1
|
Sano Y, Yamamoto Y, Kubota M, Moriguchi S, Matsuoka K, Kurose S, Tagai K, Endo H, Yamagata B, Suzuki H, Tarumi R, Nomoto K, Takado Y, Kawamura K, Zhang MR, Tabuchi H, Mimura M, Uchida H, Higuchi M, Takahata K. Alterations of striatal phosphodiesterase 10 A and their association with recurrence rate in bipolar I disorder. Transl Psychiatry 2024; 14:403. [PMID: 39358334 PMCID: PMC11447081 DOI: 10.1038/s41398-024-03107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Phosphodiesterase 10 A (PDE10A), a pivotal element of the second messenger signaling downstream of the dopamine receptor stimulation, is conceived to be crucially involved in the mood instability of bipolar I disorder (BD-I) as a primary causal factor or in response to dysregulated dopaminergic tone. We aimed to determine whether striatal PDE10A availability is altered in patients with BD-I and assessed its relationship with the clinical characteristics of BD-I. This case-control study used positron emission tomography (PET) with 2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]MNI-659), a radioligand that binds to PDE10A, to examine the alterations of the striatal PDE10A availability in the living brains of individuals with BD-I and their association with the clinical characteristics of BD-I. [18F]MNI-659 PET data were acquired from 25 patients with BD-I and 27 age- and sex-matched healthy controls. Patients with BD-I had significantly lower PDE10A availability than controls in the executive (F = 8.86; P = 0.005) and sensorimotor (F = 6.13; P = 0.017) subregions of the striatum. Lower PDE10A availability in the executive subregion was significantly associated with a higher frequency of mood episodes in patients with BD-I (r = -0.546; P = 0.007). This study provides the first evidence of altered PDE10A availability in patients with BD-I. Lower PDE10A availability in the executive subregion of the striatum is associated with an increased recurrence risk, suggesting that PDE10A may prevent BD-I relapse. Further studies are required to elucidate the role of PDE10A in BD-I pathophysiology and explore its potential as a treatment target.
Collapse
Affiliation(s)
- Yasunori Sano
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Manabu Kubota
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hisaomi Suzuki
- National Hospital Organization (NHO) Shimofusa Psychiatric Medical Center, 578 Heta-cho, Midori, Chiba, Chiba, 266-0007, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kie Nomoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba, 263-8555, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| |
Collapse
|
2
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Weil EL, Nakawah MO, Masdeu JC. Advances in the neuroimaging of motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:359-381. [PMID: 37562878 DOI: 10.1016/b978-0-323-98818-6.00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuroimaging is a valuable adjunct to the history and examination in the evaluation of motor system disorders. Conventional imaging with computed tomography or magnetic resonance imaging depicts important anatomic information and helps to identify imaging patterns which may support diagnosis of a specific motor disorder. Advanced imaging techniques can provide further detail regarding volume, functional, or metabolic changes occurring in nervous system pathology. This chapter is an overview of the advances in neuroimaging with particular emphasis on both standard and less well-known advanced imaging techniques and findings, such as diffusion tensor imaging or volumetric studies, and their application to specific motor disorders. In addition, it provides reference to emerging imaging biomarkers in motor system disorders such as Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease, and briefly reviews the neuroimaging findings in different causes of myelopathy and peripheral nerve disorders.
Collapse
Affiliation(s)
- Erika L Weil
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States; Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States.
| | - Mohammad Obadah Nakawah
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States; Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Kubota M, Takahata K, Matsuoka K, Sano Y, Yamamoto Y, Tagai K, Tarumi R, Suzuki H, Kurose S, Nakajima S, Shiwaku H, Seki C, Kawamura K, Zhang MR, Takahashi H, Takado Y, Higuchi M. Positron Emission Tomography Assessments of Phosphodiesterase 10A in Patients With Schizophrenia. Schizophr Bull 2022; 49:688-696. [PMID: 36458958 PMCID: PMC10154699 DOI: 10.1093/schbul/sbac181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND HYPOTHESIS Phosphodiesterase 10A (PDE10A) is a highly expressed enzyme in the basal ganglia, where cortical glutamatergic and midbrain dopaminergic inputs are integrated. Therapeutic PDE10A inhibition effects on schizophrenia have been reported previously, but the status of this molecule in the living patients with schizophrenia remains elusive. Therefore, this study aimed to investigate the central PDE10A status in patients with schizophrenia and examine its relationship with psychopathology, cognition, and corticostriatal glutamate levels. STUDY DESIGN This study included 27 patients with schizophrenia, with 5 antipsychotic-free cases, and 27 healthy controls. Positron emission tomography with [18F]MNI-659, a specific PDE10A radioligand, was employed to quantify PDE10A availability by measuring non-displaceable binding potential (BPND) of the ligand in the limbic, executive, and sensorimotor striatal functional subregions, and in the pallidum. BPND estimates were compared between patients and controls while controlling for age and gender. BPND correlations were examined with behavioral and clinical measures, along with regional glutamate levels quantified by the magnetic resonance spectroscopy. STUDY RESULTS Multivariate analysis of covariance demonstrated a significant main effect of diagnosis on BPND (p = .03). A posthoc test showed a trend-level higher sensorimotor striatal BPND in patients, although it did not survive multiple comparison corrections. BPND in controls in this subregion was significantly and negatively correlated with the Tower of London scores, a cognitive subtest. Striatal or dorsolateral prefrontal glutamate levels did not correlate significantly with BPND in either group. CONCLUSIONS The results suggest altered striatal PDE10A availability and associated local neural dysfunctions in patients with schizophrenia.
Collapse
Affiliation(s)
- Manabu Kubota
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Yasunori Sano
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,Department of Psychiatry, The Jikei University Graduate School of Medicine, Minato-ku, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hisaomi Suzuki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,National Hospital Organization Shimofusa Psychiatric Medical Center, Midori-ku, Chiba, Japan
| | - Shin Kurose
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan.,Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| |
Collapse
|
5
|
Wei H, Wei J, Zhang S, Dong S, Li G, Ran W, Dong C, Zhang W, Che C, Luo W, Xu H, Dong Z, Wang J, Wang L. Easily automated radiosynthesis of [18F]P10A-1910 and its clinical translation to quantify phosphodiesterase 10A in human brain. Front Bioeng Biotechnol 2022; 10:983488. [PMID: 36147528 PMCID: PMC9486304 DOI: 10.3389/fbioe.2022.983488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work showed that [18F]P10A-1910 was a potential radioligand for use in imaging phosphodiesterase 10A (PDE10A). Specifically, it had high brain penetration and specific binding that was demonstrated in both rodents and non-human primates. Here, we present the first automatic cGMP-level production of [18F]P10A-1910 and translational PET/MRI study in living human brains. Successful one-step radiolabeling of [18F]P10A-1910 on a GE TRACERlab FX2N synthesis module was realized via two different methods. First, formulated [18F]P10A-1910 was derived from heating spirocyclic iodonium ylide in a tetra-n-butyl ammonium methanesulfonate solution. At the end of synthesis, it was obtained in non-decay corrected radiochemical yields (n.d.c. RCYs) of 12.4 ± 1.3%, with molar activities (MAs) of 90.3 ± 12.6 μmol (n = 7) (Method I). The boronic pinacol ester combined with copper and oxygen also delivered the radioligand with 16.8 ± 1.0% n. d.c. RCYs and 77.3 ± 20.7 GBq/μmol (n = 7) MAs after formulation (Method II). The radiochemical purity, radionuclidic purity, solvent residue, sterility, endotoxin content and other parameters were all validated for human use. Consistent with the distribution of PDE10A in the brain, escalating uptake of [18F]P10A-1910 was observed in the order of cerebellum (reference region), substantial nigra, caudate and putamen. The non-displaceable binding potential (BPND) was estimated by simplified reference-tissue model (SRTM); linear regressions demonstrated that BPND was well correlated with the most widely used semiquantitative parameter SUV. The strongest correlation was observed with SUV(50–60 min) (R2 = 0.966, p < 0.01). Collectively, these results indicated that a static scan protocol could be easily performed for PET imaging of PDE10A. Most importantly, that [18F]P10A-1910 is a promising radioligand to clinically quantify PDE10A.
Collapse
Affiliation(s)
- Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shiliang Dong
- Center of Bariatric Surgery, Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weibin Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wenzhao Luo
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center), Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- Center of Bariatric Surgery, Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lu Wang, ; Jinghao Wang, ; Zhiyong Dong,
| | - Jinghao Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lu Wang, ; Jinghao Wang, ; Zhiyong Dong,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lu Wang, ; Jinghao Wang, ; Zhiyong Dong,
| |
Collapse
|
6
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Xiao Z, Wei H, Xu Y, Haider A, Wei J, Yuan S, Rong J, Zhao C, Li G, Zhang W, Chen H, Li Y, Zhang L, Sun J, Zhang S, Luo HB, Yan S, Cai Q, Hou L, Che C, Liang SH, Wang L. Discovery of a highly specific 18F-labeled PET ligand for phosphodiesterase 10A enabled by novel spirocyclic iodonium ylide radiofluorination. Acta Pharm Sin B 2022; 12:1963-1975. [PMID: 35847497 PMCID: PMC9279629 DOI: 10.1016/j.apsb.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia–of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (Papp > 10 × 10−6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose–response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.
Collapse
Affiliation(s)
- Zhiwei Xiao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yi Xu
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shiyu Yuan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Chunyu Zhao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weibin Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huangcan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Lingling Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiyun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Qijun Cai
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chao Che
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Corresponding authors. Tel./fax: +86 755 26032530 (Chao Che), +1 617 7266165 (Steven H. Liang), +86 20 38688692 (Lu Wang).
| |
Collapse
|
8
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
10
|
Schröder S, Scheunemann M, Wenzel B, Brust P. Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. Int J Mol Sci 2021; 22:ijms22083832. [PMID: 33917199 PMCID: PMC8068090 DOI: 10.3390/ijms22083832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.
Collapse
Affiliation(s)
- Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| |
Collapse
|
11
|
Amin HS, Parikh PK, Ghate MD. Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. Eur J Med Chem 2021; 214:113155. [PMID: 33581555 DOI: 10.1016/j.ejmech.2021.113155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Phosphodiesterase 10A is a member of Phosphodiesterase (PDE)-superfamily of the enzyme which is responsible for hydrolysis of cAMP and cGMP to their inactive forms 5'-AMP and 5'-GMP, respectively. PDE10A is highly expressed in the brain, particularly in the putamen and caudate nucleus. PDE10A plays an important role in the regulation of localization, duration, and amplitude of the cyclic nucleotide signalling within the subcellular domain of these regions, and thereby modulation of PDE10A enzyme can give rise to a new therapeutic approach in the treatment of schizophrenia and other neurodegenerative disorders. Limitation of the conventional therapy of schizophrenia forced the pharmaceutical industry to move their efforts to develop a novel treatment approach with reduced side effects. In the past decade, considerable developments have been made in pursuit of PDE10A centric antipsychotic agents by several pharmaceutical industries due to the distribution of PDE10A in the brain and the ability of PDE10A inhibitors to mimic the effect of D2 antagonists and D1 agonists. However, no selective PDE10A inhibitor is currently available in the market for the treatment of schizophrenia. The present compilation concisely describes the role of PDE10A inhibitors in the therapy of neurodegenerative disorders mainly in psychosis, the structure of PDE10A enzyme, key interaction of different PDE10A inhibitors with human PDE10A enzyme and recent medicinal chemistry developments in designing of safe and effective PDE10A inhibitors for the treatment of schizophrenia. The present compilation also provides useful information and future direction to bring further improvements in the discovery of PDE10A inhibitors.
Collapse
Affiliation(s)
- Harsh S Amin
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Palak K Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India; Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| |
Collapse
|
12
|
Shaw RC, Tamagnan GD, Tavares AAS. Rapidly (and Successfully) Translating Novel Brain Radiotracers From Animal Research Into Clinical Use. Front Neurosci 2020; 14:871. [PMID: 33117115 PMCID: PMC7559529 DOI: 10.3389/fnins.2020.00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
The advent of preclinical research scanners for in vivo imaging of small animals has added confidence into the multi-step decision-making process of radiotracer discovery and development. Furthermore, it has expanded the utility of imaging techniques available to dissect clinical questions, fostering a cyclic interaction between the clinical and the preclinical worlds. Significant efforts from medicinal chemistry have also made available several high-affinity and selective compounds amenable for radiolabeling, that target different receptors, transporters and enzymes in vivo. This substantially increased the range of applications of molecular imaging using positron emission tomography (PET) or single photon emission computed tomography (SPECT). However, the process of developing novel radiotracers for in vivo imaging of the human brain is a multi-step process that has several inherent pitfalls and technical difficulties, which often hampers the successful translation of novel imaging agents from preclinical research into clinical use. In this paper, the process of radiotracer development and its relevance in brain research is discussed; as well as, its pitfalls, technical challenges and future promises. Examples of successful and unsuccessful translation of brain radiotracers will be presented.
Collapse
Affiliation(s)
- Robert C. Shaw
- BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Adriana Alexandre S. Tavares
- BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Yu YF, Zhang C, Huang YY, Zhang S, Zhou Q, Li X, Lai Z, Li Z, Gao Y, Wu Y, Guo L, Wu D, Luo HB. Discovery and Optimization of Chromone Derivatives as Novel Selective Phosphodiesterase 10 Inhibitors. ACS Chem Neurosci 2020; 11:1058-1071. [PMID: 32105440 DOI: 10.1021/acschemneuro.0c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase 10 (PDE10) inhibitors have received much attention as promising therapeutic agents for central nervous system (CNS) disorders such as schizophrenia and Huntington's disease. Recently, a hit compound 1 with a novel chromone scaffold has shown moderate inhibitory activity against PDE10A (IC50 = 500 nM). Hit-to-lead optimization has resulted in compound 3e with an improved inhibitory activity (IC50 = 6.5 nM), remarkable selectivity (>95-fold over other PDEs), and good metabolic stability (RLM t1/2 = 105 min) by using an integrated strategy (molecular modeling, chemical synthesis, bioassay, and cocrystal structure). The cocrystal structural information provides insights into the binding pattern of 3e in the PDE10A catalytic domain to highlight the key role of the halogen and hydrogen bonds toward Tyr524 and Tyr693, respectively, thereby resulting in high selectivity against other PDEs. These new observations are of benefit for the rational design of the next generation PDE10 inhibitors for CNS disorders.
Collapse
Affiliation(s)
- Yan-Fa Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangmin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zengwei Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuqi Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
15
|
Cybulska K, Perk L, Booij J, Laverman P, Rijpkema M. Huntington's Disease: A Review of the Known PET Imaging Biomarkers and Targeting Radiotracers. Molecules 2020; 25:molecules25030482. [PMID: 31979301 PMCID: PMC7038198 DOI: 10.3390/molecules25030482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG expansion mutation in the huntingtin gene. As a result, intranuclear inclusions of mutant huntingtin protein are formed, which damage striatal medium spiny neurons (MSNs). A review of Positron Emission Tomography (PET) studies relating to HD was performed, including clinical and preclinical data. PET is a powerful tool for visualisation of the HD pathology by non-invasive imaging of specific radiopharmaceuticals, which provide a detailed molecular snapshot of complex mechanistic pathways within the brain. Nowadays, radiochemists are equipped with an impressive arsenal of radioligands to accurately recognise particular receptors of interest. These include key biomarkers of HD: adenosine, cannabinoid, dopaminergic and glutamateric receptors, microglial activation, phosphodiesterase 10 A and synaptic vesicle proteins. This review aims to provide a radiochemical picture of the recent developments in the field of HD PET, with significant attention devoted to radiosynthetic routes towards the tracers relevant to this disease.
Collapse
Affiliation(s)
- Klaudia Cybulska
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
- Radboud Translational Medicine B.V., Radboud University Medical Center, Geert Grooteplein 21 (route 142), 6525 EZ Nijmegen, The Netherlands;
- Correspondence:
| | - Lars Perk
- Radboud Translational Medicine B.V., Radboud University Medical Center, Geert Grooteplein 21 (route 142), 6525 EZ Nijmegen, The Netherlands;
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
| |
Collapse
|
16
|
In vitro phosphodiesterase 10A (PDE10A) binding in whole hemisphere human brain using the PET radioligand [ 18F]MNI-659. Brain Res 2019; 1711:140-145. [PMID: 30664847 DOI: 10.1016/j.brainres.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 01/27/2023]
Abstract
Highly specific and sensitive biomarkers for pathologies related to dysfunctions in the basal ganglia circuit are of great value to assess therapeutic efficacy not only clinically to establish an early diagnosis, but also in terms of monitoring the efficacy of therapeutic interventions and decelerated neurodegeneration. The phosphodiesterase 10A (PDE10A) enzyme plays a central role in striatal signaling and is implicated in several neuropsychiatric disorders involving striatal pathology, such as Huntingtońs disease (HD) and schizophrenia. Inhibition of PDE10A activates the neurons in the striatum and consequently leads to alteration of behavioral aspects modulated by the striatal circuit. [18F]MNI-659, (2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione), is a newly developed PET radioligand that shows a high binding to PDE10A in the human brain in vivo. In the present study, we examined the in vitro binding of [18F]MNI-659 in human postmortem brain to gain a better understanding of the presence, density, disease-related alterations and therapy related to changes in PDE10A expression. The results show high specific binding of [18F]MNI-659 in the caudate nucleus, putamen and the hippocampal formation. Low specific [18F]MNI-659 binding was detected in nucleus accumbens in comparison to the caudate nucleus and putamen. In vitro binding studies with [18F]MNI-659 will facilitate in elucidating better understanding of the role of PDE10A activity in health and disease that may lead to new diagnostic opportunities in HD.
Collapse
|
17
|
PET Radioligands for imaging of the PDE10A in human: current status. Neurosci Lett 2019; 691:11-17. [DOI: 10.1016/j.neulet.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
|
18
|
Mori W, Yamasaki T, Fujinaga M, Ogawa M, Zhang Y, Hatori A, Xie L, Kumata K, Wakizaka H, Kurihara Y, Ohkubo T, Nengaki N, Zhang MR. Development of 2-(2-(3-(4-([ 18F]Fluoromethoxy- d 2)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione for Positron-Emission-Tomography Imaging of Phosphodiesterase 10A in the Brain. J Med Chem 2018; 62:688-698. [PMID: 30516998 DOI: 10.1021/acs.jmedchem.8b01366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphodiesterase 10A (PDE10A) is a newly identified therapeutic target for central-nervous-system disorders. 2-(2-(3-(4-([18F]Fluoroethoxy)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]MNI-659, [18F]5) is a useful positron-emission-tomography (PET) ligand for imaging of PDE10A in the human brain. However, the radiolabeled metabolite of [18F]5 can accumulate in the brain. In this study, using [18F]5 as a lead compound, we designed four new 18F-labeled ligands ([18F]6-9) to find one more suitable than [18F]5. Of these, 2-(2-(3-(4-([18F]fluoromethoxy- d2)phenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]9) exhibited high in vitro binding affinity ( Ki = 2.9 nM) to PDE10A and suitable lipophilicity (log D = 2.2). In PET studies, the binding potential (BPND) of [18F]9 (5.8) to PDE10A in the striatum of rat brains was significantly higher than that of [18F]5 (4.6). Furthermore, metabolite analysis showed much lower levels of contamination with radiolabeled metabolites in the brains of rats given [18F]9 than in those given [18F]5. In conclusion, [18F]9 is a useful PET ligand for PDE10A imaging in brain.
Collapse
Affiliation(s)
| | | | | | - Masanao Ogawa
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | | | | | | | | | | | - Yusuke Kurihara
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | - Takayuki Ohkubo
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | - Nobuki Nengaki
- SHI Accelerator Service, Ltd. , 1-17-6 Osaki , Shinagawa-ku, Tokyo 141-0032 , Japan
| | | |
Collapse
|
19
|
Bertoglio D, Verhaeghe J, Kosten L, Thomae D, Van der Linden A, Stroobants S, Wityak J, Dominguez C, Mrzljak L, Staelens S. MR-based spatial normalization improves [18F]MNI-659 PET regional quantification and detectability of disease effect in the Q175 mouse model of Huntington's disease. PLoS One 2018; 13:e0206613. [PMID: 30365550 PMCID: PMC6203386 DOI: 10.1371/journal.pone.0206613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
The positron emission tomography (PET) tracer [18F]MNI-659, selective for phosphodiesterase 10A (PDE10A), is a promising tool to assess an early biomarker for Huntington’s disease (HD). In this study we investigated [18F]MNI-659 uptake in the Q175 mouse model of HD. Given the focal striatal distribution of PDE10A as well as the striatal atrophy occurring in HD, the spatial normalization approach applied during the processing could sensibly affect the accuracy of the regional quantification. We compared the use of a magnetic resonance images (MRI) template based on individual MRI over a PET and CT templates for regional quantification and spatial normalization of [18F]MNI-659 PET images. We performed [18F]MNI-659 PET imaging in six months old heterozygous (HET) Q175 mice and wild-type (WT) littermates, followed by X-ray computed tomography (CT) scan. In the same week, individual T2-weighted MRI were acquired. Spatial normalization and regional quantification of the PET/CT images was performed on MRI, [18F]MNI-659 PET, or CT template and compared to binding potential (BPND) using volumes manually delineated on the individual MR images. Striatal volume was significantly reduced in HET mice (-7.7%, p<0.0001) compared to WT littermates. [18F]MNI-659 BPND in striatum of HET animals was significantly reduced (p<0.0001) when compared to WT littermates using all three templates. However, BPND values were significantly higher for HET mice using the PET template compared to the MRI and CT ones (p<0.0001), with an overestimation at lower activities. On the other hand, the CT template spatial normalization introduced larger variability reducing the effect size. The PET and CT template-based approaches resulted in a lower accuracy in BPND quantification with consequent decrease in the detectability of disease effect. This study demonstrates that for [18F]MNI-659 brain PET imaging in mice the use of an MRI-based spatial normalization is recommended to achieve accurate quantification and fully exploit the detectability of disease effect.
Collapse
Affiliation(s)
- Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Lauren Kosten
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - David Thomae
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | | | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - John Wityak
- CHDI Foundation, Princeton, NJ, United States of America
| | | | | | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
- * E-mail:
| |
Collapse
|
20
|
Liu H, Jin H, Luo Z, Yue X, Zhang X, Flores H, Su Y, Perlmutter JS, Tu Z. In Vivo Characterization of Two 18F-Labeled PDE10A PET Radioligands in Nonhuman Primate Brains. ACS Chem Neurosci 2018; 9:1066-1073. [PMID: 29400443 PMCID: PMC5955820 DOI: 10.1021/acschemneuro.7b00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) with phosphodiesterase 10A (PDE10A) specific radioligands provides a noninvasive and quantitative imaging tool to access the expression of this enzyme in vivo under normal and diseased conditions. We recently reported two potent 18F-labeled PDE10A radioligands (18F-TZ19106B and 18F-TZ8110); initial evaluation in rats and nonhuman primates indicated stable metabolic profiles and excellent target-to-nontarget ratio (striatum/cerebellum) for both tracers. Herein, we focused on in vivo characterization of 18F-TZ19106B and 18F-TZ8110 to identify a suitable radioligand for imaging PDE10A in vivo. We directly compared microPET studies of these two radiotracers in adult male Macaca fascicularis nonhuman primates (NHPs). 18F-TZ19106B had higher striatal uptake and tracer retention in NHP brains than 18F-TZ8110, quantified by either standardized uptake values (SUVs) or nondisplaceable binding potential (BPND) estimated using reference-based modeling analysis. Blocking and displacement studies using the PDE10A inhibitor MP-10 indicated the binding of 18F-TZ19106B to PDE10A was specific and reversible. We also demonstrated sensitivity of 18F-TZ19106B binding to varying number of specific binding sites using escalating doses of MP-10 blockade (0.3, 0.5, 1.0, 1.5, and 2.0 mg/kg). Pretreatment with a dopamine D2-like receptor antagonist enhanced the striatal uptake of 18F-TZ19106B. Our results indicate that 18F-TZ19106B is a promising radioligand candidate for imaging PDE10A in vivo and it may be used to determine target engagement of PDE10A inhibitors and serve as a tool to evaluate the effect of novel antipsychotic therapies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hongjun Jin
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Zonghua Luo
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xuyi Yue
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xiang Zhang
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hubert Flores
- Department of Neurology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yi Su
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Joel S. Perlmutter
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Neurology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
21
|
Schröder S, Wenzel B, Deuther-Conrad W, Teodoro R, Kranz M, Scheunemann M, Egerland U, Höfgen N, Briel D, Steinbach J, Brust P. Investigation of an 18F-labelled Imidazopyridotriazine for Molecular Imaging of Cyclic Nucleotide Phosphodiesterase 2A. Molecules 2018; 23:molecules23030556. [PMID: 29498659 PMCID: PMC6017663 DOI: 10.3390/molecules23030556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/15/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Specific radioligands for in vivo visualization and quantification of cyclic nucleotide phosphodiesterase 2A (PDE2A) by positron emission tomography (PET) are increasingly gaining interest in brain research. Herein we describe the synthesis, the 18F-labelling as well as the biological evaluation of our latest PDE2A (radio-)ligand 9-(5-Butoxy-2-fluorophenyl)-2-(2-([18F])fluoroethoxy)-7-methylimidazo[5,1-c]pyrido[2,3-e][1,2,4]triazine (([18F])TA5). It is the most potent PDE2A ligand out of our series of imidazopyridotriazine-based derivatives so far (IC50 hPDE2A = 3.0 nM; IC50 hPDE10A > 1000 nM). Radiolabelling was performed in a one-step procedure starting from the corresponding tosylate precursor. In vitro autoradiography on rat and pig brain slices displayed a homogenous and non-specific binding of the radioligand. Investigation of stability in vivo by reversed-phase HPLC (RP-HPLC) and micellar liquid chromatography (MLC) analyses of plasma and brain samples obtained from mice revealed a high fraction of one main radiometabolite. Hence, we concluded that [18F]TA5 is not appropriate for molecular imaging of PDE2A neither in vitro nor in vivo. Our ongoing work is focusing on further structurally modified compounds with enhanced metabolic stability.
Collapse
Affiliation(s)
- Susann Schröder
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| | - Mathias Kranz
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| | - Ute Egerland
- BioCrea GmbH, Radebeul 01445, Germany; (U.E.); (N.H.)
| | | | - Detlef Briel
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany;
| | - Jörg Steinbach
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig 04318, Germany; (B.W.); (W.D.-C.); (R.T.); (M.K.); (M.S.); (J.S.); (P.B.)
| |
Collapse
|
22
|
Abstract
PURPOSE A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described. PROCEDURES In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue. PET studies with [(11)C]MK-8193 were conducted in rats and rhesus monkeys at baseline and following administration of a PDE10A inhibitor. RESULTS [(3)H]MK-8193 is a high-affinity, selective PDE10A radioligand in rat, monkey, and human brain tissue. In vivo, [(11)C]MK-8193 displays rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally diverse PDE10A inhibitor, enabling the determination of pharmacokinetic/enzyme occupancy relationships. CONCLUSIONS [(11)C]MK-8193 is a useful PET tracer for the preclinical characterization of PDE10A therapeutic candidates in rat and monkey. Further evaluation of [(11)C]MK-8193 in humans is warranted.
Collapse
|
23
|
Mori W, Takei M, Furutsuka K, Fujinaga M, Kumata K, Muto M, Ohkubo T, Hashimoto H, Tamagnan G, Higuchi M, Kawamura K, Zhang MR. Comparison between [ 18F]fluorination and [ 18F]fluoroethylation reactions for the synthesis of the PDE10A PET radiotracer [ 18F]MNI-659. Nucl Med Biol 2017; 55:12-18. [PMID: 28972915 DOI: 10.1016/j.nucmedbio.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/04/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION 2-(2-(3-(4-(2-[18F]Fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ([18F]MNI-659, [18F]1) is a useful PET radiotracer for imaging phosphodiesterase 10A (PDE10A) in human brain. [18F]1 has been previously prepared by direct [18F]fluorination of a tosylate precursor 2 with [18F]F-. The aim of this study was to determine the conditions for the [18F]fluorination reaction to obtain [18F]1 of high quality and with sufficient radioactivity for clinical use in our institute. Moreover, we synthesized [18F]1 by [18F]fluoroethylation of a phenol precursor 3 with [18F]fluoroethyl bromide ([18F]FEtBr), and the outcomes of [18F]fluorination and [18F]fluoroethylation were compared. METHODS We performed the automated synthesis of [18F]1 by [18F]fluorination and [18F]fluoroethylation using a multi-purpose synthesizer. We determined the amounts of tosylate precursor 2 and potassium carbonate as well as the reaction temperature for direct [18F]fluorination. RESULTS The efficiency of the [18F]fluorination reaction was strongly affected by the amount of 2 and potassium carbonate. Under the determined reaction conditions, [18F]1 with 0.82±0.2GBq was obtained in 13.6%±3.3% radiochemical yield (n=8, decay-corrected to EOB and based on [18F]F-) at EOS, starting from 11.5±0.4GBq of cyclotron-produced [18F]F-. On the other hand, the [18F]fluoroethylation of 3 with [18F]FEtBr produced [18F]1 with 1.0±0.2GBq and in 22.5±2.5 % radiochemical yields (n=7, decay-corrected to EOB and based on [18F]F-) at EOS, starting from 7.4GBq of cyclotron-produced [18F]F-. Clearly, [18F]fluoroethylation resulted in a higher radiochemical yield of [18F]1 than [18F]fluorination. CONCLUSION [18F]1 of high quality and with sufficient radioactivity was successfully radiosynthesized by two methods. [18F]1 synthesized by direct [18F]fluorination has been approved and will be provided for clinical use in our institute.
Collapse
Affiliation(s)
- Wakana Mori
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Makoto Takei
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kenji Furutsuka
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; SHI Accelerator Service Ltd., Tokyo 141-0032, Japan
| | - Masayuki Fujinaga
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Katsushi Kumata
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masatoshi Muto
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Tokyo Nuclear Services Ltd., Tokyo 110-0016, Japan
| | - Takayuki Ohkubo
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; SHI Accelerator Service Ltd., Tokyo 141-0032, Japan
| | - Hiroki Hashimoto
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | | | - Makoto Higuchi
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
24
|
Schain M, Fazio P, Mrzljak L, Amini N, Al-Tawil N, Fitzer-Attas C, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Revisiting the Logan plot to account for non-negligible blood volume in brain tissue. EJNMMI Res 2017; 7:66. [PMID: 28822101 PMCID: PMC5561763 DOI: 10.1186/s13550-017-0314-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 11/23/2022] Open
Abstract
Background Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. Results New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [11C]raclopride and [18F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [11C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [18F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [18F]MNI-659 a small but systematic overestimation of DVR was still observed. Conclusions The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0314-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Schain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Patrik Fazio
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, M62, SE-141-86, Stockholm, Sweden
| | | | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
25
|
Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M. Quantitative positron emission tomography in brain research. Brain Res 2017; 1670:220-234. [PMID: 28652218 DOI: 10.1016/j.brainres.2017.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
The application of positron emission tomography (PET) in brain research has increased substantially during the past 20years, and is still growing. PET provides a unique insight into physiological and pathological processes in vivo. In this article we introduce the fundamentals of PET, and the methods available for acquiring quantitative estimates of the parameters of interest. A short introduction to different areas of application is also given, including basic research of brain function and in neurology, psychiatry, drug receptor occupancy studies, and its application in diagnostics of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Our aim is to inform the unfamiliar reader of the underlying basics and potential applications of PET, hoping to inspire the reader into considering how the technique could be of benefit for his or her own research.
Collapse
Affiliation(s)
- Kerstin Heurling
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Antoine Leuzy
- Department Neurobiology, Care Sciences and Society, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - My Jonasson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo R Zimmer
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Agneta Nordberg
- Department Neurobiology, Care Sciences and Society, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
26
|
Ehrlich DJ, Walker RH. Functional neuroimaging and chorea: a systematic review. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2017. [PMID: 28649394 PMCID: PMC5479019 DOI: 10.1186/s40734-017-0056-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chorea is a hyperkinetic movement disorder consisting of involuntary irregular, flowing movements of the trunk, neck or face. Although Huntington’s disease is the most common cause of chorea in adults, chorea can also result from many other neurodegenerative, metabolic, and autoimmune conditions. While the pathophysiology of these different conditions is quite variable, recent advances in functional imaging have enabled the development of new methods for analysis of brain activity and neuronal dysfunction. In this paper we review the growing body of functional imaging data that has been performed in chorea syndromes and identify particular trends, which can be used to better understand the underlying network changes within the basal ganglia. While it can be challenging to identify whether changes are primary, secondary, or compensatory, identification of these trends can ultimately be useful in diagnostic testing and treatment in many of the conditions that cause chorea.
Collapse
Affiliation(s)
- Debra J Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, 1st Floor, Box 1637, New York, NY 10029 USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, 1st Floor, Box 1637, New York, NY 10029 USA.,Department of Neurology, James J Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468 USA
| |
Collapse
|
27
|
Fazio P, Schain M, Mrzljak L, Amini N, Nag S, Al-Tawil N, Fitzer-Attas CJ, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D 2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with 18F-MNI-659 and 11C-raclopride with correction for partial volume effect. Neuroimage 2017; 152:330-339. [PMID: 28254508 DOI: 10.1016/j.neuroimage.2017.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D2/3 receptors (D2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand 18F-MNI-659 and D2/3 R radioligand 11C-raclopride were used. The outcome measure was the binding potential (BPND) estimated with the two-tissue compartment model (18F-MNI-659) and the simplified reference tissue model (11C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the striatum. Moreover as result of the analysis, in the striatum for both the molecular targets, we observed a gender effect with higher BPND the female group.
Collapse
Affiliation(s)
- Patrik Fazio
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Martin Schain
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | | | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Andrea Varrone
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| |
Collapse
|
28
|
Delnomdedieu M, Forsberg A, Ogden A, Fazio P, Yu CR, Stenkrona P, Duvvuri S, David W, Al-Tawil N, Vitolo OV, Amini N, Nag S, Halldin C, Varrone A. In vivo measurement of PDE10A enzyme occupancy by positron emission tomography (PET) following single oral dose administration of PF-02545920 in healthy male subjects. Neuropharmacology 2017; 117:171-181. [PMID: 28122201 DOI: 10.1016/j.neuropharm.2017.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/09/2016] [Accepted: 01/20/2017] [Indexed: 11/30/2022]
Abstract
Phosphodiesterase 10A (PDE10A) is an enzyme highly enriched in the striatal medium spiny neurons. It is involved in the regulation of cytoplasmic levels of cAMP and cGMP and signaling within the basal ganglia. This study with PDE10A radioligand [18F]MNI-659 was designed to measure the enzyme occupancy of PF-02545920 in 8 healthy male volunteers (48 ± 4 years) after a single oral dose (10 mg or 20 mg) and to evaluate safety and tolerability. Arterial blood sampling was performed to obtain a metabolite-corrected plasma input function for the quantification of [18F]MNI-659 binding to PDE10A. The occupancy of PF-02545920 was calculated with two different methods: In Method 1, [18F]MNI-659 enzyme occupancy was calculated from the estimates of binding potential, using the cerebellum as a reference region; in Method 2, occupancy was estimated from the slope of the revised Lassen's plot. Serum concentrations of PF-02545920 were measured to determine the relationship between concentration and occupancy. Based on Method 1, striatal PDE10A occupancy increased with increasing PF-02545920 dose: 14-27% at 10 mg dose (N = 4) and 45-63% at 20 mg dose (N = 3). Comparable occupancies were observed using Lassen's plot Method 2: 10 mg: 14-37%; 20 mg: 46-55%. The relationship between exposure and occupancy was best described using an Emax model. The serum concentration associated with 50% occupancy was estimated to be 93.2 ng/mL. Single oral doses of 10 mg or 20 mg of PF-02545920 were safe and well tolerated in healthy male volunteers [NCT# 01918202].
Collapse
Affiliation(s)
| | - Anton Forsberg
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Adam Ogden
- Pfizer Neuroscience & Pain Research Unit, Cambridge, MA, USA.
| | - Patrik Fazio
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Ching-Ray Yu
- Pfizer Global Innovative Pharma, New York, NY, USA.
| | - Per Stenkrona
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Sridhar Duvvuri
- Pfizer Neuroscience & Pain Research Unit, Cambridge, MA, USA.
| | | | | | | | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Andrea Varrone
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| |
Collapse
|
29
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
30
|
Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. Expert Rev Neurother 2016; 17:553-560. [DOI: 10.1080/14737175.2017.1268531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Athan Spiros
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Patrick Roberts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| |
Collapse
|
31
|
Wagner S, Teodoro R, Deuther-Conrad W, Kranz M, Scheunemann M, Fischer S, Wenzel B, Egerland U, Hoefgen N, Steinbach J, Brust P. Radiosynthesis and biological evaluation of the new PDE10A radioligand [ 18 F]AQ28A. J Labelled Comp Radiopharm 2016; 60:36-48. [PMID: 27896836 DOI: 10.1002/jlcr.3471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023]
Abstract
Cyclic nucleotide phosphodiesterase 10A (PDE10A) regulates the level of the second messengers cAMP and cGMP in particular in brain regions assumed to be associated with neurodegenerative and psychiatric diseases. A better understanding of the pathophysiological role of the expression of PDE10A could be obtained by quantitative imaging of the enzyme by positron emission tomography (PET). Thus, in this study we developed, radiolabeled, and evaluated a new PDE10A radioligand, 8-bromo-1-(6-[18 F]fluoropyridin-3-yl)-3,4-dimethylimidazo[1,5-a]quinoxaline ([18 F]AQ28A). [18 F]AQ28A was radiolabeled by both nucleophilic bromo-to-fluoro or nitro-to-fluoro exchange using K[18 F]F-K2.2.2 -carbonate complex with different yields. Using the superior nitro precursor, we developed an automated synthesis on a Tracerlab FX F-N module and obtained [18 F]AQ28A with high radiochemical yields (33 ± 6%) and specific activities (96-145 GBq·μmol-1 ) for further evaluation. Initially, we investigated the binding of [18 F]AQ28A to the brain of different species by autoradiography and observed the highest density of binding sites in striatum, the brain region with the highest PDE10A expression. Subsequent dynamic PET studies in mice revealed a region-specific accumulation of [18 F]AQ28A in this region, which could be blocked by preinjection of the selective PDE10A ligand MP-10. In conclusion, the data suggest [18 F]AQ28A is a suitable candidate for imaging of PDE10A in rodent brain by PET.
Collapse
Affiliation(s)
- Sally Wagner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Matthias Scheunemann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | | | | | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| |
Collapse
|
32
|
Häggkvist J, Tóth M, Tari L, Varnäs K, Svedberg M, Forsberg A, Nag S, Dominguez C, Munoz-Sanjuan I, Bard J, Wityak J, Varrone A, Halldin C, Mrzljak L. Longitudinal Small-Animal PET Imaging of the zQ175 Mouse Model of Huntington Disease Shows In Vivo Changes of Molecular Targets in the Striatum and Cerebral Cortex. J Nucl Med 2016; 58:617-622. [DOI: 10.2967/jnumed.116.180497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/21/2016] [Indexed: 02/02/2023] Open
|
33
|
Yang KC, Stepanov V, Amini N, Martinsson S, Takano A, Nielsen J, Bundgaard C, Bang-Andersen B, Grimwood S, Halldin C, Farde L, Finnema SJ. Characterization of [ 11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain. Eur J Nucl Med Mol Imaging 2016; 44:308-320. [PMID: 27817159 PMCID: PMC5215309 DOI: 10.1007/s00259-016-3544-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/03/2016] [Indexed: 11/28/2022]
Abstract
Purpose [11C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [11C]Lu AE92686 has high affinity for PDE10A (IC50 = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [11C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain. Methods A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [11C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches. Results Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (VT) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar VT values could not be derived by the 2TCM. For cerebellum, a proposed reference region, VT values increased by ∼30 % with increasing PET measurement duration from 63 to 123 min, while VT values in target regions remained stable. Both pretreatment drugs significantly decreased [11C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BPND) values, derived with the simplified reference tissue model (SRTM), were 13–17 in putamen and 3–5 in substantia nigra and correlated well to values from the Logan plot analysis. Conclusions The method proposed for quantification of [11C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [11C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia nigra. Electronic supplementary material The online version of this article (doi:10.1007/s00259-016-3544-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Martinsson
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Nielsen
- Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | | | | | - Sarah Grimwood
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Personalized Health Care and Biomarkers, AstraZeneca PET Science Center at Karolinska Institutet, Stockholm, Sweden
| | - Sjoerd J Finnema
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
34
|
Takano A, Stenkrona P, Stepanov V, Amini N, Martinsson S, Tsai M, Goldsmith P, Xie J, Wu J, Uz T, Halldin C, Macek TA. A human [ 11 C]T-773 PET study of PDE10A binding after oral administration of TAK-063, a PDE10A inhibitor. Neuroimage 2016; 141:10-17. [DOI: 10.1016/j.neuroimage.2016.06.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/24/2016] [Indexed: 01/22/2023] Open
|
35
|
Liu H, Jin H, Yue X, Han J, Yang H, Flores H, Su Y, Alagille D, Perlmutter JS, Tamagnan G, Tu Z. Comparison of [ 11C]TZ1964B and [ 18F]MNI659 for PET imaging brain PDE10A in nonhuman primates. Pharmacol Res Perspect 2016; 4:e00253. [PMID: 27713824 PMCID: PMC5045939 DOI: 10.1002/prp2.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/26/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) inhibitors show therapeutic effects for diseases with striatal pathology. PET radiotracers have been developed to quantify in vivo PDE10A levels and target engagement for therapeutic interventions. The aim of this study was to compare two potent and selective PDE10A radiotracers, [11C]TZ1964B and [18F]MNI659 in the nonhuman primate (NHP) brain. Double scans in the same cynomolgus monkey on the same day were performed after injection of [11C]TZ1964B and [18F]MNI659. Specific uptake was determined in two ways: nondisplaceable binding potential (BPND) was calculated using cerebellum as the reference region and the PDE‐10A enriched striatum as the target region of interest (ROI); the area under the time–activity curve (AUC) for the striatum to cerebellum ratio was also calculated. High‐performance liquid chromatography (HPLC) analysis of solvent‐extracted NHP plasma identified the percentage of intact tracer versus radiolabeled metabolites samples post injection of each radiotracer. Both radiotracers showed high specific accumulation in NHP striatum. [11C]TZ1964B has higher striatal retention and lower specific striatal uptake than [18F]MNI659. The BPND estimates of [11C]TZ1964B were 3.72 by Logan Reference model (LoganREF) and 4.39 by simplified reference tissue model (SRTM); the BPND estimates for [18F]MNI659 were 5.08 (LoganREF) and 5.33 (SRTM). AUC ratios were 5.87 for [11C]TZ1964B and 7.60 for [18F]MNI659. Based on BPND values in NHP striatum, coefficients of variation were ~10% for [11C]TZ1964B and ~30% for [18F]MNI659. Moreover, the metabolism study showed the percentage of parent compounds were ~70% for [11C]TZ1964B and ~50% for [18F]MNI659 60 min post injection. These data indicate that either [11C]TZ1964B or [18F]MNI659 could serve as suitable PDE10A PET radiotracers with distinguishing features for particular clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Hongjun Jin
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Xuyi Yue
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Junbin Han
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Hao Yang
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Hubert Flores
- Department of Neurology Washington University School of Medicine St. Louis Missouri
| | - Yi Su
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | | | - Joel S Perlmutter
- Department of Radiology Washington University School of Medicine St. Louis Missouri; Department of Neurology Washington University School of Medicine St. Louis Missouri; Department of Neuroscience Physical Therapy and Occupational Therapy Washington University School of Medicine St. Louis Missouri
| | | | - Zhude Tu
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
36
|
Hankir MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther-Conrad W, Bronisch F, Steinhoff K, Luthardt J, Klöting N, Hesse S, Seibyl JP, Sabri O, Heiker JT, Blüher M, Pfeifer A, Brust P, Fenske WK. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med 2016; 8:796-812. [PMID: 27247380 PMCID: PMC4931292 DOI: 10.15252/emmm.201506085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterase type 10A (PDE10A) is highly enriched in striatum and is under evaluation as a drug target for several psychiatric/neurodegenerative diseases. Preclinical studies implicate PDE10A in the regulation of energy homeostasis, but the mechanisms remain unclear. By utilizing small-animal PET/MRI and the novel radioligand [(18)F]-AQ28A, we found marked levels of PDE10A in interscapular brown adipose tissue (BAT) of mice. Pharmacological inactivation of PDE10A with the highly selective inhibitor MP-10 recruited BAT and potentiated thermogenesis in vivo In diet-induced obese mice, chronic administration of MP-10 caused weight loss associated with increased energy expenditure, browning of white adipose tissue, and improved insulin sensitivity. Analysis of human PET data further revealed marked levels of PDE10A in the supraclavicular region where brown/beige adipocytes are clustered in adults. Finally, the inhibition of PDE10A with MP-10 stimulated thermogenic gene expression in human brown adipocytes and induced browning of human white adipocytes. Collectively, our findings highlight a novel thermoregulatory role for PDE10A in mouse and human adipocytes and promote PDE10A inhibitors as promising candidates for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Mathias Kranz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital University of Bonn, Bonn, Germany
| | - Juliane Weiner
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Sally Wagner
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Felix Bronisch
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Karen Steinhoff
- Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Swen Hesse
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | | | - Osama Sabri
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany Department of Nuclear Medicine, University Hospital University of Leipzig, Leipzig, Germany
| | - John T Heiker
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital University of Bonn, Bonn, Germany
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Neuroradiopharmaceuticals, Leipzig, Germany
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, University Hospital University of Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012. Molecules 2016; 21:molecules21050650. [PMID: 27213312 PMCID: PMC6273803 DOI: 10.3390/molecules21050650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.
Collapse
|
38
|
Molecular Imaging of PDE10A Knockout Mice with a Novel PET Radiotracer: [(11)C]T-773. Mol Imaging Biol 2016; 17:445-9. [PMID: 25622810 DOI: 10.1007/s11307-015-0822-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE [(11)C]T-773 is a new radioligand for positron emission tomography (PET) targeting the phosphodiesterase 10A enzyme (PDE10A). PDE10A is highly expressed in the striatum by medium spiny neurons, and it has been demonstrated to be involved in the regulation of striatal signaling through the reduction of medium spiny neuronal sensitivity towards glutamatergic excitation. PDE10A is associated with Parkinson's disease and different neuropsychiatric disorders such as Huntington's disease, obsessive-compulsive disorders (OCD) and schizophrenia. Studies have indicated that the inhibition of PDE10A may represent a novel therapeutic approach to the treatment of the aforementioned diseases characterized by the reduced activity of medium spiny neurons. An appropriate PET radioligand for PDE10A would help to facilitate drug development and drug evaluation. PROCEDURES We have evaluated the [(11)C]T-773 ligand in PDE10A knockout mice (heterozygous [HET] and homozygous [HOM]) as well as in normal control animals (WILD) with PET. RESULTS The regional percent standardized uptake values (%SUV; mean ± SD) in the striatum were 48.2 ± 1.0 (HOM), 63.6 ± 5.3 (HET) and 85.1 ± 6.3 (WILD). Between each animal group the striatal %SUV values were significantly different (p < 0.0001). The striatal BPND values (mean ± SD) were 0.0 ± 0.0 (HOM), 0.14 ± 0.07 (HET) and 0.56 ± 0.15 (WILD). The BPND values were significantly lower in homozygous and heterozygous animals compared to wild type (p < 0.0001). CONCLUSIONS The novel PDE10A radioligand [(11)C]T-773 shows increased signals with higher levels of PDE10A and acceptable binding in the striatum in control animals compared to knockout mice.
Collapse
|
39
|
Russell DS, Jennings DL, Barret O, Tamagnan GD, Carroll VM, Caillé F, Alagille D, Morley TJ, Papin C, Seibyl JP, Marek KL. Change in PDE10 across early Huntington disease assessed by [18F]MNI-659 and PET imaging. Neurology 2016; 86:748-54. [PMID: 26802091 DOI: 10.1212/wnl.0000000000002391] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/29/2015] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To evaluate whether striatal [(18)F]MNI-659 PET imaging of phosphodiesterase 10A (PDE10) serves as a sensitive and reliable biomarker of striatal neurodegeneration in a longitudinal cohort of participants with early Huntington disease (HD). METHODS A cohort of participants with HD, including both participants premanifest or manifest with motor signs, underwent clinical assessments, genetic determination, and 2 [(18)F]MNI-659 PET imaging sessions approximately 1 year apart. Eleven healthy control (HC) participants underwent clinical assessments and [(18)F]MNI-659 PET imaging once. Striatal binding potentials (BPnd) were estimated for brain regions of interest, specifically within the basal ganglia, and compared between baseline and follow-up imaging. Clinical measures of HD severity were assessed at each visit. RESULTS Eight participants with HD (6 manifest; 2 premanifest) participated. Of those with manifest HD, all had relatively early stage disease (stage 1, n = 2; stage 2, n = 4) and a Unified Huntington's Disease Rating Scale total motor score <45. As expected, the HD cohort as a whole had a reduction in the basal ganglia BPnd to approximately 50% of that seen in HC. On follow-up scans, [(18)F]MNI-659 uptake declined in the putamen and caudate nucleus in all 8 participants. The mean annualized rates of decline in signal in the caudate, putamen, and globus pallidus and the putamen were 16.6%, 6.9%, and 5.8%, respectively. In HC, the annualized reduction in signal in striatal regions was less than 1%. CONCLUSION Longitudinal data in this small cohort of participants with early HD support [(18)F]MNI-659 PET imaging of PDE10 as a useful biomarker to track HD disease progression.
Collapse
Affiliation(s)
- David S Russell
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT.
| | - Danna L Jennings
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Olivier Barret
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Gilles D Tamagnan
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Vincent M Carroll
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Fabien Caillé
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - David Alagille
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Thomas J Morley
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Caroline Papin
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - John P Seibyl
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| | - Kenneth L Marek
- From the Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, CT
| |
Collapse
|
40
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Niccolini F, Haider S, Reis Marques T, Muhlert N, Tziortzi AC, Searle GE, Natesan S, Piccini P, Kapur S, Rabiner EA, Gunn RN, Tabrizi SJ, Politis M. Altered PDE10A expression detectable early before symptomatic onset in Huntington's disease. Brain 2015; 138:3016-29. [PMID: 26198591 DOI: 10.1093/brain/awv214] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/28/2015] [Indexed: 12/28/2022] Open
Abstract
There is an urgent need for early biomarkers and novel disease-modifying therapies in Huntington's disease. Huntington's disease pathology involves the toxic effect of mutant huntingtin primarily in striatal medium spiny neurons, which highly express phosphodiesterase 10A (PDE10A). PDE10A hydrolyses cAMP/cGMP signalling cascades, thus having a key role in the regulation of striatal output, and in promoting neuronal survival. PDE10A could be a key therapeutic target in Huntington's disease. Here, we used combined positron emission tomography (PET) and multimodal magnetic resonance imaging to assess PDE10A expression in vivo in a unique cohort of 12 early premanifest Huntington's disease gene carriers with a mean estimated 90% probability of 25 years before the predicted onset of clinical symptoms. We show bidirectional changes in PDE10A expression in premanifest Huntington's disease gene carriers, which are associated with the probability of symptomatic onset. PDE10A expression in early premanifest Huntington's disease was decreased in striatum and pallidum and increased in motor thalamic nuclei, compared to a group of matched healthy controls. Connectivity-based analysis revealed prominent PDE10A decreases confined in the sensorimotor-striatum and in striatonigral and striatopallidal projecting segments. The ratio between higher PDE10A expression in motor thalamic nuclei and lower PDE10A expression in striatopallidal projecting striatum was the strongest correlate with higher probability of symptomatic conversion in early premanifest Huntington's disease gene carriers. Our findings demonstrate in vivo, a novel and earliest pathophysiological mechanism underlying Huntington's disease with direct implications for the development of new pharmacological treatments, which can promote neuronal survival and improve outcome in Huntington's disease gene carriers.
Collapse
Affiliation(s)
- Flavia Niccolini
- 1 Neurodegeneration Imaging Group, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Salman Haider
- 3 Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Tiago Reis Marques
- 4 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nils Muhlert
- 5 School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, UK 6 School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Andri C Tziortzi
- 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Graham E Searle
- 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Sridhar Natesan
- 4 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paola Piccini
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Shitij Kapur
- 4 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenii A Rabiner
- 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK 8 Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King s College London, London, UK
| | - Roger N Gunn
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Sarah J Tabrizi
- 3 Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Marios Politis
- 1 Neurodegeneration Imaging Group, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
42
|
Liu H, Jin H, Yue X, Zhang X, Yang H, Li J, Flores H, Su Y, Perlmutter JS, Tu Z. Preclinical evaluation of a promising C-11 labeled PET tracer for imaging phosphodiesterase 10A in the brain of living subject. Neuroimage 2015. [PMID: 26216275 DOI: 10.1016/j.neuroimage.2015.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) plays a key role in the regulation of brain striatal signaling. A PET tracer for PDE10A may serve as a tool to evaluate PDE10A expression in vivo in central nervous system disorders with striatal pathology. Here, we further characterized the binding properties of a previously reported radioligand we developed for PDE10A, [(11)C]TZ1964B, in rodents and nonhuman primates (NHPs). The tritiated counterpart [(3)H]TZ1964B was used for in vitro binding characterizations in rat striatum homogenates and in vitro autoradiographic studies in rat brain slices. The carbon-11 labeled [(11)C]TZ1964B was utilized in the ex vivo autoradiography studies for the brain of rats and microPET imaging studies for the brain of NHPs. MicroPET scans of [(11)C]TZ1964B in NHPs were conducted at baseline, as well as with using a selective PDE10A inhibitor MP-10 for either pretreatment or displacement. The in vivo regional target occupancy (Occ) was obtained by pretreating with different doses of MP-10 (0.05-2.00 mg/kg). Both in vitro binding assays and in vitro autoradiographic studies revealed a nanomolar binding affinity of [(3)H]TZ1964B to the rat striatum. The striatal binding of [(3)H]TZ1964B and [(11)C]TZ1964B was either displaced or blocked by MP-10 in rats and NHPs. Autoradiography and microPET imaging confirmed that the specific binding of the radioligand was found in the striatum but not in the cerebellum. Blocking studies also confirmed the suitability of the cerebellum as an appropriate reference region. The binding potentials (BPND) of [(11)C]TZ1964B in the NHP striatum that were calculated using either the Logan reference model (LoganREF, 3.96 ± 0.17) or the simplified reference tissue model (SRTM, 4.64 ± 0.47), with the cerebellum as the reference region, was high and had good reproducibility. The occupancy studies indicated a MP-10 dose of 0.31 ± 0.09 mg/kg (LoganREF)/0.45 ± 0.17mg/kg (SRTM) occupies 50% striatal PDE10A binding sites. Studies in rats and NHPs demonstrated radiolabeled TZ1964B has a high binding affinity and good specificity for PDE10A, as well as favorable in vivo pharmacokinetic properties and binding profiles. Our data suggests that [(11)C]TZ1964B is a promising radioligand for in vivo imaging PDE10A in the brain of living subject.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiang Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Yang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junfeng Li
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hubert Flores
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yi Su
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Niccolini F, Foltynie T, Reis Marques T, Muhlert N, Tziortzi AC, Searle GE, Natesan S, Kapur S, Rabiner EA, Gunn RN, Piccini P, Politis M. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson's disease. Brain 2015. [PMID: 26210536 DOI: 10.1093/brain/awv219] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The mechanisms underlying neurodegeneration and loss of dopaminergic signalling in Parkinson's disease are still only partially understood. Phosphodiesterase 10A (PDE10A) is a basal ganglia expressed dual substrate enzyme, which regulates cAMP and cGMP signalling cascades, thus having a key role in the regulation of dopaminergic signalling in striatal pathways, and in promoting neuronal survival. This study aimed to assess in vivo the availability of PDE10A in patients with Parkinson's disease using positron emission tomography molecular imaging with (11)C-IMA107, a highly selective PDE10A radioligand. We studied 24 patients with levodopa-treated, moderate to advanced Parkinson's disease. Their positron emission tomography imaging data were compared to those from a group of 12 healthy controls. Parametric images of (11)C-IMA107 binding potential relative to non-displaceable binding (BPND) were generated from the dynamic (11)C-IMA107 scans using the simplified reference tissue model with the cerebellum as the reference tissue. Corresponding region of interest analysis showed lower mean (11)C-IMA107 BPND in the caudate (P < 0.001), putamen (P < 0.001) and globus pallidus (P = 0.025) in patients with Parkinson's disease compared to healthy controls, which was confirmed with voxel-based analysis. Longer Parkinson's duration correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.65; P = 0.005), putamen (r = -0.51; P = 0.025), and globus pallidus (r = -0.47; P = 0.030). Higher Unified Parkinson's Disease Rating Scale part-III motor scores correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.54; P = 0.011), putamen (r = -0.48; P = 0.022), and globus pallidus (r = -0.70; P < 0.001). Higher Unified Dyskinesia Rating Scale scores in those Parkinson's disease with levodopa-induced dyskinesias (n = 12), correlated with lower (11)C-IMA107 BPND in the caudate (r = -0.73; P = 0.031) and putamen (r = -0.74; P = 0.031). Our findings demonstrate striatal and pallidal loss of PDE10A expression, which is associated with Parkinson's duration and severity of motor symptoms and complications. PDE10A is an enzyme that could be targeted with novel pharmacotherapy, and this may help improve dopaminergic signalling and striatal output, and therefore alleviate symptoms and complications of Parkinson's disease.
Collapse
Affiliation(s)
- Flavia Niccolini
- 1 Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Thomas Foltynie
- 3 Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London, UK
| | - Tiago Reis Marques
- 4 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nils Muhlert
- 5 School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, UK 6 School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Andri C Tziortzi
- 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Graham E Searle
- 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Sridhar Natesan
- 4 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shitij Kapur
- 4 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenii A Rabiner
- 7 Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK 8 Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Roger N Gunn
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paola Piccini
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Marios Politis
- 1 Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
44
|
Cox CD, Hostetler ED, Flores BA, Evelhoch JL, Fan H, Gantert L, Holahan M, Eng W, Joshi A, McGaughey G, Meng X, Purcell M, Raheem IT, Riffel K, Yan Y, Renger JJ, Smith SM, Coleman PJ. Discovery of [¹¹C]MK-8193 as a PET tracer to measure target engagement of phosphodiesterase 10A (PDE10A) inhibitors. Bioorg Med Chem Lett 2015; 25:4893-4898. [PMID: 26077491 DOI: 10.1016/j.bmcl.2015.05.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/30/2023]
Abstract
Phosphodiesterase 10A (PDE10A) inhibition has recently been identified as a potential mechanism to treat multiple symptoms that manifest in schizophrenia. In order to facilitate preclinical development and support key proof-of-concept clinical trials of novel PDE10A inhibitors, it is critical to discover positron emission tomography (PET) tracers that enable plasma concentration/PDE10A occupancy relationships to be established across species with structurally diverse PDE10A inhibitors. In this Letter, we describe how a high-throughput screening hit was optimized to provide [(11)C]MK-8193 (8j), a PET tracer that supports the determination of plasma concentration/PDE10A occupancy relationships for structurally diverse series of PDE10A inhibitors in both rat and rhesus monkey.
Collapse
Affiliation(s)
- Christopher D Cox
- Discovery Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | - Broc A Flores
- Discovery Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| | | | - Hong Fan
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Liza Gantert
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Marie Holahan
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Waisi Eng
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Aniket Joshi
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Georgia McGaughey
- Chemical Modeling & Informatics, Merck Research Laboratories, West Point, PA 19486, USA
| | - Xiangjun Meng
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Mona Purcell
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Izzat T Raheem
- Discovery Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| | - Kerry Riffel
- Imaging, Merck Research Laboratories, West Point, PA 19486, USA
| | - Youwei Yan
- Structural Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| | - John J Renger
- Neuroscience, Merck Research Laboratories, West Point, PA 19486, USA
| | - Sean M Smith
- Neuroscience, Merck Research Laboratories, West Point, PA 19486, USA
| | - Paul J Coleman
- Discovery Chemistry, Merck Research Laboratories, West Point, PA 19486, USA
| |
Collapse
|
45
|
Takano A, Stepanov V, Gulyás B, Nakao R, Amini N, Miura S, Kimura H, Taniguchi T, Halldin C. Evaluation of a novel PDE10A PET radioligand, [(11) C]T-773, in nonhuman primates: brain and whole body PET and brain autoradiography. Synapse 2015; 69:345-55. [PMID: 25892433 DOI: 10.1002/syn.21821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/08/2022]
Abstract
Phosphodiesterase 10A (PDE10A) is considered to be a key target for the treatment of several neuropsychiatric diseases. The characteristics of [(11) C]T-773, a novel positron emission tomography (PET) radioligand with high binding affinity and selectivity for PDE10A, were evaluated in autoradiography and in nonhuman primate (NHP) PET. Brain PET measurements were performed under baseline conditions and after administration of a selective PDE10A inhibitor, MP-10. Total distribution volume (VT ) and binding potential (BPND ) were calculated using various kinetic models. Whole body PET measurements were performed to calculate the effective dose of [(11) C]T-773. Autoradiography studies in postmortem human and monkey brain sections showed high accumulation of [(11) C]T-773 in the striatum and substantia nigra which was blocked by MP-10. Brain PET showed high accumulation of [(11) C]T-773 in the striatum, and the data could be fitted using a two tissue compartment model. BPND was approximately 1.8 in the putamen when the cerebellum was used as the reference region. Approximately 70% of PDE10A binding was occupied by 1.8 mg/kg of MP-10. Whole body PET showed high accumulation of [(11) C]T-773 in the liver, kidney, heart, and brain in the initial phase. The radioligand was partly excreted via bile and the gastrointestinal tract, and partly excreted through the urinary tract. The calculated effective dose was 0.007 mSv/MBq. In conclusion, [(11) C]T-773 was demonstrated to be a promising PET radioligand for PDE10A with favorable brain kinetics. Dosimetry results support multiple PET measurements per person in human studies. Further research is required with [(11) C]T-773 in order to test the radioligand's potential clinical applications.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Ryuji Nakao
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Shotaro Miura
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden.,CNS Drug Discovery Unit, Pharmaceutical Research Division, TAKEDA Pharmaceutical Company, Ltd., Fujisawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, TAKEDA Pharmaceutical Company, Ltd., Fujisawa, Japan
| | - Takahiko Taniguchi
- CNS Drug Discovery Unit, Pharmaceutical Research Division, TAKEDA Pharmaceutical Company, Ltd., Fujisawa, Japan
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Phosphodiesterase 10A inhibitors: analysis of US/EP patents granted since 2012. Pharm Pat Anal 2015; 4:161-86. [DOI: 10.4155/ppa.15.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphodiesterases are enzymes that metabolically inactivate the intracellular second messengers 3′,5′-cyclic adenosine and guanosine monophosphate contributing to the control of multiple biological processes. Among them, PDE10A has the most restricted distribution with high expression in striatal medium spiny neurons. Dysfunction of this key brain circuit has been associated with different psychiatric and neurodegenerative disorders. The unique role of PDE10A, together with its increased pharmacological characterization, have prompted enormous interest in investigating the potential of inhibitors of this enzyme as potential novel therapeutic agents This article reviews PDE10A related patents issued in the period 2012–2014 in the USA and Europe offering also a perspective on potential avenues for the future clinical development of phosphodiesterase 10A inhibitors.
Collapse
|
47
|
Hwang DR, Hu E, Allen JR, Davis C, Treanor J, Miller S, Chen H, Shi B, Narayanan TK, Barret O, Alagille D, Yu Z, Slifstein M. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18F]AMG 580 in non-human primates. Nucl Med Biol 2015; 42:654-63. [PMID: 25935386 DOI: 10.1016/j.nucmedbio.2015.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/12/2015] [Accepted: 04/10/2015] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Phosphodiesterase 10A (PDE10A) is an intracellular enzyme responsible for the breakdown of cyclic nucleotides which are important second messengers for neurotransmission. Inhibition of PDE10A has been identified as a potential target for treatment of various neuropsychiatric disorders. To assist drug development, we have identified a selective PDE10A positron emission tomography (PET) tracer, AMG 580. We describe here the radiosynthesis of [(18)F]AMG 580 and in vitro and in vivo characterization results. METHODS The potency and selectivity were determined by in vitro assay using [(3)H]AMG 580 and baboon brain tissues. [(18)F]AMG 580 was prepared by a 1-step [(18)F]fluorination procedure. Dynamic brain PET scans were performed in non-human primates. Regions-of-interest were defined on individuals' MRIs and transferred to the co-registered PET images. Data were analyzed using two tissue compartment analysis (2TC), Logan graphical (Logan) analysis with metabolite-corrected input function and the simplified reference tissue model (SRTM) method. A PDE10A inhibitor and unlabeled AMG 580 were used to demonstrate the PDE10A specificity. KD was estimated by Scatchard analysis of high and low affinity PET scans. RESULTS AMG 580 has an in vitro KD of 71.9 pM. Autoradiography showed specific uptake in striatum. Mean activity of 121 ± 18 MBq was used in PET studies. In Rhesus, the baseline BPND for putamen and caudate was 3.38 and 2.34, respectively, via 2TC, and 3.16, 2.34 via Logan, and 2.92, and 2.01 via SRTM. A dose dependent decrease of BPND was observed by the pre-treatment with a PDE10A inhibitor. In baboons, 0.24 mg/kg dose of AMG 580 resulted in about 70% decrease of BPND. The in vivo KD of [(18)F]AMG 580 was estimated to be around 0.44 nM in baboons. CONCLUSION [(18)F]AMG 580 is a selective and potent PDE10A PET tracer with excellent specific striatal binding in non-human primates. It warrants further evaluation in humans.
Collapse
Affiliation(s)
- Dah-Ren Hwang
- Medical Sciences, 271 Running Water Ct, Ambler, PA 19002.
| | - Essa Hu
- Small Molecule Chemistry, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Carl Davis
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Silke Miller
- Neuroscience, Amgen Inc., Thousand Oaks, CA, USA
| | - Hang Chen
- Neuroscience, Amgen Inc., South San Francisco, USA
| | - Bingzhi Shi
- Department of Nuclear Medicine, Kettering Medical Center, Kettering, OH, USA
| | | | | | | | - Zhigang Yu
- Medical Sciences, 271 Running Water Ct, Ambler, PA 19002.
| | - Mark Slifstein
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, NY, USA
| |
Collapse
|
48
|
Dunlop J, Brandon NJ. Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations? J Psychopharmacol 2015; 29:230-8. [PMID: 25586401 DOI: 10.1177/0269881114565806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current therapeutics for schizophrenia, the typical and atypical antipsychotic class of drugs, derive their therapeutic benefit predominantly by antagonism of the dopamine D2 receptor subtype and have robust clinical benefit on positive symptoms of the disease with limited to no impact on negative symptoms and cognitive impairment. Driven by these therapeutic limitations of current treatments and the recognition that transmitter systems beyond the dopaminergic system in particular glutamatergic transmission contribute to the etiology of schizophrenia significant recent efforts have focused on the discovery and development of novel treatments for schizophrenia with mechanisms of action that are distinct from current drugs. Specifically, compounds selectively targeting the metabotropic glutamate receptor 2/3 subtype, phosphodiesterase subtype 10, glycine transporter subtype 1 and the alpha7 nicotinic acetylcholine receptor have been the subject of intense drug discovery and development efforts. Here we review recent clinical experience with the most advanced drug candidates targeting each of these novel mechanisms and discuss whether these new agents are living up to expectations.
Collapse
Affiliation(s)
- John Dunlop
- AstraZeneca Neuroscience iMed, Cambridge, MA, USA
| | | |
Collapse
|
49
|
Karimi M, Perlmutter JS. The role of dopamine and dopaminergic pathways in dystonia: insights from neuroimaging. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:280. [PMID: 25713747 PMCID: PMC4314610 DOI: 10.7916/d8j101xv] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
Background Dystonia constitutes a heterogeneous group of movement abnormalities, characterized by sustained or intermittent muscle contractions causing abnormal postures. Overwhelming data suggest involvement of basal ganglia and dopaminergic pathways in dystonia. In this review, we critically evaluate recent neuroimaging studies that investigate dopamine receptors, endogenous dopamine release, morphology of striatum, and structural or functional connectivity in cortico-basal ganglia-thalamo-cortical and related cerebellar circuits in dystonia. Method A PubMed search was conducted in August 2014. Results Positron emission tomography (PET) imaging offers strong evidence for altered D2/D3 receptor binding and dopaminergic release in many forms of idiopathic dystonia. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data reveal likely involvement of related cerebello-thalamo-cortical and sensory-motor networks in addition to basal ganglia. Discussion PET imaging of dopamine receptors or transmitter release remains an effective means to investigate dopaminergic pathways, yet may miss factors affecting dopamine homeostasis and related subcellular signaling cascades that could alter the function of these pathways. fMRI and DTI methods may reveal functional or anatomical changes associated with dysfunction of dopamine-mediated pathways. Each of these methods can be used to monitor target engagement for potential new treatments. PET imaging of striatal phosphodiesterase and development of new selective PET radiotracers for dopamine D3-specific receptors and Mechanistic target of rampamycin (mTOR) are crucial to further investigate dopaminergic pathways. A multimodal approach may have the greatest potential, using PET to identify the sites of molecular pathology and magnetic resonance methods to determine their downstream effects.
Collapse
Affiliation(s)
- Morvarid Karimi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA ; Department of Radiology, Neurobiology, Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
50
|
Lin SF, Labaree D, Chen MK, Holden D, Gallezot JD, Kapinos M, Teng JK, Najafzadeh S, Plisson C, Rabiner EA, Gunn RN, Carson RE, Huang Y. Further evaluation of [11C]MP-10 as a radiotracer for phosphodiesterase 10A: PET imaging study in rhesus monkeys and brain tissue metabolite analysis. Synapse 2014; 69:86-95. [PMID: 25450608 DOI: 10.1002/syn.21792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/24/2014] [Accepted: 11/15/2014] [Indexed: 11/06/2022]
Abstract
[(11)C]MP-10 is a potent and specific PET tracer previously shown to be suitable for imaging the phosphodiesterase 10A (PDE10A) in baboons with reversible kinetics and high specific binding. However, another report indicated that [(11)C]MP-10 displayed seemingly irreversible kinetics in rhesus monkeys, potentially due to the presence of a radiolabeled metabolite capable of penetrating the blood-brain-barrier (BBB) into the brain. This study was designed to address the discrepancies between the species by re-evaluating [(11)C]MP-10 in vivo in rhesus monkey with baseline scans to assess tissue uptake kinetics and self-blocking scans with unlabeled MP-10 to determine binding specificity. Ex vivo studies with one rhesus monkey and 4 Sprague-Dawley rats were also performed to investigate the presence of radiolabeled metabolites in the brain. Our results indicated that [(11)C]MP-10 displayed reversible uptake kinetics in rhesus monkeys, albeit slower than in baboons. Administration of unlabeled MP-10 reduced the binding of [(11)C]MP-10 in a dose-dependent manner in all brain regions including the cerebellum. Consequently, the cerebellum appeared not to be a suitable reference tissue in rhesus monkeys. Regional volume of distribution (VT) was mostly reliably derived with the multilinear analysis (MA1) method. In ex vivo studies in the monkey and rats only negligible amount of radiometabolites was seen in the brain of either species. In summary, results from the present study strongly support the suitability of [(11)C]MP-10 as a radiotracer for PET imaging and quantification of PDE10A in nonhuman primates.
Collapse
Affiliation(s)
- Shu-Fei Lin
- Department of Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|