1
|
Mobedi E, Vojgani M, Gharagozlou F, Aghaei T, Aghdas RD, Baghbanani RH, Akbarinejad A, Akbarinejad V. Developmental programming of reproduction in sheep and goat: Association of fraternity size and sex ratio with reproductive performance of ewes and does at the first pregnancy. Anim Reprod Sci 2024; 271:107622. [PMID: 39471706 DOI: 10.1016/j.anireprosci.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Various prenatal factors including the number of littermates (fraternity size) and exposure to male littermate (fraternity sex ratio) during fetal period have been reported to influence postnatal fertility in the mammals. The present research was conducted to study the association of fraternity size and sex ratio with reproductive performance of nulliparous ewes and does. To this end, data associated with number of littermates, exposure to male littermate, birth weight, age at first pregnancy, as well as litter size, sex ratio of offspring, litter weight, and birth weight of female and male offspring after the first parturition retrieved from the database of sheep (n = 536 Romane and 289 Blanche du Massif Central ewes) and goat (n = 174 Alpine and 267 Saanen does) flocks. Fraternity size was negatively associated with birth weight of ewes and does (P < 0.05). Exposure to male littermate during fetal period was associated with younger age at first pregnancy and larger litter size in the does (P < 0.05), but not in the ewes (P > 0.05). Exposure to male littermate during fetal period was positively associated with the odds of male-biased litters in the ewes and does (P < 0.05). Fraternity size was positively associated with litter weight in the does (P < 0.05), but not in the ewes (P > 0.05). In conclusion, the present study showed that the number and sex of littermates during fetal period could impact postnatal reproduction of ewes and does. In this context, some associations, particularly those related to exposure to male littermate during fetal period, were only observed in does, which implicates that the effect of androgens on developmental programming of reproduction may be species-specific.
Collapse
Affiliation(s)
- Emadeddin Mobedi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Faramarz Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Tooba Aghaei
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Darabian Aghdas
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Hemmati Baghbanani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Santos BM, de Souza JPA, Goulart LRDP, Petrine JCP, Alves FHF, Del Bianco-Borges B. Impacts of Anabolic-androgenic steroid supplementation on female health and offspring: Mechanisms, side effects, and medical perspectives. Saudi Pharm J 2024; 32:102205. [PMID: 39697477 PMCID: PMC11653648 DOI: 10.1016/j.jsps.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The increasing prevalence of Anabolic-androgenic steroids (AAS) among women, driven by the pursuit of improved body aesthetics, characterized by higher lean mass and reduced adipose tissue, raises significant health concerns, particularly due to the limited knowledge regarding their effects on the female organism. Prolonged use and/or high doses of AAS are linked to various harmful side effects, including mood changes, psychiatric disorders, voice deepening, clitoromegaly, menstrual irregularities, and cardiovascular complications, prompting medical societies to discourage their widespread use due to insufficient evidence supporting their safety and efficacy. Studies in female rodents have shown that AAS can lead to increased aggression, inflammation, reduced neuronal density, and negative impacts on the myocardium and blood vessels. Additionally, maternal administration of androgens during pregnancy can adversely affect offspring's reproductive, neuronal, and metabolic health, resulting in long-term impairments. The complexity of the mechanisms underlying AAS effects, and their potential genotoxicity remains poorly understood. This review aims to elucidate the various ways in which AAS can impact female physiology and that of their offspring, highlight commonly used anabolic substances, and discuss the positions of medical societies regarding AAS use.
Collapse
Affiliation(s)
- Beatriz Menegate Santos
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jessica Peres Alves de Souza
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Luísa Rodrigues de Paula Goulart
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Jéssica Castro Pereira Petrine
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| | - Fernando Henrique Ferrari Alves
- Institute of Science, Technology and Innovation – Federal University of Lavras, Jardim Califórnia Garden 37950-000, São Sebastião do Paraíso, Minas Gerais, Brazil
| | - Bruno Del Bianco-Borges
- Postgraduate Program in Health Science, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
- Medicine Department, Health Science Faculty, Lavras Federal University - UFLA; University Campus, CP: 3037, Lavras 37203-202, Brazil
| |
Collapse
|
3
|
Ciarelli J, Thangaraj SV, Sun H, Domke S, Alkhatib B, Vyas AK, Gregg B, Sargis RM, Padmanabhan V. Developmental programming: An exploratory analysis of pancreatic islet compromise in female sheep resulting from gestational BPA exposure. Mol Cell Endocrinol 2024; 588:112202. [PMID: 38552943 PMCID: PMC11427076 DOI: 10.1016/j.mce.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and β-cell count, increased glucagon staining and α-cell count, and increased α-cell/β-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.
Collapse
Affiliation(s)
- Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Haijing Sun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Domke
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bashar Alkhatib
- Department of Pediatrics, Washington University, St. Louis, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Robert M Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | | |
Collapse
|
4
|
Akbarinejad V, Cushman RA. Developmental programming of reproduction in the female animal. Anim Reprod Sci 2024; 263:107456. [PMID: 38503204 DOI: 10.1016/j.anireprosci.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Successful reproduction is a cornerstone in food animal industry in order to sustain food production for human. Therefore, various methods focusing on genetics and postnatal environment have been identified and applied to improve fertility in livestock. Yet there is evidence indicating that environmental factors during prenatal and/or neonatal life can also impact the function of reproductive system and fertility in the animals during adulthood, which is called the developmental programming of reproduction. The current review summarizes data associated with the developmental origins of reproduction in the female animals. In this regard, this review focuses on the effect of plane of nutrition, maternal body condition, hypoxia, litter size, maternal age, parity, level of milk production and milk components, lactocrine signaling, stress, thermal stress, exposure to androgens, endocrine disrupting chemicals, mycotoxins and pollutants, affliction with infection and inflammation, and maternal gut microbiota during prenatal and neonatal periods on the neuroendocrine system, puberty, health of reproductive organs and fertility in the female offspring. It is noteworthy that these prenatal and neonatal factors do not always exert their effects on the reproductive performance of the female by compromising the development of organs directly related to reproductive function such as hypothalamus, pituitary, ovary, oviduct and uterus. Since they can impair the development of non-reproductive organs and systems modulating reproductive function as well (e.g., metabolic system and level of milk yield in dairy animals). Furthermore, when these factors affect the epigenetics of the offspring, their adverse effects will not be limited to one generation and can transfer transgenerationally. Hence, pinpointing the factors influencing developmental programming of reproduction and considering them in management of livestock operations could be a potential strategy to help improve fertility in food animals.
Collapse
Affiliation(s)
- Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Robert A Cushman
- USDA, Agricultural Research Service, US. Meat Animal Research Center, Clay Center, NE 68933-0166, United States
| |
Collapse
|
5
|
Saadat N, Pallas B, Ciarelli J, Vyas AK, Padmanabhan V. Gestational testosterone excess early to mid-pregnancy disrupts maternal lipid homeostasis and activates biosynthesis of phosphoinositides and phosphatidylethanolamines in sheep. Sci Rep 2024; 14:6230. [PMID: 38486090 PMCID: PMC10940674 DOI: 10.1038/s41598-024-56886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Gestational hyperandrogenism is a risk factor for adverse maternal and offspring outcomes with effects likely mediated in part via disruptions in maternal lipid homeostasis. Using a translationally relevant sheep model of gestational testosterone (T) excess that manifests maternal hyperinsulinemia, intrauterine growth restriction (IUGR), and adverse offspring cardiometabolic outcomes, we tested if gestational T excess disrupts maternal lipidome. Dimensionality reduction models following shotgun lipidomics of gestational day 127.1 ± 5.3 (term 147 days) plasma revealed clear differences between control and T-treated sheep. Lipid signatures of gestational T-treated sheep included higher phosphoinositides (PI 36:2, 39:4) and lower acylcarnitines (CAR 16:0, 18:0, 18:1), phosphatidylcholines (PC 38:4, 40:5) and fatty acids (linoleic, arachidonic, Oleic). Gestational T excess activated phosphatidylethanolamines (PE) and PI biosynthesis. The reduction in key fatty acids may underlie IUGR and activated PI for the maternal hyperinsulinemia evidenced in this model. Maternal circulatory lipids contributing to adverse cardiometabolic outcomes are modifiable by dietary interventions.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Ciarelli
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University St. Louis, St. Louis, MO, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA.
| |
Collapse
|
6
|
Motta G, Thangaraj SV, Padmanabhan V. Developmental Programming: Impact of Prenatal Exposure to Bisphenol A on Senescence and Circadian Mediators in the Liver of Sheep. TOXICS 2023; 12:15. [PMID: 38250971 PMCID: PMC10818936 DOI: 10.3390/toxics12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of NAFLD. We hypothesized that the prenatal BPA-induced fatty-liver phenotype of female sheep is associated with premature hepatic senescence and disruption in circadian clock genes. The expression of circadian rhythm and aging-associated genes, along with other markers of senescence such as telomere length, mitochondrial DNA copy number, and lipofuscin accumulation, were evaluated in the liver tissue of control and prenatal BPA groups. Prenatal BPA exposure significantly elevated the expression of aging-associated genes GLB1 and CISD2 and induced large magnitude differences in the expression of other aging genes-APOE, HGF, KLOTHO, and the clock genes PER2 and CLOCK-in the liver; the other senescence markers remained unaffected. Prenatal BPA-programmed aging-related transcriptional changes in the liver may contribute to pathological changes in liver function, elucidating the involvement of aging genes in the pathogenesis of liver steatosis.
Collapse
Affiliation(s)
| | | | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48105, USA; (G.M.); (S.V.T.)
| |
Collapse
|
7
|
Saadat N, Ciarelli J, Pallas B, Padmanabhan V, Vyas AK. Sex-Specific Perturbation of Systemic Lipidomic Profile in Newborn Lambs Impacted by Prenatal Testosterone Excess. Endocrinology 2023; 165:bqad187. [PMID: 38060679 PMCID: PMC10750263 DOI: 10.1210/endocr/bqad187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/27/2023]
Abstract
Gestational hyperandrogenism adversely impacts offspring health. Using an ovine model, we found that prenatal testosterone (T) excess adversely affects growth and cardiometabolic outcomes in female offspring and produces sex-specific effects on fetal myocardium. Since lipids are essential to cardiometabolic function, we hypothesized that prenatal T excess leads to sex-specific disruptions in lipid metabolism at birth. Shotgun lipidomics was performed on the plasma samples collected 48 hours after birth from female (F) and male (M) lambs of control (C) and (T) sheep (CF = 4, TF = 7, CM = 5, TM = 10) and data were analyzed by univariate analysis, multivariate dimensionality reduction modeling followed by functional enrichment, and pathway analyses. Biosynthesis of phosphatidylserine was the major pathway responsible for sex differences in controls. Unsupervised and supervised models showed separation between C and T in both sexes with glycerophospholipids and glycerolipids classes being responsible for the sex differences between C and T. T excess increased cholesterol in females while decreasing phosphatidylcholine levels in male lambs. Specifically, T excess: 1) suppressed the phosphatidylethanolamine N-methyltransferase (PEMT) phosphatidylcholine synthesis pathway overall and in TM lambs as opposed to suppression of carnitine levels overall and TF lambs; and 2) activated biosynthesis of ether-linked (O-)phosphatidylethanolamine and O-phosphatidylcholine from O-diacylglycerol overall and in TF lambs. Higher cholesterol levels could underlie adverse cardiometabolic outcomes in TF lambs, whereas suppressed PEMT pathway in TM lambs could lead to endoplasmic reticulum stress and defective lipid transport. These novel findings point to sex-specific effects of prenatal T excess on lipid metabolism in newborn lambs, a precocial ovine model of translational relevance.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Ramamoorthi Elangovan V, Saadat N, Ghnenis A, Padmanabhan V, Vyas AK. Developmental programming: adverse sexually dimorphic transcriptional programming of gestational testosterone excess in cardiac left ventricle of fetal sheep. Sci Rep 2023; 13:2682. [PMID: 36792653 PMCID: PMC9932081 DOI: 10.1038/s41598-023-29212-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Adverse in-utero insults during fetal life alters offspring's developmental trajectory, including that of the cardiovascular system. Gestational hyperandrogenism is once such adverse in-utero insult. Gestational testosterone (T)-treatment, an environment of gestational hyperandrogenism, manifests as hypertension and pathological left ventricular (LV) remodeling in adult ovine offspring. Furthermore, sexual dimorphism is noted in cardiomyocyte number and morphology in fetal life and at birth. This study investigated transcriptional changes and potential biomarkers of prenatal T excess-induced adverse cardiac programming. Genome-wide coding and non-coding (nc) RNA expression were compared between prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30 to 90 of gestation; Term: 147 days) and control ovine LV at day 90 fetus in both sexes. Prenatal T induced differential expression of mRNAs in the LV of female (2 down, 5 up) and male (3 down, 1 up) (FDR < 0.05, absolute log2 fold change > 0.5); pathways analysis demonstrated 205 pathways unique to the female, 382 unique to the male and 23 common pathways. In the male, analysis of ncRNA showed differential regulation of 15 lncRNAs (14 down, 1 up) and 27 snoRNAs (26 down and 1 up). These findings suggest sexual dimorphic modulation of cardiac coding and ncRNA with gestational T excess.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Arpita K Vyas
- College of Medicine, California Northstate University, Elk Grove, CA, USA.
- Department of Pediatrics, Division of Pediatric Endocrinology, School of Medicine, Washington University, St Louis, MO, USA.
| |
Collapse
|
10
|
Puttabyatappa M, Saadat N, Elangovan VR, Dou J, Bakulski K, Padmanabhan V. Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicol Appl Pharmacol 2022; 451:116161. [PMID: 35817127 PMCID: PMC9618258 DOI: 10.1016/j.taap.2022.116161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Gestational Bisphenol A (BPA) exposure leads to peripheral insulin resistance, and hepatic and skeletal muscle oxidative stress and lipotoxicity during adulthood in the female sheep offspring. To investigate transcriptional changes underlying the metabolic outcomes, coding and non-coding (nc) RNA in liver and muscle from 21-month-old control and prenatal BPA-treated (0.5 mg/kg/day from days 30 to 90 of gestation; Term: 147 days) female sheep were sequenced. Prenatal BPA-treatment dysregulated: expression of 194 genes (138 down, 56 up) in liver and 112 genes (32 down, 80 up) in muscle (FDR < 0.05 and abs log2FC > 0.5); 155 common gene pathways including mitochondrial-related genes in both tissues; 1415 gene pathways including oxidative stress and lipid biosynthetic process specifically in the liver (FDR < 0.01); 192 gene pathways including RNA biosynthetic processes in muscle (FDR < 0.01); 77 lncRNA (49 down, 28 up), 14 microRNAs (6 down, 8 up), 127 snoRNAs (63 down, 64 up) and 55 snRNAs (15 down, 40 up) in the liver while upregulating 6 lncRNA and dysregulating 65 snoRNAs (47 down, 18 up) in muscle (FDR < 0.1, abs log2FC > 0.5). Multiple ncRNA correlated with LCORL, MED17 and ZNF41 mRNA in liver but none of them in the muscle. Discriminant analysis identified (p < 0.05) PECAM, RDH11, ABCA6, MIR200B, and MIR30B in liver and CAST, NOS1, FASN, MIR26B, and MIR29A in muscle as gene signatures of gestational BPA exposure. These findings provide mechanistic clues into the development and/or maintenance of the oxidative stress and lipid accumulation and potential for development of mitochondrial and fibrotic defects contributing to the prenatal BPA-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
11
|
Ghnenis A, Padmanabhan V, Vyas A. Sexual dimorphism in testosterone programming of cardiomyocyte development in sheep. Am J Physiol Heart Circ Physiol 2022; 322:H607-H621. [PMID: 35119334 PMCID: PMC8957338 DOI: 10.1152/ajpheart.00691.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Perturbed in utero hormone milieu leads to intrauterine growth retardation (IUGR), a known risk factor for left ventricular (LV) dysfunction later in life. Gestational testosterone (T) excess predisposes offspring to IUGR and leads to LV myocardial disarray and hypertension in adult females. However, the early impact of T excess on LV programming and if it is female specific is unknown. LV tissues were obtained at day 90 gestation from days 30-90 T-treated or control fetuses (n = 6/group/sex) and morphometric and molecular analyses were conducted. Gestational T treatment increased cardiomyocyte number only in female fetuses. T excess upregulated receptor expression of insulin and insulin-like growth factor. Furthermore, in a sex-specific manner, T increased expression of phosphatidylinositol 3-kinase (PI3K) while downregulating phosphorylated mammalian target of rapamycin (pmTOR)-to-mTOR ratio suggestive of compensatory response. T excess 1) upregulated atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), markers of stress and cardiac hypertrophy and 2) upregulated estrogen receptors1 (ESR1) and 2 (ESR2), but not in androgen receptor (AR). Thus, gestational T excess upregulated markers of cardiac stress and hypertrophy in both sexes while inducing cardiomyocyte hyperplasia only in females, likely mediated via insulin and estrogenic programming.NEW & NOTEWORTHY The present study demonstrates sex-specific effects of gestational T excess between days 30 and 90 of gestation on the cardiac phenotype. Furthermore, the sex-specific programming is likely secondary to perturbation in both estrogen and insulin signaling pathways collectively. These findings are supportive of the role of androgen excess to serve as early biomarkers of CVD and could be critical in identifying therapeutic targets for LV hypertrophy and predict long-term CVD.
Collapse
Affiliation(s)
- Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Arpita Vyas
- College of Human Medicine, California Northstate University, Elk Grove, California
| |
Collapse
|
12
|
Saadat N, Puttabyatappa M, Elangovan VR, Dou J, Ciarelli JN, Thompson RC, Bakulski KM, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology 2022; 163:6413684. [PMID: 34718504 PMCID: PMC8667859 DOI: 10.1210/endocr/bqab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance, ectopic lipid accumulation, and insulin signaling disruption in liver and muscle. This study investigated transcriptional changes and transcriptome signature of prenatal T excess-induced hepatic and muscle-specific metabolic disruptions. Genome-wide coding and noncoding (nc) RNA expression in liver and muscle from 21-month-old prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30-90 of gestation; term: 147 days) and control females were compared. Prenatal T (1) induced differential expression of messenger RNAs (mRNAs) in liver (15 down, 17 up) and muscle (66 down, 176 up) (false discovery rate < 0.05, absolute log2 fold change > 0.5); (2) downregulated mitochondrial pathway genes in liver and muscle; (3) downregulated hepatic lipid catabolism and peroxisome proliferator-activated receptor (PPAR) signaling gene pathways; (4) modulated noncoding RNA (ncRNA) metabolic processes gene pathway in muscle; and (5) downregulated 5 uncharacterized long noncoding RNA (lncRNA) in the muscle but no ncRNA changes in the liver. Correlation analysis showed downregulation of lncRNAs LOC114112974 and LOC105607806 was associated with decreased TPK1, and LOC114113790 with increased ZNF470 expression. Orthogonal projections to latent structures discriminant analysis identified mRNAs HADHA and SLC25A45, and microRNAs MIR154A, MIR25, and MIR487B in the liver and ARIH1 and ITCH and miRNAs MIR369, MIR10A, and MIR10B in muscle as potential biomarkers of prenatal T excess. These findings suggest downregulation of mitochondria, lipid catabolism, and PPAR signaling genes in the liver and dysregulation of mitochondrial and ncRNA gene pathways in muscle are contributors of lipotoxic and insulin-resistant hepatic and muscle phenotype. Gestational T excess programming of metabolic dysfunctions involve tissue-specific ncRNA-modulated transcriptional changes.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
- Correspondence: Vasantha Padmanabhan, PhD, MS, Department of Pediatrics, University of Michigan, 7510 MSRB1, 1150 W Medical Center Dr, Ann Arbor, MI 48019-5718, USA.
| |
Collapse
|
13
|
Dou J, Puttabyatappa M, Padmanabhan V, Bakulski KM. Developmental programming: Adipose depot-specific transcriptional regulation by prenatal testosterone excess in a sheep model of PCOS. Mol Cell Endocrinol 2021; 523:111137. [PMID: 33359827 PMCID: PMC7854529 DOI: 10.1016/j.mce.2020.111137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Prenatal testosterone (T)-treated female sheep manifest adipose depot-specific disruptions in inflammatory/oxidative state, adipocyte differentiation and thermogenic adipocyte distribution. The objective of this study was to identify common and divergent gene pathways underlying prenatal T excess-induced adipose depot-specific disruptions. RNA sequencing and network analyses were undertaken with visceral (VAT), subcutaneous (SAT), epicardiac (ECAT) and perirenal (PRAT) adipose tissues from control and prenatal T-treated (100 mg T propionate twice a week from days 30-90 of gestation) female sheep at 21 months of age. Increased expression of adiposity and inflammation-related genes in VAT and genes that promote differentiation of white adipocytes in SAT were congruous with their metabolic roles with SAT favoring uptake/storage of free fatty acids and triglycerides and VAT favoring higher rate of fatty acid turnover and lipolysis. Selective upregulation of cardiac muscle and renoprotection genes in ECAT and PRAT respectively are suggestive of protective paracrine actions. Expression profile in prenatal T-treated sheep paralleled depot-specific dysfunctions with increased proinflammatory genes in VAT, reduced adipocyte differentiation genes in VAT and SAT and increased vascular related gene expression in PRAT. The high expression of genes involved in cardiomyocyte function in ECAT is suggestive of cardioprotective function being maintained to overcome the prenatal T-induced cardiac dysfunction and hypertension. These findings coupled with changes in gene pathways and networks involved in chromatin modification, extracellular matrix, immune and mitochondrial function, and endoplasmic reticulum to Golgi transport suggest that dysregulation in gene expression underlie prenatal T-treatment induced functional differences among adipose depots and manifestation of metabolic dysfunction.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Jackson IJ, Puttabyatappa M, Anderson M, Muralidharan M, Veiga-Lopez A, Gregg B, Limesand S, Padmanabhan V. Developmental programming: Prenatal testosterone excess disrupts pancreatic islet developmental trajectory in female sheep. Mol Cell Endocrinol 2020; 518:110950. [PMID: 32726642 PMCID: PMC7609617 DOI: 10.1016/j.mce.2020.110950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Prenatal testosterone (T)- treated female sheep manifest juvenile insulin resistance, post-pubertal increase in insulin sensitivity and return to insulin resistance during adulthood. Since compensatory hyperinsulinemia is associated with insulin resistance, altered pancreatic islet ontogeny may contribute towards metabolic defects. To test this, pregnant sheep were treated with or without T propionate from days 30-90 of gestation and pancreas collected from female fetuses at gestational day 90 and female offspring at 21 months-of-age. Uterine (maternal) and umbilical (fetal) arterial blood insulin/glucose ratios were determined at gestational day 90. The morphological and functional changes in pancreatic islet were assessed through detection of 1) islet hormones (insulin, glucagon) and apoptotic beta cells at fetal day 90 and 2) islet hormones (insulin, glucagon and somatostatin), and pancreatic lipid and collagen accumulation in adults. At gestational day 90, T-treatment led to maternal but not fetal hyperinsulinemia, decrease in pancreatic/fetal weight ratio and alpha cells, and a trend for increase in beta cell apoptosis in fetal pancreas. Adult prenatal T-treated female sheep manifested 1) significant increase in beta cell size and a tendency for increase in insulin and somatostatin stained area and proportion of beta cells in the islet; and 2) significant increase in pancreatic islet collagen and a tendency towards increased lipid accumulation. Gestational T-treatment induced changes in pancreatic islet endocrine cells during both fetal and adult ages track the trajectory of hyperinsulinemic status with the increase in adult pancreatic collagen accumulation indicative of impending beta cell failure with chronic insulin resistance.
Collapse
Affiliation(s)
- Ian J Jackson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | | | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Meha Muralidharan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sean Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | | |
Collapse
|
15
|
Dou JF, Puttabyatappa M, Padmanabhan V, Bakulski KM. Developmental programming: Transcriptional regulation of visceral and subcutaneous adipose by prenatal bisphenol-A in female sheep. CHEMOSPHERE 2020; 255:127000. [PMID: 32417515 PMCID: PMC7418632 DOI: 10.1016/j.chemosphere.2020.127000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Bisphenol-A (BPA) exposure is widespread and early life exposure is associated with metabolic syndrome. While visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are implicated in the development of metabolic syndrome, the adipose depot-specific effects of prenatal BPA treatment are poorly understood. OBJECTIVE To determine the impact of prenatal BPA exposure on genome-wide gene expression of VAT and SAT depots. METHODS RNA sequencing was performed on SAT and VAT from 21-month old control and prenatal BPA-treated female sheep. Gene expression and pathway differences between SAT and VAT depots with or without prenatal BPA-treatment and the effect of prenatal BPA treatment on each depot were tested. RESULTS There were 179 differentially expressed genes (padjusted < 0.05, log2-fold change >2.5) between SAT and VAT. Development and immune response pathways were upregulated in SAT, while metabolic pathways were upregulated in VAT. These adipose depot-specific genes and pathways were consistent with prenatal BPA-treatment. In SAT, BPA-treatment resulted in differential expression of 108 genes (78% upregulated with BPA) and altered pathways (immune response downregulated, RNA processing upregulated). In contrast in VAT, BPA-treatment differentially expressed 4 genes and upregulated chromatin and RNA processing pathways. CONCLUSION Prenatal BPA-treatment induces adult depot-specific alterations in RNA expression in inflammation, RNA processing, and chromatin pathways, reflecting the diverse roles of SAT and VAT in regulating lipid storage and insulin sensitivity. These adipose tissue transcriptional dysregulations may contribute to the metabolic disorders observed in prenatal BPA-treated female sheep.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Guo X, Puttabyatappa M, Domino SE, Padmanabhan V. Developmental programming: Prenatal testosterone-induced changes in epigenetic modulators and gene expression in metabolic tissues of female sheep. Mol Cell Endocrinol 2020; 514:110913. [PMID: 32562712 PMCID: PMC7397566 DOI: 10.1016/j.mce.2020.110913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance and tissue-specific changes in insulin sensitivity with liver and muscle manifesting insulin resistance accompanied by inflammatory, oxidative and lipotoxic state. In contrast, visceral (VAT) and subcutaneous (SAT) adipose tissues are insulin sensitive in spite of VAT manifesting changes in inflammatory and oxidative state. We hypothesized that prenatal T-induced changes in tissue-specific insulin resistance arise from disrupted lipid storage and metabolism gene expression driven by changes in DNA and histone modifying enzymes. Changes in gene expression were assessed in liver, muscle and 4 adipose (VAT, SAT, epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep. Prenatal T-treatment increased lipid droplet and metabolism genes PPARA and PLIN1 in liver, SREBF and PLIN1 in muscle and showed a trend for decrease in PLIN2 in PRAT. Among epigenetic modifying enzymes, prenatal T-treatment increased expression of 1) DNMT1 in liver and DNMT3A in VAT, PRAT, muscle and liver; 2) HDAC1 in ECAT, HDAC2 in muscle with decrease in HDAC3 in VAT; 3) EP300 in VAT and ECAT; and 4) KDM1A in VAT with increases in liver histone acetylation. Increased lipid storage and metabolism genes in liver and muscle are consistent with lipotoxicity in these tissues with increased histone acetylation likely contributing to increased liver PPARA. These findings are suggestive that metabolic defects in prenatal T-treated sheep may arise from changes in key genes mediated, in part, by tissue-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | - Steven E Domino
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
17
|
Miao X, Luo Q, Xie L, Zhao H, Qin X. Comparative DNA methylome analysis of estrus ewes reveals the complex regulatory pathways of sheep fecundity. Reprod Biol Endocrinol 2020; 18:77. [PMID: 32753034 PMCID: PMC7401212 DOI: 10.1186/s12958-020-00633-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS Sheep are important livestock with variant ovulation rate and fertility. Dorset sheep is a typical breed with low prolificacy, whereas Small Tail Han sheep with FecB mutation (HanBB) have hyperprolificacy. Our previous studies have revealed the gene expression difference between the ovaries from Dorset and HanBB sheep contributes to the difference of fecundity, however, what leads to these gene expression difference remains unclear. DNA methylation, an important epigenetic process, plays a crucial role in gene expression regulation. METHODS In the present study, we constructed a methylated DNA immunoprecipitation combined with high throughput sequencing (MeDIP-seq) strategy to investigate the differentially methylated genes between the Dorset and HanBB ovaries. RESULTS Our findings suggest the genes involved in immune response, branched-chain amino acid metabolism, cell growth and cell junction were differentially methylated in or around the gene body regions. CONCLUSIONS These findings provide prospective insights on the epigenetic basis of sheep fecundity.
Collapse
Affiliation(s)
- Xiangyang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Qingmiao Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingli Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijing Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyu Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
18
|
Puttabyatappa M, Guo X, Dou J, Dumesic D, Bakulski KM, Padmanabhan V. Developmental Programming: Sheep Granulosa and Theca Cell-Specific Transcriptional Regulation by Prenatal Testosterone. Endocrinology 2020; 161:bqaa094. [PMID: 32516392 PMCID: PMC7417881 DOI: 10.1210/endocr/bqaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to polycystic ovarian syndrome women, manifest reduced cyclicity, functional hyperandrogenism, and polycystic ovary (PCO) morphology. The PCO morphology results from increased follicular recruitment and persistence of antral follicles, a consequence of reduced follicular growth and atresia, and is driven by cell-specific gene expression changes that are poorly understood. Therefore, using RNA sequencing, cell-specific transcriptional changes were assessed in laser capture microdissection isolated antral follicular granulosa and theca cells from age 21 months control and prenatal T-treated (100 mg intramuscular twice weekly from gestational day 30 to 90; term: 147 days) sheep. In controls, 3494 genes were differentially expressed between cell types with cell signaling, proliferation, extracellular matrix, immune, and tissue development genes enriched in theca; and mitochondrial, chromosomal, RNA, fatty acid, and cell cycle process genes enriched in granulosa cells. Prenatal T treatment 1) increased gene expression of transforming growth factor β receptor 1 and exosome component 9, and decreased BCL6 corepressor like 1, BCL9 like, and MAPK interacting serine/threonine kinase 2 in both cells, 2) induced differential expression of 92 genes that included increased mitochondrial, ribosome biogenesis, ribonucleoprotein, and ubiquitin, and decreased cell development and extracellular matrix-related pathways in granulosa cells, and 3) induced differential expression of 56 genes that included increased noncoding RNA processing, ribosome biogenesis, and mitochondrial matrix, and decreased transcription factor pathways in theca cells. These data indicate that follicular function is affected by genes involved in transforming growth factor signaling, extracellular matrix, mitochondria, epigenetics, and apoptosis both in a common as well as a cell-specific manner and suggest possible mechanistic pathways for prenatal T treatment-induced PCO morphology in sheep.
Collapse
Affiliation(s)
| | - Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Daniel Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
19
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
20
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
21
|
Zhao GZ, Wei M, Wang YJ, Wang XW, Zhao H, Shen J, Zhao B. Detection of four phenolic oestrogens by a novel electrochemical immunosensor based on a hexestrol monoclonal antibody. RSC Adv 2020; 10:8677-8684. [PMID: 35496517 PMCID: PMC9050000 DOI: 10.1039/d0ra00006j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
A novel HEX monoclonal antibody/MACA/nanogold electrochemical immunosensor was constructed to detect four phenolic oestrogens by a nanosized effect, layer by layer self-assembly and antigen–antibody specific immune technology.
Collapse
Affiliation(s)
- Guo-zheng Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- The School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Meng Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Ya-juan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Xiu-wen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Hu Zhao
- School of Life Science and Technology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biofunctional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
22
|
Puttabyatappa M, Matiller V, Stassi AF, Salvetti NR, Ortega HH, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Ovarian SF1/DAX1/FOXO3. Reprod Sci 2020; 27:342-354. [PMID: 32046386 DOI: 10.1007/s43032-019-00029-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Prenatal testosterone (T) excess, partly via androgenic programming, enhances follicular recruitment/persistence in sheep as in women with polycystic ovarian syndrome (PCOS). Decreased anti-Mullerian hormone (AMH) in early growing and increased AMH in antral follicles may underlie enhanced recruitment and persistence, respectively. Changes in AMH may be mediated by steroidogenic factor 1 (SF1), an enhancer of AMH, and dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX1), that antagonizes SF1. Another mediator could be forkhead box 03 (FOXO3) which regulates follicular recruitment/atresia. To test if androgen-programmed changes in SF1, DAX1, and FOXO3 proteins contribute to follicular defects in prenatal T-treated sheep, ovaries from control, prenatal T-, and dihydrotestosterone (DHT)-treated (days 30-90 of gestation) animals at fetal day (FD) 90, FD140, and 1 and 2 years-of-age were studied. Prenatal T increased DAX1 in granulosa cells of primordial through large preantral and theca cells of large preantral follicles at FD140 and increased SF1 in the granulosa cells of preantral and antral and theca cells of large preantral follicle at 2 years-of-age. Prenatal T increased FOXO3 only in theca cells of preantral (FD140) and antral (2 years-of-age) follicles. Prenatal DHT increased DAX1 in granulosa cells from small preantral follicles at FD140 while increasing SF1 in granulosa cells from antral follicles at 1 year-of-age. These age-dependent changes in DAX1/SF1 partly via androgen-programming are consistent with changes in AMH and may contribute to the enhanced follicular recruitment/persistence, and multifollicular phenotype of prenatal T-treated females and may be of translational relevance to PCOS.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Room 7510 MSRB I, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5718, USA
| | - Valentina Matiller
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Antonela F Stassi
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Natalia R Salvetti
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Hugo H Ortega
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Room 7510 MSRB I, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5718, USA.
| |
Collapse
|
23
|
Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Telleria CM, Motta AB. Prenatally androgenized female rats develop uterine hyperplasia when adult. Mol Cell Endocrinol 2020; 499:110610. [PMID: 31589912 DOI: 10.1016/j.mce.2019.110610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022]
Abstract
Prenatal hyperandrogenization (PH) is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). In this study, we aimed to investigate the impact of prenatal exposure to androgen excess on the uterus when animals reach their adulthood. We found that PH altered the morphology of the uteri that show a hyperplastic morphology with increased total uterine thickness as well as luminal epithelium thickness, with both enhanced and altered distribution of glands as compared with controls. Morphological alterations were associated with an unbalanced homeostasis as assessed by the expression of regulators of cell cycle progression and cell death dynamics. PH also causes disturbances in the cell cycle of the uterine tissue and dysregulates cell death and survival pathways leading to the development of uterine hyperplasia. These findings suggest that PH may have a deleterious effect on the uterus.
Collapse
Affiliation(s)
- Silvana Rocío Ferreira
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina.
| | - Alicia Alejandra Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | - María Florencia Heber
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Carlos Marcelo Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| |
Collapse
|
24
|
AMH: Could It Be Used as A Biomarker for Fertility and Superovulation in Domestic Animals? Genes (Basel) 2019; 10:genes10121009. [PMID: 31817280 PMCID: PMC6947652 DOI: 10.3390/genes10121009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a reliable and easily detectable reproductive marker for the fertility competence of many farm animal species. AMH is also a good predictor of superovulation in cattle, sheep, and mares. In this review, we have summarized the recent findings related to AMH and its predictive reliability related to fertility and superovulation in domestic animals, especially in cattle. We focused on: (1) the dynamics of AMH level from infancy to prepubescence as well as during puberty and adulthood; (2) AMH as a predictor of fertility; (3) the association between antral follicle count (AFC) and plasma AMH level; (4) AMH as a predictor of superovulation; and (5) factors affecting AMH levels in domestic animals, especially cattle. Many factors affect the circulatory levels of AMH when considering the plasma, like nutrition, activity of granulosa cells, disease state and endocrine disruptions during fetal life. Briefly, we concluded that AMH concentrations are static within individuals, and collection of a single dose of blood has become more popular in the field of assisted reproductive technologies (ART). It may act as a potential predictor of fertility, superovulation, and ovarian disorders in domestic animals. However, due to the limited research in domestic animals, this potential of AMH remains underutilized.
Collapse
|
25
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
26
|
Vanky E, Engen Hanem LG, Abbott DH. Children born to women with polycystic ovary syndrome-short- and long-term impacts on health and development. Fertil Steril 2019; 111:1065-1075. [PMID: 31056313 DOI: 10.1016/j.fertnstert.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Maternal PCOS status may negatively influence offspring infant and childhood growth, cardiometabolic health, reproductive health, and neurodevelopment. Current findings across studies are divergent, often because of small numbers of subjects, as well as heterogeneous selection criteria, ethnicities, and definitions of control groups. Coexisting maternal obesity, pregnancy complications, and comorbidity make it difficult to identify the contribution of maternal PCOS. Large, prospective, international, multiethnic studies with standardized investigation protocols and questionnaires on PCOS offspring health and development are needed.
Collapse
Affiliation(s)
- Eszter Vanky
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olav's Hospital, Trondheim, Norway.
| | - Liv Guro Engen Hanem
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
27
|
Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod Toxicol 2019; 85:110-122. [PMID: 30853570 DOI: 10.1016/j.reprotox.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Developmental exposure to endocrine disruptor bisphenol A (BPA) is associated with metabolic defects during adulthood. In sheep, prenatal BPA treatment causes insulin resistance (IR) and adipocyte hypertrophy in the female offspring. To determine if changes in insulin sensitivity mediators (increase in inflammation, oxidative stress, and lipotoxicity and/or decrease in adiponectin) and the intracrine steroidal milieu contributes to these metabolic perturbations, metabolic tissues collected from 21-month-old female offspring born to mothers treated with 0, 0.05, 0.5, or 5 mg/kg/day of BPA were studied. Findings showed prenatal BPA in non-monotonic manner (1) increased oxidative stress; (2) induced lipotoxicity in liver and muscle; and (3) increased aromatase and estrogen receptor expression in visceral adipose tissues. These changes are generally associated with the development of peripheral and tissue level IR and may explain the IR status and adipocyte hypertrophy observed in prenatal BPA-treated female sheep.
Collapse
|
28
|
D'Occhio MJ, Baruselli PS, Campanile G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019; 125:277-284. [DOI: 10.1016/j.theriogenology.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
|
29
|
Abedel-Majed MA, Romereim SM, Davis JS, Cupp AS. Perturbations in Lineage Specification of Granulosa and Theca Cells May Alter Corpus Luteum Formation and Function. Front Endocrinol (Lausanne) 2019; 10:832. [PMID: 31849844 PMCID: PMC6895843 DOI: 10.3389/fendo.2019.00832] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anovulation is a major cause of infertility, and it is the major leading reproductive disorder in mammalian females. Without ovulation, an oocyte is not released from the ovarian follicle to be fertilized and a corpus luteum is not formed. The corpus luteum formed from the luteinized somatic follicular cells following ovulation, vasculature cells, and immune cells is critical for progesterone production and maintenance of pregnancy. Follicular theca cells differentiate into small luteal cells (SLCs) that produce progesterone in response to luteinizing hormone (LH), and granulosa cells luteinize to become large luteal cells (LLCs) that have a high rate of basal production of progesterone. The formation and function of the corpus luteum rely on the appropriate proliferation and differentiation of both granulosa and theca cells. If any aspect of granulosa or theca cell luteinization is perturbed, then the resulting luteal cell populations (SLC, LLC, vascular, and immune cells) may be reduced and compromise progesterone production. Thus, many factors that affect the differentiation/lineage of the somatic cells and their gene expression profiles can alter the ability of a corpus luteum to produce the progesterone critical for pregnancy. Our laboratory has identified genes that are enriched in somatic follicular cells and luteal cells through gene expression microarray. This work was the first to compare the gene expression profiles of the four somatic cell types involved in the follicle-to-luteal transition and to support previous immunofluorescence data indicating theca cells differentiate into SLCs while granulosa cells become LLCs. Using these data and incorporating knowledge about the ways in which luteinization can go awry, we can extrapolate the impact that alterations in the theca and granulosa cell gene expression profiles and lineages could have on the formation and function of the corpus luteum. While interactions with other cell types such as vascular and immune cells are critical for appropriate corpus luteum function, we are restricting this review to focus on granulosa, theca, and luteal cells and how perturbations such as androgen excess and inflammation may affect their function and fertility.
Collapse
Affiliation(s)
| | - Sarah M. Romereim
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Andrea S. Cupp
| |
Collapse
|
30
|
Jonker SS, Louey S, Roselli CE. Cardiac myocyte proliferation and maturation near term is inhibited by early gestation maternal testosterone exposure. Am J Physiol Heart Circ Physiol 2018; 315:H1393-H1401. [PMID: 30095996 PMCID: PMC6297822 DOI: 10.1152/ajpheart.00314.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome is a complex and common disorder in women, and those affected experience an increased burden of cardiovascular disease. It is an intergenerational syndrome, as affected women with high androgen levels during pregnancy "program" fetal development, leading to a similar phenotype in their female offspring. The effect of excess maternal testosterone exposure on fetal cardiomyocyte growth and maturation is unknown. Pregnant ewes received biweekly injections of vehicle (control) or 100 mg testosterone propionate between 30 and 59 days of gestation (early T) or between 60 and 90 days of gestation (late T). Fetuses were delivered at ~135 days of gestation, and their hearts were enzymatically dissociated to measure cardiomyocyte growth (dimensional measurements), maturation (proportion binucleate), and proliferation (nuclear Ki-67 protein). Early T depressed serum insulin-like growth factor 1 and caused intrauterine growth restriction (IUGR; P < 0.0005). Hearts were smaller with early T ( P < 0.001) due to reduced cardiac myocyte maturation ( P < 0.0005) and proliferation ( P = 0.017). Maturation was also lower in male than female fetuses ( P = 0.004) independent of treatment. Late T did not affect cardiac growth. Early excess maternal testosterone exposure depresses circulating insulin-like growth factor 1 near term and causes IUGR in both female and male offspring. These fetuses have small, immature hearts with reduced proliferation, which may reduce cardiac myocyte endowment and predispose to adverse cardiac growth in postnatal life. While excess maternal testosterone exposure leads to polycystic ovary syndrome and cardiovascular disease in female offspring, it may also predispose to complications of IUGR and cardiovascular disease in male offspring. NEW & NOTEWORTHY Using measurements of cardiac myocyte growth and maturation in an ovine model of polycystic ovary syndrome, this study demonstrates that early gestation excess maternal testosterone exposure reduces near-term cardiomyocyte proliferation and maturation in intrauterine growth-restricted female and male fetuses. The effect of testosterone is restricted to exposure during a specific period early in pregnancy, and the effects appear mediated through reduced insulin-like growth factor 1 signaling. Furthermore, male fetuses, regardless of treatment, had fewer mature cardiomyocytes than female fetuses.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Charles E Roselli
- Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
31
|
Puttabyatappa M, Padmanabhan V. Ovarian and Extra-Ovarian Mediators in the Development of Polycystic Ovary Syndrome. J Mol Endocrinol 2018; 61:R161-R184. [PMID: 29941488 PMCID: PMC6192837 DOI: 10.1530/jme-18-0079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women of reproductive age. The origin of PCOS is still not clear and appears to be a function of gene x environment interactions. This review addresses the current knowledge of the genetic and developmental contributions to the etiology of PCOS, the ovarian and extra-ovarian mediators of PCOS and the gaps and key challenges that need to be addressed in the diagnosis, treatment and prevention of PCOS.
Collapse
|
32
|
Abstract
Prenatal exposure to excess steroids or steroid mimics can disrupt the normal developmental trajectory of organ systems, culminating in adult disease. The metabolic system is particularly susceptible to the deleterious effects of prenatal steroid excess. Studies in sheep demonstrate that prenatal exposure to excess native steroids or endocrine-disrupting chemicals with steroidogenic activity, such as bisphenol A, results in postnatal development of numerous cardiometabolic perturbations, including insulin resistance, increased adiposity, altered adipocyte size and distribution, and hypertension. The similarities in the phenotypic outcomes programmed by these different prenatal insults suggest that common mechanisms may be involved, and these may include hormonal imbalances (e.g., hyperandrogenism and hyperinsulinemia), oxidative stress, inflammation, lipotoxicity, and epigenetic alterations. Animal models, including the sheep, provide mechanistic insight into the metabolic repercussions associated with prenatal steroid exposure and represent valuable research tools in understanding human health and disease. Focusing on the sheep model, this review summarizes the cardiometabolic perturbations programmed by prenatal exposure to different native steroids and steroid mimics and discusses the potential mechanisms underlying the development of adverse outcomes.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
33
|
Barrett ES, Hoeger KM, Sathyanarayana S, Abbott DH, Redmon JB, Nguyen RHN, Swan SH. Anogenital distance in newborn daughters of women with polycystic ovary syndrome indicates fetal testosterone exposure. J Dev Orig Health Dis 2018; 9:307-314. [PMID: 29310733 PMCID: PMC5997496 DOI: 10.1017/s2040174417001118] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects ~7% of reproductive age women. Although its etiology is unknown, in animals, excess prenatal testosterone (T) exposure induces PCOS-like phenotypes. While measuring fetal T in humans is infeasible, demonstrating in utero androgen exposure using a reliable newborn biomarker, anogenital distance (AGD), would provide evidence for a fetal origin of PCOS and potentially identify girls at risk. Using data from a pregnancy cohort (The Infant Development and Environment Study), we tested the novel hypothesis that infant girls born to women with PCOS have longer AGD, suggesting higher fetal T exposure, than girls born to women without PCOS. During pregnancy, women reported whether they ever had a PCOS diagnosis. After birth, infant girls underwent two AGD measurements: anofourchette distance (AGD-AF) and anoclitoral distance (AGD-AC). We fit adjusted linear regression models to examine the association between maternal PCOS and girls' AGD. In total, 300 mother-daughter dyads had complete data and 23 mothers reported PCOS. AGD was longer in the daughters of women with a PCOS diagnosis compared with daughters of women with no diagnosis (AGD-AF: β=1.21, P=0.05; AGD-AC: β=1.05, P=0.18). Results were stronger in analyses limited to term births (AGD-AF: β=1.65, P=0.02; AGD-AC: β=1.43, P=0.09). Our study is the first to examine AGD in offspring of women with PCOS. Our results are consistent with findings that women with PCOS have longer AGD and suggest that during PCOS pregnancies, daughters may experience elevated T exposure. Identifying the underlying causes of PCOS may facilitate early identification and intervention for those at risk.
Collapse
Affiliation(s)
- Emily S. Barrett
- Division of Epidemiology and Biostatistics, Environmental and Occupational Health Sciences Institute and Department of Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Kathleen M. Hoeger
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Sheela Sathyanarayana
- Departments of Pediatrics and Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98121; Seattle Children’s Research Institute, Seattle, WA
| | - David H. Abbott
- Departments of Obstetrics and Gynecology and Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53703; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715
| | - J. Bruce Redmon
- Department of Medicine, University of Minnesota, Minneapolis, MN 55454
| | - Ruby H. N. Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454
| | - Shanna H. Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
34
|
Riesche L, Tardif SD, Ross CN, deMartelly VA, Ziegler T, Rutherford JN. The common marmoset monkey: avenues for exploring the prenatal, placental, and postnatal mechanisms in developmental programming of pediatric obesity. Am J Physiol Regul Integr Comp Physiol 2018; 314:R684-R692. [PMID: 29412686 PMCID: PMC6008109 DOI: 10.1152/ajpregu.00164.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 01/20/2023]
Abstract
Animal models have been critical in building evidence that the prenatal experience and intrauterine environment are capable of exerting profound and permanent effects on metabolic health through developmental programming of obesity. However, despite physiological and evolutionary similarities, nonhuman primate models are relatively rare. The common marmoset monkey ( Callithrix jacchus) is a New World monkey that has been used as a biomedical model for well more than 50 years and has recently been framed as an appropriate model for exploring early-life impacts on later health and disease. The spontaneous, multifactorial, and early-life development of obesity in the common marmoset make it a valuable research model for advancing our knowledge about the role of the prenatal and placental mechanisms involved in developmental programming of obesity. This paper provides a brief overview of obesity in the common marmoset, followed by a discussion of marmoset reproduction and placental characteristics. We then discuss the occurrence and utility of variable intrauterine environments in developmental programming in marmosets. Evidence of developmental programming of obesity will be given, and finally, we put forward future directions and innovations for including the placenta in developmental programming of obesity in the common marmoset.
Collapse
Affiliation(s)
- Laren Riesche
- University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | - Toni Ziegler
- Wisconsin National Primate Research Center , Madison, Wisconsin
| | | |
Collapse
|
35
|
Pu Y, Gingrich JD, Steibel JP, Veiga-Lopez A. Sex-Specific Modulation of Fetal Adipogenesis by Gestational Bisphenol A and Bisphenol S Exposure. Endocrinology 2017; 158:3844-3858. [PMID: 28938450 PMCID: PMC5695840 DOI: 10.1210/en.2017-00615] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
The endocrine-disrupting chemical bisphenol A (BPA) increases adipose tissue mass in vivo and promotes adipogenesis in vitro; however, mechanisms explaining BPA's obesogenic effect remain unknown. We investigated the effects of gestational BPA and its analog, bisphenol S (BPS), exposure on the adipogenic differentiation ability of fetal preadipocytes and the role of endoplasmic reticulum stress in regulating this process. Pregnant sheep (n = 7 to 8 per group) mated to the same male were exposed to BPA or BPS from days 30 to 100 of gestation; pregnancies were terminated 20 days later. Adipose tissue was harvested and fetal preadipocytes isolated. Adipose tissue gene expression, adipocyte size, preadipocyte gene expression, adipogenic differentiation, and dynamic expression of genes involved in adipogenesis and endoplasmic reticulum stress were assessed. Gestational BPA enhanced adipogenic differentiation in female, but not male, preadipocytes. The unfolded protein response (UPR) pathway was upregulated in BPA-exposed female preadipocytes supportive of a higher endoplasmic reticulum stress. Increased expression of estradiol receptor 1 and glucocorticoid receptor in female preadipocytes suggests that this may be a potential cause behind the sex-specific effects observed upon BPA exposure. Gestational BPS affected adipogenic terminal differentiation gene expression in male preadipocytes, but not adipogenic differentiation potential. We demonstrate that gestational BPA exposure can modulate the differentiation ability of fetal preadipocytes. UPR upregulation in gestationally BPA-exposed female preadipocytes may contribute to the increased preadipocyte's adipogenic ability. The marked sex-specific effect of BPA highlights higher susceptibility of females to bisphenol A and potentially, a higher risk to develop obesity in adulthood.
Collapse
Affiliation(s)
- Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jeremy D. Gingrich
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Juan P. Steibel
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
36
|
Abbott DH, Rayome BH, Dumesic DA, Lewis KC, Edwards AK, Wallen K, Wilson ME, Appt SE, Levine JE. Clustering of PCOS-like traits in naturally hyperandrogenic female rhesus monkeys. Hum Reprod 2017; 32:923-936. [PMID: 28333238 DOI: 10.1093/humrep/dex036] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Study question Do naturally occurring, hyperandrogenic (≥1 SD of population mean testosterone, T) female rhesus monkeys exhibit traits typical of women with polycystic ovary syndrome (PCOS)? Summary answer Hyperandrogenic female monkeys exhibited significantly increased serum levels of androstenedione (A4), 17-hydroxyprogesterone (17-OHP), estradiol (E2), LH, antimullerian hormone (AMH), cortisol, 11-deoxycortisol and corticosterone, as well as increased uterine endometrial thickness and evidence of reduced fertility, all traits associated with PCOS. What is known already Progress in treating women with PCOS is limited by incomplete knowledge of its pathogenesis and the absence of naturally occurring PCOS in animal models. A female macaque monkey, however, with naturally occurring hyperandrogenism, anovulation and polyfollicular ovaries, accompanied by insulin resistance, increased adiposity and endometrial hyperplasia, suggests naturally occurring origins for PCOS in nonhuman primates. Study design, size, duration As part of a larger study, circulating serum concentrations of selected pituitary, ovarian and adrenal hormones, together with fasted insulin and glucose levels, were determined in a single, morning blood sample obtained from 120 apparently healthy, ovary-intact, adult female rhesus monkeys (Macaca mulatta) while not pregnant or nursing. The monkeys were then sedated for somatometric and ultrasonographic measurements. Participants/materials, setting, methods Female monkeys were of prime reproductive age (7.2 ± 0.1 years, mean ± SEM) and represented a typical spectrum of adult body weight (7.4 ± 0.2 kg; maximum 12.5, minimum 4.6 kg). Females were defined as having normal (n = 99) or high T levels (n = 21; ≥1 SD above the overall mean, 0.31 ng/ml). Electronic health records provided menstrual and fecundity histories. Steroid hormones were determined by tandem LC-MS-MS; AMH was measured by enzymeimmunoassay; LH, FSH and insulin were determined by radioimmunoassay; and glucose was read by glucose meter. Most analyses were limited to 80 females (60 normal T, 20 high T) in the follicular phase of a menstrual cycle or anovulatory period (serum progesterone <1 ng/ml). Main results and the role of chance Of 80 monkeys, 15% (n = 12) exhibited classifiable PCOS-like phenotypes. High T females demonstrated elevations in serum levels of LH (P < 0.036), AMH (P < 0.021), A4 (P < 0.0001), 17-OHP (P < 0.008), E2 (P < 0.023), glucocorticoids (P < 0.02-0.0001), the serum T/E2 ratio (P < 0.03) and uterine endometrial thickness (P < 0.014) compared to normal T females. Within the high T group alone, anogenital distance, a biomarker for fetal T exposure, positively correlated (P < 0.015) with serum A4 levels, while clitoral volume, a biomarker for prior T exposure, positively correlated (P < 0.002) with postnatal age. Only high T females demonstrated positive correlations between serum LH, and both T and A4. Five of six (83%) high T females with serum T ≥2 SD above T mean (0.41 ng/ml) did not produce live offspring. Large scale data N/A. Limitations, reasons for caution This is an initial study of a single laboratory population in a single nonhuman primate species. While two biomarkers suggest lifelong hyperandrogenism, phenotypic expression during gestation, prepuberty, adolescence, mid-to-late reproductive years and postmenopause has yet to be determined. Wider implications of the findings Characterizing adult female monkeys with naturally occurring hyperandrogenism has identified individuals with high LH and AMH combined with infertility, suggesting developmental linkage among traits with endemic origins beyond humans. PCOS may thus be an ancient phenotype, as previously proposed, with a definable pathogenic mechanism(s). Study funding/competing interest(s) Funded by competitive supplement to P51 OD011106 (PI: Mallick), by P50 HD028934 (PI: Marshall) and by P50 HD044405 (PI: Dunaif). The authors have no potential conflicts of interest.
Collapse
Affiliation(s)
- D H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - B H Rayome
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - D A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, CA, USA
| | | | - A K Edwards
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - K Wallen
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, USA.,Department of Psychology, Emory University, Atlanta, GA, USA
| | - M E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, USA
| | - S E Appt
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - J E Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
37
|
Noroozzadeh M, Ramezani Tehrani F, Bahri Khomami M, Azizi F. A Comparison of Sexual Function in Women with Polycystic Ovary Syndrome (PCOS) Whose Mothers Had PCOS During Their Pregnancy Period with Those Without PCOS. ARCHIVES OF SEXUAL BEHAVIOR 2017; 46:2033-2042. [PMID: 28070801 DOI: 10.1007/s10508-016-0919-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 08/25/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women during reproductive ages. Clinical symptoms associated with PCOS, such as hirsutism, acne, alopecia, obesity, and infertility, may lead to emotional morbidity and then impaired sexual function in those affected. During intrauterine development, the fetus may program the development of diseases during adulthood. In this study, we aimed to examine sexual function in women with PCOS, exposed to maternal androgen excess during their prenatal life compared to non-exposed PCOS patients. In this cross-sectional study, 768 married women with PCOS, aged 18-49 years, were subdivided into two groups, based on their mothers' PCOS status: women whose mothers had PCOS (N = 94) and women whose mothers did not have PCOS (N = 674). Data were collected using a questionnaire including information on demographics, anthropometric and reproductive characteristics, and the Female Sexual Function Index. Blood serum samples were collected from patients for assessment of total testosterone and sex hormone-binding globulin levels. Results revealed that sexual dysfunction was significantly higher in PCOS women whose mothers also had PCOS, compared to those whose mothers did not (38.6 vs. 25.3%, p = .01). After adjusting for confounding variables, logistic regression analysis showed that odds ratios for sexual dysfunction (total) and sexual dysfunction in the pain domain were significantly higher in the exposed PCOS women versus the non-exposed women (OR 1.81, 95% CI 1.06-3.07, p = .02 and 1.68, 95% CI 1.01-2.77, p = .04, respectively). Our study demonstrates increased sexual dysfunction in PCOS women whose mothers also had PCOS.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 1985717413, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 1985717413, Tehran, Iran.
| | - Mahnaz Bahri Khomami
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 1985717413, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Fenichel P, Rougier C, Hieronimus S, Chevalier N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? ANNALES D'ENDOCRINOLOGIE 2017; 78:176-185. [PMID: 28606381 DOI: 10.1016/j.ando.2017.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Polycystic ovaries syndrome (PCOS), the most common female endocrine disorder, affects 7-10% of women of childbearing age. It includes ovarian hyperandrogenism, impaired follicular maturation, anovulation and subfertility. Insulin resistance, although present in most cases, is not necessary for diagnosis. It increases hyperandrogenism and long-term metabolic, cardiovascular and oncological risks. The origin of hyperandrogenism and hyperinsulinemia has a genetic component, as demonstrated by familial aggregation studies and recent identification of associated genomic variants, conferring a particular susceptibility to the syndrome. However, experimental and epidemiological evidences also support a developmental origin via a deleterious foetal environment, concerning the endocrine status (foetal hyperandrogenism), the nutritional level (intrauterine growth retardation), or the toxicological exposure (endocrine disruptors). Epigenetic changes recently reported in the literature as associated with PCOS, enhance this hypothesis of foetal reprogramming of the future adult ovarian function by environmental factors. Better characterisation of these genetic, epigenetic, or environmental factors, could lead to earlier prevention and more efficient treatments.
Collapse
Affiliation(s)
- Patrick Fenichel
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France; Inserm U1065/C3M, hôpital de l'Archet, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France.
| | - Charlotte Rougier
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France
| | - Sylvie Hieronimus
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France
| | - Nicolas Chevalier
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France; Inserm U1065/C3M, hôpital de l'Archet, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France
| |
Collapse
|
39
|
Mossa F, Jimenez-Krassel F, Scheetz D, Weber-Nielsen M, Evans ACO, Ireland JJ. Anti-Müllerian Hormone (AMH) and fertility management in agricultural species. Reproduction 2017; 154:R1-R11. [PMID: 28356501 DOI: 10.1530/rep-17-0104] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
A reliable, easy to assess marker for fertility in agricultural species would be highly desirable and Anti-Müllerian Hormone (AMH) is a promising candidate. This review summarizes recent findings concerning AMH and its role in fertility management, mainly in cattle. It focuses on (1) alterations in circulating AMH concentrations from birth to puberty and during estrous cycles; (2) correlation of circulating AMH concentrations with ovarian follicle numbers and ovarian reserve; (3) factors that impact circulating AMH concentrations; (4) use of AMH as a predictor of fertility. Circulating AMH concentrations can be easily and reliably measured with a single blood sample in adult cattle because AMH varies minimally during the estrous cycle and is repeatable across multiple cycles. Circulating AMH concentrations are positively associated with several measures of fertility. Dairy heifers with low compared with higher AMH concentrations subsequently had lower pregnancy rates, higher probability of being culled after birth of their first calf and shorter herd longevity. Also, AMH is predictive of response to superovulation in cattle and sheep. Several factors contribute to the variability in AMH concentrations among individuals; for example, beef cattle have higher AMH than dairy cattle. Nutritional imbalances, disease and endocrine disruptors during fetal life may negatively program the size of the ovarian reserve and consequently serum AMH concentrations and potential fertility in adulthood. We conclude that AMH may be a predictor of fertility and herd longevity in cattle, whereas in sheep and other farm species, the potential association between AMH and reproductive performance remains largely unexplored.Free Italian abstract: An Italian translation of this abstract is freely available at http://www.reproduction-online.org/content/154/1/R1/suppl/DC1.
Collapse
Affiliation(s)
- F Mossa
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - F Jimenez-Krassel
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| | - D Scheetz
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| | - M Weber-Nielsen
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| | - A C O Evans
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - J J Ireland
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| |
Collapse
|
40
|
Puttabyatappa M, Padmanabhan V. Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:575-596. [PMID: 29224111 DOI: 10.1007/978-3-319-70178-3_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin resistance, a common feature of metabolic disorders such as obesity, nonalcoholic fatty liver disease, metabolic syndrome, and polycystic ovary syndrome, is a risk factor for development of diabetes. Because sex hormones orchestrate the establishment of sex-specific behavioral, reproductive, and metabolic differences, a role for them in the developmental origin of insulin resistance is also to be expected. Female sheep exposed to male levels of testosterone during fetal life serve as an excellent translational model for delineating programming of insulin resistance. This chapter summarizes the ontogeny of insulin resistance, the tissue-specific changes in insulin sensitivity, and the various factors that are involved in the programming and maintenance of the insulin resistance in adult female sheep that were developmentally exposed to fetal male levels of testosterone during the sexual-differentiation window.
Collapse
|
41
|
Hewlett M, Chow E, Aschengrau A, Mahalingaiah S. Prenatal Exposure to Endocrine Disruptors: A Developmental Etiology for Polycystic Ovary Syndrome. Reprod Sci 2016; 24:19-27. [PMID: 27342273 DOI: 10.1177/1933719116654992] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common and complex endocrinopathies among reproductive-age women. Polycystic ovary syndrome is characterized by symptomatology of oligomenorrhea and androgen excess, with or without presence of polycystic ovarian morphology. The etiology of PCOS is multifactorial, including genetic and environmental components. It has been previously established that prenatal androgen exposure results in a PCOS phenotype in experimental animal models and epidemiologic human studies. Investigators hypothesize that prenatal exposure to endocrine-disrupting chemicals (EDCs) may contribute to PCOS development. This review examines the emerging research investigating prenatal exposure to 3 major classes of EDCs-bisphenol A (BPA), phthalates, and androgenic EDCs-and the development of PCOS and/or PCOS-related abnormalities in humans and animal models. Highlights of this review are as follows: (1) In rodent studies, maternal BPA exposure alters postnatal development and sexual maturation;, (2) gestational exposure to dibutyl phthalate and di(2-ethylhexyl)phthalate results in polycystic ovaries and a hormonal profile similar to PCOS; and (3) androgenic EDCs, nicotine and 3,4,4'-trichlorocarbanilide, create a hyperandrogenic fetal environment and may pose a potential concern. In summary, prenatal exposure to EDCs may contribute to the altered fetal programming hypothesis and explain the significant variability in severity and presentation.
Collapse
Affiliation(s)
- Meghan Hewlett
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Erika Chow
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA
| | - Ann Aschengrau
- 2 Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- 1 Department of Obstetrics and Gynecology, Boston University School of Medicine, Boston, MA, USA.,2 Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational effects of maternal diet on metabolic and reproductive ageing. Mamm Genome 2016; 27:430-9. [PMID: 27114382 PMCID: PMC4935748 DOI: 10.1007/s00335-016-9631-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/29/2016] [Indexed: 12/19/2022]
Abstract
The early-life environment, in particular maternal diet during pregnancy, influences a wide range of organs and systems in adult offspring. Mounting evidence suggests that developmental programming can also influence health and disease in grand-offspring. Transgenerational effects can be defined as those persisting into an F2 generation, where the F0 mother experiences suboptimal diet during her pregnancy. In this review, we critically examine evidence for transgenerational developmental programming effects in human populations, focusing on metabolic and reproductive outcomes. We discuss evidence from historical cohorts suggesting that grandchildren of women exposed to famine and other dietary alterations during pregnancy may experience increased rates of later health complications than their control counterparts. The methodological difficulties with transgenerational studies in human cohorts are explored. In particular, the problems with assessing reproductive outcomes in human populations are discussed. In light of the relative paucity of evidence available from human cohorts, we consider key insights from transgenerational experimental animal models of developmental programming by maternal diet; data are drawn from a range of rodent models, as well as the guinea-pig and the sheep. The evidence for different potential mechanisms of transgenerational inheritance or re-propagation of developmental programming effects is evaluated. Transgenerational effects could be transmitted through methylation of the gametes via the paternal and maternal lineage, as well as other possible mechanisms via the maternal lineage. Finally, future directions for exploring these underlying mechanisms further are proposed, including utilizing large, well-characterized, prospective pregnancy cohorts that include biobanks, which have been established in various populations during the last few decades.
Collapse
Affiliation(s)
- Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.,Department of Obstetrics and Gynaecology, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, University of Cambridge, Box 223, Cambridge, CB2 0SW, UK
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
43
|
Abstract
There is evidence that the human sex ratio (proportion males at birth) is the result of two processes. First, the sexes of zygotes (from which the primary sex ratio would be calculated) are thought to be partially controlled by the hormone levels of both parents around the time of conception. Second, this primary sex ratio is apparently modified downwards by male-sex-selective spontaneous abortion caused by high levels of maternal stress-induced adrenal androgens, thus yielding the sex ratio at birth (the secondary sex ratio). Since maternal stress is one cause of spontaneous abortion (and of other forms of reproductive sub-optimality), and since some forms of pharmacological treatment of maternal stress are deleterious to the foetus, best practice would suggest non-pharmacological treatment (e.g. psychotherapy, hypnosis or massage) for pregnant women who have a previous history of spontaneous abortion, preterm birth or low-birth-weight infants.
Collapse
Affiliation(s)
- William H James
- The Galton Laboratory, Department of Genetics, Evolution and Environment, University College London, UK.
| |
Collapse
|
44
|
Padmanabhan V, Veiga-Lopez A, Herkimer C, Abi Salloum B, Moeller J, Beckett E, Sreedharan R. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep. Endocrinology 2015; 156:2678-92. [PMID: 25919188 PMCID: PMC4475717 DOI: 10.1210/en.2015-1235] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.
Collapse
Affiliation(s)
| | | | - Carol Herkimer
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Bachir Abi Salloum
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Evan Beckett
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Rohit Sreedharan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
45
|
Mirando MA, Stormshak F. Reproduction Symposium: external influences on reproductive neuroendocrinology. J Anim Sci 2014; 92:3183-4. [PMID: 25006064 DOI: 10.2527/jas.2014-8219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M A Mirando
- Division of Animal Systems, Institute of Food Production and Sustainability, USDA National Institute of Food and Agriculture, Washington, DC 20250-2240
| | - F Stormshak
- Department of Animal and Rangeland Sciences Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| |
Collapse
|