1
|
Lu M, Li J, Huang Q, Mao D, Yang G, Lan Y, Zeng J, Pan M, Shi S, Zou D. Single-Nucleus Landscape of Glial Cells and Neurons in Alzheimer's Disease. Mol Neurobiol 2025; 62:2695-2709. [PMID: 39153159 DOI: 10.1007/s12035-024-04428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a projected significant increase in incidence. Therefore, this study analyzed single-nucleus AD data to provide a theoretical basis for the clinical development and treatment of AD. We downloaded AD-related monocyte data from the Gene Expression Omnibus database, annotated cells, compared cell abundance between groups, and investigated glial and neuronal cell biological processes and pathways through functional enrichment analysis. Furthermore, we constructed a global regulatory network for AD based on cell communication and ecological analyses. Our findings revealed increased abundance of Capping Protein Regulator And Myosin 1 linker 1 (CARMIL1)+ astrocytes (AST), Immunoglobulin Superfamily Member 21 (IGSF21)+ microglia (MIC), SRY-Box Transcription Factor 6 (SOX6)+ inhibitory neurons (InNeu), and laminin alpha-2 chain (LAMA2)+ oligodendrocytes (OLI) cell subgroups in tissues of patients with AD, while prostaglandin D2 synthase (PTGDS)+ AST, Src Family Tyrosine Kinase (FYN)+ MIC, and Proteolipid Protein 1 (PLP1)+ InNeu subgroups specifically decreased. We found that the cell phenotype of patients with AD shifted from a simpler to a more complex state compared to the control group. Cell communication analysis revealed strong communication between MIC and NEU. Furthermore, AST, MIC, NEU, and OLI were involved in oxidative stress- and inflammation-related pathways, potentially contributing to disease development. This study provides a theoretical basis for further exploring the specific mechanisms underlying AD.
Collapse
Affiliation(s)
- Mengru Lu
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
| | - Jiaxin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qi Huang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
| | - Daniel Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Grace Yang
- State College Area High School, State College, PA, 16801, USA
| | - Yating Lan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
| | - Jingyi Zeng
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
| | - Shengliang Shi
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
2
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB. A Mouse Model of Sporadic Alzheimer's Disease with Elements of Major Depression. Mol Neurobiol 2025; 62:1337-1358. [PMID: 38980563 DOI: 10.1007/s12035-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - V I Kovalev
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A V Chaplygina
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
4
|
Xie D, Ma Y, Gao C, Pan S. Piezo1 activation on microglial cells exacerbates demyelination in sepsis by influencing the CCL25/GRP78 pathway. Int Immunopharmacol 2024; 142:113045. [PMID: 39236454 DOI: 10.1016/j.intimp.2024.113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND In sepsis-associated encephalopathy (SAE), the activation of microglial cells and ensuing neuroinflammation are important in the underlying pathological mechanisms. Increasing evidence suggests that the protein Piezo1 functions as a significant regulator of neuroinflammation. However, the influence of Piezo1 on microglial cells in the context of SAE has not yet been determined. This study aims to investigate the role of Piezo1 in microglial cells in the context of SAE. METHODS By inducing cecal ligation and puncture (CLP), a mouse model of SAE was established, while the control group underwent a sham surgery in which the cecum was exposed without ligation and puncture. Piezo1 knockout mice were employed in this study. Morris water maze tests were conducted between Days 14 and 18 postop to assess both the motor activity and cognitive function. A proteomic analysis was conducted to assess the SAE-related pathways, whereas a Mendelian randomization analysis was conducted to identify the pathways associated with cognitive impairment. Dual-label immunofluorescence and flow cytometry were used to assess the secretion of inflammatory factors, microglial status, and oligodendrocyte development. Electron microscopy was used to evaluate axonal myelination. A western blot analysis was conducted to evaluate the influence of Piezo1 on oligodendrocyte ferroptosis. RESULTS The results of the bioinformatics analysis have revealed the significant involvement of CCL25 in the onset and progression of SAE-induced cognitive impairment. SAE leads to cognitive dysfunction by activating the microglial cells. The release of CCL25 by the activated microglia initiates the demyelination of oligodendrocytes in the hippocampus, resulting in ferroptosis and the disruption of hippocampal functional connectivity. Of note, the genetic knockout of the Piezo1 gene mitigates these changes. The treatment with siRNA targeting Piezo1 effectively reduces the secretion of inflammatory mediators CCL25 and IL-18 by inhibiting the p38 pathway, thus preventing the ferroptosis of oligodendrocytes through the modulation of the CCL25/GPR78 axis. CONCLUSION Piezo1 is involved in the activation of microglia and demyelinating oligodendrocytes in the animal models of SAE, resulting in cognitive impairment. Consequently, targeting Piezo1 suppression can be a promising approach for therapeutic interventions aimed at addressing cognitive dysfunction associated with SAE.
Collapse
Affiliation(s)
- Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China
| | - Yanli Ma
- Department of Pediatrics, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Hongkou District, 200434 Shanghai, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China.
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, 200092 Shanghai, China; Department of Emergency, Putuo District Central Hospital, Affiliated with Shanghai University of Traditional Chinese Medicine, Putuo District, 200062 Shanghai, China.
| |
Collapse
|
5
|
Ramirez AM, Bertholim-Nasciben L, Moura S, Coombs LE, Rajabli F, DeRosa BA, Whitehead PG, Adams LD, Starks TD, Mena P, Illannes-Manrique M, Tejada SJ, Byrd GS, Caban-Holt A, Cuccaro M, McInerney K, Cornejo-Olivas M, Feliciano-Astacio B, Wang L, Robayo MC, Xu W, Jin F, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM, Young JI, Vance JM. Ancestral Genomic Functional Differences in Oligodendroglia: Implications for Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-5338140. [PMID: 39678342 PMCID: PMC11643296 DOI: 10.21203/rs.3.rs-5338140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Background This study aims to elucidate ancestry-specific changes to the genomic regulatory architecture in induced pluripotent stem cell (iPSC)-derived oligodendroglia, focusing on their implications for Alzheimer's disease (AD). This work addresses the lack of diversity in previous iPSC studies by including ancestries that contribute to African American (European/African) and Hispanic/Latino populations (Amerindian/African/European). Methods We generated 12 iPSC lines-four African, four Amerindian, and four European- from both AD patients and non-cognitively impaired individuals, with varying APOE genotypes (APOE3/3 and APOE4/4). These lines were differentiated into neural spheroids containing oligodendrocyte lineage cells. Single-nuclei RNA sequencing and ATAC sequencing were employed to analyze transcriptional and chromatin accessibility profiles, respectively. Differential gene expression, chromatin accessibility, and Hi-C analyses were conducted, followed by pathway analysis to interpret the results. Results We identified ancestry-specific differences in gene expression and chromatin accessibility. Notably, numerous AD GWAS-associated genes were differentially expressed across ancestries. The largest number of differentially expressed genes (DEGs) were found in European vs. Amerindian and African vs. Amerindian iPSC-derived oligodendrocyte progenitor cells (OPCs). Pathway analysis of APOE4/4 carriers vs APOE3/3 carriers exhibited upregulation of a large number of disease and metabolic pathways in APOE4/4 individuals of all ancestries. Of particular interest was that APOE4/4 carriers had significantly upregulated cholesterol biosynthesis genes relative to APOE3/3 individuals across all ancestries, strongest in iOPCs. Comparison of iOPC and iOL transcriptome data with corresponding human frontal cortex data demonstrated a high correlation (R2 > 0.85). Conclusions This research emphasizes the importance of including diverse ancestries in AD research to uncover critical gene expression differences between populations and ancestries that may influence disease susceptibility and therapeutic interventions. The upregulation of cholesterol biosynthesis genes in APOE4/4 carriers of all three ancestries supports the concept that APOE4 may produce disease effects early in life, which could have therapeutic implications as we move forward towards specific therapy for APOE4 carriers. These findings and the high correlation between brain and iPSC-derived OPC and OL transcriptomes support the relevance of this approach as a model for disease study.
Collapse
Affiliation(s)
- Aura M Ramirez
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sofia Moura
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Lauren E Coombs
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Farid Rajabli
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Brooke A DeRosa
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Patrice G Whitehead
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Larry D Adams
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Takiyah D Starks
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Pedro Mena
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | | | - Sergio J Tejada
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Goldie S Byrd
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Allison Caban-Holt
- Wake Forest School of Medicine: Wake Forest University School of Medicine
| | - Michael Cuccaro
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Katalina McInerney
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Mario Cornejo-Olivas
- Universidad Científica del Sur Facultad de Ciencias de la Salud: Universidad Cientifica del Sur Facultad de Ciencias de la Salud
| | | | - Liyong Wang
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Maria C Robayo
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Wanying Xu
- Case Western Reserve University School of Medicine
| | - Fulai Jin
- Case Western Reserve University School of Medicine
| | | | - Anthony J Griswold
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Derek M Dykxhoorn
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Juan I Young
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Jeffery M Vance
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
6
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l'Energie Atomique, 92260 Fontenay-aux-Roses, France
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
7
|
Jha S, Torres-Carmona E, Iwata Y, Ma C, Graff-Guerrero A, Fischer CE, Mulsant B, Pollock BG, Rajji TK, Kumar S. Neuronal viability/astrocyte activity ratio in the dorsolateral prefrontal cortex as a biomarker of Alzheimer's dementia: a proton magnetic resonance spectroscopy study. Cereb Cortex 2024; 34:bhae465. [PMID: 39587372 DOI: 10.1093/cercor/bhae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
N-acetyl-aspartate (NAA) and myo-inositol (mI) are neurometabolites reflecting neuronal viability and astrocyte activity, respectively. These are quantified using proton magnetic resonance spectroscopy (1H-MRS) and may be biomarkers for Alzheimer's disease dementia (AD). Our objectives were: 1) Compare dorsolateral prefrontal cortex (DLPFC) NAA and mI levels between AD and cognitively healthy control participants (HC) 2) assess if NAA/mI ratio can distinguish groups, and 3) explore the relationship between metabolites and cognition. The study included 64 participants over 55, 41 with AD. Bilateral DLPFC NAA and mI levels were quantified using 3 T 1H-MRS and normalized to H2O. NAA and NAA/mI ratio were lower in AD vs. HC. mI was unchanged. The NAA/mI ratio at a cut-off value of 1.69 showed 59% sensitivity and 87% specificity at distinguishing AD from HC. NAA was associated positively with cognition. In conclusion, DLPFC metabolite changes suggest altered mitochondrial function in AD. NAA/mI ratio shows good specificity in distinguishing AD from HC, suggesting its role in complementing other biomarkers. Future studies should evaluate NAA/mI ratio with other disease specific biomarkers.
Collapse
Affiliation(s)
- Shreya Jha
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
| | - Edgardo Torres-Carmona
- Research Imaging Centre, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
| | - Clement Ma
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, 155 College St Room 500, Toronto, Ontario, M5T 3M7, Canada
| | - Ariel Graff-Guerrero
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
| | - Corinne E Fischer
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Department of Psychiatry, St. Michaels Hospital, 36 Queen St E, Toronto, Ontario M5B 1W8, Canada
| | - Benoit Mulsant
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Division of Geriatric Psychiatry, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Sanjeev Kumar
- Temerty Faculty of Medicine, University of Toronto, 1 King's College Cir, Toronto, Ontario M5S 1A8, Canada
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, 1000 Queen St W, Toronto, Ontario M6J 1H4, Canada
| |
Collapse
|
8
|
Chim SM, Howell K, Kokkosis A, Zambrowicz B, Karalis K, Pavlopoulos E. A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood-Brain Barrier Crossing Therapeutic Strategies. Pharmaceutics 2024; 16:1314. [PMID: 39458643 PMCID: PMC11510380 DOI: 10.3390/pharmaceutics16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis, including cell-specific contributions and cell-cell interactions, and support successful targeting and prediction of drug responses in humans are urgently needed, given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS), such as Organ-Chips, are emerging as a promising approach to address these challenges. Here, we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes, human induced pluripotent stem cell (hiPSC)-derived cortical neurons, and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNFα) to emulate neuroinflammation, we demonstrate that our model recapitulates in vivo-relevant responses. Importantly, we show microglia-derived responses, highlighting the Brain-Chip's sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences, underscoring the model's capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases, adding to the growing evidence supporting the value of MPS in translational research and drug discovery.
Collapse
Affiliation(s)
- Shek Man Chim
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Kristen Howell
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Alexandros Kokkosis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Brian Zambrowicz
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Katia Karalis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Elias Pavlopoulos
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| |
Collapse
|
9
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
10
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
11
|
Leenders F, Koole L, Slaets H, Tiane A, Hove DVD, Vanmierlo T. Navigating oligodendrocyte precursor cell aging in brain health. Mech Ageing Dev 2024; 220:111959. [PMID: 38950628 DOI: 10.1016/j.mad.2024.111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Freddy Leenders
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lisa Koole
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Helena Slaets
- University MS Centre (UMSC) Hasselt, Pelt, Belgium; Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department Psychiatry and Neuropsychology, Division Translational Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Centre (UMSC) Hasselt, Pelt, Belgium.
| |
Collapse
|
12
|
Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, Pinals RL, Liu L, Truong N, Loon A, Staab C, Cerit O, Wen HL, Kellis M, Blanchard JW, Langer R, Tsai LH. Engineered 3D Immuno-Glial-Neurovascular Human miBrain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553453. [PMID: 37645757 PMCID: PMC10461996 DOI: 10.1101/2023.08.15.553453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Patient-specific, human-based cellular models integrating a biomimetic blood-brain barrier (BBB), immune, and myelinated neuron components are critically needed to enable accelerated, translationally relevant discovery of neurological disease mechanisms and interventions. By engineering a novel brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks inclusive of neuronal activity, functional connectivity, barrier function, myelin-producing oligodendrocyte engagement with neurons, multicellular interactions, and transcriptomic profiles. We implemented the model to study Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types, a feature we harnessed to identify that APOE4 in astrocytes promotes neuronal tau pathogenesis and dysregulation through crosstalk with microglia.
Collapse
|
13
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
14
|
Ali M, Huarte OU, Heurtaux T, Garcia P, Rodriguez BP, Grzyb K, Halder R, Skupin A, Buttini M, Glaab E. Single-Cell Transcriptional Profiling and Gene Regulatory Network Modeling in Tg2576 Mice Reveal Gender-Dependent Molecular Features Preceding Alzheimer-Like Pathologies. Mol Neurobiol 2024; 61:541-566. [PMID: 35980567 PMCID: PMC10861719 DOI: 10.1007/s12035-022-02985-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and reactive oxygen species metabolism, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant cell-type specific gene expression changes in individual genes, pathways and sub-networks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, 6200, Maastricht, the Netherlands
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L‑4362, Esch-Sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Beatriz Pardo Rodriguez
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- University of the Basque Country, Cell Biology and Histology Department, 48940, Leioa, Vizcaya, Basque Country, Spain
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 162a av. de la Faïencerie, 1511, Luxembourg, Luxembourg
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
15
|
Su C, Zhang J, Zhao H. Estimating cell-type-specific gene co-expression networks from bulk gene expression data with an application to Alzheimer's disease. J Am Stat Assoc 2024; 119:811-824. [PMID: 39280354 PMCID: PMC11394578 DOI: 10.1080/01621459.2023.2297467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 09/18/2024]
Abstract
Inferring and characterizing gene co-expression networks has led to important insights on the molecular mechanisms of complex diseases. Most co-expression analyses to date have been performed on gene expression data collected from bulk tissues with different cell type compositions across samples. As a result, the co-expression estimates only offer an aggregated view of the underlying gene regulations and can be confounded by heterogeneity in cell type compositions, failing to reveal gene coordination that may be distinct across different cell types. In this paper, we introduce a flexible framework for estimating cell-type-specific gene co-expression networks from bulk sample data, without making specific assumptions on the distributions of gene expression profiles in different cell types. We develop a novel sparse least squares estimator, referred to as CSNet, that is efficient to implement and has good theoretical properties. Using CSNet, we analyzed the bulk gene expression data from a cohort study on Alzheimer's disease and identified previously unknown cell-type-specific co-expressions among Alzheimer's disease risk genes, suggesting cell-type-specific disease mechanisms.
Collapse
Affiliation(s)
- Chang Su
- Department of Biostatistics and Bioinformatics, Emory University
- Department of Biostatistics, Yale University
| | - Jingfei Zhang
- Information Systems and Operations Management, Emory University
| | - Hongyu Zhao
- Department of Biostatistics, Yale University
| |
Collapse
|
16
|
Bao J, Wen J, Wen Z, Yang S, Cui Y, Yang Z, Erus G, Saykin AJ, Long Q, Davatzikos C, Shen L. Brain-wide genome-wide colocalization study for integrating genetics, transcriptomics and brain morphometry in Alzheimer's disease. Neuroimage 2023; 280:120346. [PMID: 37634885 PMCID: PMC10552907 DOI: 10.1016/j.neuroimage.2023.120346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. However, the AD mechanism has not yet been fully elucidated to date, hindering the development of effective therapies. In our work, we perform a brain imaging genomics study to link genetics, single-cell gene expression data, tissue-specific gene expression data, brain imaging-derived volumetric endophenotypes, and disease diagnosis to discover potential underlying neurobiological pathways for AD. To do so, we perform brain-wide genome-wide colocalization analyses to integrate multidimensional imaging genomic biobank data. Specifically, we use (1) the individual-level imputed genotyping data and magnetic resonance imaging (MRI) data from the UK Biobank, (2) the summary statistics of the genome-wide association study (GWAS) from multiple European ancestry cohorts, and (3) the tissue-specific cis-expression quantitative trait loci (cis-eQTL) summary statistics from the GTEx project. We apply a Bayes factor colocalization framework and mediation analysis to these multi-modal imaging genomic data. As a result, we derive the brain regional level GWAS summary statistics for 145 brain regions with 482,831 single nucleotide polymorphisms (SNPs) followed by posthoc functional annotations. Our analysis yields the discovery of a potential AD causal pathway from a systems biology perspective: the SNP chr10:124165615:G>A (rs6585827) mutation upregulates the expression of BTBD16 gene in oligodendrocytes, a specialized glial cells, in the brain cortex, leading to a reduced risk of volumetric loss in the entorhinal cortex, resulting in the protective effect on AD. We substantiate our findings with multiple evidence from existing imaging, genetic and genomic studies in AD literature. Our study connects genetics, molecular and cellular signatures, regional brain morphologic endophenotypes, and AD diagnosis, providing new insights into the mechanistic understanding of the disease. Our findings can provide valuable guidance for subsequent therapeutic target identification and drug discovery in AD.
Collapse
Affiliation(s)
- Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junhao Wen
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Laboratory of AI and Biomedical Science, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA 90292, USA
| | - Zixuan Wen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shu Yang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuhan Cui
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhijian Yang
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qi Long
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Liu W, Hu Q, Zhang F, Shi K, Wu J. Investigation of the causal relationship between osteocalcin and dementia: A Mendelian randomization study. Heliyon 2023; 9:e21073. [PMID: 37916108 PMCID: PMC10616355 DOI: 10.1016/j.heliyon.2023.e21073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Objective Basic medical studies have reported an improved effect of osteocalcin on cognition. We explored the causal link between osteocalcin and dementia via the implementation of Mendelian randomization methodology. Methods Genome-wide association studies were employed to identify single nucleotide polymorphisms (SNPs) showing significant correlations with osteocalcin. Subsequently, A two-sample Mendelian randomization analysis was conducted utilizing the inverse-variance-weighted (IVW) technique to assess the causal relationship between osteocalcin and various types of dementia, including Alzheimer's disease (AD), Parkinson's disease (PD), Lewy body dementia (LBD), and vascular dementia (VD). This approach aimed to minimize potential sources of confounding bias and provide more robust results. Multivariable MR (MVMR) analysis was conducted to adjust for potential genetic pleiotropy. Results The study employed three SNPs, namely rs71631868, rs9271374, and rs116843408, as genetic tools to evaluate the causal association of osteocalcin with dementia. The IVW analysis indicated that osteocalcin may have a potential protective effect against AD with an odds ratio (OR) of 0.790 (95 % CI: 0.688-0.906; P < 0.001). However, no significant relationship was observed between osteocalcin and other types of dementia. Furthermore, the MVMR analysis indicated that the impact of osteocalcin on AD remained consistent even after adjusting for age-related macular degeneration and Type 2 diabetes with an OR of 0.856 (95 % CI: 0.744-0.985; P = 0.030). Conclusions Our findings provide important insights into the role of osteocalcin in the pathogenesis of AD. Future research is required to clarify the underlying mechanisms and their clinical applications.
Collapse
Affiliation(s)
- Wangmi Liu
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qiang Hu
- Pujiang Tianxian Orthopedic Hospital, Jinhua, 322200, China
| | - Feng Zhang
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Kesi Shi
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiayan Wu
- Department of Neurology, Chongming Branch, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 66 East Xiangyang Road, Chongming, Shanghai, China
| |
Collapse
|
18
|
Xue J, Lin J, Liu Z, Zhang Q, Tang J, Han J, Wu S, Liu C, Zhao L, Li Y, Zhuo Y. Alleviating early demyelination in ischaemia/reperfusion by inhibiting sphingosine-1-phosphate receptor 2 could protect visual function from impairment. Brain Pathol 2023; 33:e13161. [PMID: 37142391 PMCID: PMC10467042 DOI: 10.1111/bpa.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Retinal ischaemia/reperfusion (I/R) injury is a common cause of retinal ganglion cell (RGC) apoptosis and axonal degeneration, resulting in irreversible visual impairment. However, there are no available neuroprotective and neurorestorative therapies for retinal I/R injury, and more effective therapeutic approaches are needed. The role of the myelin sheath of the optic nerve after retinal I/R remains unknown. Here, we report that demyelination of the optic nerve is an early pathological feature of retinal I/R and identify sphingosine-1-phosphate receptor 2 (S1PR2) as a therapeutic target for alleviating demyelination in a model of retinal I/R caused by rapid changes in intraocular pressure. Targeting the myelin sheath via S1PR2 protected RGCs and visual function. In our experiment, we observed early damage to the myelin sheath and persistent demyelination accompanied by S1PR2 overexpression after injury. Blockade of S1PR2 by the pharmacological inhibitor JTE-013 reversed demyelination, increased the number of oligodendrocytes, and inhibited microglial activation, contributing to the survival of RGCs and alleviating axonal damage. Finally, we evaluated the postoperative recovery of visual function by recording visual evoked potentials and assessing the quantitative optomotor response. In conclusion, this study is the first to reveal that alleviating demyelination by inhibiting S1PR2 overexpression may be a therapeutic strategy for retinal I/R-related visual impairment.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Ramya V, Sarkar N, Bhagat S, Pradhan RK, Varghese AM, Nalini A, Sathyaprabha TN, Raju TR, Vijayalakshmi K. Oligodendroglia Confer Neuroprotection to NSC-34 Motor Neuronal Cells Against the Toxic Insults of Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2023; 60:4855-4871. [PMID: 37184766 DOI: 10.1007/s12035-023-03375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder with multifactorial pathomechanisms affecting not only motor neurons but also glia. Both astrocytes and microglia get activated and contribute significantly to neurodegeneration. The role of oligodendroglia in such a situation remains obscure, especially in the sporadic form of ALS (SALS), which contributes to 90% of cases. Here, we have investigated the role of oligodendroglia in SALS pathophysiology using a human oligodendroglial cell line, MO3.13, by exposing the cells to cerebrospinal fluid from SALS patients (ALS-CSF; 10% v/v for 48 h). ALS-CSF significantly reduced the viability of MO3.13 cells and down-regulated the expression of oligodendroglia-specific proteins, namely, CNPase and Olig2. Furthermore, to investigate the effect of the observed oligodendroglial changes on motor neurons, NSC-34 motor neuronal cells were co-cultured/supplemented with conditioned/spent medium of MO3.13 cells upon exposure to ALS-CSF. Live cell imaging experiments revealed protection to NSC-34 cells against ALS-CSF toxicity upon co-culture with MO3.13 cells. This was evidenced by the absence of neuronal cytoplasmic vacuolation and beading of neurites, which instead resulted in better neuronal differentiation. Enhanced lactate levels and increased expression of its transporter, MCT-1, with sustained expression of trophic factors, namely, GDNF and BDNF, by MO3.13 cells hint towards metabolic and trophic support provided by the surviving oligodendroglia. Similar metabolic changes were seen in the lumbar spinal cord oligodendroglia of rat neonates intrathecally injected with ALS-CSF. The findings indicate that oligodendroglia are indeed rescuer to the degenerating motor neurons when the astrocytes and microglia turn topsy-turvy.
Collapse
Affiliation(s)
- V Ramya
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Nisha Sarkar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Savita Bhagat
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Raj Kumar Pradhan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Anu Mary Varghese
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
20
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
21
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
22
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
23
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
24
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
26
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Toledano-Díaz A, Álvarez MI, Toledano A. The relationships between neuroglial and neuronal changes in Alzheimer's disease, and the related controversies II: gliotherapies and multimodal therapy. J Cent Nerv Syst Dis 2022; 14:11795735221123896. [PMID: 36407561 PMCID: PMC9666878 DOI: 10.1177/11795735221123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/05/2022] [Indexed: 08/30/2023] Open
Abstract
Since the original description of Alzheimer´s disease (AD), research into this condition has mainly focused on assessing the alterations to neurons associated with dementia, and those to the circuits in which they are involved. In most of the studies on human brains and in many models of AD, the glial cells accompanying these neurons undergo concomitant alterations that aggravate the course of neurodegeneration. As a result, these changes to neuroglial cells are now included in all the "pathogenic cascades" described in AD. Accordingly, astrogliosis and microgliosis, the main components of neuroinflammation, have been integrated into all the pathogenic theories of this disease, as discussed in this part of the two-part monograph that follows an accompanying article on gliopathogenesis and glioprotection. This initial reflection verified the implication of alterations to the neuroglia in AD, suggesting that these cells may also represent therapeutic targets to prevent neurodegeneration. In this second part of the monograph, we will analyze the possibilities of acting on glial cells to prevent or treat the neurodegeneration that is the hallmark of AD and other pathologies. Evidence of the potential of different pharmacological, non-pharmacological, cell and gene therapies (widely treated) to prevent or treat this disease is now forthcoming, in most cases as adjuncts to other therapies. A comprehensive AD multimodal therapy is proposed in which neuronal and neuroglial pharmacological treatments are jointly considered, as well as the use of new cell and gene therapies and non-pharmacological therapies that tend to slow down the progress of dementia.
Collapse
|
28
|
Drinkwater E, Davies C, Spires-Jones TL. Potential neurobiological links between social isolation and Alzheimer's disease risk. Eur J Neurosci 2022; 56:5397-5412. [PMID: 34184343 DOI: 10.1111/ejn.15373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
It is estimated that 40% of dementia cases could be prevented by modification of lifestyle factors that associate with disease risk. One of these potentially modifiable lifestyle factors is social isolation. In this review, we discuss what is known about associations between social isolation and Alzheimer's disease, the most common cause of dementia. This is particularly relevant in the time of the COVID-19 pandemic when social isolation has been enforced with potential emerging negative impacts on cognition. While there are neurobiological mechanisms emerging that may account for the observed epidemiological associations between social isolation and Alzheimer's disease, more fundamental research is needed to fully understand the brain changes induced by isolation that may make people vulnerable to disease.
Collapse
Affiliation(s)
| | - Caitlin Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Translational Neuroscience PhD Programme, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Sun Y, Tong H, Yang T, Liu L, Li XJ, Li S. Insights into White Matter Defect in Huntington's Disease. Cells 2022; 11:3381. [PMID: 36359783 PMCID: PMC9656068 DOI: 10.3390/cells11213381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 08/05/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited progressive neurodegenerative disorder. It is caused by a CAG repeat expansion in the Huntingtin gene that is translated to an expanded polyglutamine (PolyQ) repeat in huntingtin protein. HD is characterized by mood swings, involuntary movement, and cognitive decline in the late disease stage. HD patients often die 15-20 years after disease onset. Currently, there is no cure for HD. Due to the striking neuronal loss in HD, most studies focused on the investigation of the predominantly neuronal degeneration in specific brain regions. However, the pathology of the white matter area in the brains of HD patients was also reported by clinical imaging studies, which showed white matter abnormalities even before the clinical onset of HD. Since oligodendrocytes form myelin sheaths around the axons in the brain, white matter lesions are likely attributed to alterations in myelin and oligodendrocyte-associated changes in HD. In this review, we summarized the evidence for white matter, myelin, and oligodendrocytes alterations that were previously observed in HD patients and animal models. We also discussed potential mechanisms for white matter changes and possible treatment to prevent glial dysfunction in HD.
Collapse
|
30
|
Wang Z, Zhang Y, Feng W, Pang Y, Chen S, Ding S, Chen Y, Sheng C, Marshall C, Shi J, Xiao M. Miconazole Promotes Cooperative Ability of a Mouse Model of Alzheimer Disease. Int J Neuropsychopharmacol 2022; 25:951-967. [PMID: 36112386 PMCID: PMC9670758 DOI: 10.1093/ijnp/pyac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cooperative defect is 1 of the earliest manifestations of disease patients with Alzheimer disease (AD) exhibit, but the underlying mechanism remains unclear. METHODS We evaluated the cooperative function of APP/PS1 transgenic AD model mice at ages 2, 5, and 8 months by using a cooperative drinking task. We examined neuropathologic changes in the medial prefrontal cortex (mPFC). Another experiment was designed to observe whether miconazole, which has a repairing effect on myelin sheath, could promote the cooperative ability of APP/PS1 mice in the early AD-like stage. We also investigated the protective effects of miconazole on cultured mouse cortical oligodendrocytes exposed to human amyloid β peptide (Aβ1-42). RESULTS We observed an age-dependent impairment of cooperative water drinking behavior in APP/PS1 mice. The AD mice with cooperative dysfunction showed decreases in myelin sheath thickness, oligodendrocyte nuclear heterochromatin percentage, and myelin basic protein expression levels in the mPFC. The cooperative ability was significantly improved in APP/PS1 mice treated with miconazole. Miconazole treatment increased oligodendrocyte maturation and myelin sheath thickness without reducing Aβ plaque deposition, reactive gliosis, and inflammatory factor levels in the mPFC. Miconazole also protected cultured oligodendrocytes from the toxicity of Aβ1-42. CONCLUSIONS These results demonstrate that mPFC hypomyelination is involved in the cooperative deficits of APP/PS1 mice. Improving myelination through miconazole therapy may offer a potential therapeutic approach for early intervention in AD.
Collapse
Affiliation(s)
| | | | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingting Pang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Sijia Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shixin Ding
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China,Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengyu Sheng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, USA
| | - Jingping Shi
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China,Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Correspondence: Ming Xiao, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, No. 101 Longmian Ave, Nanjing 211166, China ()
| |
Collapse
|
31
|
Luo JJ, Wallace W, Kusiak JW. A tough trek in the development of an anti-amyloid therapy for Alzheimer's disease: Do we see hope in the distance? J Neurol Sci 2022; 438:120294. [DOI: 10.1016/j.jns.2022.120294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022]
|
32
|
Multiple Roles of Paeoniflorin in Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2464163. [PMID: 35449815 PMCID: PMC9017479 DOI: 10.1155/2022/2464163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a geriatric disease with the morbidity and mortality continuing to grow, partly due to the aging of the world population. As one of the most common types of primary neurodegenerative dementia, it is mainly due to environmental, epigenetic, immunological, and genetic factors. Paeoniflorin (PF), the main component of paeony extract, plays a more and more important role in the prevention and treatment of AD, including regulating protein, anti-inflammation, antioxidation, and antiapoptosis, protecting glial cells, regulating neurotransmitters and related enzymes and receptors, and inhibiting or activating related signal pathways. This article summarizes the latest researches on the multiple effects and the mechanisms of PF in the treatment to cure AD, providing new insights and research basis for further clinical application of traditional Chinese medicine (TCM) in the treatment of AD.
Collapse
|
33
|
Caamaño-Moreno M, Gargini R. Tauopathies: the role of tau in cellular crosstalk and synaptic dysfunctions. Neuroscience 2022; 518:38-53. [PMID: 35272005 DOI: 10.1016/j.neuroscience.2022.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Tauopathies are a group of neurodegenerative diseases among which are many of the most prevalent and with higher incidence worldwide, such as Alzheimer's disease (AD). According to the World Health Organization, this set of diseases will continue to increase their incidence, affecting millions of people by 2050. All of them are characterized by aberrant aggregation of tau protein in neurons and glia that are distributed in different brain regions according to their susceptibility. Numerous studies reveal that synaptic regulation not only has a neuronal component, but glia plays a fundamental role in it beyond its neuroinflammatory role. Despite this, it has not been emphasized how the glial inclusions of tau in this cell type directly affect this and many other essential functions, whose alterations have been related to the development of tauopathies. In this way, this review shows how tau inclusions in glia influence the synaptic dysfunctions that result in the cognitive symptoms characteristic of tauopathies. Thus, the mechanisms affected by inclusions in neurons, astrocytes, and oligodendrocytes are unraveled.
Collapse
Affiliation(s)
- Marta Caamaño-Moreno
- Instituto de investigaciones Biomédicas I+12, Hospital 12 de Octubre, Madrid, Spain
| | - Ricardo Gargini
- Instituto de investigaciones Biomédicas I+12, Hospital 12 de Octubre, Madrid, Spain; Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, 28220 Madrid, Spain.
| |
Collapse
|
34
|
Nicholson S, Baccarelli A, Prada D. Role of brain extracellular vesicles in air pollution-related cognitive impairment and neurodegeneration. ENVIRONMENTAL RESEARCH 2022; 204:112316. [PMID: 34728237 PMCID: PMC8671239 DOI: 10.1016/j.envres.2021.112316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
A relationship between environmental exposure to air pollution and cognitive impairment and neurological disorders has been described. Previous literature has focused on the direct effects of the air pollution components on neuronal and glial cells, as well as on involvement of oxidative stress and neuroinflammation on microglia and astrocyte reactivity. However, other mechanisms involved in the air pollution effects on central nervous system (CNS) toxicity can be playing critical roles. Increasingly, extracellular vesicle's (EVs) mediated intercellular communication is being recognized as impacting the development of cognitive impairment and neurological disorders like Alzheimer's disease and others. Here we describe the available evidence about toxic air pollutants and its components on brain, an involvement of brain cells specific and EVs types (based in the origin or in the size of EVs) in the initiation, exacerbation, and propagation of the neurotoxic effects (inflammation, neurodegeneration, and accumulation of neurotoxic proteins) induced by air pollution in the CNS. Additionally, we discuss the identification and isolation of neural-derived EVs from human plasma, the most common markers for neural-derived EVs, and their potential for use as diagnostic or therapeutic molecules for air pollution-related cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Stacia Nicholson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Instituto Nacional de Cancerología, Mexico City, 14080, Mexico.
| |
Collapse
|
35
|
Zang C, Liu H, Ju C, Yuan F, Ning J, Shang M, Bao X, Yu Y, Yao X, Zhang D. Gardenia jasminoides J. Ellis extract alleviated white matter damage through promoting the differentiation of oligodendrocyte precursor cells via suppressing neuroinflammation. Food Funct 2022; 13:2131-2141. [PMID: 35112688 DOI: 10.1039/d1fo02127c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing evidence has highlighted the role of white matter damage in the pathology of Alzheimer's disease (AD). Previous research has shown that a mixture of crocin analogues (GJ-4), Gardenia jasminoides J. Ellis extract, improved cognition in several AD mouse models, but the mechanism remains unclear. The aim of the present study was to investigate the effects and underlying mechanisms of GJ-4 on white matter damage. Proteomic analysis and western blotting results suggested that the level of myelin-related proteins, including myelin basic protein (MBP), myelin associated glycoprotein (MAG) and myelin associated oligodendrocyte basic protein (MOBP), was significantly decreased in the brain of PrP-hAβPPswe/PS1ΔE9 (APP/PS1) transgenic mice, and GJ-4 treatment increased the expressions of these proteins. This result revealed that GJ-4 could ameliorate myelin injury, suggesting that this might be a possible mechanism of GJ-4 on cognition. To validate the effects of GJ-4 on myelin, a metabolite of GJ-4, crocetin, which can pass through the blood-brain barrier, was applied in in vitro experiments. A mechanistic study revealed that crocetin significantly promoted the differentiation of primary cultured oligodendrocyte precursor cells to oligodendrocytes through up-regulation of nuclear Ki67 and transcription factor 2 (Olig2). Oligodendrocytes, the myelin-forming cells, have been reported to be lifelong partners of neurons. Therefore, to investigate the effects of crocetin on myelin and neurons, lysophosphatidylcholine (LPC)-treated primary mixed midbrain neuronal/glial culture was used. Immunofluorescence results indicated that crocetin treatment protected neurons and suppressed microglial activation against LPC-induced injury. To further discern the effects of GJ-4 on white matter injury and neuroinflammation, an LPC-induced mouse model was developed. GJ-4 administration increased oligodendrocyte proliferation, differentiation, and myelin repair. The mechanistic study indicated that GJ-4 improved white matter injury through the regulation of neuroinflammatory dysfunction. These data indicated that GJ-4 effectively repaired white matter damage in the LPC-treated mice. Thus, the present study supported GJ-4 as a potential therapeutic agent for AD and white matter related diseases.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Cheng Ju
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Yang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| |
Collapse
|
36
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
37
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
38
|
Grigoletti-Lima GB, Lopes MG, Franco ATB, Damico AM, Boer PA, Rocha Gontijo JA. Severe Gestational Low-Protein Intake Impacts Hippocampal Cellularity, Tau, and Amyloid-β Levels, and Memory Performance in Male Adult Offspring: An Alzheimer-Simile Disease Model? J Alzheimers Dis Rep 2022; 6:17-30. [PMID: 35243209 PMCID: PMC8842744 DOI: 10.3233/adr-210297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Maternal undernutrition has been associated with psychiatric and neurological disorders characterized by learning and memory impairment. OBJECTIVE Considering the lack of evidence, we aimed to analyze the effects of gestational protein restriction on learning and memory function associated with hippocampal cell numbers and neurodegenerative protein content later in life. METHODS Experiments were conducted in gestational low- (LP, 6% casein) or regular-protein (NP, 17% casein) diet intake offspring. Behavioral tests, isolated hippocampal isotropic fractionator cell studies, immunoblotting, and survival lifetime were observed. RESULTS The birthweight of LP males is significantly reduced relative to NP male progeny, and hippocampal mass increased in 88-week-old LP compared to age-matched NP offspring. The results showed an increased proximity measure in 87-week-old LP compared to NP offspring. Also, LP rats exhibited anxiety-like behaviors compared to NP rats at 48 and 86-wk of life. The estimated neuron number was unaltered in LP rats; however, non-neuron cell numbers increased compared to NP progeny. Here, we showed unprecedented hippocampal deposition of brain-derived neurotrophic factor, amyloid-β peptide (Aβ), and tau protein in 88-week-old LP relative to age-matched NP offspring. CONCLUSION To date, no predicted studies showed changes in hippocampal morphological structure in maternal protein-restricted elderly offspring. The current data suggest that gestational protein restriction may accelerate hippocampal function loss, impacting learning/memory performance, and supposedly developing diseases similar to Alzheimer's disease (AD) in elderly offspring. Thus, we propose that maternal protein restriction could be an elegant and novel method for constructing an AD-like model in adult male offspring.
Collapse
Affiliation(s)
- Gabriel Boer Grigoletti-Lima
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Marcelo Gustavo Lopes
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Ana Tereza Barufi Franco
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Aparecida Marcela Damico
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - Patrìcia Aline Boer
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte MetabolismLaboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at StateUniversity of Campinas, Campinas, SP, Brazil
| |
Collapse
|
39
|
From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav Immun 2022; 99:132-146. [PMID: 34601012 DOI: 10.1016/j.bbi.2021.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids, mainly ursodeoxycholic acid (UDCA) and its conjugated species glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) have long been known to have anti-apoptotic, anti-oxidant and anti-inflammatory properties. Due to their beneficial actions, recent studies have started to investigate the effect of UDCA, GUDCA, TUDCA on the same mechanisms in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders, where increased cell apoptosis, oxidative stress and inflammation in the brain are often observed. A total of thirty-five pre-clinical studies were identified through PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the UDCA, GUDCA and TUDCA in the regulation of brain apoptosis, oxidative stress and inflammation, in pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Findings show that UDCA reduces apoptosis, reactive oxygen species (ROS) and tumour necrosis factor (TNF)-α production in neurodegenerative models, and reduces nitric oxide (NO) and interleukin (IL)-1β production in neuropsychiatric models; GUDCA decreases lactate dehydrogenase, TNF-α and IL-1β production in neurological models, and also reduces cytochrome c peroxidase production in neurodegenerative models; TUDCA decreases apoptosis in neurological models, reduces ROS and IL-1β production in neurodegenerative models, and decreases apoptosis and TNF-α production, and increases glutathione production in neuropsychiatric models. In addition, findings suggest that all the three bile acids would be equally beneficial in models of Huntington's disease, whereas UDCA and TUDCA would be more beneficial in models of Parkinson's disease and Alzheimer's disease, while GUDCA in models of bilirubin encephalopathy and TUDCA in models of depression. Overall, this review confirms the therapeutic potential of UDCA, GUDCA and TUDCA in neurological, neurodegenerative and neuropsychiatric disorders, proposing bile acids as potential alternative therapeutic approaches for patients suffering from these disorders.
Collapse
|
40
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
41
|
Huang F. Ursodeoxycholic acid as a potential alternative therapeutic approach for neurodegenerative disorders: Effects on cell apoptosis, oxidative stress and inflammation in the brain. Brain Behav Immun Health 2021; 18:100348. [PMID: 34632427 PMCID: PMC7611783 DOI: 10.1016/j.bbih.2021.100348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is a bile acid component with anti-apoptotic, anti-oxidant and anti-inflammatory properties. It has been used in clinical medicine for liver diseases for centuries. In neurodegenerative diseases, increased cell apoptosis, oxidative stress and inflammation are frequently observed as well. Due to those beneficial effects of UDCA, recent studies have started to investigate the effects of UDCA in pre-clinical models of neurodegeneration. On this account, I review the data reported so far to investigate the role of UDCA in regulating apoptosis, oxidative stress and inflammation in pre-clinical models of neurodegeneration, as well as in homeostatic state. Evidence have shown that UDCA can reduce apoptosis, inhibit reactive oxygen species and tumor necrosis factor - α production in neurodegenerative models. In addition, UDCA is able to induce apoptosis of brain blastoma cells in homeostatic conditions. Overall, this review suggests the therapeutic potential of UDCA in neurodegenerative disorders, proposing UDCA as a potential alternative therapeutic approach for patients suffering from these diseases.
Collapse
Affiliation(s)
- Fei Huang
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, PR China
| |
Collapse
|
42
|
Xue J, Zhu Y, Liu Z, Lin J, Li Y, Li Y, Zhuo Y. Demyelination of the Optic Nerve: An Underlying Factor in Glaucoma? Front Aging Neurosci 2021; 13:701322. [PMID: 34795572 PMCID: PMC8593209 DOI: 10.3389/fnagi.2021.701322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by typical neuronal degeneration and axonal loss in the central nervous system (CNS). Demyelination occurs when myelin or oligodendrocytes experience damage. Pathological changes in demyelination contribute to neurodegenerative diseases and worsen clinical symptoms during disease progression. Glaucoma is a neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not yet well understood, we hypothesized that demyelination could play a significant role in glaucoma. Therefore, this study started with the morphological and functional manifestations of demyelination in the CNS. Then, we discussed the main mechanisms of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-inflammatory responses. Finally, we summarized the existing research on the relationship between optic nerve demyelination and glaucoma, aiming to inspire effective treatment plans for glaucoma in the future.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangjiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Wang Z, Zhang Q, Lin JR, Jabalameli MR, Mitra J, Nguyen N, Zhang ZD. Deep post-GWAS analysis identifies potential risk genes and risk variants for Alzheimer's disease, providing new insights into its disease mechanisms. Sci Rep 2021; 11:20511. [PMID: 34654853 PMCID: PMC8519945 DOI: 10.1038/s41598-021-99352-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a genetically complex, multifactorial neurodegenerative disease. It affects more than 45 million people worldwide and currently remains untreatable. Although genome-wide association studies (GWAS) have identified many AD-associated common variants, only about 25 genes are currently known to affect the risk of developing AD, despite its highly polygenic nature. Moreover, the risk variants underlying GWAS AD-association signals remain unknown. Here, we describe a deep post-GWAS analysis of AD-associated variants, using an integrated computational framework for predicting both disease genes and their risk variants. We identified 342 putative AD risk genes in 203 risk regions spanning 502 AD-associated common variants. 246 AD risk genes have not been identified as AD risk genes by previous GWAS collected in GWAS catalogs, and 115 of 342 AD risk genes are outside the risk regions, likely under the regulation of transcriptional regulatory elements contained therein. Even more significantly, for 109 AD risk genes, we predicted 150 risk variants, of both coding and regulatory (in promoters or enhancers) types, and 85 (57%) of them are supported by functional annotation. In-depth functional analyses showed that AD risk genes were overrepresented in AD-related pathways or GO terms-e.g., the complement and coagulation cascade and phosphorylation and activation of immune response-and their expression was relatively enriched in microglia, endothelia, and pericytes of the human brain. We found nine AD risk genes-e.g., IL1RAP, PMAIP1, LAMTOR4-as predictors for the prognosis of AD survival and genes such as ARL6IP5 with altered network connectivity between AD patients and normal individuals involved in AD progression. Our findings open new strategies for developing therapeutics targeting AD risk genes or risk variants to influence AD pathogenesis.
Collapse
Affiliation(s)
- Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
44
|
Jian C, Wei L, Mo R, Li R, Liang L, Chen L, Zou C, Meng Y, Liu Y, Zou D. Microglia Mediate the Occurrence and Development of Alzheimer's Disease Through Ligand-Receptor Axis Communication. Front Aging Neurosci 2021; 13:731180. [PMID: 34616287 PMCID: PMC8488208 DOI: 10.3389/fnagi.2021.731180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Its onset is insidious and its progression is slow, making diagnosis difficult. In addition, its underlying molecular and cellular mechanisms remain unclear. In this study, clustering analysis was performed on single-cell RNA sequencing (scRNA-seq) data from the prefrontal cortex of 48 AD patients. Each sample module was identified to be a specific AD cell type, eight main brain cell types were identified, and the dysfunctional evolution of each cell type was further explored by pseudo-time analysis. Correlation analysis was then used to explore the relationship between AD cell types and pathological characteristics. In particular, intercellular communication between neurons and glial cells in AD patients was investigated by cell communication analysis. In patients, neuronal cells and glial cells significantly correlated with pathological features, and glial cells appear to play a key role in the development of AD through ligand-receptor axis communication. Marker genes involved in communication between these two cell types were identified using five types of modeling: logistic regression, multivariate logistic regression, least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM). LASSO modeling identified CXCR4, EGFR, MAP4K4, and IGF1R as key genes in this communication. Our results support the idea that microglia play a role in the occurrence and development of AD through ligand-receptor axis communication. In particular, our analyses identify CXCR4, EGFR, MAP4K4, and IGF1R as potential biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruikang Mo
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongjie Li
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Youshi Meng
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Liu
- Department of General Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Geriatrics, The First People’s Hospital of Nanning, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Gene expression correlates of advanced epigenetic age and psychopathology in postmortem cortical tissue. Neurobiol Stress 2021; 15:100371. [PMID: 34458511 PMCID: PMC8377489 DOI: 10.1016/j.ynstr.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined associations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psychopathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed populations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evaluating ways to prevent or delay cellular aging and increase resilience to diseases of aging.
Collapse
|
46
|
Blood-Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery? Diagnostics (Basel) 2021; 11:diagnostics11091525. [PMID: 34573867 PMCID: PMC8464786 DOI: 10.3390/diagnostics11091525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a central feature in the development of Alzheimer’s disease (AD). The resident innate immune cells of the brain are the principal players in neuroinflammation, and their activation leads to a defensive response aimed at promoting β-amyloid (Aβ) clearance. However, it is now widely accepted that the peripheral immune system—by virtue of a dysfunctional blood–brain barrier (BBB)—is involved in the pathogenesis and progression of AD; microglial and astrocytic activation leads to the release of chemokines able to recruit peripheral immune cells into the central nervous system (CNS); at the same time, cytokines released by peripheral cells are able to cross the BBB and act upon glial cells, modifying their phenotype. To successfully fight this neurodegenerative disorder, accurate and sensitive biomarkers are required to be used for implementing an early diagnosis, monitoring the disease progression and treatment effectiveness. Interestingly, as a result of the bidirectional communication between the brain and the periphery, the blood compartment ends up reflecting several pathological changes occurring in the AD brain and can represent an accessible source for such biomarkers. In this review, we provide an overview on some of the most promising peripheral biomarkers of neuroinflammation, discussing their pathogenic role in AD.
Collapse
|
47
|
Stricker PEF, de Souza Dobuchak D, Irioda AC, Mogharbel BF, Franco CRC, de Souza Almeida Leite JR, de Araújo AR, Borges FA, Herculano RD, de Oliveira Graeff CF, Chachques JC, de Carvalho KAT. Human Mesenchymal Stem Cells Seeded on the Natural Membrane to Neurospheres for Cholinergic-like Neurons. MEMBRANES 2021; 11:membranes11080598. [PMID: 34436361 PMCID: PMC8400270 DOI: 10.3390/membranes11080598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to differentiate human mesenchymal stem cells (hMSCs) from the human umbilical cord in cholinergic-like neurons using a natural membrane. The isolation of hMSCs from Wharton’s jelly (WJ) was carried out using “explant” and mononuclear cells by the density gradient from umbilical blood and characterized by flow cytometry. hMSCs were seeded in a natural functional biopolymer membrane to produce neurospheres. RT-PCR was performed on hMSCs and neurospheres derived from the umbilical cord. Neural precursor cells were subjected to a standard cholinergic-like neuron differentiation protocol. Dissociated neurospheres, neural precursor cells, and cholinergic-like neurons were characterized by immunocytochemistry. hMSCs were CD73+, CD90+, CD105+, CD34- and CD45- and demonstrated the trilineage differentiation. Neurospheres and their isolated cells were nestin-positive and expressed NESTIN, MAP2, ßIII-TUBULIN, GFAP genes. Neural precursor cells that were differentiated in cholinergic-like neurons expressed ßIII-TUBULIN protein and choline acetyltransferase enzyme. hMSCs seeded on the natural membrane can differentiate into neurospheres, obtaining neural precursor cells without growth factors or gene transfection before cholinergic phenotype differentiation.
Collapse
Affiliation(s)
- Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | - Daiany de Souza Dobuchak
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | | | | | - Alyne Rodrigues de Araújo
- Biodiversity and Biotechnology Research, Parnaíba Delta Federal University, Parnaíba 64202-020, Brazil;
| | - Felipe Azevedo Borges
- Faculty of Pharmaceutics Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (F.A.B.); (R.D.H.)
| | | | | | - Juan Carlos Chachques
- Laboratory Biosurgical Research, Cardiovascular Division, Pompidou Hospital, University of Paris, 75015 Paris, France;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
- Correspondence: ; Tel.: +55-41-3310-1035
| |
Collapse
|
48
|
Seiwa C, Sugiyama I, Sugawa M, Murase H, Kudoh C, Asou H. The Absence of Myelin Basic Protein Reduces Non-Amyloidogenic Processing of Amyloid Precursor Protein. Curr Alzheimer Res 2021; 18:326-334. [PMID: 34218780 DOI: 10.2174/1567205018666210701162851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 01/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The accumulation of amyloid β-protein (Aβ) in the brain is a pathological feature of Alzheimer's disease (AD). Aβ peptides originate from amyloid precursor protein (APP). APP can be proteolytically cleaved through amyloidogenic or non-amyloidogenic pathways. The molecular effects on APP metabolism / processing may be influenced by myelin and the breakdown of myelin basic protein (MBP) in AD patients and mouse models of AD pathology. METHODS We directly tested whether MBP can alter influence APP processing in MBP-/- mice, known as Shiverer (shi/shi) mice, in which no functional MBP is produced due to gene breakage from the middle of MBP exon II. RESULTS A significant reduction of the cerebral sAPPα level in Shiverer (shi/shi) mice was found, although the levels of both total APP and sAPPβ remain unchanged. The reduction of sAPPα was considered to be due to the changes in the expression levels of a disintegrin and metalloproteinase-9 (ADAM9) catalysis and non-amyloid genic processing of APP in the absence of MBP because it binds to ADAM9. MBP -/- mice exhibited increased Aβ oligomer production. CONCLUSION Together, these findings suggest that in the absence of MBP, there is a marked reduction of non-amyloidogenic APP processing to sAPPα, and targeting myelin of oligodendrocytes may be a novel therapy for the prevention and treatment of AD.
Collapse
Affiliation(s)
| | - Ichiro Sugiyama
- Department of Neurosurgy,Keio University School of Medicine, Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan
| | | | - Hiroaki Murase
- Glovia Myelin Research Institute, 75-1, Onocho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Chiaki Kudoh
- KUDOH Clinic for Neurosurgery and Neurology, 1-23-10, Omori-kita, Otaku, Tokyo 143-0016, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, 75-1, Onocho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
49
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
50
|
Maurya SK, Bhattacharya N, Mishra S, Bhattacharya A, Banerjee P, Senapati S, Mishra R. Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration. Front Pharmacol 2021; 12:654489. [PMID: 33927630 PMCID: PMC8076853 DOI: 10.3389/fphar.2021.654489] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer's, Parkinson's, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-α, IFN-γ, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer's, Parkinson's and Multiple Sclerosis for microglia-mediated therapeutics.
Collapse
Affiliation(s)
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Suman Mishra
- Department of Molecular Medicine and Biotechnology, SGPGI, Lucknow, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|