1
|
Yan X, Siméon FG, Liow JS, Morse CL, Jana S, Montero Santamaria JA, Jenkins M, Zoghbi SS, Pike VW, Innis RB, Zanotti-Fregonara P. [ 18F]SF51, a novel 18F-labeled PET radioligand for translocator protein 18kDa (TSPO) in brain, works well in monkeys but fails in humans. J Cereb Blood Flow Metab 2025; 45:365-372. [PMID: 39654356 PMCID: PMC11629344 DOI: 10.1177/0271678x241304924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
[18F]SF51 is a novel radioligand for imaging translocator protein 18 kDa (TSPO) that previously displayed excellent imaging properties in nonhuman primates. This study assessed its performance in human brain and its dosimetry. Seven healthy participants underwent brain PET imaging to measure TSPO binding using a two-tissue compartment model (2TCM) to calculate total distribution volume (VT). This cohort included two high-affinity binders (HABs), three mixed-affinity binders (MABs), and two low-affinity binders (LABs). Two other participants received whole-body scans to assess radiation exposure. Peak brain radioactivity reached a standardized uptake value (SUV) of 1.4 at 3 minutes post-injection, diminishing to 30% of peak by 120 minutes. The average VT for all genotype groups was notably low (<1 mL·cm-3), emphasizing the radioligand's poor binding in brain. [18F]SF51 remained sensitive to the TSPO polymorphism in vivo, as shown by a two-fold difference in VT between HABs and LABs. VT stabilization by 80 minutes post-injection suggested minimal radiometabolite accumulation in brain. The average effective dose was 13.8 ± 0.9 µSv/MBq. Contrary to previously published animal data, [18F]SF51 showed low binding to human TSPO, with uptake remaining influenced by the rs6971 polymorphism. These findings highlight the challenges of developing TSPO radioligands and underscore the significant species differences that may influence translational outcomes.ClinicalTrials.gov identifier: NCT05564429; registered 10/03/2022.
Collapse
Affiliation(s)
- Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
3
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
4
|
Peball M, Heim B, Carbone F, Schorr O, Werkmann M, Ellmerer P, Marini K, Krismer F, Knaus HG, Poewe W, Djamshidian A, Seppi K. Long-term safety and efficacy of open-label nabilone on sleep and pain in Parkinson´s Disease. NPJ Parkinsons Dis 2024; 10:61. [PMID: 38491070 PMCID: PMC10943069 DOI: 10.1038/s41531-024-00665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
The synthetic tetrahydrocannabinol-analog nabilone improved non-motor symptoms (NMS) in Parkinson's disease (PD) patients in a placebo-controlled, double-blind, parallel-group, randomized withdrawal trial with enriched enrollment (NMS-Nab-study). This was a single-center open-label extension study to assess the long-term safety and efficacy of nabilone for NMS in PD. To be eligible for this study, patients had to be treatment responders during the previous NMS-Nab-trial and complete its double-blind phase without experiencing a drug-related serious/severe/moderate adverse event (AE). Patients were re-introduced to nabilone during an up-titration phase until their overall NMS burden improved. Nabilone was continued for six months with clinic visits every 3 months. Evaluation of AEs was based on self-report and clinical assessment. Twenty-two patients participated in the NMS-Nab2-study (age-median 68.33 y, 52% females, disease duration-median 7.42 y). Nabilone was well tolerated with concentration difficulties as the most common treatment-related AE (possibly/not related n = 1 each). One in two drop-outs discontinued because of an AE for which a prohibited concomitant medication needed to be introduced (night-time sleep problems). Efficacy evaluation showed a significant and lasting improvement in NMS burden according to the CGI-I (79% at V3). Nabilone improved overall sleep (NMSS Domain-2: -8.26 points; 95%CI -13.82 to -2.71; p = 0.004; ES = -0.72), night-time sleep problems (MDS-UPDRS-1.7: -1.42 points; 95 CI -2.16 to -0.68; p = 0.002; ES = -0.92), and overall pain (KPPS Total Score: -8.00 points; 95%CI -15.05 to -0.95; p = 0.046; ES -0.55 and MDS-UPDRS-1.9: -0.74 points; 95%CI -1.21 to -0.26; p = 0.008; ES = -0.74). This study demonstrates continuous long-term safety and efficacy in PD patients responding early to nabilone without intolerable side effects.
Collapse
Affiliation(s)
- Marina Peball
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Federico Carbone
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Schorr
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Werkmann
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Ellmerer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kathrin Marini
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hans-Günther Knaus
- Department for Medical Genetics, Molecular, and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
- Department of Neurology, District Hospital of Kufstein, Kufstein, Austria.
| |
Collapse
|
5
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
6
|
Fenzl M, Backens M, Bodea S, Wittemann M, Werler F, Brielmaier J, Wolf RC, Reith W. Impact of cannabis use on brain metabolism using 31P and 1H magnetic resonance spectroscopy. Neuroradiology 2023; 65:1631-1648. [PMID: 37735222 PMCID: PMC10567915 DOI: 10.1007/s00234-023-03220-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE This prospective cross-sectional study investigated the influence of regular cannabis use on brain metabolism in young cannabis users by using combined proton and phosphorus magnetic resonance spectroscopy. METHODS The study was performed in 45 young cannabis users aged 18-30, who had been using cannabis on a regular basis over a period of at least 2 years and in 47 age-matched controls. We acquired 31P MRS data in different brain regions at 3T with a double-resonant 1H/31P head coil, anatomic images, and 1H MRS data with a standard 20-channel 1H head coil. Absolute concentration values of proton metabolites were obtained via calibration from tissue water as an internal reference, whereas a standard solution of 75 mmol/l KH2PO4 was used as an external reference for the calibration of phosphorus signals. RESULTS We found an overall but not statistically significant lower concentration level of several proton and phosphorus metabolites in cannabis users compared to non-users. In particular, energy-related phosphates such as adenosine triphosphate (ATP) and inorganic phosphate (Pi) were reduced in all regions under investigation. Phosphocreatine (PCr) showed lowered values mainly in the left basal ganglia and the left frontal white matter. CONCLUSION The results suggest that the increased risk of functional brain disorders observed in long-term cannabis users could be caused by an impairment of the energy metabolism of the brain, but this needs to be verified in future studies.
Collapse
Affiliation(s)
- Maximilian Fenzl
- Institute of Neuroradiology, Saarland University, 66421, Homburg, Germany.
| | - Martin Backens
- Institute of Neuroradiology, Saarland University, 66421, Homburg, Germany.
| | - Silviu Bodea
- Helmholtz Zentrum Munich, German Research Center for Environmental Health Institute of Biological and Medical Imaging, 85748, Munich, Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy, Saarland University, 66421, Homburg, Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, 69115, Heidelberg, Germany
| | - Jule Brielmaier
- Department of Psychiatry and Psychotherapy, Saarland University, 66421, Homburg, Germany
- Department of Obstetrics and Gynecology, RKH Clinic Ludwigsburg, 71640, Ludwigsburg, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine, Heidelberg University, 69115, Heidelberg, Germany
| | - Wolfgang Reith
- Institute of Neuroradiology, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
7
|
Sun Y, Ramos-Torres KM, Brugarolas P. Metabolic Stability of the Demyelination Positron Emission Tomography Tracer [ 18F]3-Fluoro-4-Aminopyridine and Identification of Its Metabolites. J Pharmacol Exp Ther 2023; 386:93-101. [PMID: 37024145 PMCID: PMC10289238 DOI: 10.1124/jpet.122.001462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
[18F]3-fluoro-4-aminopyridine ([18F]3F4AP) is a positron emission tomography (PET) tracer for imaging demyelination based on the multiple sclerosis drug 4-aminopyridine (4AP, dalfampridine). This radiotracer was found to be stable in rodents and nonhuman primates imaged under isoflurane anesthesia. However, recent findings indicate that its stability is greatly decreased in awake humans and mice. Since both 4AP and isoflurane are metabolized primarily by cytochrome P450 enzymes, particularly cytochrome P450 family 2 subfamily E member 1 (CYP2E1), we postulated that this enzyme may be responsible for the metabolism of 3F4AP. Here, we investigated the metabolism of [18F]3F4AP by CYP2E1 and identified its metabolites. We also investigated whether deuteration, a common approach to increase the stability of drugs, could improve its stability. Our results demonstrate that CYP2E1 readily metabolizes 3F4AP and its deuterated analogs and that the primary metabolites are 5-hydroxy-3F4AP and 3F4AP N-oxide. Although deuteration did not decrease the rate of the CYP2E1-mediated oxidation, our findings explain the diminished in vivo stability of 3F4AP compared with 4AP and further our understanding of when deuteration may improve the metabolic stability of drugs and PET ligands. SIGNIFICANCE STATEMENT: The demyelination tracer [18F]3F4AP was found to undergo rapid metabolism in humans, which could compromise its utility. Understanding the enzymes and metabolic products involved may offer strategies to reduce metabolism. Using a combination of in vitro assays and chemical syntheses, this report shows that cytochrome P450 enzyme CYP2E1 is likely responsible for [18F]3F4AP metabolism, that 4-amino-5-fluoroprydin-3-ol (5-hydroxy-3F4AP, 5OH3F4AP) and 4-amino-3-fluoropyridine 1-oxide (3F4AP N-oxide) are the main metabolites, and that deuteration is unlikely to improve the stability of the tracer in vivo.
Collapse
Affiliation(s)
- Yang Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karla M Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Gajofatto A, Cardobi N, Gobbin F, Calabrese M, Turatti M, Benedetti MD. Resting-state functional connectivity in multiple sclerosis patients receiving nabiximols for spasticity. BMC Neurol 2023; 23:128. [PMID: 36991352 PMCID: PMC10052832 DOI: 10.1186/s12883-023-03171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Nabiximols (Sativex®) is a cannabinoid approved for multiple sclerosis (MS)-related spasticity. Its mechanism of action is partially understood, and efficacy is variable. OBJECTIVE To conduct an exploratory analysis of brain networks connectivity changes on resting state (RS) functional MRI (fMRI) of MS patients treated with nabiximols. METHODS We identified a group of MS patients treated with Sativex® at Verona University Hospital, who underwent RS brain fMRI in the 4 weeks before (T0) and 4-8 weeks after (T1) treatment start. Sativex® response was defined as ≥ 20% spasticity Numerical Rating Scale score reduction at T1 vs. T0. Connectivity changes on fMRI were compared between T0 and T1 in the whole group and according to response status. ROI-to-ROI and seed-to-voxel connectivity were evaluated. RESULTS Twelve MS patients (7 males) were eligible for the study. Seven patients (58.3%) resulted Sativex® responders at T1. On fMRI analysis, Sativex® exposure was associated with global brain connectivity increase (particularly in responders), decreased connectivity of motor areas, and bidirectional connectivity changes of the left cerebellum with a number of cortical areas. CONCLUSIONS Nabiximols administration is associated with brain connectivity increase of MS patients with spasticity. Modulation of sensorimotor cortical areas and cerebellum connectivity could play a role in nabiximols effect.
Collapse
Affiliation(s)
- Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy.
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Nicolò Cardobi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy
| | - Francesca Gobbin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Massimiliano Calabrese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, Verona, 37134, Italy
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marco Turatti
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Maria Donata Benedetti
- Unit of Neurology, Regional Multiple Sclerosis Center, Borgo Roma Hospital, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
9
|
Pak K, Kantonen T, Pekkarinen L, Nuutila P, Nummenmaa L. Association of CNR1 gene and cannabinoid 1 receptor protein in the human brain. J Neurosci Res 2023; 101:327-337. [PMID: 36440544 PMCID: PMC10100072 DOI: 10.1002/jnr.25149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
We aimed to integrate genomic mapping from brain mRNA atlas with the protein expression from positron emission tomography (PET) scans of type 1 cannabinoid (CB1) receptor and to compare the predictive power of CB1 receptor with those of other neuroreceptor/transporters using a meta-analysis. Volume of distribution (VT ) from F18-FMPEP-d2 PET scans, CNR1 gene (Cannabinoid receptor 1) expression, and H3-CP55940 binding were calculated and correlation analysis was performed. Between VT of F18-FMPEP-d2 PET scans and CNR1 mRNA expression, moderate strength of correlation was observed (rho = .5067, p = .0337). Strong positive correlation was also found between CNR1 mRNA expression and H3-CP55940 binding (r = .6336, p = .0364), validating the finding between F18-FMPEP-d2 PET scans and CNR1 mRNA. The correlation between VT of F18-FMPEP-d2 PET scans and H3-CP55940 binding was marginally significant (r = .5025, p = .0563). From the meta-analysis, the correlation coefficient between mRNA expression and protein expressions ranged from -.10 to .99, with a pooled effect of .76. In conclusion, we observed the moderate to strong associations between gene and protein expression for CB1 receptor in the human brain, which was validated by autoradiography. We combined the autoradiographic finding with PET of CB1 receptor, producing the density atlas map of CB1 receptor. From the meta-analysis, the moderate to strong correlation was observed between mRNA expression and protein expressions across multiple genes. Further study is needed to investigate the relationship between multiple genes and in vivo proteins to improve and accelerate drug development.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Clinical Neurosciences, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland.,Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Radhakrishnan R, Worhunsky PD, Zheng MQ, Najafzadeh S, Gallezot JD, Planeta B, Henry S, Nabulsi N, Ranganathan M, Skosnik PD, Pittman B, Cyril D'Souza D, Carson RE, Huang Y, Potenza MN, Matuskey D. Age, gender and body-mass-index relationships with in vivo CB 1 receptor availability in healthy humans measured with [ 11C]OMAR PET. Neuroimage 2022; 264:119674. [PMID: 36243269 DOI: 10.1016/j.neuroimage.2022.119674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Brain cannabinoid 1 receptors (CB1Rs) contribute importantly to the regulation of autonomic tone, appetite, mood and cognition. Inconsistent results have been reported from positron emission tomography (PET) studies using different radioligands to examine relationships between age, gender and body mass index (BMI) and CB1R availability in healthy individuals. In this study, we examined these variables in 58 healthy individuals (age range: 18-55 years; 44 male; BMI=27.01±5.56), the largest cohort of subjects studied to date using the CB1R PET ligand [11C]OMAR. There was a significant decline in CB1R availability (VT) with age in the pallidum, cerebellum and posterior cingulate. Adjusting for BMI, age-related decline in VT remained significant in the posterior cingulate among males, and in the cerebellum among women. CB1R availability was higher in women compared to men in the thalamus, pallidum and posterior cingulate. Adjusting for age, CB1R availability negatively correlated with BMI in women but not men. These findings differ from those reported using [11C]OMAR and other radioligands such as [18F]FMPEP-d2 and [18F]MK-9470. Although reasons for these seemingly divergent findings are unclear, the choice of PET radioligand and range of BMI in the current dataset may contribute to the observed differences. This study highlights the need for cross-validation studies using both [11C]OMAR and [18F]FMPEP-d2 within the same cohort of subjects.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States.
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Shannan Henry
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States; Child Study Center, Yale University School of Medicine, United States; Connecticut Mental Health Center, United States; Department of Neuroscience, Yale University, United States
| | - David Matuskey
- Department of Psychiatry, Yale University School of Medicinev, New Haven, CT 06511, United States; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, United States; Department of Neurology, Yale University School of Medicine, United States
| |
Collapse
|
13
|
Ajalin RM, Al-Abdulrasul H, Tuisku JM, Hirvonen JES, Vahlberg T, Lahdenpohja S, Rinne JO, Brück AE. Cannabinoid Receptor Type 1 in Parkinson's Disease: A Positron Emission Tomography Study with [ 18 F]FMPEP-d 2. Mov Disord 2022; 37:1673-1682. [PMID: 35674270 PMCID: PMC9544132 DOI: 10.1002/mds.29117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The endocannabinoid system is a widespread neuromodulatory system affecting several biological functions and processes. High densities of type 1 cannabinoid (CB1) receptors and endocannabinoids are found in basal ganglia, which makes them an interesting target group for drug development in basal ganglia disorders such as Parkinson's disease (PD). Objective The aim of this study was to investigate CB1 receptors in PD with [18F]FMPEP‐d2 positron emission tomography (PET) and the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding. Methods The data consisted of 16 subjects with PD and 10 healthy control subjects (HCs). All participants underwent a [18F]FMPEP‐d2 high‐resolution research tomograph PET examination for the quantitative assessment of cerebral binding to CB1 receptors. To investigate the effect of dopaminergic medication on the [18F]FMPEP‐d2 binding, 15 subjects with PD underwent [18F]FMPEP‐d2 PET twice, both on and off antiparkinsonian medication. Results [18F]FMPEP‐d2 distribution volume was significantly lower in the off scan compared with the on scan in basal ganglia, thalamus, hippocampus, and amygdala (P < 0.05). Distribution volume was lower in subjects with PD off than in HCs globally (P < 0.05), but not higher than in HCs in any brain region. Conclusions Subjects with PD have lower CB1 receptor availability compared with HCs. PD medication increases CB1 receptor toward normal levels. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Riikka M Ajalin
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Haidar Al-Abdulrasul
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jouni M Tuisku
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Jussi E S Hirvonen
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Salla Lahdenpohja
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| | - Anna E Brück
- Turku PET Centre, Turku University and Turku University Hospital, Turku, Finland.,Neurocenter, Turku University Hospital and Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Peball M, Seppi K, Krismer F, Knaus H, Spielberger S, Heim B, Ellmerer P, Werkmann M, Poewe W, Djamshidian A. Effects of nabilone on sleep outcomes in patients with Parkinson's disease: a post‐hoc analysis of
NMS‐Nab
study. Mov Disord Clin Pract 2022; 9:751-758. [PMID: 35937495 PMCID: PMC9346252 DOI: 10.1002/mdc3.13471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The synthetic tetrahydrocannabinol analogue nabilone improved overall non‐motor symptom (NMS) burden in Parkinson's disease (PD) patients in comparison to placebo. Objectives To characterize the effects of nabilone on different sleep outcomes in PD patients. Methods We performed a post‐hoc analysis of the controlled, double‐blind, enriched enrollment randomized withdrawal NMS‐Nab study to assess the effects of nabilone on sleep outcomes in study participants who reported clinically‐relevant sleep problems (MDS‐UPDRS‐1.7 ≥ 2 points). Results After open‐label nabilone administration, 77.4% reported no relevant sleep problem. In the withdrawal phase of the trial, the MDS‐UPDRS‐1.7. and the NMS‐Scale Domain 2 (i.e., Sleep/Fatigue) significantly worsened only in PD patients in the placebo group, which was mostly driven by a significant worsening of insomnia (question 5 of the NMS‐Scale Domain 2). Conclusions This post‐hoc analysis of the NMS‐Nab trial suggests that nabilone has beneficial effects on sleep outcomes in PD patients experiencing sleep problems at baseline. The original trial was registered with ClinicalTrials.gov (NCT03769896, https://clinicaltrials.gov/ct2/show/NCT03769896) and EudraCT (2017–000192‐86).
Collapse
Affiliation(s)
- Marina Peball
- Department of Neurology Medical University of Innsbruck Austria
| | - Klaus Seppi
- Department of Neurology Medical University of Innsbruck Austria
| | - Florian Krismer
- Department of Neurology Medical University of Innsbruck Austria
| | - Hans‐Günther Knaus
- Department for Medical Genetics, Molecular, and Clinical Pharmacology Medical University of Innsbruck Austria
| | | | - Beatrice Heim
- Department of Neurology Medical University of Innsbruck Austria
| | | | - Mario Werkmann
- Department of Neurology Medical University of Innsbruck Austria
| | - Werner Poewe
- Department of Neurology Medical University of Innsbruck Austria
| | | |
Collapse
|
15
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
16
|
Ma L, Wu S, Zhang K, Tian M, Zhang H. Progress on the application of positron emission tomography imaging of cannabinoid type 1 receptor in neuropsychiatric diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:666-673. [PMID: 34986538 PMCID: PMC8732249 DOI: 10.3724/zdxbyxb-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 receptor (CB1R), as the major member of the endocannabinoid system, is among the most abundant receptors expressed in the central nervous system. CB1R is mainly located on the axon terminals of presynaptic neurons and participate in the modulation of neuronal excitability and synaptic plasticity, playing an important role in the pathogenesis of various neuropsychiatric diseases. In recent years, the consistent development of CB1R radioligands and the maturity of molecular imaging techniques, particularly positron emission tomography (PET) may help to visualize the expression and distribution of CB1R in central nervous system . At present, CB1R PET imaging can effectively evaluate the changes of CB1R levels in neuropsychiatric diseases such as Huntington's disease and schizophrenia, and its correlation with the disease severity, therefore providing new insights for the diagnosis and treatment of neuropsychiatric diseases. This article reviews the application of CB1R PET imaging in Alzheimer's disease, Parkinson's disease, Huntington's disease, schizophrenia, post-traumatic stress disorder, cannabis use disorder and depression.
Collapse
Affiliation(s)
- Lijuan Ma
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shuang Wu
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kai Zhang
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mei Tian
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- 4. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Kantonen T, Karjalainen T, Pekkarinen L, Isojärvi J, Kalliokoski K, Kaasinen V, Hirvonen J, Nuutila P, Nummenmaa L. Cerebral μ-opioid and CB 1 receptor systems have distinct roles in human feeding behavior. Transl Psychiatry 2021; 11:442. [PMID: 34453034 PMCID: PMC8397789 DOI: 10.1038/s41398-021-01559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Eating behavior varies greatly between individuals, but the neurobiological basis of these trait-like differences in feeding remains poorly understood. Central μ-opioid receptors (MOR) and cannabinoid CB1 receptors (CB1R) regulate energy balance via multiple neural pathways, promoting food intake and reward. Because obesity and eating disorders have been associated with alterations in the brain's opioid and endocannabinoid signaling, the variation in MOR and CB1R system function could potentially underlie distinct eating behavior phenotypes. In this retrospective positron emission tomography (PET) study, we analyzed [11C]carfentanil PET scans of MORs from 92 healthy subjects (70 males and 22 females), and [18F]FMPEP-d2 scans of CB1Rs from 35 subjects (all males, all also included in the [11C]carfentanil sample). Eating styles were measured with the Dutch Eating Behavior Questionnaire (DEBQ). We found that lower cerebral MOR availability was associated with increased external eating-individuals with low MORs reported being more likely to eat in response to environment's palatable food cues. CB1R availability was associated with multiple eating behavior traits. We conclude that although MORs and CB1Rs overlap anatomically in brain regions regulating food reward, they have distinct roles in mediating individual feeding patterns. Central MOR system might provide a pharmacological target for reducing individual's excessive cue-reactive eating behavior.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Turku, Finland. .,Clinical Neurosciences, University of Turku, Turku, Finland.
| | - Tomi Karjalainen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Laura Pekkarinen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Janne Isojärvi
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Kari Kalliokoski
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland
| | - Valtteri Kaasinen
- grid.1374.10000 0001 2097 1371Clinical Neurosciences, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- grid.470895.70000 0004 0391 4481Turku PET Centre, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Kong L, Xiao C, Lin H, Buyse J, Li X, Song Z. Effect of dexamethasone on gene expression of cannabinoid receptor type 1 and adenosine monophosphate-activated protein kinase in the hypothalamus of broilers (Gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111018. [PMID: 34144188 DOI: 10.1016/j.cbpa.2021.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Hypothalamic neural circuits play a critical role in integrating peripheral signals and conveying information about energy and nutrient status. We detected cannabinoid receptor type 1 (CB1) distribution in the hypothalamus, liver, duodenum, jejunum, and ileum among 7- and 35-day-old broilers. The effects of dexamethasone (DEX) on CB1 gene expression were evaluated by in vitro and in vivo experiments on glucocorticoid receptor (GR) and adenosine monophosphate-activated protein kinase (AMPK) in the hypothalamus of broilers. In vitro, hypothalamic cells from 17-day-old broiler embryos were incubated with either 0.1% dimethyl sulfoxide or DEX (100 nmol/mL) for 1 h. In the in vivo study, 28-day-old broilers were injected with DEX for 24 h or 72 h. Results showed that CB1 was mainly expressed in the hypothalamus, and 72 h DEX treatment increased the expression. One-day treatment of broilers with DEX did not change the hypothalamic CB1 gene expression. Moreover, DEX treatment for 24 h and 72 h increased the mRNA level of hypothalamic AMPKα2 and GR. However, no differences were observed on the gene expression of CB1, GR, and AMPKα2 in hypothalamic cells with DEX-treated for 1 h. In conclusion, CB1 is mainly expressed in the hypothalamus of broilers; 72-h DEX exposure can regulate the CB1 system and AMPK signaling pathway of the broiler hypothalamus.
Collapse
Affiliation(s)
- Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Precision Livestock and Nutrition Unit, Gembloux Agro-BioTech, University of Liège, Gembloux 5030, Belgium
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Johan Buyse
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| | - Xianlei Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
19
|
Borgan F, Veronese M, Reis Marques T, Lythgoe DJ, Howes O. Association between cannabinoid 1 receptor availability and glutamate levels in healthy controls and drug-free patients with first episode psychosis: a multi-modal PET and 1H-MRS study. Eur Arch Psychiatry Clin Neurosci 2021; 271:677-687. [PMID: 32986150 PMCID: PMC8119269 DOI: 10.1007/s00406-020-01191-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Cannabinoid 1 receptor and glutamatergic dysfunction have both been implicated in the pathophysiology of schizophrenia. However, it remains unclear if cannabinoid 1 receptor alterations shown in drug-naïve/free patients with first episode psychosis may be linked to glutamatergic alterations in the illness. We aimed to investigate glutamate levels and cannabinoid 1 receptor levels in the same region in patients with first episode psychosis. Forty volunteers (20 healthy volunteers, 20 drug-naïve/free patients with first episode psychosis diagnosed with schizophrenia/schizoaffective disorder) were included in the study. Glutamate levels were measured using proton magnetic resonance spectroscopy. CB1R availability was indexed using the distribution volume (VT (ml/cm3)) of [11C]MePPEP using arterial blood sampling. There were no significant associations between ACC CB1R levels and ACC glutamate levels in controls (R = - 0.24, p = 0.32) or patients (R = - 0.10, p = 0.25). However, ACC glutamate levels were negatively associated with CB1R availability in the striatum (R = - 0.50, p = 0.02) and hippocampus (R = - 0.50, p = 0.042) in controls, but these associations were not observed in patients (p > 0.05). Our findings extend our previous work in an overlapping sample to show, for the first time as far as we're aware, that cannabinoid 1 receptor alterations in the anterior cingulate cortex are shown in the absence of glutamatergic dysfunction in the same region, and indicate potential interactions between glutamatergic signalling in the anterior cingulate cortex and the endocannabinoid system in the striatum and hippocampus.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
20
|
Gaudin É, Thibaudeau C, Arpin L, Leroux JD, Toussaint M, Beaudoin JF, Cadorette J, Paillé M, Pepin CM, Koua K, Bouchard J, Viscogliosi N, Paulin C, Fontaine R, Lecomte R. Performance evaluation of the mouse version of the LabPET II PET scanner. Phys Med Biol 2021; 66:065019. [PMID: 33412542 DOI: 10.1088/1361-6560/abd952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The LabPET II is a new positron emission tomography technology platform designed to achieve submillimetric spatial resolution imaging using fully pixelated avalanche photodiodes-based detectors and highly integrated parallel front-end processing electronics. The detector was designed as a generic building block to develop devices for preclinical imaging of small to mid-sized animals and for clinical imaging of the human brain. The aim of this work is to assess the physical characteristics and imaging performance of the mouse version of LabPET II scanner following the NEMA NU4-2008 standard and using high resolution phantoms and in vivo imaging applications. A reconstructed spatial resolution of 0.78 mm (0.5 μ l) is measured close to the center of the radial field of view. With an energy window of 350 650 keV, the system absolute sensitivity is 1.2% and its maximum noise equivalent count rate reaches 61.1 kcps at 117 MBq. Submillimetric spatial resolution is achieved in a hot spot phantom and tiny bone structures were resolved with unprecedented contrast in the mouse. These results provide convincing evidence of the capabilities of the LabPET II technology for biomolecular imaging in preclinical research.
Collapse
Affiliation(s)
- Émilie Gaudin
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
22
|
Terry GE, Raymont V, Horti AG. PET Imaging of the Endocannabinoid System. PET AND SPECT OF NEUROBIOLOGICAL SYSTEMS 2021:319-426. [DOI: 10.1007/978-3-030-53176-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
24
|
Peball M, Krismer F, Knaus H, Djamshidian A, Werkmann M, Carbone F, Ellmerer P, Heim B, Marini K, Valent D, Goebel G, Ulmer H, Stockner H, Wenning GK, Stolz R, Krejcy K, Poewe W, Seppi K, Collaborators of the Parkinson's Disease Working Group Innsbruck. Non-Motor Symptoms in Parkinson's Disease are Reduced by Nabilone. Ann Neurol 2020; 88:712-722. [PMID: 32757413 PMCID: PMC7540547 DOI: 10.1002/ana.25864] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The objective of this study was to assess the efficacy and safety of nabilone, a synthetic tetrahydrocannabinol analogue, as a treatment for non-motor symptoms (NMS) in Parkinson's disease (PD). METHODS This was a phase II placebo-controlled, double-blind, parallel-group, enriched enrollment randomized withdrawal trial conducted at the Medical University Innsbruck. A random sample of 47 patients with PD with stable motor disease and disturbing NMS defined by a score of ≥4 points on the Movement Disorder Society - Unified PD Rating Scale-I (MDS-UPDRS-I) underwent open-label nabilone titration (0.25 mg once daily to 1 mg twice daily, phase I). Responders were randomized 1:1 to continue with nabilone or switch to placebo for 4 weeks (phase II). The primary efficacy criterion was the change of the MDS-UPDRS-I between randomization and week 4. Safety was analyzed in all patients who received at least one nabilone dose. RESULTS Between October 2017 and July 2019, 19 patients received either nabilone (median dose = 0.75 mg) or placebo. At week 4, mean change of the MDS-UPDRS-I was 2.63 (95% confidence interval [CI] 1.53 to 3.74, p = 0.002, effect size = 1.15) in the placebo versus 1.00 (95% CI -0.16 to 2.16, p = 0.280, effect size = 0.42) in the nabilone-group (difference: 1.63, 95% CI 0.09 to 3.18, p = 0.030, effect size = 0.66). Seventy-seven percent of patients had adverse events (AEs) during open-label titration, most of them were transient. In the double-blind phase, similar proportions of patients in each group had AEs (42% in the placebo group and 32% in the nabilone group). There were no serious AEs. INTERPRETATION Our results highlight the potential efficacy of nabilone for patients with PD with disturbing NMS, which appears to be driven by positive effects on anxious mood and night-time sleep problems. TRIAL REGISTRY ClinicalTrials.gov (NCT03769896) and EudraCT (2017-000192-86). ANN NEUROL 2020;88:712-722.
Collapse
Affiliation(s)
- Marina Peball
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Florian Krismer
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Hans‐Günther Knaus
- Department for Medical Genetics, Molecular, and Clinical PharmacologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Mario Werkmann
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Federico Carbone
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Philipp Ellmerer
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Beatrice Heim
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Kathrin Marini
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Dora Valent
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Georg Goebel
- Department of Medical Statistics, Informatics, and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics, and Health EconomicsInnsbruck Medical UniversityInnsbruckAustria
| | - Heike Stockner
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Raphaela Stolz
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | | - Werner Poewe
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | - Klaus Seppi
- Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
| | | |
Collapse
|
25
|
Ghosh KK, Padmanabhan P, Yang CT, Mishra S, Halldin C, Gulyás B. Dealing with PET radiometabolites. EJNMMI Res 2020; 10:109. [PMID: 32997213 PMCID: PMC7770856 DOI: 10.1186/s13550-020-00692-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Abstract Positron emission tomography (PET) offers the study of biochemical,
physiological, and pharmacological functions at a cellular and molecular level.
The performance of a PET study mostly depends on the used radiotracer of
interest. However, the development of a novel PET tracer is very difficult, as
it is required to fulfill a lot of important criteria. PET radiotracers usually
encounter different chemical modifications including redox reaction, hydrolysis,
decarboxylation, and various conjugation processes within living organisms. Due
to this biotransformation, different chemical entities are produced, and the
amount of the parent radiotracer is declined. Consequently, the signal measured
by the PET scanner indicates the entire amount of radioactivity deposited in the
tissue; however, it does not offer any indication about the chemical disposition
of the parent radiotracer itself. From a radiopharmaceutical perspective, it is
necessary to quantify the parent radiotracer’s fraction present in the tissue.
Hence, the identification of radiometabolites of the radiotracers is vital for
PET imaging. There are mainly two reasons for the chemical identification of PET
radiometabolites: firstly, to determine the amount of parent radiotracers in
plasma, and secondly, to rule out (if a radiometabolite enters the brain) or
correct any radiometabolite accumulation in peripheral tissue. Besides,
radiometabolite formations of the tracer might be of concern for the PET study,
as the radiometabolic products may display considerably contrasting distribution
patterns inside the body when compared with the radiotracer itself. Therefore,
necessary information is needed about these biochemical transformations to
understand the distribution of radioactivity throughout the body. Various
published review articles on PET radiometabolites mainly focus on the sample
preparation techniques and recently available technology to improve the
radiometabolite analysis process. This article essentially summarizes the
chemical and structural identity of the radiometabolites of various radiotracers
including [11C]PBB3,
[11C]flumazenil,
[18F]FEPE2I, [11C]PBR28,
[11C]MADAM, and
(+)[18F]flubatine. Besides, the importance of
radiometabolite analysis in PET imaging is also briefly summarized. Moreover,
this review also highlights how a slight chemical modification could reduce the
formation of radiometabolites, which could interfere with the results of PET
imaging. Graphical abstract ![]()
Collapse
Affiliation(s)
- Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore. .,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
26
|
Lahdenpohja S, Keller T, Forsback S, Viljanen T, Kokkomäki E, Kivelä RV, Bergman J, Solin O, Kirjavainen AK. Automated GMP production and long-term experience in radiosynthesis of CB 1 tracer [ 18 F]FMPEP-d 2. J Labelled Comp Radiopharm 2020; 63:408-418. [PMID: 32374481 DOI: 10.1002/jlcr.3845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/11/2022]
Abstract
Here, we describe the development of an in-house-built device for the fully automated multistep synthesis of the cannabinoid CB1 receptor imaging tracer (3R,5R)-5-(3-([18 F]fluoromethoxy-d2 )phenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one ([18 F]FMPEP-d2 ), following good manufacturing practices. The device is interfaced to a HPLC and a sterile filtration unit in a clean room hot cell. The synthesis involves the nucleophilic 18 F-fluorination of an alkylating agent and its GC purification, the subsequent 18 F-fluoroalkylation of a precursor molecule, the semipreparative HPLC purification of the 18 F-fluoroalkylated product, and its formulation for injection. We have optimized the duration and temperature of the 18 F-fluoroalkylation reaction and addressed the radiochemical stability of the formulated product. During the past 5 years (2013-2018), we have performed a total of 149 syntheses for clinical use with a 90% success rate. The activity yield of the formulated product has been 1.0 ± 0.4 GBq starting from 11 ± 2 GBq and the molar activity 600 ± 300 GBq/μmol at the end of synthesis.
Collapse
Affiliation(s)
- Salla Lahdenpohja
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Thomas Keller
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Sarita Forsback
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Tapio Viljanen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Esa Kokkomäki
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Riikka V Kivelä
- Hospital Pharmacy, Turku University Hospital, Turku, Finland
| | - Jörgen Bergman
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Anna K Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Lahdenpohja S, Rajala NA, Helin JS, Haaparanta-Solin M, Solin O, López-Picón FR, Kirjavainen AK. Ruthenium-Mediated 18F-Fluorination and Preclinical Evaluation of a New CB 1 Receptor Imaging Agent [ 18F]FPATPP. ACS Chem Neurosci 2020; 11:2009-2018. [PMID: 32479723 PMCID: PMC7497626 DOI: 10.1021/acschemneuro.0c00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
![]()
Cannabinoid receptor
1 (CB1R) controls various physiological and pathological conditions,
including memory, motivation, and inflammation, and is thus an interesting
target for positron emission tomography (PET). Herein, we report a
ruthenium-mediated radiolabeling synthesis and preclinical evaluation
of a new CB1R specific radiotracer, [18F]FPATPP. [18F]FPATPP was produced with 16.7 ± 5.7% decay-corrected
radiochemical yield and >95 GBq/μmol molar activity. The
tracer showed high stability, low defluorination, and high specific
binding to CB1Rs in mouse brain.
Collapse
Affiliation(s)
- Salla Lahdenpohja
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Noora A. Rajala
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Jatta S. Helin
- Preclinical Imaging, Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Preclinical Imaging, Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
- Accelerator Laboratory, Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Francisco R. López-Picón
- Preclinical Imaging, Turku PET Centre, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Anna K. Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Shollenbarger S, Thomas AM, Wade NE, Gruber SA, Tapert SF, Filbey FM, Lisdahl KM. Intrinsic Frontolimbic Connectivity and Mood Symptoms in Young Adult Cannabis Users. Front Public Health 2019; 7:311. [PMID: 31737591 PMCID: PMC6838025 DOI: 10.3389/fpubh.2019.00311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/14/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: The endocannbinoid system and cannabis exposure has been implicated in emotional processing. The current study examined whether regular cannabis users demonstrated abnormal intrinsic (a.k.a. resting state) frontolimbic connectivity compared to non-users. A secondary aim examined the relationship between cannabis group connectivity differences and self-reported mood and affect symptoms. Method: Participants included 79 cannabis-using and 80 non-using control emerging adults (ages of 18–30), balanced for gender, reading ability, and age. Standard multiple regressions were used to predict if cannabis group status was associated with frontolimbic connectivity after controlling for site, past month alcohol and nicotine use, and days of abstinence from cannabis. Results: After controlling for research site, past month alcohol and nicotine use, and days of abstinence from cannabis, cannabis users demonstrated significantly greater connectivity between left rACC and the following: right rACC (p = 0.001; corrected p = 0.05; f2 = 0.55), left amygdala (p = 0.03; corrected p = 0.47; f2 = 0.17), and left insula (p = 0.03; corrected p = 0.47; f2 = 0.16). Among cannabis users, greater bilateral rACC connectivity was significantly associated with greater subthreshold depressive symptoms (p = 0.02). Conclusions: Cannabis using young adults demonstrated greater connectivity within frontolimbic regions compared to controls. In cannabis users, greater bilateral rACC intrinsic connectivity was associated with greater levels of subthreshold depression symptoms. Current findings suggest that regular cannabis use during adolescence is associated with abnormal frontolimbic connectivity, especially in cognitive control and emotion regulation regions.
Collapse
Affiliation(s)
- Skyler Shollenbarger
- Psychology Department, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Alicia M Thomas
- Psychology Department, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Natasha E Wade
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Staci A Gruber
- Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Francesca M Filbey
- Bert Moore Chair in BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Krista M Lisdahl
- Psychology Department, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
29
|
Borgan F, Laurikainen H, Veronese M, Marques TR, Haaparanta-Solin M, Solin O, Dahoun T, Rogdaki M, Salokangas RKR, Karukivi M, Di Forti M, Turkheimer F, Hietala J, Howes O. In Vivo Availability of Cannabinoid 1 Receptor Levels in Patients With First-Episode Psychosis. JAMA Psychiatry 2019; 76:1074-1084. [PMID: 31268519 PMCID: PMC6613300 DOI: 10.1001/jamapsychiatry.2019.1427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Experimental and epidemiological studies implicate the cannabinoid 1 receptor (CB1R) in the pathophysiology of psychosis. However, whether CB1R levels are altered in the early stages of psychosis and whether they are linked to cognitive function or symptom severity remain unknown. OBJECTIVE To investigate CB1R availability in first-episode psychosis (FEP) without the confounds of illness chronicity or the use of illicit substances or antipsychotics. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional, case-control study of 2 independent samples included participants receiving psychiatric early intervention services at 2 independent centers in Turku, Finland (study 1) and London, United Kingdom (study 2). Study 1 consisted of 18 volunteers, including 7 patients with affective or nonaffective psychoses taking antipsychotic medication and 11 matched controls; study 2, 40 volunteers, including 20 antipsychotic-naive or antipsychotic-free patients with schizophrenia or schizoaffective disorder and 20 matched controls. Data were collected from January 5, 2015, through September 26, 2018, and analyzed from June 20, 2016, through February 12, 2019. MAIN OUTCOMES AND MEASURES The availability of CB1R was indexed using the distribution volume (VT, in milliliters per cubic centimeter) of 2 CB1R-selective positron emission tomography radiotracers: fluoride 18-labeled FMPEP-d2 (study 1) and carbon 11-labeled MePPEP (study 2). Cognitive function was measured using the Wechsler Digit Symbol Coding Test. Symptom severity was measured using the Brief Psychiatric Rating Scale for study 1 and the Positive and Negative Syndrome Scale for study 2. RESULTS A total of 58 male individuals were included in the analyses (mean [SD] age of controls, 27.16 [5.93] years; mean [SD] age of patients, 26.96 [4.55] years). In study 1, 7 male patients with FEP (mean [SD] age, 26.80 [5.40] years) were compared with 11 matched controls (mean [SD] age, 27.18 [5.86] years); in study 2, 20 male patients with FEP (mean [SD] age, 27.00 [5.06] years) were compared with 20 matched controls (mean [SD] age, 27.15 [6.12] years). In study 1, a significant main effect of group on [18F]FMPEP-d2 VT was found in the anterior cingulate cortex (ACC) (t16 = -4.48; P < .001; Hedges g = 1.2), hippocampus (t16 = -2.98; P = .006; Hedges g = 1.4), striatum (t16 = -4.08; P = .001; Hedges g = 1.9), and thalamus (t16 = -4.67; P < .001; Hedges g = 1.4). In study 2, a significant main effect of group on [11C]MePPEP VT was found in the ACC (Hedges g = 0.8), hippocampus (Hedges g = 0.5), striatum (Hedges g = 0.4), and thalamus (Hedges g = 0.7). In patients, [11C]MePPEP VT in the ACC was positively associated with cognitive functioning (R = 0.60; P = .01), and [11C]MePPEP VT in the hippocampus was inversely associated with Positive and Negative Syndrome Scale total symptom severity (R = -0.50; P = .02). CONCLUSIONS AND RELEVANCE The availability of CB1R was lower in antipsychotic-treated and untreated cohorts relative to matched controls. Exploratory analyses indicated that greater reductions in CB1R levels were associated with greater symptom severity and poorer cognitive functioning in male patients. These findings suggest that CB1R may be a potential target for the treatment of psychotic disorders.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Heikki Laurikainen
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Merja Haaparanta-Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Raimo KR Salokangas
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Max Karukivi
- Department of Psychiatry, Turku University, Satakunta Hospital District, Turku, Finland
| | - Marta Di Forti
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jarmo Hietala
- Turku PET (Positron Emission Tomography) Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
30
|
Taddei C, Pike VW. [ 11C]Carbon monoxide: advances in production and application to PET radiotracer development over the past 15 years. EJNMMI Radiopharm Chem 2019; 4:25. [PMID: 31659516 PMCID: PMC6751244 DOI: 10.1186/s41181-019-0073-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
[11C]Carbon monoxide is an appealing synthon for introducing carbon-11 at a carbonyl position (C=O) in a wide variety of chemotypes (e.g., amides, ketones, acids, esters, and ureas). The prevalence of the carbonyl group in drug molecules and the present-day broad versatility of carbonylation reactions have led to an upsurge in the production of this synthon and in its application to PET radiotracer development. This review focuses on the major advances of the past 15 years.
Collapse
Affiliation(s)
- Carlotta Taddei
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Rm B3C342, Bethesda, MD, 20892-1003, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Rm B3C342, Bethesda, MD, 20892-1003, USA
| |
Collapse
|
31
|
Sloan ME, Grant CW, Gowin JL, Ramchandani VA, Le Foll B. Endocannabinoid signaling in psychiatric disorders: a review of positron emission tomography studies. Acta Pharmacol Sin 2019; 40:342-350. [PMID: 30166624 PMCID: PMC6460371 DOI: 10.1038/s41401-018-0081-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
Abstract
Endocannabinoid signaling is implicated in an array of psychopathologies ranging from anxiety to psychosis and addiction. In recent years, radiotracers targeting the endocannabinoid system have been used in positron emission tomography (PET) studies to determine whether individuals with psychiatric disorders display altered endocannabinoid signaling. We comprehensively reviewed PET studies examining differences in endocannabinoid signaling between individuals with psychiatric illness and healthy controls. Published studies evaluated individuals with five psychiatric disorders: cannabis use disorder, alcohol use disorder, schizophrenia, post-traumatic stress disorder, and eating disorders. Most studies employed radiotracers targeting cannabinoid receptor 1 (CB1). Cannabis users consistently demonstrated decreased CB1 binding compared to controls, with normalization following short periods of abstinence. Findings in those with alcohol use disorder and schizophrenia were less consistent, with some studies demonstrating increased CB1 binding and others demonstrating decreased CB1 binding. Evidence of aberrant CB1 binding was also found in individuals with anorexia nervosa and post-traumatic stress disorder, but limited data have been published to date. Thus, existing evidence suggests that alterations in endocannabinoid signaling are present in a range of psychiatric disorders. Although recent efforts have largely focused on evaluating CB1 binding, the synthesis of new radiotracers targeting enzymes involved in endocannabinoid degradation, such as fatty acid amide hydrolase, will allow for other facets of endocannabinoid signaling to be evaluated in future studies.
Collapse
Affiliation(s)
- Matthew E Sloan
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Caroline W Grant
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Joshua L Gowin
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20814, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5S 2S1, Canada.
- Addiction Medicine Service, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada.
- Departments of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Science, University of Toronto, Toronto, ON, M5S 2S1, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada.
| |
Collapse
|
32
|
Shrestha S, Singh P, Cortes-Salva MY, Jenko KJ, Ikawa M, Kim MJ, Kobayashi M, Morse CL, Gladding RL, Liow JS, Zoghbi SS, Fujita M, Innis RB, Pike VW. 3-Substituted 1,5-Diaryl-1 H-1,2,4-triazoles as Prospective PET Radioligands for Imaging Brain COX-1 in Monkey. Part 2: Selection and Evaluation of [ 11C]PS13 for Quantitative Imaging. ACS Chem Neurosci 2018; 9:2620-2627. [PMID: 29792035 DOI: 10.1021/acschemneuro.8b00103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In our preceding paper (Part 1), we identified three 1,5-bis-diaryl-1,2,4-triazole-based compounds that merited evaluation as potential positron emission tomography (PET) radioligands for selectively imaging cyclooxygenase-1 (COX-1) in monkey and human brain, namely, 1,5-bis(4-methoxyphenyl)-3-(alkoxy)-1 H-1,2,4-triazoles bearing a 3-methoxy (PS1), a 3-(2,2,2-trifluoroethoxy) (PS13), or a 3-fluoromethoxy substituent (PS2). PS1 and PS13 were labeled from phenol precursors by O-11C-methylation with [11C]iodomethane and PS2 by O-18F-fluoroalkylation with [2H2,18F]fluorobromomethane. Here, we evaluated these PET radioligands in monkey. All three radioligands gave moderately high uptake in brain, although [2H2,18F]PS2 also showed undesirable radioactivity uptake in skull. [11C]PS13 was selected for further evaluation, mainly based on more favorable brain kinetics than [11C]PS1. Pharmacological preblock experiments showed that about 55% of the radioactivity uptake in brain was specifically bound to COX-1. An index of enzyme density, VT, was well identified from serial brain scans and from the concentrations of parent radioligand in arterial plasma. In addition, VT values were stable within 80 min, suggesting that brain uptake was not contaminated by radiometabolites. [11C]PS13 successfully images and quantifies COX-1 in monkey brain, and merits further investigation for imaging COX-1 in monkey models of neuroinflammation and in healthy human subjects.
Collapse
Affiliation(s)
- Stal Shrestha
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Prachi Singh
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Michelle Y. Cortes-Salva
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Kimberly J. Jenko
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Masamichi Ikawa
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Masato Kobayashi
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Cheryl L. Morse
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Robert L. Gladding
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute
of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
33
|
Hirvonen J, Zanotti-Fregonara P, Gorelick DA, Lyoo CH, Rallis-Frutos D, Morse C, Zoghbi SS, Pike VW, Volkow ND, Huestis MA, Innis RB. Decreased Cannabinoid CB 1 Receptors in Male Tobacco Smokers Examined With Positron Emission Tomography. Biol Psychiatry 2018; 84:715-721. [PMID: 30121138 PMCID: PMC6388688 DOI: 10.1016/j.biopsych.2018.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Previous studies showed reduction of brain cannabinoid CB1 receptors in adults with cannabis and alcohol use disorders. Preclinical data suggest that these receptors also contribute to nicotine reward and dependence. Tobacco smoking may confound clinical studies of psychiatric disorders because many patients with such disorders smoke tobacco. Whether human subjects who smoke tobacco but are otherwise healthy have altered CB1 receptor binding in brain is unknown. METHODS We measured CB1 receptors in brains of 18 healthy men who smoke tobacco (frequent chronic cigarette smokers), and 28 healthy men who do not smoke tobacco, using positron emission tomography and [18F]FMPEP-d2, a radioligand for CB1 receptors. We collected arterial blood samples during scanning to calculate the distribution volume (VT), which is nearly proportional to CB1 receptor density. Repeated-measures analysis of variance compared VT between groups in various brain regions. RESULTS Brain CB1 receptor VT was about 20% lower in subjects who smoke tobacco than in subjects who do not. Decreased VT was found in all brain regions, but reduction did not correlate with years of smoking, number of cigarettes smoked per day, or measures of nicotine dependence. CONCLUSIONS Tobacco-smoking healthy men have a widespread reduction of CB1 receptor density in brain. Reduction of CB1 receptors appears to be a common feature of substance use disorders. Future clinical studies on the CB1 receptor should control for tobacco smoking.
Collapse
Affiliation(s)
- Jussi Hirvonen
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; Department of Radiology, University of Turku, Turku, Finland.
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda,Houston Methodist Research Institute, Houston, Texas
| | - David A. Gorelick
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Chul Hyoung Lyoo
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda
| | - Denise Rallis-Frutos
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda
| | - Cheryl Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda
| | - Nora D. Volkow
- Office of the Director, National Institute on Drug Abuse, National Institutes of Health
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health,,Lambert Center for the Study of Medicinal Cannabis and Hemp, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda
| |
Collapse
|
34
|
Laurikainen H, Tuominen L, Tikka M, Merisaari H, Armio RL, Sormunen E, Borgan F, Veronese M, Howes O, Haaparanta-Solin M, Solin O, Hietala J. Sex difference in brain CB1 receptor availability in man. Neuroimage 2018; 184:834-842. [PMID: 30296558 DOI: 10.1016/j.neuroimage.2018.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid system (ECS) has a widespread neuromodulatory function in the central nervous system and is involved in important aspects of brain function including brain development, cortical rhythms, plasticity, reward, and stress sensitivity. Many of these effects are mediated via the cannabinoid CB1 receptor (CB1R) subtype. Animal studies convincingly show an interaction between the ECS and sex hormones, as well as a sex difference of higher brain CB1R in males. Human in vivo studies of sex difference have yielded discrepant findings. Gender differences in CB1R availability were investigated in vivo in 11 male and 11 female healthy volunteers using a specific CB1R tracer [18F]FMPEP-d2 and positron emission tomography (PET). Regional [18F]FMPEP-d2 distribution volume was used as a proxy for CB1R availability. In addition, we explored whether CB1R availability is linked to neuropsychological functioning. Relative to females, CB1R availability was on average 41% higher in males (p = 0.002) with a regionally specific effect larger in the posterior cingulate and retrosplenial cortices (p = 0.001). Inter-subject variability in CB1R availability was similar in both groups. Voxel-based analyses revealed an inverse association between CB1R availability and visuospatial working memory task performance in both groups (p < 0.001). A CB1R sex difference with a large effect size was observed and should be considered in the design of CB1R-related studies on neuropsychiatric disorders. The behavioural correlates and clinical significance of this difference remain to be further elucidated, but our studies suggest an association between CB1R availability and working memory.
Collapse
Affiliation(s)
- Heikki Laurikainen
- Turku PET Centre, Turku University Hospital, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Lauri Tuominen
- Turku PET Centre, Turku University Hospital, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland; Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | - Maria Tikka
- Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | | | - Reetta-Liina Armio
- Turku PET Centre, Turku University Hospital, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Elina Sormunen
- Turku PET Centre, Turku University Hospital, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | - Olof Solin
- Turku PET Centre, Turku University Hospital, Finland
| | - Jarmo Hietala
- Turku PET Centre, Turku University Hospital, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland.
| | | |
Collapse
|
35
|
Frank E, Maier D, Pajula J, Suvitaival T, Borgan F, Butz-Ostendorf M, Fischer A, Hietala J, Howes O, Hyötyläinen T, Janssen J, Laurikainen H, Moreno C, Suvisaari J, Van Gils M, Orešič M. Platform for systems medicine research and diagnostic applications in psychotic disorders-The METSY project. Eur Psychiatry 2018; 50:40-46. [PMID: 29361398 DOI: 10.1016/j.eurpsy.2017.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Psychotic disorders are associated with metabolic abnormalities including alterations in glucose and lipid metabolism. A major challenge in the treatment of psychosis is to identify patients with vulnerable metabolic profiles who may be at risk of developing cardiometabolic co-morbidities. It is established that both central and peripheral metabolic organs use lipids to control energy balance and regulate peripheral insulin sensitivity. The endocannabinoid system, implicated in the regulation of glucose and lipid metabolism, has been shown to be dysregulated in psychosis. It is currently unclear how these endocannabinoid abnormalities relate to metabolic changes in psychosis. Here we review recent research in the field of metabolic co-morbidities in psychotic disorders as well as the methods to study them and potential links to the endocannabinoid system. We also describe the bioinformatics platforms developed in the EU project METSY for the investigations of the biological etiology in patients at risk of psychosis and in first episode psychosis patients. The METSY project was established with the aim to identify and evaluate multi-modal peripheral and neuroimaging markers that may be able to predict the onset and prognosis of psychiatric and metabolic symptoms in patients at risk of developing psychosis and first episode psychosis patients. Given the intrinsic complexity and widespread role of lipid metabolism, a systems biology approach which combines molecular, structural and functional neuroimaging methods with detailed metabolic characterisation and multi-variate network analysis is essential in order to identify how lipid dysregulation may contribute to psychotic disorders. A decision support system, integrating clinical, neuropsychological and neuroimaging data, was also developed in order to aid clinical decision making in psychosis. Knowledge of common and specific mechanisms may aid the etiopathogenic understanding of psychotic and metabolic disorders, facilitate early disease detection, aid treatment selection and elucidate new targets for pharmacological treatments.
Collapse
Affiliation(s)
| | | | - Juha Pajula
- VTT Technical Research Centre of Finland Ltd., FI-33720 Tampere, Finland
| | | | - Faith Borgan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London W12 0HS, UK
| | | | | | - Jarmo Hietala
- Department of Psychiatry, University of Turku, FI-20520 Turku, Finland; Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London WC2R 2LS, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London W12 0HS, UK
| | | | - Joost Janssen
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Heikki Laurikainen
- Department of Psychiatry, University of Turku, FI-20520 Turku, Finland; Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
| | - Carmen Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jaana Suvisaari
- National Institute for Health and Welfare (THL), FI-00300 Helsinki, Finland
| | - Mark Van Gils
- VTT Technical Research Centre of Finland Ltd., FI-33720 Tampere, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
36
|
Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, Carter R, Appel SH, Atassi N, Masdeu JC. Head-to-Head Comparison of 11C-PBR28 and 18F-GE180 for Quantification of the Translocator Protein in the Human Brain. J Nucl Med 2018; 59:1260-1266. [DOI: 10.2967/jnumed.117.203109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
|
37
|
Miederer I, Buchholz HG, Kronfeld A, Maus S, Weyer-Elberich V, Mildenberger P, Lutz B, Schreckenberger M. Pharmacokinetics of the cannabinoid receptor ligand [18
F]MK-9470 in the rat brain - Evaluation of models using microPET. Med Phys 2018; 45:725-734. [DOI: 10.1002/mp.12732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Isabelle Miederer
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Andrea Kronfeld
- Institute of Microscopic Anatomy and Neurobiology; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Stephan Maus
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Veronika Weyer-Elberich
- Institute of Medical Biostatistics, Epidemiology and Informatics; University Medical Center of the Johannes Gutenberg University Mainz; Obere Zahlbacher Straße 69 55131 Mainz Germany
| | - Philipp Mildenberger
- Institute of Medical Biostatistics, Epidemiology and Informatics; University Medical Center of the Johannes Gutenberg University Mainz; Obere Zahlbacher Straße 69 55131 Mainz Germany
| | - Beat Lutz
- Institute of Physiological Chemistry; University Medical Center of the Johannes Gutenberg University Mainz; Duesbergweg 6 55128 Mainz Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| |
Collapse
|
38
|
Cilia R. Molecular Imaging of the Cannabinoid System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:305-345. [DOI: 10.1016/bs.irn.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
39
|
Bhattacharyya S, Egerton A, Kim E, Rosso L, Riano Barros D, Hammers A, Brammer M, Turkheimer FE, Howes OD, McGuire P. Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors. Sci Rep 2017; 7:15025. [PMID: 29101333 PMCID: PMC5670208 DOI: 10.1038/s41598-017-14203-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022] Open
Abstract
Use of Cannabis, the most widely used illicit drug worldwide, is associated with acute anxiety, and anxiety disorders following regular use. The precise neural and receptor basis of these effects have not been tested in man. Employing a combination of functional MRI (fMRI) and positron emission tomography (PET), we investigated whether the effects of delta-9-tetrahydrocannabinol (delta-9-THC), the main psychoactive ingredient of cannabis, on anxiety and on amygdala response while processing fearful stimuli were related to local availability of its main central molecular target, cannabinoid-1 (CB1) receptors in man. Fourteen healthy males were studied with fMRI twice, one month apart, following an oral dose of either delta-9-THC (10 mg) or placebo, while they performed a fear-processing task. Baseline availability of the CB1 receptor was studied using PET with [11C]MePPEP, a CB1 inverse agonist radioligand. Relative to the placebo condition, delta-9-THC induced anxiety and modulated right amygdala activation while processing fear. Both these effects were positively correlated with CB1 receptor availability in the right amygdala. These results suggest that the acute effects of cannabis on anxiety in males are mediated by the modulation of amygdalar function by delta-9-THC and the extent of these effects are related to local availability of CB1 receptors.
Collapse
Affiliation(s)
- Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK.
| | - Alice Egerton
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Lula Rosso
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK
| | | | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, 4th floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Michael Brammer
- Department of Neuroimaging, Centre for Neuroimaging Sciences, PO Box 089, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Centre for Neuroimaging Sciences, PO Box 089, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Oliver D Howes
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
40
|
Development of two fluorine-18 labeled PET radioligands targeting PDE10A and in vivo PET evaluation in nonhuman primates. Nucl Med Biol 2017; 57:12-19. [PMID: 29223715 DOI: 10.1016/j.nucmedbio.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phosphodiesterase 10A (PDE10A) is a member of the PDE enzyme family that degrades cyclic adenosine and guanosine monophosphates (cAMP and cGMP). Based on the successful development of [11C]T-773 as PDE10A positron emission tomography (PET) radioligand, in this study our aim was to develop and evaluate fluorine-18 analogs of [11C]T-773. METHODS [18F]FM-T-773-d2 and [18F]FE-T-773-d4 were synthesized from the same precursor used for 11C-labeling of T-773 in a two-step approach via 18F-fluoromethylation and 18F-fluoroethylation, respectively, using corresponding deuterated synthons. A total of 12 PET measurements were performed in seven non-human primates. First, baseline PET measurements were performed using High Resolution Research Tomograph system with both [18F]FM-T-773-d2 and [18F]FE-T-773-d4; the uptake in whole brain and separate brain regions, as well as the specific binding and tissue ratio between putamen and cerebellum, was examined. Second, baseline and pretreatment PET measurements using MP-10 as the blocker were performed for [18F]FM-T-773-d2 including arterial blood sampling with radiometabolite analysis in four NHPs. RESULTS Both [18F]FM-T-773-d2 and [18F]FE-T-773-d4 were successfully radiolabeled with an average molar activity of 293 ± 114 GBq/μmol (n=8) for [18F]FM-T-773-d2 and 209 ± 26 GBq/μmol (n=4) for [18F]FE-T-773-d4, and a radiochemical yield of 10% (EOB, n=12, range 3%-16%). Both radioligands displayed high brain uptake (~5.5% of injected radioactivity for [18F]FM-T-773-d2 and ~3.5% for [18F]FE-T-773-d4 at the peak) and a fast washout. Specific binding reached maximum within 30 min for [18F]FM-T-773-d2 and after approximately 45 min for [18F]FE-T-773-d4. [18F]FM-T-773-d2 data fitted well with kinetic compartment models. BPND values obtained indirectly through compartment models were correlated well with those obtained by SRTM. BPND calculated with SRTM was 1.0-1.7 in the putamen. The occupancy with 1.8 mg/kg of MP-10 was approximately 60%. CONCLUSIONS [18F]FM-T-773-d2 and [18F]FE-T-773-d4 were developed as fluorine-18 PET radioligands for PDE10A, with the [18F]FM-T-773-d2 being the more promising PET radioligand warranting further evaluation.
Collapse
|
41
|
Buchholz H, Uebbing K, Maus S, Pektor S, Afahaene N, Weyer-Elberich V, Lutz B, Schreckenberger M, Miederer I. Whole-body biodistribution of the cannabinoid type 1 receptor ligand [ 18 F]MK-9470 in the rat. Nucl Med Biol 2017. [DOI: 10.1016/j.nucmedbio.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Garg PK, Nazih R, Wu Y, Grinevich VP, Garg S. Selective targeting of melanoma using N-(2-diethylaminoethyl) 4-[ 18F]fluoroethoxy benzamide (4-[ 18F]FEBZA): a novel PET imaging probe. EJNMMI Res 2017; 7:61. [PMID: 28791653 PMCID: PMC5548701 DOI: 10.1186/s13550-017-0311-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023] Open
Abstract
Background The purpose of this study was to develop a positron emission tomography (PET) imaging probe that is easy to synthesize and selectively targets melanoma in vivo. Herein, we report the synthesis and preclinical evaluation of N-(2-diethylaminoethyl) 4-[18F]Fluoroethoxy benzamide (4-[18F]FEBZA). A one-step synthesis was developed to prepare 4-[18F]FEBZA in high radiochemical yields and specific activity. The binding affinity, the in vitro binding, and internalization studies were performed using B16F1 melanoma cell line. The biodistribution studies were performed in C57BL/6 normal mice, C57BL/6 mice bearing B16F1 melanoma tumor xenografts, and nu/nu athymic mice bearing HT-29 human adenocarcinoma tumor and C-32 amelanotic melanoma tumor xenografts. MicroPET studies were performed in mice bearing B16F1 and HT-29 tumor xenografts. Results 4-[18F]FEBZA was prepared in 53 ± 14% radiochemical yields and a specific activity of 8.7 ± 1.1 Ci/μmol. The overall synthesis time for 4-[18F]FEBZA was 54 ± 7 min. The in vitro binding to B16F1 cells was 60.03 ± 0.48% after 1 h incubation at 37 °C. The in vivo biodistribution studies show a rapid and high uptake of F-18 in B16F1 tumor with 8.66 ± 1.02%IA/g in this tumor at 1 h. In contrast, the uptake at 1 h in HT-29 colorectal adenocarcinoma and C-32 amelanotic melanoma tumors was significantly lower with 3.68 ± 0.47%IA/g and 3.91 ± 0.23%IA/g in HT-29 and C-32 tumors, respectively. On microPET images, the melanoma tumor was clearly visible by 10 min post-injection and the intensity in the tumor continued to increase with time. In contrast, the HT-29 tumor was not visible on the microPET scans. Conclusions A rapid and facile synthesis of 4-[18F]FEBZA is developed. This method offers a reliable production of 4-[18F]FEBZA in high radiochemical yields and specific activity. A high binding affinity to melanoma cells and high uptake in tumor was noted. The microPET scan clearly delineates the melanoma tumor by 10 min post-injection. The results from these preclinical studies support the potential of 4-[18F]FEBZA as an effective probe to image melanoma.
Collapse
Affiliation(s)
- Pradeep K Garg
- Wake Forest University Health Sciences, Winston Salem, NC, USA. .,Center for Molecular Imaging and Therapy, Biomedical Research Foundation, 1505 Kings Highway, Shreveport, LA, 71133, USA.
| | - Rachid Nazih
- Wake Forest University Health Sciences, Winston Salem, NC, USA.,Center for Molecular Imaging and Therapy, Biomedical Research Foundation, 1505 Kings Highway, Shreveport, LA, 71133, USA
| | - Yanjun Wu
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, 1505 Kings Highway, Shreveport, LA, 71133, USA
| | - Vladimir P Grinevich
- Current Address: Asinex Corporation, 10 N. Chestnut Street, St 104, Winston Salem, NC, 27101, USA
| | - Sudha Garg
- Wake Forest University Health Sciences, Winston Salem, NC, USA.,Center for Molecular Imaging and Therapy, Biomedical Research Foundation, 1505 Kings Highway, Shreveport, LA, 71133, USA
| |
Collapse
|
43
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Eriksson O, Mikkola K, Espes D, Tuominen L, Virtanen K, Forsbäck S, Haaparanta-Solin M, Hietala J, Solin O, Nuutila P. The Cannabinoid Receptor-1 Is an Imaging Biomarker of Brown Adipose Tissue. J Nucl Med 2015; 56:1937-41. [PMID: 26359260 DOI: 10.2967/jnumed.115.156422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Recently, the existence of significant deposits of brown adipose tissue (BAT) in human adults was confirmed. Its role in the human metabolism is unknown but could be substantial. Inhibition of the cannabinoid receptor-1 (CB1) by the antagonist rimonabant (SR141716) has been associated with activation of BAT thermogenesis and weight loss in mice and rats. The role of peripheral and central CB1 in the activation of BAT merits further investigation. Here we developed a technique for quantifying CB1 in BAT by PET. METHODS Sections of rat BAT and subcutaneous white adipose tissue (WAT) were stained for CB1 and uncoupling protein-1 by immunofluorescent staining. Binding of the radiolabeled CB1 antagonist (3R,5R)-5-(3-(18F-fluoromethoxy)phenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)-phenyl)pyrrolidin-2-one ((18)F-FMPEP-d2) to BAT in vivo and in vitro was assessed in rats by PET. RESULTS We found that CB1 was colocalized with uncoupling protein-1 in BAT, but neither protein was found in WAT. Binding of the radiotracer to BAT sections (but not WAT) in vitro was high and displaceable by pretreatment with rimonabant. Deposits of BAT in rats had significant binding of (18)F-FMPEP-d2 in vivo, indicating high CB1 density. WAT deposits were negative for (18)F-FMPEP-d2, consistent with the immunofluorescent staining and in vitro results. CONCLUSION (18)F-FMPEP-d2 PET can quantify CB1 density noninvasively in vivo in rats. CB1 is therefore a promising surrogate imaging biomarker for assessing the presence of BAT deposits as well as for elucidating the mechanism of CB1 antagonist-mediated weight loss.
Collapse
Affiliation(s)
- Olof Eriksson
- Turku PET Centre, University of Turku, Turku, Finland Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lauri Tuominen
- Turku PET Centre, University of Turku, Turku, Finland Department of Psychiatry, University of Turku, Turku, Finland
| | | | | | | | - Jarmo Hietala
- Turku PET Centre, University of Turku, Turku, Finland Department of Psychiatry, University of Turku, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland Accelerator Laboratory, Åbo Akademi University, Turku, Finland; and
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
45
|
Imaging the cannabinoid CB1 receptor in humans with [11C]OMAR: assessment of kinetic analysis methods, test-retest reproducibility, and gender differences. J Cereb Blood Flow Metab 2015; 35:1313-22. [PMID: 25833345 PMCID: PMC4528005 DOI: 10.1038/jcbfm.2015.46] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 12/13/2022]
Abstract
The Radiotracer [(11)C]OMAR was developed for positron emission tomography (PET) imaging of cannabinoid type-1 receptors (CB1R). The objectives of the present study were to evaluate kinetic analysis methods, determine test-retest reliability, and assess gender differences in receptor availability. Dynamic PET data were acquired in 10 human subjects, and analyzed with one-tissue (1T) and two-tissue (2T) compartment models and by the Logan and multilinear analysis (MA1) methods to estimate regional volume of distribution (VT). The 2T model inclusive of a vascular component (2TV) and MA1 were the preferred techniques. Test-retest reliability of VT was good (mean absolute deviation ~9%; intraclass correlation coefficient ~0.7). Tracer parent fraction in plasma was lower in women (P<0.0001). Cerebral uptake normalized by body weight and injected dose was higher in men by 17% (P<0.0001), but VT was significantly greater in women by 23% (P<0.0001). These findings show that [(11)C]OMAR binding can be reliably quantified by the 2T model or MA1 method and demonstrate the utility of this tracer for in vivo imaging of CB1R. In addition, results from the present study indicate that gender difference in receptor binding should be taken into consideration when [(11)C]OMAR is used to quantify CB1R availability in neuropsychiatric disorders.
Collapse
|
46
|
Hirvonen J. In vivo imaging of the cannabinoid CB1 receptor with positron emission tomography. Clin Pharmacol Ther 2015; 97:565-7. [PMID: 25788235 DOI: 10.1002/cpt.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/12/2015] [Indexed: 11/11/2022]
Abstract
Positron emission tomography (PET) can visualize and quantify receptors and other targets in the living human brain, and recent progress in radioligand development has enabled measurement of cannabinoid type-1 (CB1 ) receptors. Cannabinoid CB1 receptors have been implicated in multiple human diseases, such as obesity, mood disorders, and addiction. First in vivo human studies have shown distinctive spatial and temporal alterations in cannabinoid CB1 receptor binding in addictive disorders.
Collapse
Affiliation(s)
- J Hirvonen
- Department of Radiology, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Hjorth S, Karlsson C, Jucaite A, Varnäs K, Wählby Hamrén U, Johnström P, Gulyás B, Donohue SR, Pike VW, Halldin C, Farde L. A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates. Neuropharmacology 2015; 101:519-30. [PMID: 25791528 DOI: 10.1016/j.neuropharm.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/05/2015] [Accepted: 03/07/2015] [Indexed: 01/14/2023]
Abstract
There is a medical need for safe and efficacious anti-obesity drugs with acceptable side effect profiles. To mitigate the challenge posed by translating target interaction across species and balancing beneficial vs. adverse effects, a positron emission tomography (PET) approach could help guide clinical dose optimization. Thus, as part of a compound differentiation effort, three novel selective CB1 receptor (CB1R) antagonists, developed by AstraZeneca (AZ) for the treatment of obesity, were compared with two clinically tested reference compounds, rimonabant and taranabant, with regard to receptor occupancy relative to dose and exposure. A total of 42 PET measurements were performed in 6 non-human primates using the novel CB1R antagonist radioligand [(11)C]SD5024. The AZ CB1R antagonists bound in a saturable manner to brain CB1R with in vivo affinities similar to that of rimonabant and taranabant, compounds with proven weight loss efficacy in clinical trials. Interestingly, it was found that exposures corresponding to those needed for optimal clinical efficacy of rimonabant and taranabant resulted in a CB1R occupancy typically around ∼20-30%, thus much lower than what would be expected for classical G-protein coupled receptor (GPCR) antagonists in other therapeutic contexts. These findings are also discussed in relation to emerging literature on the potential usefulness of 'neutral' vs. 'classical' CB1R (inverse agonist) antagonists. The study additionally highlighted the usefulness of the radioligand [(11)C]SD5024 as a specific tracer for CB1R in the primate brain, though an arterial input function would ideally be required in future studies to further assure accurate quantitative analysis of specific binding.
Collapse
Affiliation(s)
- Stephan Hjorth
- Biosciences, CVMD Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Cecilia Karlsson
- CVMD Translational Medicine Unit, Early Clinical Development, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden.
| | - Aurelija Jucaite
- AstraZeneca Translational Science Centre and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Varnäs
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Wählby Hamrén
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden
| | - Peter Johnström
- AstraZeneca Translational Science Centre and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Balázs Gulyás
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sean R Donohue
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christer Halldin
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- AstraZeneca Translational Science Centre and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Joshi EM, Need A, Schaus J, Chen Z, Benesh D, Mitch C, Morton S, Raub TJ, Phebus L, Barth V. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers? ACS Chem Neurosci 2014; 5:1154-63. [PMID: 25247893 DOI: 10.1021/cn500073j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a CNS exposure model, the mouse brain uptake assessment (MBUA), showed that those compound with initial brain-to-plasma ratios >2 and unbound fraction in brain homogenate >0.01 were more likely to be clinically successful PET ligands. Taken together, early incorporation of a LC/MS/MS cold tracer discovery assay and a parallel MBUA can be an useful screening paradigm to prioritize and rank order potential novel PET radioligands during early tracer discovery efforts. Compounds considered for continued in vivo PET assessments can be identified quickly by leveraging in vitro affinity and selectivity measures, coupled with data from a MBUA, primarily the 5 min brain-to-plasma ratio and unbound fraction data. Coupled utilization of these data creates a strategy to efficiently screen for the identification of appropriate chemical space to invest in for radiotracer discovery.
Collapse
Affiliation(s)
- Elizabeth M. Joshi
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Anne Need
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - John Schaus
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Zhaogen Chen
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Dana Benesh
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Charles Mitch
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Stuart Morton
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Thomas J. Raub
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Lee Phebus
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Vanessa Barth
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
49
|
Pyrazoles with a “click” 4-[N-(4-fluorobutyl)-1,2,3-triazole] substituent in position 3 are nanomolar CB1 receptor ligands. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Thomae D, Morley TJ, Hamill T, Carroll VM, Papin C, Twardy NM, Lee HS, Hargreaves R, Baldwin RM, Tamagnan G, Alagille D. Automated one-step radiosynthesis of the CB1 receptor imaging agent [(18) F]MK-9470. J Labelled Comp Radiopharm 2014; 57:611-4. [PMID: 25156811 DOI: 10.1002/jlcr.3219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/14/2022]
Abstract
The fluorine-18-labeled positron emission tomography (PET) radiotracer [(18) F]MK-9470 is a selective, high affinity inverse agonist that has been used to image the cannabinoid receptor type 1 in human brain in healthy and disease states. This report describes a simplified, one-step [(18) F]radiofluorination approach using a GE TRACERlab FXFN module for the routine production of this tracer. The one-step synthesis, by [(18) F]fluoride displacement of a primary tosylate precursor, gives a six-fold increase in yield over the previous two-step method employing O-alkylation of a phenol precursor with 1,2-[(18) F]fluorobromoethane. The average radiochemical yield of [(18) F]MK-9470 using the one-step method was 30.3 ± 11.7% (n = 12), with specific activity in excess of 6 Ci/µmol and radiochemical purity of 97.2 ± 1.5% (n = 12), in less than 60 min. This simplified, high yielding, automated process was validated for routine GMP production of [(18) F]MK-9470 for clinical studies.
Collapse
Affiliation(s)
- David Thomae
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|