.29 [0.10-0.77]) and plasma 8-OHdG higher (2.20 [0.76-7.35] and 3.11 [1.07-10.32]) in participants who developed LEA during follow-up compared with others. No significant interaction was observed between biomarkers on their association with LEA. CONCLUSIONS We report the first independent association between LTL shortening and excess risk of LEA in type 1 diabetes. High plasma 8-OHdG was also associated with incident LEA but partly dependent on cofounding variables.
Collapse
Affiliation(s)
- Manuel Sanchez
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France .,UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Geriatric Medicine, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Sophie Hoang
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Caroline Kannengiesser
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Genetics, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
| | - Louis Potier
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France.,UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
| | - Samy Hadjadj
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Michel Marre
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France.,UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
| | - Ronan Roussel
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France.,UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique - Hôpitaux de Paris, Bichat Hospital, DHU FIRE, Paris, France
| | - Gilberto Velho
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kamel Mohammedi
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Endocrinology, Diabetes and Nutrition, Hôpital Haut-Lévêque, Pessac, France.,UFR de médecine, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
22
|
Ávila-Escalante ML, Coop-Gamas F, Cervantes-Rodríguez M, Méndez-Iturbide D, Aranda-González II. The effect of diet on oxidative stress and metabolic diseases-Clinically controlled trials. J Food Biochem 2020; 44:e13191. [PMID: 32160647 DOI: 10.1111/jfbc.13191] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is associated with several chronic diseases. It is acknowledged that molecules damaged by reactive oxygen species activate the inflammatory process and that this response increases the production of free radicals. Modifications in a diet can improve or decrease redox state markers. The aim of this revision was to provide an update of clinical controlled trials, to assess changes in diet and markers of oxidative stress in subjects with metabolic diseases. They were investigated randomized controlled intervention studies (RCTs) published in MEDLINE (U.S. National Library of Medicine, National Institutes of Health) that were conducted in subjects with obesity, hypertension, diabetes, or dyslipidemia; with dietary intervention; where markers of oxidative stress have been evaluated and published in the last 5 years. Food antioxidants, hypocaloric diets with loss of adipose tissue, substitution of animal protein by vegetable, and changes in the microbiota improve antioxidant status in people with chronic disease. PRACTICAL APPLICATIONS: Hyperglycemia in diabetes mellitus and adipose tissue in obesity are known to trigger oxidative stress. Oxidative stress, in turn, decreases insulin sensitivity and favors an inflammatory state producing adhesion molecules. Oxidative stress and adhesion molecules, can increase blood pressure and oxidation of lipoproteins, that ultimately could lead to a cerebrovascular event. Consumption of high-antioxidant and polyphenol foods increases plasma antioxidant capacity and decreases oxidative stress markers in people with diabetes, obesity, hypertension, and hypertriglyceridemia. In addition, weight loss caused by caloric restriction with or without exercise increases the endogenous antioxidant capacity. Therefore, it is likely that the combination of a hypocaloric diet with a high content of antioxidants and polyphenols will have a greater effect. Other dietary changes with antioxidant effect, such as the substitution of animal for vegetable protein or the addition of fiber, might be mediated by changes in the microbiota. However, this aspect requires further study.
Collapse
Affiliation(s)
| | - Fibi Coop-Gamas
- Faculty of Medicine, Autonomous University of Yucatan, Yucatan, Mexico
| | | | | | | |
Collapse
|
23
|
Abstract
Redox proteomics is a field of proteomics that is concerned with the characterization of the oxidation state of proteins to gain information about their modulated structure, function, activity, and involvement in different physiological pathways. Oxidative modifications of proteins have been shown to be implicated in normal physiological processes of cells as well as in pathomechanisms leading to the development of cancer, diabetes, neurodegenerative diseases, and some rare hereditary metabolic diseases, like classic galactosemia. Reactive oxygen species generate a variety of reversible and irreversible modifications in amino acid residue side chains and within the protein backbone. These oxidative post-translational modifications (Ox-PTMs) can participate in the activation of signal transduction pathways and mediate the toxicity of harmful oxidants. Thus the application of advanced redox proteomics technologies is important for gaining insights into molecular mechanisms of diseases. Mass-spectrometry-based proteomics is one of the most powerful methods that can be used to give detailed qualitative and quantitative information on protein modifications and allows us to characterize redox proteomes associated with diseases. This Review illustrates the role and biological consequences of Ox-PTMs under basal and oxidative stress conditions by focusing on protein carbonylation and S-glutathionylation, two abundant modifications with an impact on cellular pathways that have been intensively studied during the past decade.
Collapse
Affiliation(s)
- Atef Mannaa
- Borg AlArab Higher Institute of Engineering and Technology , New Borg AlArab City , Alexandria , Egypt
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty , University of Cologne , Joseph-Stelzmann-Str. 52 , 50931 Cologne , Germany
| |
Collapse
|
24
|
The Effect of the Chronic Administration of DPP4-Inhibitors on Systemic Oxidative Stress in Rats with Diabetes Type 2. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2019-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Type 2 diabetes (T2DM) is characterized by well-preserved insulin secretion; however, the surrounding tissue is insensitive to insulin, resulting in increased blood glucose level due to the inability of tissues to convert glucose into energy. As a result of chronic non-regulation of glucose levels and high daily fluctuations in the blood, the micro- and macrovascular complications occur in these patients. Complications develop through two main mechanisms: induction of oxidative stress and innate immunity. In this regard, the aim of this study was to examine the effect of four week administration of DPP4 inhibitors (saxagliptin, sitagliptin and vildagliptin) to the parameters of oxidative stress and antioxidant defense in the group of rats with diabetes type 2 (T2DM). Sixty Wistar albino rats were divided randomly into 5 groups: group I: control healthy group; group II: rats with diabetes type 2; group III: rats with diabetes type 2 treated with 0.6 mg/kg of sitagliptin; group IV: rats with diabetes type 2 treated with 0.45 mg/kg of saxagliptin, group V: rats with diabetes type 2 treated with 9 mg/kg vildagliptin. The rats from experimental groups were fed with a high-fat diet for 4 weeks and after 6–8 h of starvation received one dose of streptozotocin (STZ) intraperitoneally (25 mg/kg body weight) to induce T2DM. Animals with fasting glucose above 7 mmol / L and insulin over 6 mmol / L were included in the study as rats with T2DM. Upon completion of the experiments, the blood was collected from the anesthetized animals and used for sphectrophotometrical determination of parameters of oxidative stress, and antioxidative defense. T2DM induced significant increase in production of reacitve oxygen species (ROS) (superoxide anion radical and hydrogen peroxide), but additional four-week administration of gliptins induced decrease in ROS values. On the other hand, T2DM induced decrease of nitric oxide, superoxide dismutase, catalaze, and reduced gluthation and concomitant therapy with gliptins induced increase of these parametars, suggesting significant antioxidant potential of this group of drugs.
Collapse
|
25
|
Đorđević M, Grdović N, Mihailović M, Arambašić Jovanović J, Uskoković A, Rajić J, Sinadinović M, Tolić A, Mišić D, Šiler B, Poznanović G, Vidaković M, Dinić S. Centaurium erythraea extract improves survival and functionality of pancreatic beta-cells in diabetes through multiple routes of action. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112043. [PMID: 31252092 DOI: 10.1016/j.jep.2019.112043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centaurium erythraea Rafn (CE) is used as a traditional medicinal plant in Serbia to treat different ailments due to its antidiabetic, antipyretic, antiflatulent and detoxification effects. AIM OF THE STUDY Elucidation of the mechanisms that underlie the antioxidant and pro-survival effects of the CE extract (CEE) in beta-cells and pancreatic islets from streptozotocin (STZ)-treated diabetic rats. MATERIAL AND METHODS Diabetes was induced in rats by multiple applications of low doses of STZ (40 mg/kg intraperitoneally (i.p.), for five consecutive days). CEE (100 mg/kg) was administered orally, in the pre-treated group for two weeks before diabetes induction, during the treatments with STZ and for four weeks after diabetes onset, and in the post-treatment group for four weeks after diabetes induction. The impact of CEE on diabetic islets was estimated by histological and immunohistochemical examination of the pancreas. Molecular mechanisms of the effects of CEE were also analyzed in insulinoma Rin-5F cells treated with STZ (12 mM) and CEE (0.25 mg/mL). Oxidative stress was evaluated by assessing the levels of DNA damage, lipid peroxidation, protein S-glutathionylation and enzymatic activities and expression of CAT, MnSOD, CuZnSOD, GPx and GR in beta-cells. The presence and activities of the redox-sensitive and islet-enriched regulatory proteins were also analyzed. RESULTS Treatment with CEE ameliorated the insulin level and glycemic control in STZ-induced diabetic rats by improving the structural and functional properties of pancreatic islets through multiple routes of action. The disturbance of islet morphology and islet cell contents in diabetes was reduced by the CEE treatment and was associated with a protective effect of CEE on the levels of insulin, GLUT-2 and p-Akt in diabetic islets. The antioxidant effect of CEE on STZ-treated beta-cells was displayed as reduced DNA damage, lipid peroxidation, protein S-glutathionylation and alleviation of STZ-induced disruption in MnSOD, CuZnSOD and CAT enzyme activities. The oxidative stress-induced disturbance of the transcriptional regulation of CAT, MnSOD, CuZnSOD, GPx and GR enzymes in beta-cells was improved after the CEE treatment, and was observed as readjustment of the presence and activities of redox-sensitive NFκB-p65, FOXO3A, Sp1 and Nrf-2 transcription factors. The observed CEE-mediated induction of proliferative and pro-survival pathways and insulin expression/secretion after STZ-induced oxidative stress in beta-cells could be partially attributed to a fine-tuned modulation of the activities of pro-survival Akt, ERK and p38 kinases and islet-enriched Pdx-1 and MafA regulatory factors. CONCLUSIONS The results of this study provide evidence that CEE improves the structural and functional properties of pancreatic beta-cells by correcting the endogenous antioxidant regulatory mechanisms and by promoting proliferative and pro-survival pathways in beta-cells.
Collapse
Affiliation(s)
- Miloš Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Marija Sinadinović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Branislav Šiler
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
26
|
Lorente L, Martín MM, González-Rivero AF, Pérez-Cejas A, Abreu-González P, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Alvarez-Castillo A, Jiménez A, García-Marín V. DNA and RNA oxidative damage are associated to mortality in patients with cerebral infarction. Med Intensiva 2019; 45:35-41. [PMID: 31492477 DOI: 10.1016/j.medin.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/07/2019] [Accepted: 07/14/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Secondary injury due to oxidation may occur during ischemic stroke, possibly leading to oxidative damage to deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Higher blood concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG) (through the oxidation of guanosine from DNA) have been found in ischemic stroke patients than in healthy subjects, and in patients with versus without post-ischemic stroke depression. The present study was carried out to explore the possible association between serum DNA and RNA oxidative damage and mortality in patients with cerebral infarction. METHODS A prospective, multicenter observational study was carried out in the Intensive Care Units of 6 Spanish hospitals. We included patients with severe malignant middle cerebral artery infarction (MMCAI) defined as ischemic changes evidenced by computed tomography in more than 50% of the middle cerebral artery territory and a Glasgow Coma Score (GCS)<9. Serum concentrations of the three oxidized guanine species (OGS) (8-hydroxyguanine from DNA or RNA, 8-hydroxyguanosine from RNA, and 8-OHdG from DNA) on the day of MMCAI diagnosis were determined. The study endpoint was 30-day mortality. RESULTS We found higher serum OGS levels (p<0.001) in non-surviving (n=34) than in surviving patients (n=34). Logistic regression analyses showed serum OGS levels to be associated to 30-day mortality controlling for lactic acid, GCS and platelet count (OR=1.568; 95%CI=1.131-2.174; p=0.01). CONCLUSIONS The novel observation in this study is the association between global serum OGS concentration and mortality in ischemic stroke patients.
Collapse
Affiliation(s)
- L Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - M M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife 38010, Spain
| | - A F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - A Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Tenerife, Spain
| | - P Abreu-González
- Department of Physiology, Faculty of Medicine, University of the La Laguna, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - L Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - M Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - J J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain
| | - J Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain
| | - A Alvarez-Castillo
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - A Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - V García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain
| |
Collapse
|
27
|
Association between DNA and RNA oxidative damage and mortality in septic patients. J Crit Care 2019; 54:94-98. [PMID: 31401543 DOI: 10.1016/j.jcrc.2019.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE DNA and RNA oxidative damage occurs during sepsis. Higher urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels (from oxidation of guanosine from DNA) have been found in non-surviving patients than in surviving septic patients. However, the relation between DNA and RNA oxidative damage and mortality in septic patients has never been published; thus, the objective of this study was to determine the existence of this association. METHODS This prospective and observational study including septic patients was conducted in 8 Spanish Intensive Care Units. Serum concentrations of the three oxidizied guanine species (OGS) (8-OHdG from DNA, 8-hydroxyguanosine from RNA, and 8-hydroxyguanine from DNA or RNA) were determined, and malondialdehyde (to estimate lipid peroxidation) in the diagnosis of sepsis. Mortality at 30 days was the end-point study. RESULTS Non-surviving patients (n = 78) compared to surviving patients (n = 139) showed higher serum concentrations of OGS (p = .004) and malondialdehyde (p < .001). Simultaneously, an association between serum OGS concentrations and mortality in logistic regression analysis was found (OR = 1.105; 95% CI = 1.024-1.193; p = .01), and a positive correlation between serum levels of OGS and malondialdehyde (rho = 0.21; p = .002). CONCLUSIONS The new findings from our study were that oxidative DNA and RNA damage in septic patients was associated with mortality and lipid peroxidation.
Collapse
|
28
|
Gundala NKV, Das UN. Arachidonic acid-rich ARASCO oil has anti-inflammatory and antidiabetic actions against streptozotocin + high fat diet induced diabetes mellitus in Wistar rats. Nutrition 2019; 66:203-218. [PMID: 31310962 DOI: 10.1016/j.nut.2019.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of arachidonic acid (AA)-rich ARASCO oil on high-fat diet (HFD) + streptozotocin (STZ)-induced diabetes mellitus in male Wistar rats and its possible mechanisms of action. METHODS Male Wistar rats with HFD + STZ-induced diabetes were employed in the present study. ARASCO oil was administered orally for the first 7 d consecutively, followed by once weekly throughout the study (14 wk). At various time points, blood glucose and body weight and oral glucose tolerance tests were measured. At the end of the study, animals were sacrificed to collect plasma and various organs and stored at -80°C. Plasma insulin, tumor necrosis factor-α, interleukin-6, and lipoxin A4 were measured. Expression of the following genes was determined: nuclear factor-κΒ (NF-κB), cyclooxygenase-2 (COX-2), 12-lipoxygenase (12-LOX) in pancreas and lipocalin 2 (LPCLN2) in adipose tissue. Various antioxidants were measured in the plasma and other tissues. Area under the curve and insulin sensitivity index were assessed by computing homeostatic model of assessment for insulin resistance, quantitative insulin check index, Matsuda, and Belfiore indices. RESULTS ARASCO oil treatment decreased hyperglycemia, restored insulin sensitivity, suppressed inflammation, enhanced plasma lipoxin A4 levels, and reversed altered antioxidant status to near normal in animals with HFD + STZ-induced diabetes. CONCLUSION These results suggest that ARASCO, a rich source of AA, can prevent HFD + STZ-induced diabetes in Wistar rats owing to its anti-inflammatory action. It remains to be seen whether ARASCO oil is useful in preventing or postponing the development of type 2 diabetes mellitus in humans.
Collapse
Affiliation(s)
- Naveen K V Gundala
- BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, Gayatri Vidya Parishad Hospital, Visakhapatnam, India
| | - Undurti N Das
- BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, Gayatri Vidya Parishad Hospital, Visakhapatnam, India; UND Life Sciences, Battle Ground, Washington, USA.
| |
Collapse
|
29
|
Stancill JS, Broniowska KA, Oleson BJ, Naatz A, Corbett JA. Pancreatic β-cells detoxify H 2O 2 through the peroxiredoxin/thioredoxin antioxidant system. J Biol Chem 2019; 294:4843-4853. [PMID: 30659092 DOI: 10.1074/jbc.ra118.006219] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is thought to promote pancreatic β-cell dysfunction and contribute to both type 1 and type 2 diabetes. Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, are mediators of oxidative stress that arise largely from electron leakage during oxidative phosphorylation. Reports that β-cells express low levels of antioxidant enzymes, including catalase and GSH peroxidases, have supported a model in which β-cells are ill-equipped to detoxify ROS. This hypothesis seems at odds with the essential role of β-cells in the control of metabolic homeostasis and organismal survival through exquisite coupling of oxidative phosphorylation, a prominent ROS-producing pathway, to insulin secretion. Using glucose oxidase to deliver H2O2 continuously over time and Amplex Red to measure extracellular H2O2 concentration, we found here that β-cells can remove micromolar levels of this oxidant. This detoxification pathway utilizes the peroxiredoxin/thioredoxin antioxidant system, as selective chemical inhibition or siRNA-mediated depletion of thioredoxin reductase sensitized β-cells to continuously generated H2O2 In contrast, when delivered as a bolus, H2O2 induced the DNA damage response, depleted cellular energy stores, and decreased β-cell viability independently of thioredoxin reductase inhibition. These findings show that β-cells have the capacity to detoxify micromolar levels of H2O2 through a thioredoxin reductase-dependent mechanism and are not as sensitive to oxidative damage as previously thought.
Collapse
Affiliation(s)
- Jennifer S Stancill
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Katarzyna A Broniowska
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bryndon J Oleson
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Aaron Naatz
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
30
|
Choi SW, Ho CK. Antioxidant properties of drugs used in Type 2 diabetes management: could they contribute to, confound or conceal effects of antioxidant therapy? Redox Rep 2018; 23:1-24. [PMID: 28514939 PMCID: PMC6748682 DOI: 10.1080/13510002.2017.1324381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This is a narrative review, investigating the antioxidant properties of drugs used in the management of diabetes, and discusses whether these antioxidant effects contribute to, confound, or conceal the effects of antioxidant therapy. METHODS A systematic search for articles reporting trials, or observational studies on the antioxidant effect of drugs used in the treatment of diabetes in humans or animals was performed using Web of Science, PubMed, and Ovid. Data were extracted, including data on a number of subjects, type of treatment (and duration) received, and primary and secondary outcomes. The primary outcomes were reporting on changes in biomarkers of antioxidants concentrations and secondary outcomes were reporting on changes in biomarkers of oxidative stress. RESULTS Diabetes Mellitus is a disease characterized by increased oxidative stress. It is often accompanied by a spectrum of other metabolic disturbances, including elevated plasma lipids, elevated uric acid, hypertension, endothelial dysfunction, and central obesity. This review shows evidence that some of the drugs in diabetes management have both in vivo and in vitro antioxidant properties through mechanisms such as scavenging free radicals and upregulating antioxidant gene expression. CONCLUSION Pharmaceutical agents used in the treatment of type 2 diabetes has been shown to exert an antioxidant effect..
Collapse
Affiliation(s)
- Siu Wai Choi
- Department of Anesthesiology, Queen Mary
Hospital, The University of Hong Kong, Pokfulam, Hong
Kong SAR
| | - Cyrus K. Ho
- Faculty of Veterinary and Agricultural
Sciences, The University of Melbourne, Melbourne,
Australia
- Faculty of Health and Social Sciences,
School of Nursing, The Hong Kong Polytechnic University,
Kowloon, Hong Kong SAR
| |
Collapse
|
31
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
32
|
Zou YL, Luo WB, Xie L, Mao XB, Wu C, You ZP. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis. Endocrine 2018; 60:445-457. [PMID: 29564753 DOI: 10.1007/s12020-018-1575-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive. METHODS In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot. RESULTS Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What's more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1. CONCLUSIONS These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.
Collapse
Affiliation(s)
- Yu-Ling Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Wen-Bin Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Lin Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Xin-Bang Mao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Zhi-Peng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
33
|
van Gastel J, Boddaert J, Jushaj A, Premont RT, Luttrell LM, Janssens J, Martin B, Maudsley S. GIT2-A keystone in ageing and age-related disease. Ageing Res Rev 2018; 43:46-63. [PMID: 29452267 DOI: 10.1016/j.arr.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Since its discovery, G protein-coupled receptor kinase-interacting protein 2, GIT2, and its family member, GIT1, have received considerable interest concerning their potential key roles in regulating multiple inter-connected physiological and pathophysiological processes. GIT2 was first identified as a multifunctional protein that is recruited to G protein-coupled receptors (GPCRs) during the process of receptor internalization. Recent findings have demonstrated that perhaps one of the most important effects of GIT2 in physiology concerns its role in controlling multiple aspects of the complex ageing process. Ageing can be considered the most prevalent pathophysiological condition in humans, affecting all tissue systems and acting as a driving force for many common and intractable disorders. The ageing process involves a complex interplay among various deleterious activities that profoundly disrupt the body's ability to cope with damage, thus increasing susceptibility to pathophysiologies such as neurodegeneration, central obesity, osteoporosis, type 2 diabetes mellitus and atherosclerosis. The biological systems that control ageing appear to function as a series of interconnected complex networks. The inter-communication among multiple lower-complexity signaling systems within the global ageing networks is likely coordinated internally by keystones or hubs, which regulate responses to dynamic molecular events through protein-protein interactions with multiple distinct partners. Multiple lines of research have suggested that GIT2 may act as one of these network coordinators in the ageing process. Identifying and targeting keystones, such as GIT2, is thus an important approach in our understanding of, and eventual ability to, medically ameliorate or interdict age-related progressive cellular and tissue damage.
Collapse
|
34
|
Sanchez M, Roussel R, Hadjadj S, Moutairou A, Marre M, Velho G, Mohammedi K. Plasma concentrations of 8-hydroxy-2'-deoxyguanosine and risk of kidney disease and death in individuals with type 1 diabetes. Diabetologia 2018; 61:977-984. [PMID: 29185011 DOI: 10.1007/s00125-017-4510-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Oxidative stress is involved in the pathogenesis of diabetic kidney disease. We evaluated the association between 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of DNA oxidative damage, and end-stage renal disease (ESRD) or death in individuals with type 1 diabetes. METHODS Plasma 8-OHdG concentrations were measured at baseline in participants with type 1 diabetes from GENEDIAB (n = 348) and GENESIS (n = 571) cohorts. A follow-up was conducted in 205 and 499 participants for a mean ± SD duration of 8.9 ± 2.3 years and 5.2 ± 1.9 years, respectively. We tested associations between 8-OHdG concentrations and urinary albumin concentration (UAC) or eGFR at baseline, and the risk of ESRD or all-cause mortality during follow-up. Analyses were performed in pooled cohorts. RESULTS The highest UAC (geometric mean [95% CI]) was observed in the third 8-OHdG tertile (tertile 1, 9 [6, 13] mg/l; tertile 2, 10 [7, 16] mg/l; tertile 3, 16 [10, 25] mg/l; p = 0.36 for tertile 1 vs tertile 2 and p = 0.003 for tertile 3 vs tertile 1) after adjustment for potential confounding covariates. The lowest eGFR (mean [95% CI]) was observed in the third tertile (tertile 1, 87 [82, 93] ml min-1 1.73 m-2; tertile 2, 88 [82, 94] ml min-1 1.73 m-2; tertile 3, 74 [68, 80] ml min-1 1.73 m-2; p = 0.61 for tertile 1 vs tertile 2; p < 0.001 for tertile 3 vs tertile 1). ESRD and death occurred in 48 and 64 individuals, respectively. The HR for ESRD, but not death, was higher in the third tertile than in the first (tertile 2 vs tertile 1, 1.45 [0.45, 5.04], p = 0.54; tertile 3 vs tertile 1, 3.05 [1.16, 9.60], p = 0.02) after multiple adjustments. CONCLUSIONS/INTERPRETATION Higher plasma concentrations of 8-OHdG were independently associated with increased risk of kidney disease in individuals with type 1 diabetes, suggesting that this marker can be used to evaluate the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Manuel Sanchez
- Inserm, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Department of Geriatric Medicine, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ronan Roussel
- Inserm, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, 46 rue Henri Huchard, 75877, Paris Cedex 18, France
| | - Samy Hadjadj
- Department of Endocrinology and Diabetology, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
- Inserm, Research Unit 1082, Poitiers, France
- Université de Poitiers, UFR de Médecine et Pharmacie, Poitiers, France
| | - Abdul Moutairou
- Inserm, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Michel Marre
- Inserm, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- UFR de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Diabetology, Endocrinology and Nutrition, Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, 46 rue Henri Huchard, 75877, Paris Cedex 18, France
| | - Gilberto Velho
- Inserm, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kamel Mohammedi
- Inserm, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France.
- Department of Diabetology, Endocrinology and Nutrition, Assistance Publique Hôpitaux de Paris, Bichat Hospital, DHU FIRE, 46 rue Henri Huchard, 75877, Paris Cedex 18, France.
| |
Collapse
|
35
|
SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus. Gene 2017; 642:542-548. [PMID: 29197589 DOI: 10.1016/j.gene.2017.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/25/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022]
Abstract
Sirtuins (SIRTs) is a family of NAD+ dependent histone deacetylases. SIRT6 takes play in glucose homeostasis, genomic stability and DNA repair. Although increased oxidative DNA damage and decreased DNA repair activity were determined in diabetes mellitus, the possible relation between level of oxidative DNA damage and SIRT6 expression has not been investigated so far. We determined SIRT6 expression and urinary 8-hydroxy deoxyguanosine (8-OHdG) levels, marker of oxidative DNA damage, in cases with prediabetes (PreDM) and type 2 diabetes mellitus (T2DM). SIRT6 gene expression was determined in peripheral blood leukocytes of 70 patients with type 2 diabetes, 50 cases in prediabetic stage and 40 healthy subjects. SIRT6 mRNA levels were determined by quantitive real time- polymerase chain reaction. SIRT6 protein was detected by immunocytochemical staining. Urinary 8-hydroxy deoxyguanosine (8-OHdG) levels were measured by ELISA. There was no significant difference between groups for SIRT6 mRNA level. SIRT6 immunopositivity in T2DM group was lower when compared to those in preDM group (P<0.05). SIRT6 positive cell number in T2DM and preDM groups were lower in comparison to control group (P<0.01 for both), however, when study groups were subdivided into two groups according to their age, the difference between preDM and control groups disappeared in both mid-aged and old-aged groups. The urinary 8-OHdG level was found to be higher in the T2DM group in comparison to preDM group (P<0.05). When age is taken into consideration, urinary 8-OHdG level in the T2DM group was found to be higher than those in both preDM and control groups in the old-aged cases but no significant difference was determined between groups in the mid-aged cases. There was no relation between SIRT6 expression and urinary 8-OHDG excretion. It was concluded that SIRT6 may take play in development of T2DM but this effect seems to be independent from repair of oxidative DNA damage.
Collapse
|
36
|
Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell 2017; 171:321-330.e14. [PMID: 28965763 DOI: 10.1016/j.cell.2017.09.004] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/02/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Abstract
As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue.
Collapse
Affiliation(s)
- Martin Enge
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - H Efsun Arda
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305, USA
| | - Marco Mignardi
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Information Technology, Uppsala University, Sweden and SciLifeLab, Uppsala, Sweden SE-751 05
| | - John Beausang
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering and Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Institute of Cellular Therapeutics, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| |
Collapse
|
37
|
Protective effects of fluoroquinolones on UV-induced damage of cultured ocular cell lines. Eur J Pharmacol 2017; 806:59-66. [DOI: 10.1016/j.ejphar.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
38
|
Abstract
PURPOSE OF REVIEW Oxidative stress describes an imbalance between production and degradation of reactive oxygen species (ROS), which can damage macromolecules. However, ROS may also serve as signaling molecules activating cellular pathways involved in cell proliferation and adaptation. This review describes alterations in metabolic diseases including obesity, insulin resistance, and/or diabetes mellitus as well as responses to acute and chronic physical exercise. RECENT FINDINGS Chronic upregulation of oxidative stress associates with the development of insulin resistance and type 2 diabetes (T2D). While single bouts of exercise can transiently induce oxidative stress, chronic exercise promotes favorable oxidative adaptations with improvements in muscle mitochondrial biogenesis and glucose uptake. Although impaired antioxidant defense fails to scavenge ROS in metabolic diseases, chronic exercising can restore this abnormality. The different metabolic effects are likely due to variability of reactive species and discrepancies in temporal (acute vs. chronic) and local (subcellular distribution) patterns of production.
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Munich, Neuherberg, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, c/o Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
| |
Collapse
|
39
|
Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem 2017; 118:3577-3585. [PMID: 28460155 DOI: 10.1002/jcb.26097] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been considered as a major hallmark for the pathogenesis and development of type 2 diabetes mellitus (T2DM), but still it is debatable whether it is a mere aggregation of inflammatory-induced responses or clinical entity that underlies with various pathophysiological factors. In this regard, the latest studies have shown the increasing trends for the involvement of reactive oxygen species (ROS) and oxidative stress in the pathogenesis and development of T2DM. ROS are highly reactive species and almost all cellular components are chemically changed due to the influence of ROS that ultimately results in the production of lipid peroxidation. Lipid peroxidation is a major causative factor for the development of oxidative stress that leads to overt T2DM and its associated micro- and macro-vascular complications. In this article, we have briefly described the role of various causative factors, transcriptional and metabolic pathways which are responsible to increase the production of oxidative stress, a most pivotal factor for the pathogenesis and development of T2DM. Therefore, we conclude that measurement of oxidative stress biomarkers may be one of the optional tool for the diagnosis and prediction of T2DM. Moreover, the key findings described in this article also provides a new conceptual framework for forthcoming investigations on the role of oxidative stress in pathogenesis of T2DM and drug discovery. J. Cell. Biochem. 118: 3577-3585, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
40
|
DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. Eur J Pharmacol 2017; 816:116-128. [PMID: 28347738 DOI: 10.1016/j.ejphar.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A decline in the function of the macro- and micro-vasculature occurs with ageing. DNA damage also accumulates with ageing, and thus DNA damage and repair have important roles in physiological ageing. Considerable evidence also supports a crucial role for DNA damage in the development and progression of macrovascular disease such as atherosclerosis. These findings support the concept that prolonged exposure to risk factors is a major stimulus for DNA damage within the vasculature, in part via the generation of reactive oxygen species. Genomic instability can directly affect vascular cellular function, leading to cell cycle arrest, apoptosis and premature vascular cell senescence. In contrast, the study of age-related impaired function and DNA damage mechanisms in the microvasculature is limited, although ageing is associated with microvessel endothelial dysfunction. This review examines current knowledge on the role of DNA damage and DNA repair systems in macrovascular disease such as atherosclerosis and microvascular disease. We also discuss the cellular responses to DNA damage to identify possible strategies for prevention and treatment.
Collapse
|
41
|
Fucic A, Guszak V, Keser T, Wagner J, Juretić E, Plavec D, Stojković R, Gornik O, Lauc G. Micronucleus, cell-free DNA, and plasma glycan composition in the newborns of healthy and diabetic mothers. Mutat Res 2017; 815:6-15. [PMID: 28283092 DOI: 10.1016/j.mrgentox.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Diabetes is associated with certain environmental exposures, heritable factors, and metabolic conditions of intrauterine development due to diabetes in the mother. We evaluated genomic damage, cell-free DNA, N-glycosylation of umbilical cord plasma proteins (PG), and nuclear division index (NDI) as possible prognostic biomarkers of health risk in the newborns of mothers with treated pregestational diabetes (NBDM; 22 mothers), compared these parameters with those from newborns of healthy mothers (NBHM; 89 mothers), and associated the results with the mothers' lifestyle in both groups, based on a detailed questionnaire. Genomic damage was estimated by the in vitro micronucleus (MN) assay. NDI was detected on MN slides. Glycans were analyzed by ultra-performance liquid chromatography that separates the plasma N-glycome into 46 glycan peaks. Cell-free DNA was analyzed by real-time PCR. For the association between biomarkers and individual characteristics, generalized linear/nonlinear analysis was performed. No significant difference was found between NBHM and NBDM for cell-free DNA levels. There was no association between cell-free DNA levels and lifestyle. MN frequency was significantly higher in NBDM than in NBHM (median, 0.6 vs. 0.3%, p<0.001). MN frequency and NDI were significantly associated with residence (urban vs. rural). PG differed significantly between NBHM and NBDM (p<0.001). A significant association was found between PG and increase of MN frequency (p<0.001). As both MN frequency and altered N-glycosylation are associated with cancer risk, our study indicates need for further investigations.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Ksaverska c 2, 10000 Zagreb, Croatia.
| | | | - Toma Keser
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | - Emilja Juretić
- University Clinical Centre "Zagreb", Zagreb, Croatia; Medical School, University of Zagreb, Zagreb, Croatia
| | | | | | - Olga Gornik
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
42
|
Wang WX, Luo SB, Xia MM, Mao YH, Zhou XY, Jiang P, Jiang HY, Dai DP, Li CB, Hu GX, Cai JP. Analysis of the oxidative damage of DNA, RNA, and their metabolites induced by hyperglycemia and related nephropathy in Sprague Dawley rats. Free Radic Res 2016; 49:1199-209. [PMID: 25968952 DOI: 10.3109/10715762.2015.1033416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We used a sensitive and accurate method based on isotope dilution high-performance liquid chromatography-triple quadrupole mass spectrometry (ID-LC-MS/MS) to determine the levels of 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dGsn) and 8-oxo-7,8-dihydroguanosin (8-oxo-Gsn) in various tissue specimens, plasma, and urine of hyperglycemic Sprague Dawley rats induced by streptozotocin (STZ). The oxidative DNA and RNA damages were observed in various organs and the amounts of 8-oxo-dGsn and 8-oxo-Gsn derived from DNA and RNA were increased with hyperglycemic status. In contrast to the results of the nucleic acid samples derived from tissues, the levels of 8-oxo-Gsn in urine and plasma were significantly higher compared with that of 8-oxo-dGsn, which most likely reflected the RNA damage that occurs more frequently compared with DNA damage. For the oxidative stress induced by hyperglycemia, 8-oxo-Gsn in urine may be a sensitive biomarker on the basis of the results in urine, plasma, and tissues. In addition, high levels of urinary 8-oxo-Gsn were observed before diabetic microvascular complications. Based on that the 8-oxo-dGsn was associated with diabetic nephropathy and RNA was more vulnerable to oxidative stress compared with DNA. We also propose that 8-oxo-Gsn is correlated with diabetic nephropathy and that 8-oxo-Gsn in urine could be a useful and sensitive marker of diabetic nephropathy.
Collapse
Affiliation(s)
- Wan-Xia Wang
- a Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College , Dongdan, Beijing , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ye X, Jiang R, Zhang Q, Wang R, Yang C, Ma J, Du H. Increased 8-hydroxy-2'-deoxyguanosine in leukocyte DNA from patients with type 2 diabetes and microangiopathy. J Int Med Res 2016; 44:472-82. [PMID: 27009027 PMCID: PMC5536714 DOI: 10.1177/0300060515621530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/13/2015] [Indexed: 01/10/2023] Open
Abstract
Objective To evaluate oxidative damage in leukocytes from patients with type 2 diabetes by examining 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels. Methods Patients with type 2 diabetes and healthy controls were assessed for demographic, clinical and biochemical characteristics. Levels of 8-OHdG in extracted leukocyte DNA were determined by enzyme linked immunosorbent assay. Results Of 108 patients with type 2 diabetes (56 with microangiopathy, 52 without) and 65 healthy controls, leukocyte 8-OHdG levels were higher in patients with type 2 diabetes versus controls (median ± interquartile range [IQR], 3.19 ± 2.17 versus 0.38 ± 1.00 ng/ml), and higher in patients with type 2 diabetes and microangiopathy versus those without microangiopathy (median ± IQR, 3.34 ± 1.87 versus 2.71 ± 2.26 ng/ml). Patients with type 2 diabetes and microangiopathy had higher serum creatinine and urinary albumin levels versus those without microangiopathy. Leukocyte 8-OHdG levels, duration of type 2 diabetes, albuminuria, use of insulin and use of angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers (ARBs) were independently associated with microangiopathy in patients with type 2 diabetes after adjustment for smoking. Conclusions Leukocyte oxidative DNA damage was high in patients with type 2 diabetes and microangiopathy. Presence of microangiopathy was associated with leukocyte 8-OHdG levels, duration of type 2 diabetes, albuminuria and use of ACE inhibitors/ARBs or insulin.
Collapse
Affiliation(s)
- Xiaozhen Ye
- Department of Endocrinology, Jinling Hospital, Southern Medical School, Nanjing, Jiangsu Province, China
| | - Rong Jiang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Qianqian Zhang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Ruifeng Wang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Jian Ma
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Hong Du
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
44
|
Tatsch E, De Carvalho JAM, Hausen BS, Bollick YS, Torbitz VD, Duarte T, Scolari R, Duarte MMMF, Londero SWK, Vaucher RA, Premaor MO, Comim FV, Moresco RN. Oxidative DNA damage is associated with inflammatory response, insulin resistance and microvascular complications in type 2 diabetes. Mutat Res 2015; 782:17-22. [PMID: 26520687 DOI: 10.1016/j.mrfmmm.2015.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
Urinary markers of nucleic acid oxidation may be useful biomarkers in diabetes. It has been demonstrated that T2DM patients have an increased level of oxidative DNA damage; however, it is unclear whether increased DNA damage may be related to a greater degree of inflammation and insulin resistance. Thus, the aim of this present study was to investigate the relation of the impact of oxidative DNA damage, assessed by urinary 8-OHdG, on the levels of inflammatory cytokines, as well as insulin resistance. In addition, we also investigated the diagnostic ability of urinary 8-OHdG in the identification of microvascular complications in T2DM.A case-control study, enrolling 22 healthy controls and 54 subjects with T2DM, was performed to evaluate the relation between oxidative DNA damage and interleukin-6 (IL-6), IL-1,tumor necrosis factor-alpha (TNF-α), IL-10, and Homeostasis Model Assessment (HOMA-IR) index. T2DM patients presented higher urinary 8-OHdG, IL-6, IL-1, TNF-α levels and HOMA-IR, and lower IL-10 levels than control subjects. Moreover, urinary 8-OHdG levels were significantly higher in the group T2DM with microvascular complications when compared to the without complications. The areas under the curve for urinary 8-OHdG and urinary albumin were, respectively, 0.836 (P<0.001) and 0.786 (P=0.002). Thus, urinary 8-OHdG has a slightly higher ability to discriminate microvascular complications in T2DM compared with urinary albumin. It was also demonstrated that T2DM patients with higher median of urinary 8-OHdG had significantly elevated levels of IL-6, TNF-α and HOMA-IR, and decreased IL-10 levels. Our findings showed that T2DM patients with higher urinary 8-OHdG levels showed a greater inflammatory degree and higher insulin resistance. It is possible to speculate that T2DM patients present a cascade of events as increasing metabolic abnormalities such as insulin resistance and inflammatory activation, as well as increased ROS generation factors that may contribute directly to greater oxidative DNA damage.
Collapse
Affiliation(s)
- Etiane Tatsch
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José A M De Carvalho
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; University Hospital, Santa Maria, RS, Brazil
| | - Bruna S Hausen
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Yãnaí S Bollick
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vanessa D Torbitz
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Duarte
- Laboratory of Biogenomic, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rogério Scolari
- Labimed Clinical Chemistry and Medicine Laboratory, Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Labimed Clinical Chemistry and Medicine Laboratory, Santa Maria, RS, Brazil; Department of Health Sciences, Universidade Luterana do Brasil, Santa Maria, RS, Brazil
| | | | - Rodrigo A Vaucher
- Laboratory of Microbiology, Franciscan University Center, UNIFRA, Santa Maria, RS, Brazil
| | - Melissa O Premaor
- Department of Clinical Medicine, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fabio V Comim
- Department of Clinical Medicine, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rafael N Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Center of Health Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
45
|
|
46
|
Effect of walnut oil on hyperglycemia-induced oxidative stress and pro-inflammatory cytokines production. Eur J Nutr 2014; 54:291-9. [PMID: 24817646 DOI: 10.1007/s00394-014-0710-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE In this study, we focused on the effect of hyperglycemia on the generation of reactive oxygen species and on the release of pro-inflammatory cytokines in the human monocytic cell line (U937). We also monitored potential anti-inflammatory effects of walnut oil as well as its protective effect against oxidative damage to biopolymers (DNA and proteins). METHODS We cultured U937 cells under normoglycemic or hyperglycemic conditions for 72 h, in the absence or presence of walnut oil. We detected cell proliferation by the MTT test. To determine the antioxidant status of cells, we used the trolox equivalent antioxidant capacity method. We determined the activity of superoxide dismutase (SOD) spectrophotometrically, the oxidative damage to DNA by an enzyme-modified comet assay, and the oxidative damage to proteins by the marker-protein carbonyls and the levels of pro-inflammatory cytokines by the ELISA method. RESULTS Hyperglycemia reduced the antioxidant capacity of cells, induced oxidative damage to DNA, and increased the release of pro-inflammatory cytokines. It had no effect on cell proliferation, SOD activity, nor oxidative damage to proteins. Walnut oil significantly increased the antioxidant capacity of cells as well as SOD activity on the second and third day of incubation, but had no effect on cell proliferation and showed no protective effect against oxidative damage to DNA and proteins. The walnut oil showed both anti-inflammatory and pro-inflammatory properties depending on its concentration and time of its incubation with the monocytic cell line. CONCLUSION Our in vitro results indicate that walnut oil can diminish oxidative stress with its antioxidant properties. However, we could not confirm its protective effect against oxidative damage to DNA and proteins.
Collapse
|
47
|
8-Oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine concentrations in various human body fluids: implications for their measurement and interpretation. Arch Toxicol 2014; 89:201-10. [PMID: 24792325 DOI: 10.1007/s00204-014-1255-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/15/2014] [Indexed: 12/17/2022]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most investigated product of oxidatively damaged DNA lesion that has been associated with the development of aging, cancer and some degenerative diseases. Here, we present the first liquid chromatography-tandem mass spectrometry method that enables the simultaneous measurement of its repair products in plasma and saliva, namely 8-oxo-7,8-dihydroguanine (8-oxoGua) and 8-oxodGuo. Using this method, we investigated the underlying transport mechanism of the repair products of oxidatively damaged DNA between cellular compartments and biological matrices. Plasma, saliva and urine samples were collected concurrently from 57 healthy subjects. Various deproteinization methods were evaluated, and the precipitants acetonitrile and sodium hydroxide-methanol were, respectively, selected for plasma and saliva samples due to their effect on recovery efficiencies and chromatography. The mean baseline concentrations of 8-oxoGua and 8-oxodGuo in plasma were demonstrated to be 0.21 and 0.016 ng/mL, respectively, while in saliva they were 0.85 and 0.010 ng/mL, respectively. A relatively high concentration of 8-oxoGua was found in saliva with a concentration factor (CF, concentration ratio of saliva to plasma) of 4 as compared to that of 8-oxodGuo (CF: 0.6), implying that 8-oxoGua in plasma may be actively transported to saliva, whereas 8-oxodGuo was most dependent on a passive diffusion. Good correlations between urine and plasma concentrations were observed for 8-oxoGua and 8-oxodGuo, suggesting that blood was a suitable matrix in addition to urine. Significant correlation between 8-oxoGua and 8-oxodGuo in urine was only observed when the concentrations were not corrected for urinary creatinine, raising the issue of applicability of urinary creatinine to adjust 8-oxoGua concentrations.
Collapse
|
48
|
Gyawali P, Richards RS, Uba Nwose E. Erythrocyte morphology in metabolic syndrome. Expert Rev Hematol 2014; 5:523-31. [DOI: 10.1586/ehm.12.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med (Zagreb) 2013; 23:266-80. [PMID: 24266296 PMCID: PMC3900074 DOI: 10.11613/bm.2013.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Diabetes is a complex, heterogeneous condition that has beta cell dysfunction at its core. Many factors (e.g. hyperglycemia/glucotoxicity, lipotoxicity, autoimmunity, inflammation, adipokines, islet amyloid, incretins and insulin resistance) influence the function of pancreatic beta cells. Chronic hyperglycaemia may result in detrimental effects on insulin synthesis/secretion, cell survival and insulin sensitivity through multiple mechanisms: gradual loss of insulin gene expression and other beta-cell specific genes; chronic endoplasmic reticulum stress and oxidative stress; changes in mitochondrial number, morphology and function; disruption in calcium homeostasis. In the presence of hyperglycaemia, prolonged exposure to increased free fatty acids result in accumulation of toxic metabolites in the cells (“lipotoxicity”), finally causing decreased insulin gene expression and impairment of insulin secretion. The rest of the factors/mechanisms which impact on the course of the disease are also discusses in detail. The correct assessment of beta cell function requires a concomitant quantification of insulin secretion and insulin sensitivity, because the two variables are closely interrelated. In order to better understand the fundamental pathogenetic mechanisms that contribute to disease development in a certain individual with diabetes, additional markers could be used, apart from those that evaluate beta cell function. The aim of the paper was to overview the relevant mechanisms/factors that influence beta cell function and to discuss the available methods of its assessment. In addition, clinical considerations are made regarding the therapeutical options that have potential protective effects on beta cell function/mass by targeting various underlying factors and mechanisms with a role in disease progression.
Collapse
Affiliation(s)
- Simona Cernea
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania.
| | | |
Collapse
|
50
|
8-hydroxyguanine in urine and serum as an oxidative stress marker: effects of diabetes and aging. J UOEH 2013; 35:119-27. [PMID: 23774655 DOI: 10.7888/juoeh.35.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
8-Hydroxydeoxyguanosine (8-OH-dG) is the most extensively analyzed oxidative stress marker. Recently, 8-hydroxyguanine (free base: 8-OH-Gua) has been recognized as an oxidative stress marker. To verify the usefulness of 8-OH-Gua, the 8-OH-dG and 8-OH-Gua levels in the urine and the 8-OH-Gua levels in the serum of type 2 diabetic model animals, db/db mice, were measured as oxidative stress markers by a column switching HPLC-system coupled to an electrochemical detector. The urinary 8-OH-Gua and 8-OH-dG levels in db/db mice (7-26 weeks old) were significantly higher than those in control (db/m+) mice. The 8-OH-Gua levels in the serum of the db/db mice were also about 2-fold higher than those in the control mice at 26 weeks of age. In addition, the urinary levels of 8-OH-dG and 8-OH-Gua increased with age (9-26 weeks). A significant positive correlation was obtained between the 8-OH-dG and 8-OH-Gua levels in urine. Although no difference was observed in the 8-OH-dG levels in the liver and kidney DNA between the diabetic and control mice, these results suggested that urinary 8-OH-dG and free base 8-OH-Gua in urine or serum may be good biomarkers of oxidative stress.
Collapse
|