1
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
2
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
4
|
Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11020246. [PMID: 36830783 PMCID: PMC9953157 DOI: 10.3390/biomedicines11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus (DM) is known to be a risk factor for dementia, especially in the elderly population, and close associations between diabetes and Alzheimer disease (AD) have been determined. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists are insulin-sensitising drugs. In addition to their anti-diabetic properties, their effectiveness in preventing and decreasing cognitive impairment are the most recent characteristics that have been studied. For this study, we conducted a systematic review and meta-analysis to critically analyse and evaluate the existing data on the effects of PPAR-γ agonist therapy on the cognitive status of patients. For this purpose, we first analysed both early intervention and later treatment with PPAR-γ agonists, according to the disease status. The involved studies indicated that early PPAR-γ agonist intervention is beneficial for patients and that high-dose PPAR-γ therapy may have a better clinical effect, especially in reversing the effects of cognitive impairment. Furthermore, the efficacy of pioglitazone (PIO) seems to be promising, particularly for patients with comorbid diabetes. PIO presented a better clinical curative effect and safety, compared with rosiglitazone (RSG). Thus, PPAR-γ agonists play an important role in the inflammatory response of AD or DM patients, and clinical therapeutics should focus more on relevant metabolic indices.
Collapse
|
5
|
Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic Potential of Targeting Mitochondria for Alzheimer's Disease Treatment. J Clin Med 2022; 11:6742. [PMID: 36431219 PMCID: PMC9697019 DOI: 10.3390/jcm11226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| |
Collapse
|
6
|
Kosyreva AM, Sentyabreva AV, Tsvetkov IS, Makarova OV. Alzheimer’s Disease and Inflammaging. Brain Sci 2022; 12:brainsci12091237. [PMID: 36138973 PMCID: PMC9496782 DOI: 10.3390/brainsci12091237] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease is one of the most common age-related neurodegenerative disorders. The main theory of Alzheimer’s disease progress is the amyloid-β cascade hypothesis. However, the initial mechanisms of insoluble forms of amyloid-β formation and hyperphosphorylated tau protein in neurons remain unclear. One of the factors, which might play a key role in senile plaques and tau fibrils generation due to Alzheimer’s disease, is inflammaging, i.e., systemic chronic low-grade age-related inflammation. The activation of the proinflammatory cell phenotype is observed during aging, which might be one of the pivotal mechanisms for the development of chronic inflammatory diseases, e.g., atherosclerosis, metabolic syndrome, type 2 diabetes mellitus, and Alzheimer’s disease. This review discusses the role of the inflammatory processes in developing neurodegeneration, activated during physiological aging and due to various diseases such as atherosclerosis, obesity, type 2 diabetes mellitus, and depressive disorders.
Collapse
|
7
|
Yang Y, Zhao JJ, Yu XF. Expert Consensus on Cognitive Dysfunction in Diabetes. Curr Med Sci 2022; 42:286-303. [PMID: 35290601 DOI: 10.1007/s11596-022-2549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes is gradually increasing in China, and diabetes and associated complications, such as cognitive dysfunction have gained much attention in recent time. However, the concepts, clinical treatment, and prevention of cognitive dysfunction in patients with diabetes remain unclear. The Chinese Society of Endocrinology investigated the current national and overseas situation of cognitive dysfunction associated with diabetes. Based on research both in China and other countries worldwide, the Expert Consensus on Cognitive Dysfunction in Diabetes was established to guide physicians in the comprehensive standardized management of cognitive dysfunction in diabetes and to improve clinical outcomes in Chinese patients. This consensus presents an overview, definition and classification, epidemiology and pathogenesis, risk factors, screening, diagnosis, differential diagnosis, treatment, and prevention of cognitive dysfunction in patients with diabetes.
Collapse
Affiliation(s)
- Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 25000, China.
| | - Xue-Feng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Blume T, Deussing M, Biechele G, Peters F, Zott B, Schmidt C, Franzmeier N, Wind K, Eckenweber F, Sacher C, Shi Y, Ochs K, Kleinberger G, Xiang X, Focke C, Lindner S, Gildehaus FJ, Beyer L, von Ungern-Sternberg B, Bartenstein P, Baumann K, Adelsberger H, Rominger A, Cumming P, Willem M, Dorostkar MM, Herms J, Brendel M. Chronic PPARγ Stimulation Shifts Amyloidosis to Higher Fibrillarity but Improves Cognition. Front Aging Neurosci 2022; 14:854031. [PMID: 35431893 PMCID: PMC9007038 DOI: 10.3389/fnagi.2022.854031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
We undertook longitudinal β-amyloid positron emission tomography (Aβ-PET) imaging as a translational tool for monitoring of chronic treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone in Aβ model mice. We thus tested the hypothesis this treatment would rescue from increases of the Aβ-PET signal while promoting spatial learning and preservation of synaptic density. Here, we investigated longitudinally for 5 months PS2APP mice (N = 23; baseline age: 8 months) and AppNL–G–F mice (N = 37; baseline age: 5 months) using Aβ-PET. Groups of mice were treated with pioglitazone or vehicle during the follow-up interval. We tested spatial memory performance and confirmed terminal PET findings by immunohistochemical and biochemistry analyses. Surprisingly, Aβ-PET and immunohistochemistry revealed a shift toward higher fibrillary composition of Aβ-plaques during upon chronic pioglitazone treatment. Nonetheless, synaptic density and spatial learning were improved in transgenic mice with pioglitazone treatment, in association with the increased plaque fibrillarity. These translational data suggest that a shift toward higher plaque fibrillarity protects cognitive function and brain integrity. Increases in the Aβ-PET signal upon immunomodulatory treatments targeting Aβ aggregation can thus be protective.
Collapse
Affiliation(s)
- Tanja Blume
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gloria Biechele
- Department of Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Finn Peters
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claudio Schmidt
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Karin Wind
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Sacher
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yuan Shi
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Katharina Ochs
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
| | - Gernot Kleinberger
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig Maximilian University of Munich, Munich, Germany
- ISAR Bioscience GmbH, Planegg, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig Maximilian University of Munich, Munich, Germany
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Barbara von Ungern-Sternberg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Helmuth Adelsberger
- Department of Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Axel Rominger
- SyNergy, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael Willem
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig Maximilian University of Munich, Munich, Germany
| | - Mario M. Dorostkar
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jochen Herms
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- SyNergy, Ludwig Maximilian University of Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Matthias Brendel
- DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
- SyNergy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Matthias Brendel,
| |
Collapse
|
9
|
Katsenos AP, Davri AS, Simos YV, Nikas IP, Bekiari C, Paschou SA, Peschos D, Konitsiotis S, Vezyraki P, Tsamis KI. New treatment approaches for Alzheimer's disease: preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin Investig Drugs 2022; 31:105-123. [PMID: 34941464 DOI: 10.1080/13543784.2022.2022122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) represent two major chronic diseases that affect a large percentage of the population and share common pathogenetic mechanisms, including oxidative stress and inflammation. Considering their common mechanistic aspects, and given the current lack of effective therapies for AD, accumulating research has focused on the therapeutic potential of antidiabetic drugs in the treatment or prevention of AD. AREAS COVERED This review examines the latest preclinical and clinical evidence on the potential of antidiabetic drugs as candidates for AD treatment. Numerous approved drugs for T2DM, including insulin, metformin, glucagon-like peptide-1 receptor agonists (GLP-1 RA), and sodium glucose cotransporter 2 inhibitors (SGLT2i), are in the spotlight and may constitute novel approaches for AD treatment. EXPERT OPINION Among other pharmacologic agents, GLP-1 RA and SGLT2i have so far exhibited promising results as novel treatment approaches for AD, while current research has centered on deciphering their action on the central nervous system (CNS). Further investigation is crucial to reveal the most effective pharmacological agents and their optimal combinations, maximize their beneficial effects on neurons, and find ways to increase their distribution to the CNS.
Collapse
Affiliation(s)
- Andreas P Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | - Athena S Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, school of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Greece.,Department of Neurology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
10
|
El-Din SS, Abd Elwahab S, Rashed L, Fayez S, Aboulhoda BE, Heikal OA, Galal AF, Nour ZA. Possible role of rice bran extract in microglial modulation through PPAR-gamma receptors in alzheimer's disease mice model. Metab Brain Dis 2021; 36:1903-1915. [PMID: 34043126 DOI: 10.1007/s11011-021-00741-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disorder among elderly people, is ordinarily associated with progressive cognitive decline. Peroxisome proliferator-activated receptors-gamma (PPAR-γ) agonists can be targeted as a beneficial therapeutic strategy against AD. In the present study, we aimed to investigate the preventive and therapeutic effects of rice bran extract (RBE) as a possible PPAR-γ agonist on the microglial phenotype modulation in AD in mice compared to the effects of pioglitazone. This study included 64 adult male Swiss Albino mice divided into 8 groups, each group comprised 8 mice; control group, RBE group, lipopolysaccharide-induced neurodegeneration (a) (LPSa) group, (LPSb) group, RBE-preventive group (RBE + LPSa), pioglitazone-preventive group (PG + LPSa), RBE-treated group (RBE + LPSb), and pioglitazone-treated group (PG + LPSb). Cognitive functions were assessed by Y-maze and Morris water maze tests. The expression of PPAR-γ, CD45, arginase1, CD36, and CD163 genes was assessed by real time qPCR and the estimation of NF-kβ protein level was done by Western blot technique. Moreover, the assessment of Aβ42 and P-tau levels was performed by ELISA. Histopathological examination of brain tissues was performed for all the studied groups. Our results showed that RBE and pioglitazone could modulate microglial phenotype from M1 to M2 where they significantly decreased the expression of NF-κβ and the pro-inflammatory microglial marker (CD45) in parallel with increasing the expression of the anti-inflammatory microglial and phagocytic markers (arginase1, CD163, and CD36). In addition, RBE and pioglitazone significantly increased PPAR-γ expression and reduced Aβ42 deposition as well as p-tau protein levels. In conclusion, our study identified the possible role of PPAR-γ agonistic activity of RBE as a preventive and therapeutic agent in the treatment of the neuro-inflammation associated with AD.
Collapse
Affiliation(s)
- Shimaa Saad El-Din
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Sahar Abd Elwahab
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Salwa Fayez
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- The Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ola Ahmed Heikal
- The Department of Narcotics, Ergogenics and Poisons, National Research Centre, Giza, Egypt
| | - Asmaa Fathi Galal
- The Department of Narcotics, Ergogenics and Poisons, National Research Centre, Giza, Egypt
| | - Zeinab A Nour
- The Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
12
|
Rojas M, Chávez-Castillo M, Bautista J, Ortega Á, Nava M, Salazar J, Díaz-Camargo E, Medina O, Rojas-Quintero J, Bermúdez V. Alzheimer’s disease and type 2 diabetes mellitus: Pathophysiologic and pharmacotherapeutics links. World J Diabetes 2021; 12:745-766. [PMID: 34168725 PMCID: PMC8192246 DOI: 10.4239/wjd.v12.i6.745] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
At present, Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are two highly prevalent disorders worldwide, especially among elderly individuals. T2DM appears to be associated with cognitive dysfunction, with a higher risk of developing neurocognitive disorders, including AD. These diseases have been observed to share various pathophysiological mechanisms, including alterations in insulin signaling, defects in glucose transporters (GLUTs), and mitochondrial dysfunctions in the brain. Therefore, the aim of this review is to summarize the current knowledge regarding the molecular mechanisms implicated in the association of these pathologies as well as recent therapeutic alternatives. In this context, the hyperphosphorylation of tau and the formation of neurofibrillary tangles have been associated with the dysfunction of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in the nervous tissues as well as the decrease in the expression of GLUT-1 and GLUT-3 in the different areas of the brain, increase in reactive oxygen species, and production of mitochondrial alterations that occur in T2DM. These findings have contributed to the implementation of overlapping pharmacological interventions based on the use of insulin and antidiabetic drugs, or, more recently, azeliragon, amylin, among others, which have shown possible beneficial effects in diabetic patients diagnosed with AD.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Edgar Díaz-Camargo
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Cúcuta 540006, Colombia
| | - Oscar Medina
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Cúcuta 540006, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, United States
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| |
Collapse
|
13
|
Mitochondrial dysfunction: A potential target for Alzheimer's disease intervention and treatment. Drug Discov Today 2021; 26:1991-2002. [PMID: 33962036 DOI: 10.1016/j.drudis.2021.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder which manifests as a progressive decline in cognitive function. Mitochondrial dysfunction plays a critical role in the early stages of AD, and advances the progression of this age-related neurodegenerative disorder. Therefore, it can be a potential target for interventions to treat AD. Several therapeutic strategies to target mitochondrial dysfunction have gained significant attention in the preclinical stage, but the clinical trials performed to date have shown little progress. Thus, we discuss the mechanisms and strategies of different therapeutic agents for targeting mitochondrial dysfunction in AD. We hope that this review will inspire and guide the development of efficient AD drugs in the future.
Collapse
|
14
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
15
|
Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021; 11:179. [PMID: 33927970 DOI: 10.1007/s13205-021-02738-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, also regarded as "type 3 diabetes" for the last few years because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregulation of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among others in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic processes of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.
Collapse
|
16
|
Thunell J, Chen Y, Joyce G, Barthold D, Shekelle PG, Brinton RD, Zissimopoulos J. Drug therapies for chronic conditions and risk of Alzheimer's disease and related dementias: A scoping review. Alzheimers Dement 2021; 17:41-48. [PMID: 33090701 PMCID: PMC8112164 DOI: 10.1002/alz.12175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Most older Americans use drug therapies for chronic conditions. Several are associated with risk of Alzheimer's disease and related dementias (ADRD). METHODS A scoping review was used to identify drug classes associated with increasing or decreasing ADRD risk. We analyzed size, type, and findings of the evidence. RESULTS We identified 29 drug classes across 11 therapeutic areas, and 404 human studies. Most common were studies on drugs for hypertension (93) or hyperlipidemia (81). Fewer than five studies were identified for several anti-diabetic and anti-inflammatory drugs. Evidence was observational only for beta blockers, proton pump inhibitors, benzodiazepines, and disease-modifying anti-rheumatic drugs. For 13 drug classes, 50% or more of the studies reported consistent direction of effect on risk of ADRD. DISCUSSION Future research targeting drug classes with limited/non-robust evidence, examining sex, racial heterogeneity, and separating classes by molecule, will facilitate understanding of associated risk, and inform clinical and policy efforts to alleviate the growing impact of ADRD.
Collapse
Affiliation(s)
- Johanna Thunell
- University of Southern California, Schaeffer Center for Health Policy and Economics
| | - Yi Chen
- University of Southern California, Price School of Public Policy
| | - Geoffrey Joyce
- University of Southern California, School of Pharmacy, Schaeffer Center for Health Policy and Economics
| | - Douglas Barthold
- University of Washington, School of Pharmacy, The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute
| | - Paul G. Shekelle
- RAND Corporation, UCLA School of Medicine, VA Medical Center, West Los Angeles
| | - Roberta Diaz Brinton
- University of Arizona, Department of Pharmacology and Neurology, Center for Innovation in Brain Science
| | - Julie Zissimopoulos
- University of Southern California, Price School of Public Policy, Schaeffer Center for Health Policy and Economics, Los Angeles, California
| |
Collapse
|
17
|
Abd El Fattah MA, Abdelhamid YA, Elyamany MF, Badary OA, Heikal OA. Rice Bran Extract Protected against LPS-Induced Neuroinflammation in Mice through Targeting PPAR-γ Nuclear Receptor. Mol Neurobiol 2020; 58:1504-1516. [PMID: 33205365 DOI: 10.1007/s12035-020-02196-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
PPAR-γ anti-inflammatory functions have received significant attention since its agonists have been shown to exert a wide range of protective effects in many experimental models of neurologic diseases. Rice bran is very rich in polyunsaturated fatty acids, which are reported to act as PPAR-γ partial agonists. Herein, the anti-inflammatory effect of rice bran extract (RBE) through PPAR-γ activation was evaluated in LPS-induced neuroinflammatory mouse model in comparison to pioglitazone (PG) using 80 Swiss albino mice. RBE (100 mg/kg) and PG (30 mg/kg) were given orally for 21 days and LPS (0.25 mg/kg) was injected intraperitoneally for the last 7 days. TNF-α and COX-2 brain contents were evaluated by real-time PCR and immunohistochemical analysis. In addition, NFκB binding to its response element was evaluated alongside with the effect of treatments on IκB gene expression. Furthermore, PPAR-γ sumoylation was also studied. Finally, histopathological examination was performed for different brain areas. RBE administration was found to protect against the LPS-induced inflammatory effects by decreasing the inflammatory mediator expression in mice brains. It also decreased PPAR-γ sumoylation without significant effect on IκB expression or NFκB binding to its response element. The majority of the effects were attenuated in presence of PPAR-γ antagonist (GW9662). Level of significance was set to P < 0.05. Such findings highlight the agonistic effect of RBE component(s) on PPAR-γ and support the hypothesis of involvement of PPAR-γ activation in its neuroprotective effect.
Collapse
Affiliation(s)
- May A Abd El Fattah
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Mohammed F Elyamany
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ola A Heikal
- Narcotics, Ergogenics & Toxins Department, National Research Center, Giza, Egypt
| |
Collapse
|
18
|
Jeon SH, Kim N, Ju YJ, Gee MS, Lee D, Lee JK. Phytohormone Abscisic Acid Improves Memory Impairment and Reduces Neuroinflammation in 5xFAD Mice by Upregulation of LanC-Like Protein 2. Int J Mol Sci 2020; 21:ijms21228425. [PMID: 33182586 PMCID: PMC7697599 DOI: 10.3390/ijms21228425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, is the most common neurodegenerative disease in the elderly. Neuroinflammation caused by deposition of amyloid β (Aβ) is one of the most important pathological causes in AD. The isoprenoid phytohormone abscisic acid (ABA) has recently been found in mammals and was shown to be an endogenous hormone, acting in stress conditions. Although ABA has been associated with anti-inflammatory effects and reduced cognitive impairment in several studies, the mechanisms of ABA in AD has not been ascertained clearly. To investigate the clearance of Aβ and anti-inflammatory effects of ABA, we used quantitative real-time polymerase chain reaction and immunoassay. ABA treatment inhibited Aβ deposition and neuroinflammation, thus resulting in improvement of memory impairment in 5xFAD mice. Interestingly, these effects were not associated with activation of peroxisome proliferator-activated receptor gamma, well known as a molecular target of ABA, but related with modulation of the LanC-like protein 2 (LANCL2), known as a receptor of ABA. Taken together, our results indicate that ABA reduced Aβ deposition, neuroinflammation, and memory impairment, which is the most characteristic pathology of AD, via the upregulation of LANCL2. These data suggest that ABA might be a candidate for therapeutics for AD treatment.
Collapse
Affiliation(s)
- Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (N.K.); (D.L.)
| | - Yeon-Joo Ju
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
| | - Danbi Lee
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (N.K.); (D.L.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.H.J.); (Y.-J.J.); (M.S.G.)
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9590; Fax: +82-2-961-9580
| |
Collapse
|
19
|
Wu B, Jiang S, Wang X, Zhong S, Bi Y, Yi D, Liu G, Hu F, Dou G, Chen Y, Wu Y, Dong J. Identification of driver genes and key pathways of non-functional pituitary adenomas predicts the therapeutic effect of STO-609. PLoS One 2020; 15:e0240230. [PMID: 33119597 PMCID: PMC7595405 DOI: 10.1371/journal.pone.0240230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Our study is to identify DEGs (Differentially Expressed Genes), comprehensively investigate hub genes, annotate enrichment functions and key pathways of Non-functional pituitary adenomas (NFPAs), and also to verify STO-609 therapeutic effect. Methods The gene expression level of NFPA and normal tissues were compared to identify the DEGs (Differential expressed genes) based on gene expression profiles (GSE2175, GSE26966 and GSE51618). Enrichment functions, pathways and key genes were identified by carrying out GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis and PPI (Protein-Protein Interation) network analysis. Moreover, experiments in vitro were conducted to verify the anti-NFPAs effects of STO-609. Results 169 over-expression genes and 182 low expression genes were identified among 3 datasets. Dopaminergic synapse and vibrio cholerae infection pathways have distinctly changed in NFPA tissues. The Ca2+/CaM pathway played important roles in NFPA. Four hub proteins encoded by genes CALM1, PRDM10, RIPK4 and MAD2L1 were recognized as hub proteins. In vitro, assays showed that STO-609 induced apoptosis of NFPA cells to inhibit the hypophysoma cellular viability, diffusion and migration. Conclusion Four hub proteins, encoded by gene CALM1, PRDM10, RIPK4 and MAD2L1, played important roles in NFPA development. The Ca2+/CaM signaling pathway had significant alternations during NFPA forming process, the STO-609, a selective CaM-KK inhibitor, inhibited NFPA cellular viability, proliferation and migration. Meanwhile, NFPA was closely related to parkinson’s disease (PD) in many aspects.
Collapse
Affiliation(s)
- Bo Wu
- Clinical College, Jilin University, Changchun, China
- Department of Orthopedics, Jilin University First Hospital, Changchun, China
| | - Shanshan Jiang
- Institute of Zoology, China Academy of Science, Beijing, China
| | - Xinhui Wang
- Clinical College, Jilin University, Changchun, China
- Department of Oncology, Jilin University First Hospital, Changchun, China
| | - Sheng Zhong
- Department of Neurosurgery, Cancer Hospital of Sun Yat sen University, Guangzhou, China
| | - Yiming Bi
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Dazhuang Yi
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ge Liu
- College of Pharmacy, Jilin University, Changchun, China
| | - Fangfei Hu
- College of Pharmacy, Jilin University, Changchun, China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, China
- Department of Breast Surgery, Jilin University First Hospital, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yi Wu
- Department of Neurosurgy, Jiangmen Central Hospital, Jiangmen, China
- * E-mail: (YW); (JD)
| | - Jiajun Dong
- Department of Neurosurgy, Jiangmen Central Hospital, Jiangmen, China
- * E-mail: (YW); (JD)
| |
Collapse
|
20
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
21
|
Pleiotropic effects of anti-diabetic drugs: A comprehensive review. Eur J Pharmacol 2020; 884:173349. [PMID: 32650008 DOI: 10.1016/j.ejphar.2020.173349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus characterized by hyperglycaemia presents an array of comorbidities such as cardiovascular and renal failure, dyslipidemia, and cognitive impairments. Populations above the age of 60 are in an urgent need of effective therapies to deal with the complications associated with diabetes mellitus. Widely used anti-diabetic drugs have good safety profiles and multiple reports indicate their pleiotropic effects in diabetic patients or models. This review has been written with the objective of identifying the widely-marketed anti-diabetic drugs which can be efficiently repurposed for the treatment of other diseases or disorders. It is an updated, comprehensive review, describing the protective role of various classes of anti-diabetic drugs in mitigating the macro and micro vascular complications of diabetes mellitus, and differentiating these drugs on the basis of their mode of action. Notably, metformin, the anti-diabetic drug most commonly explored for cancer therapy, has also exhibited some antimicrobial effects. Unlike class specific effects, few instances of drug specific effects in managing cardiovascular complications have also been reported. A major drawback is that the pleiotropic effects of anti-diabetic drugs have been mostly investigated only in diabetic patients. Thus, for effective repurposing, more clinical trials devoted to analyse the effects of anti-diabetic drugs in patients irrespective of their diabetic condition, are required.
Collapse
|
22
|
Uddin MS, Kabir MT, Mamun AA, Barreto GE, Rashid M, Perveen A, Ashraf GM. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. Int Immunopharmacol 2020; 84:106479. [PMID: 32353686 DOI: 10.1016/j.intimp.2020.106479] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mamunur Rashid
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Asma Perveen
- School of Life Sciences, The Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
23
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
24
|
Guest PC. The Impact of New Biomarkers and Drug Targets on Age-Related Disorders. Methods Mol Biol 2020; 2138:3-28. [PMID: 32219738 DOI: 10.1007/978-1-0716-0471-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the human lifespan has not been paralleled by an increase in healthy life. With the increase in the proportion of the aged population, there has been a natural increase in the prevalence of age-related disorders, such as Alzheimer's disease, type 2 diabetes mellitus, frailty, and various other disorders. A continuous rise in these conditions could lead to a widespread medical and social burden. There are now considerable efforts underway to address these deficits in preclinical and clinical studies, which include the use of better study cohorts, longitudinal designs, improved translation of data from preclinical models, multi-omics profiling, identification of new biomarker candidates and refinement of computational tools and databases containing relevant information. Such efforts will support future interdisciplinary studies and help to identify potential new targets that are amenable to therapeutic approaches such as pharmacological interventions to increase the human healthspan in parallel with the lifespan.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
25
|
Newhouse A, Chemali Z. Neuroendocrine Disturbances in Neurodegenerative Disorders: A Scoping Review. PSYCHOSOMATICS 2019; 61:105-115. [PMID: 31918850 DOI: 10.1016/j.psym.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurodegenerative diseases cause progressive irreversible neuronal loss that has broad downstream effects. The neuroendocrine system regulates homeostasis of circuits that control critical functions such as the stress response, metabolism, reproduction, fluid balance, and glucose control. These systems are frequently disrupted in neurodegenerative disorders yet often overlooked in clinical practice. OBJECTIVE This review aims to gather the available data regarding these disturbances in Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease and also to demonstrate the volume of literature in these individual arenas. METHODS Using the scoping review framework, a literature search was performed in PubMed to identify relevant articles published within the past 30 years (January 1988 to November 2018). The search criteria produced a total of 2022 articles, 328 of which were identified as relevant to this review. RESULTS Several major themes emerged from this review. These neuroendocrine disturbances may be a precursor to the illness, a part of the primary pathophysiology, or a direct consequence of the disease or independent of it. They have the potential to further understanding of the disease, exacerbate the underlying pathology, or provide therapeutic benefit. CONCLUSIONS By synthesizing the data from a systems' perspective, we aim to broaden how clinicians think about these illnesses and provide care.
Collapse
Affiliation(s)
- Amy Newhouse
- Departments of Psychiatry and Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Zeina Chemali
- Harvard Medical School, Boston, MA; Departments of Psychiatry and Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
d'Angelo M, Castelli V, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Benedetti E, Cimini A. PPARγ and Cognitive Performance. Int J Mol Sci 2019; 20:ijms20205068. [PMID: 31614739 PMCID: PMC6834178 DOI: 10.3390/ijms20205068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Recent findings have led to the discovery of many signaling pathways that link nuclear receptors with human conditions, including mental decline and neurodegenerative diseases. PPARγ agonists have been indicated as neuroprotective agents, supporting synaptic plasticity and neurite outgrowth. For these reasons, many PPARγ ligands have been proposed for the improvement of cognitive performance in different pathological conditions. In this review, the research on this issue is extensively discussed.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
27
|
Diabetes drugs in the fight against Alzheimer's disease. Ageing Res Rev 2019; 54:100936. [PMID: 31330313 DOI: 10.1016/j.arr.2019.100936] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, particularly in old age subjects. Hyperinsulinemia and insulin resistance, which are known as pathophysiological features of Type 2 Diabetes Mellitus (T2DM), have also been demonstrated to have a significant impact on cognitive impairment. Studies have shown that an altered insulin pathway may interact with amyloid-β protein deposition and tau protein phosphorylation, both leading factors for AD development. Drugs used for T2DM treatment from insulin and metformin through dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 receptor agonists may represent a promising approach to fight AD. With this review from animal to human studies, we aim at responding to the reasons why drugs for diabetes may represent potential treatments for AD.
Collapse
|
28
|
Guest FL. Early Detection and Treatment of Patients with Alzheimer's Disease: Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:295-317. [PMID: 30747429 DOI: 10.1007/978-3-030-05542-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease affects approximately 6% of people over the age of 65 years. It is characterized as chronic degeneration of cortical neurons, with loss of memory, cognition and executive functions. As the disease progresses, it is accompanied by accumulation of amyloid plaques and neurofibrillary tangles in key areas of the brain, leading to a loss of neurogenesis and synaptic plasticity in the hippocampus, along with changes in the levels of essential neurotransmitters such as acetylcholine and glutamate. Individuals with concomitant diseases such as depression, diabetes and cardiovascular disorders have a higher risk of developing Alzheimer's disease, and those who have a healthier diet and partake in regular exercise and intellectual stimulation have a lower risk of developing the disorder. This chapter describes the advances made in early diagnosis of Alzheimer's disease as this could help to improve outcomes for the patients by facilitating earlier treatment.
Collapse
Affiliation(s)
- Francesca L Guest
- Taunton and Somerset NHS Trust, Musgrove Park Hospital, Taunton, Somerset, UK.
| |
Collapse
|
29
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
30
|
Seok H, Lee M, Shin E, Yun MR, Lee YH, Moon JH, Kim E, Lee PH, Lee BW, Kang ES, Lee HC, Cha BS. Low-dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia by increasing LRP1 expression in the hippocampus. Sci Rep 2019; 9:4414. [PMID: 30867485 PMCID: PMC6416325 DOI: 10.1038/s41598-019-40736-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
Amyloid-β (Aβ) accumulation in the brain is a pathological feature of Alzheimer's disease (AD) and enhancing Aβ clearance is a potential therapeutic strategy. Pioglitazone is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist and is widely used to treat type 2 diabetes. We previously reported that low-dose pioglitazone increased the expression of low-density lipoprotein receptor-related protein 1 (LRP1), which upregulates the clearance of Aβ, using human brain microvascular endothelial cells. We investigated whether low-dose pioglitazone can rescue the pathological phenotype and memory impairment in senescence-accelerated mouse prone-8 (SAMP8) mice by increasing LRP1 levels. SAMP8 mice were treated with vehicle or pioglitazone in dosages of 2 or 5 mg/kg/day for 7 weeks. In the water maze test, 2 mg/kg/day of pioglitazone significantly attenuated the increased escape latency in SAMP8 mice (p = 0.026), while 5 mg/kg/day of treatment did not. Compared with vehicle treatment, the hippocampi of SAMP8 mice with 2 mg/kg/day of pioglitazone exhibited fewer Aβ deposits and reduced Aβ1-40 levels, along with elevated LRP1 expression (p = 0.005). Collectively, our results proposed that a new therapeutic application of the PPAR-γ agonist for AD treatment should be considered at a lower dose than the conventional dose used to treat diabetes.
Collapse
Affiliation(s)
- Hannah Seok
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Uijeongbu St. Mary's Hospital, Uijeongbu, Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eugene Shin
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Ra Yun
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hoon Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Eosu Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Chul Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bong Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea. .,Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
31
|
Caberlotto L, Nguyen TP, Lauria M, Priami C, Rimondini R, Maioli S, Cedazo-Minguez A, Sita G, Morroni F, Corsi M, Carboni L. Cross-disease analysis of Alzheimer's disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci Rep 2019; 9:3965. [PMID: 30850634 PMCID: PMC6408545 DOI: 10.1038/s41598-019-39828-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence is accumulating that the main chronic diseases of aging Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM) share common pathophysiological mechanisms. This study aimed at applying systems biology approaches to increase the knowledge of the shared molecular pathways underpinnings of AD and T2DM. We analysed transcriptomic data of post-mortem AD and T2DM human brains to obtain disease signatures of AD and T2DM and combined them with protein-protein interaction information to construct two disease-specific networks. The overlapping AD/T2DM network proteins were then used to extract the most representative Gene Ontology biological process terms. The expression of genes identified as relevant was studied in two AD models, 3xTg-AD and ApoE3/ApoE4 targeted replacement mice. The present transcriptomic data analysis revealed a principal role for autophagy in the molecular basis of both AD and T2DM. Our experimental validation in mouse AD models confirmed the role of autophagy-related genes. Among modulated genes, Cyclin-Dependent Kinase Inhibitor 1B, Autophagy Related 16-Like 2, and insulin were highlighted. In conclusion, the present investigation revealed autophagy as the central dys-regulated pathway in highly co-morbid diseases such as AD and T2DM allowing the identification of specific genes potentially involved in disease pathophysiology which could become novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Caberlotto
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy.
- Aptuit an Evotec company Drug Design and Discovery, Verona, Italy.
| | - T-Phuong Nguyen
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno S.A.6A, avenue des Hauts-FourneauxL-4362 Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg
| | - Mario Lauria
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Corrado Priami
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Science, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mauro Corsi
- Aptuit, an Evotec company, Drug Design and Discovery, Verona, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Fu WY, Wang X, Ip NY. Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer's Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chem Neurosci 2019; 10:872-879. [PMID: 30221933 DOI: 10.1021/acschemneuro.8b00402] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase owing to the aging population worldwide. Current therapies merely provide symptomatic relief. Therefore, interventions for AD that delay the disease onset or progression are urgently required. Recent genomics and functional studies suggest that immune/inflammatory pathways are involved in the pathogenesis of AD. Although many anti-inflammatory drug candidates have undergone clinical trials, most have failed. This might be because of our limited understanding of the pathological mechanisms of neuroinflammation in AD. However, recent advances in the understanding of immune/inflammatory pathways in AD and their regulatory mechanisms could open up new avenues for drug development targeting neuroinflammation. In this Review, we discuss the mechanisms and status of different anti-inflammatory drug candidates for AD that have undergone or are undergoing clinical trials and explore new opportunities for targeting neuroinflammation in AD drug development.
Collapse
Affiliation(s)
| | | | - Nancy Y. Ip
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Khan MA, Alam Q, Haque A, Ashafaq M, Khan MJ, Ashraf GM, Ahmad M. Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer's Disease: An Update. Curr Neuropharmacol 2019; 17:232-246. [PMID: 30152284 PMCID: PMC6425074 DOI: 10.2174/1570159x16666180828100002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder, characterized by the deposition of amyloid-β within the brain parenchyma resulting in a significant decline in cognitive functions. The pathophysiological conditions of the disease are recognized by the perturbation of synaptic function, energy and lipid metabolism. In Addition deposition of amyloid plaques also triggers inflammation upon the induction of microglia. Peroxisome proliferatoractivated receptors (PPARs) are ligand-activated transcription factors known to play important role in the regulation of glucose absorption, homeostasis of lipid metabolism and are further known to involved in repressing the expression of genes related to inflammation. Therefore, agonists of this receptor represent an attractive therapeutic target for AD. Recently, both clinical and preclinical studies showed that use of Peroxisome proliferator-activated receptor gamma (PPARγ) agonist improves both learning and memory along with other AD related pathology. Thus, PPARγ signifies a significant new therapeutic target in treating AD. In this review, we have shed some light on the recent progress of how, PPARγ agonist selectively modulated different cellular targets in AD and its amazing potential in the treatment of AD.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- Address correspondence to these authors at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India; E-mail: , and King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | | | | | | | | | - Ghulam Md Ashraf
- Address correspondence to these authors at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India; E-mail: , and King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | | |
Collapse
|
34
|
Letra L, Rodrigues T, Matafome P, Santana I, Seiça R. Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Front Neuroendocrinol 2019; 52:1-11. [PMID: 29038028 DOI: 10.1016/j.yfrne.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 01/21/2023]
Abstract
Obesity has been consistently associated with Alzheimer's disease (AD) though the exact mechanisms by which it influences cognition are still elusive and subject of current research. Adiponectin, the most abundant adipokine in circulation, is inversely correlated with adipose tissue dysfunction and seems to be a central player in this association. In fact, different signalling pathways are shared by adiponectin and proteins involved in AD pathophysiology and considerable amount of evidence supports its direct and indirect influence on β-amyloid and tau aggregates formation. In this paper we present a critical review of cellular, animal and clinical studies which have contributed to a more thorough understanding of the extent to which adiponectin influences the risk of developing AD as well as its progression. Finally, the effect of acetylcholinesterase inhibitors on circulating adiponectin levels, possible therapeutic applications and future research strategies are also discussed.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Neurology Department, Centro Hospitalar do Baixo Vouga - Aveiro, Av. Artur Ravara, 3814-501 Aveiro, Portugal.
| | - Tiago Rodrigues
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
35
|
Tumminia A, Vinciguerra F, Parisi M, Frittitta L. Type 2 Diabetes Mellitus and Alzheimer's Disease: Role of Insulin Signalling and Therapeutic Implications. Int J Mol Sci 2018; 19:ijms19113306. [PMID: 30355995 PMCID: PMC6275025 DOI: 10.3390/ijms19113306] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, numerous in vitro studies demonstrated that insulin receptors and theirs downstream pathways are widely distributed throughout the brain. This evidence has proven that; at variance with previous believes; insulin/insulin-like-growth-factor (IGF) signalling plays a crucial role in the regulation of different central nervous system (CNS) tasks. The most important of these functions include: synaptic formation; neuronal plasticity; learning; memory; neuronal stem cell activation; neurite growth and repair. Therefore; dysfunction at different levels of insulin signalling and metabolism can contribute to the development of a number of brain disorders. Growing evidences demonstrate a close relationship between Type 2 Diabetes Mellitus (T2DM) and neurodegenerative disorders such as Alzheimer’s disease. They, in fact, share many pathophysiological characteristics comprising impaired insulin sensitivity, amyloid β accumulation, tau hyper-phosphorylation, brain vasculopathy, inflammation and oxidative stress. In this article, we will review the clinical and experimental evidences linking insulin resistance, T2DM and neurodegeneration, with the objective to specifically focus on insulin signalling-related mechanisms. We will also evaluate the pharmacological strategies targeting T2DM as potential therapeutic tools in patients with cognitive impairment.
Collapse
Affiliation(s)
- Andrea Tumminia
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Federica Vinciguerra
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Miriam Parisi
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| | - Lucia Frittitta
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Via Palermo n° 636, 95122 Catania, Italy.
| |
Collapse
|
36
|
Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. Signaling Mechanisms of Selective PPAR γ Modulators in Alzheimer's Disease. PPAR Res 2018; 2018:2010675. [PMID: 30420872 PMCID: PMC6215547 DOI: 10.1155/2018/2010675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nila Ghanei
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
37
|
Enhancement of cognitive functions by rice bran extract in a neuroinflammatory mouse model via regulation of PPARγ. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Wang D, Dong X, Wang C. Honokiol Ameliorates Amyloidosis and Neuroinflammation and Improves Cognitive Impairment in Alzheimer’s Disease Transgenic Mice. J Pharmacol Exp Ther 2018; 366:470-478. [DOI: 10.1124/jpet.118.248674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
|
39
|
Schilling S, Rahfeld JU, Lues I, Lemere CA. Passive Aβ Immunotherapy: Current Achievements and Future Perspectives. Molecules 2018; 23:molecules23051068. [PMID: 29751505 PMCID: PMC6099643 DOI: 10.3390/molecules23051068] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022] Open
Abstract
Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid β (Aβ), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aβ antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs). Emphasis is placed on the current view of common side effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities (ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed on molecules that are directed against post-translationally modified variants of the Aβ peptide, an emerging approach for development of new antibody molecules.
Collapse
Affiliation(s)
- Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Womens's Hospital, Harvard Medical School, Boston, MA 02116, USA.
| |
Collapse
|
40
|
Mohamed HE, Asker ME, Younis NN, Shaheen MA, Eissa RG. Modulation of brain insulin signaling in Alzheimer’s disease: New insight on the protective role of green coffee bean extract. Nutr Neurosci 2018; 23:27-36. [DOI: 10.1080/1028415x.2018.1468535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hoda E. Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E. Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N. Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A. Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rana G. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Ibrahim OHM, Hassan MA. The Use of Anti-Diabetic Drugs in Alzheimer’s Disease, New Therapeutic Options and Future Perspective. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/pp.2018.96013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Mair ML, Athavale R, Abdelhafiz AH. Practical considerations for managing patients with diabetes and dementia. Expert Rev Endocrinol Metab 2017; 12:429-440. [PMID: 30063433 DOI: 10.1080/17446651.2017.1395692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diabetes and dementia appear to be linked epidemiologically and share a common pathogenetic mechanism. The development of dementia in older people with diabetes will have a significant impact on diabetes self-care and will increase the risk of hypoglycaemia and frailty which ultimately lead to disability and poor outcome. Areas covered: We performed a Medline and Embase search from 1997 to present on relevant dementia and diabetes studies published in English language. Expert commentary: Older people with comorbid diabetes and dementia are functionally heterogeneous and interventions should be proportionate to patients 'functional capacity. Metabolic targets can be tightened in fit persons and relaxed when cognitive abilities continue to decline and overall function deteriorates. A holistic multidisciplinary team approach that involves patients, their carers and integrated primary and secondary care services at one point of care that focuses on improving function and maintaining quality of life is needed.
Collapse
Affiliation(s)
- Michelle L Mair
- a Department of Geriatric Medicine , Rotherham General Hospital , Rotherham , UK
| | - Rohin Athavale
- a Department of Geriatric Medicine , Rotherham General Hospital , Rotherham , UK
| | - Ahmed H Abdelhafiz
- a Department of Geriatric Medicine , Rotherham General Hospital , Rotherham , UK
| |
Collapse
|
43
|
Femminella GD, Bencivenga L, Petraglia L, Visaggi L, Gioia L, Grieco FV, de Lucia C, Komici K, Corbi G, Edison P, Rengo G, Ferrara N. Antidiabetic Drugs in Alzheimer's Disease: Mechanisms of Action and Future Perspectives. J Diabetes Res 2017; 2017:7420796. [PMID: 28656154 PMCID: PMC5471577 DOI: 10.1155/2017/7420796] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/07/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two highly prevalent conditions in the elderly population and major public health burden. In the past decades, a pathophysiological link between DM and AD has emerged and central nervous system insulin resistance might play a significant role as a common mechanism; however, other factors such as inflammation and oxidative stress seem to contribute to the shared pathophysiological link. Both preclinical and clinical studies have evaluated the possible neuroprotective mechanisms of different classes of antidiabetic medications in AD, with some promising results. Here, we review the evidence on the mechanisms of action of antidiabetic drugs and their potential use in AD.
Collapse
Affiliation(s)
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Laura Petraglia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Lucia Visaggi
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Lucia Gioia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Fabrizio Vincenzo Grieco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Claudio de Lucia
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Klara Komici
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Paul Edison
- Neurology Imaging Unit, Imperial College London, London, UK
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN), Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- *Nicola Ferrara:
| |
Collapse
|
44
|
Wang J, Chen GJ. Mitochondria as a therapeutic target in Alzheimer's disease. Genes Dis 2016; 3:220-227. [PMID: 30258891 PMCID: PMC6150105 DOI: 10.1016/j.gendis.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/30/2016] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) remains the most common neurodegenerative disease characterized by β-amyloid protein (Aβ) deposition and memory loss. Studies have shown that mitochondrial dysfunction plays a crucial role in AD, which involves oxidative stress-induced respiratory chain dysfunction, loss of mitochondrial biogenesis, defects of mitochondrial dynamics and mtDNA mutations. Thus mitochondria might serve as drug therapy target for AD. In this article, we first briefly discussed mitochondrial theory in the development of AD, and then we summarized recent advances of mitochondrial abnormalities in AD pathology and introduced a series of drugs and techniques targeting mitochondria. We think that maintaining mitochondrial function may provide a new way of thinking in the treatment of AD.
Collapse
Affiliation(s)
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
45
|
Deardorff WJ, Grossberg GT. Targeting neuroinflammation in Alzheimer’s disease: evidence for NSAIDs and novel therapeutics. Expert Rev Neurother 2016; 17:17-32. [DOI: 10.1080/14737175.2016.1200972] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - George T Grossberg
- Department of Psychiatry, St. Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
46
|
Therapeutic Potential of Antidiabetic Medications in the Treatment of Cognitive Dysfunction and Dementia. Drugs Aging 2016; 33:399-409. [DOI: 10.1007/s40266-016-0375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Wang X, Wang Y, Hu JP, Yu S, Li BK, Cui Y, Ren L, Zhang LD. Astragaloside IV, a Natural PPARγ Agonist, Reduces Aβ Production in Alzheimer's Disease Through Inhibition of BACE1. Mol Neurobiol 2016; 54:2939-2949. [PMID: 27023226 DOI: 10.1007/s12035-016-9874-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 01/01/2023]
Abstract
A number of epidemiological studies have established a link between Alzheimer's disease (AD) and diabetes mellitus (DM). So, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the treatment of AD. However, current PPARγ-targeting drugs such as thiazolidinediones (TZDs) are associated with undesirable side effects. We identified herbal extract with a small molecular, astragaloside IV (AS-IV), as a selective PPARγ natural agonist in nervous cells by developing a PPAR-PPRE pathway regulatory system. Cultured SH-SY5Y cells transfected with pEGFP-N1-BACE1 were treated with AS-IV for 24 h or AS-IV plus the PPAR-γ antagonist GW9662 in vitro. APP/PS1 mice were intragastrically treated with AS-IV or AS-IV plus the GW9662 every 48 h for 3 months. Immunofluorescence, western blotting, and real-time PCR were used to examine the expression of PPARγ and BACE1. Immunohistochemical staining was performed to analyze the distribution of Aβ plaques in the APP/PS1 mouse brain. The levels of Aβ were determined using ELISA kits. AS-IV was shown to be a PPARγ agonist by establishing a high-throughput screening model for PPARγ agonists. The results showed that AS-IV treatment increased activity of PPARγ and inhibited BACE1 in vitro. As a result, Aβ levels decreased significantly. GW9662, which is a PPARγ antagonist, significantly blocked the beneficial role of AS-IV. In vivo, AS-IV treatment increased PPARγ and BACE1 expression and reduced neuritic plaque formation and Aβ levels in the brains of APP/PS1 mice. These effects of AS-IV could be effectively inhibited by GW9662. These results indicate that AS-IV may be a natural PPARγ agonist that suppressed activity of BACE1 and ultimately attenuates generation of Aβ. Therefore, AS-IV may be a promising agent for modulating Aβ-related pathology in AD.
Collapse
Affiliation(s)
- Xu Wang
- Basic Medicine combined with Chinese Traditional Medicine and Western Medicine, Liaoning University of Traditional Chinese Medicine, 110847, Shenyang, People's Republic of China
| | - Yue Wang
- Basic Medicine combined with Chinese Traditional Medicine and Western Medicine, Liaoning University of Traditional Chinese Medicine, 110847, Shenyang, People's Republic of China
| | - Jiang-Ping Hu
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Song Yu
- Subject consciousness of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
| | - Bao-Kun Li
- Basic Medicine combined with Chinese Traditional Medicine and Western Medicine, Liaoning University of Traditional Chinese Medicine, 110847, Shenyang, People's Republic of China
| | - Yong Cui
- Basic Medicine combined with Chinese Traditional Medicine and Western Medicine, Liaoning University of Traditional Chinese Medicine, 110847, Shenyang, People's Republic of China
| | - Lu Ren
- Subject consciousness of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
| | - Li-De Zhang
- Basic Medicine combined with Chinese Traditional Medicine and Western Medicine, Liaoning University of Traditional Chinese Medicine, 110847, Shenyang, People's Republic of China.
| |
Collapse
|
48
|
MH84: A Novel γ-Secretase Modulator/PPARγ Agonist—Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer’s Disease. Neurochem Res 2015; 41:231-42. [DOI: 10.1007/s11064-015-1765-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
|
49
|
Therapeutic Actions of the Thiazolidinediones in Alzheimer's Disease. PPAR Res 2015; 2015:957248. [PMID: 26587016 PMCID: PMC4637502 DOI: 10.1155/2015/957248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by protein aggregates, synaptic failure, and cognitive impairment. In the AD brain is common to observe the accumulation of senile plaques formed by amyloid-beta (Aβ) peptide and the neurofibrillary tangles composed of modified tau protein, which both lead to cellular damage and progressive neurodegeneration. Currently, there is no effective therapy for AD; however several studies have shown that the treatments with the peroxisome proliferators activated receptor-gamma (PPARγ) agonists known as thiazolidinedione drugs (TZDs), like rosiglitazone and pioglitazone, attenuate neurodegeneration and improve cognition in mouse models and patients with mild-to-moderate AD. Furthermore, studies on animal models have shown that TZDs inhibit neuroinflammation, facilitate amyloid-β plaque clearance, enhance mitochondrial function, improve synaptic plasticity, and, more recently, attenuate tau hyperphosphorylation. How TZDs may improve or reduce these pathologic signs of AD and what the mechanisms and the implicated pathways in which these drugs work are are questions that remain to be answered. However, in this review, we will discuss several cellular targets, in which TZDs can be acting against the neurodegeneration.
Collapse
|