1
|
Blachut D, Przywara-Chowaniec B, Tomasik A, Kukulski T, Morawiec B. Update of Potential Biomarkers in Risk Prediction and Monitoring of Atherosclerosis in Systemic Lupus Erythematosus to Prevent Cardiovascular Disease. Biomedicines 2023; 11:2814. [PMID: 37893187 PMCID: PMC10604001 DOI: 10.3390/biomedicines11102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic lupus erythematosus is a chronic connective tissue disease associated with an increased risk of premature atherosclerosis. It is estimated that approximately 10% of SLE patients develop significant atherosclerosis each year, which is responsible for premature cardiovascular disease that is largely asymptomatic. This review summarizes the most recent reports from the past few years on biomarkers of atherosclerosis in SLE, mainly focusing on immune markers. Persistent chronic inflammation of the vascular wall is an important cause of cardiovascular disease (CVD) events related to endothelial dysfunction, cell proliferation, impaired production and function of nitric oxide and microangiopathic changes. Studies on pathogenic immune mediators involved in atherosclerosis will be crucial research avenues for preventing CVD.
Collapse
Affiliation(s)
- Dominika Blachut
- 2nd Department of Cardiology, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | | | | | | | | |
Collapse
|
2
|
Alper P, Betschart C, André C, Boulay T, Cheng D, Deane J, Faller M, Feifel R, Glatthar R, Han D, Hemmig R, Jiang T, Knoepfel T, Maginnis J, Mutnick D, Pei W, Ruzzante G, Syka P, Zhang G, Zhang Y, Zink F, Zipfel G, Hawtin S, Junt T, Michellys PY. Discovery of the TLR7/8 Antagonist MHV370 for Treatment of Systemic Autoimmune Diseases. ACS Med Chem Lett 2023; 14:1054-1062. [PMID: 37583811 PMCID: PMC10424326 DOI: 10.1021/acsmedchemlett.3c00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
Toll-like receptor (TLR) 7 and TLR8 are endosomal sensors of the innate immune system that are activated by GU-rich single stranded RNA (ssRNA). Multiple genetic and functional lines of evidence link chronic activation of TLR7/8 to the pathogenesis of systemic autoimmune diseases (sAID) such as Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). This makes targeting TLR7/8-induced inflammation with small-molecule inhibitors an attractive approach for the treatment of patients suffering from systemic autoimmune diseases. Here, we describe how structure-based optimization of compound 2 resulted in the discovery of 34 (MHV370, (S)-N-(4-((5-(1,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-4-yl)-3-methyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridin-1-yl)methyl)bicyclo[2.2.2]octan-1-yl)morpholine-3-carboxamide). Its in vivo activity allows for further profiling toward clinical trials in patients with autoimmune disorders, and a Phase 2 proof of concept study of MHV370 has been initiated, testing its safety and efficacy in patients with Sjögren's syndrome and mixed connective tissue disease.
Collapse
Affiliation(s)
- Phil Alper
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Claudia Betschart
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Cédric André
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Thomas Boulay
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Dai Cheng
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jonathan Deane
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Michael Faller
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Roland Feifel
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Ralf Glatthar
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Dong Han
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Rene Hemmig
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Tao Jiang
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Thomas Knoepfel
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jillian Maginnis
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Daniel Mutnick
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Wei Pei
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Giulia Ruzzante
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Peter Syka
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Guobao Zhang
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Yi Zhang
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Florence Zink
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Géraldine Zipfel
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stuart Hawtin
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Tobias Junt
- Novartis
Institutes for Biomedical Research, Fabrikstrasse 2, Novartis Campus, CH-4056 Basel, Switzerland
| | - Pierre-Yves Michellys
- Novartis
Institutes for Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
3
|
Richter P, Cardoneanu A, Rezus C, Burlui AM, Rezus E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms232012604. [PMID: 36293458 PMCID: PMC9604037 DOI: 10.3390/ijms232012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of high mortality in patients with systemic lupus erythematosus (SLE). The Framingham risk score and other traditional risk factors do not fully reflect the CVD risk in SLE patients. Therefore, in order to stratify these high-risk patients, additional biomarkers for subclinical CVD are needed. The mechanisms of atherogenesis in SLE are still being investigated. During the past decades, many reports recognized that inflammation plays a crucial role in the development of atherosclerosis. The aim of this report is to present novel proinflammatory and pro-atherosclerotic risk factors that are closely related to SLE inflammation and which determine an increased risk for the occurrence of early cardiovascular events.
Collapse
Affiliation(s)
- Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- “Sfantul Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
4
|
Cole A, Thomas R, Goldman N, Howell K, Chakravarty K, Denton CP, Ong VH. Diffuse cutaneous systemic sclerosis following SARS-Co V-2 vaccination. J Autoimmun 2022; 128:102812. [PMID: 35247654 PMCID: PMC8888103 DOI: 10.1016/j.jaut.2022.102812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/05/2022]
Abstract
The largest world-wide vaccination rollout ever is currently underway to tackle the covid-19 pandemic. We report a case of diffuse cutaneous systemic sclerosis (SSc) in a 70-year-old male with rapidly progressive skin thickening which developed two weeks after receiving the first dose of the ChAdOx1 nCOV-19 vaccine. As the onset of SSc skin was in close temporal proximity to the administration of the first dose vaccine with no other triggers, we suspected a possible adverse reaction to the ChAdOx1 nCOV-19 vaccine. We hypothesise that the recombinant adenoviral vector encoding the spike protein antigen of SARS-CoV-2 triggered an unexpected immune activation resulting in an atypical presentation of late-onset SSc, within the well-recognised ANA positive, ENA negative subgroup of patients.We review the possible mechanisms underlying autoimmunity when provoked by vaccination and other published rheumatological phenomenon occurring shortly after COVID vaccination.
Collapse
Affiliation(s)
- Alice Cole
- UCL Centre for Rheumatology and Connective Tissue Diseases, London, UK
| | - Rhys Thomas
- Royal Free London NHS Foundation Trust, London, UK
| | - Nina Goldman
- UCL Centre for Rheumatology and Connective Tissue Diseases, London, UK
| | - Kevin Howell
- Royal Free London NHS Foundation Trust, London, UK
| | | | | | - Voon H Ong
- UCL Centre for Rheumatology and Connective Tissue Diseases, London, UK.
| |
Collapse
|
5
|
Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:173-184. [PMID: 36465073 PMCID: PMC9524788 DOI: 10.2478/rir-2021-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Abstract
Type I interferon (IFN-I) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and the closely associated monogenic autoinflammatory disorders termed the “interferonopathies.” Recently, the cytosolic DNA sensor cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have been identified as having important, if not central, roles in driving IFN-I expression in response to self-DNA. This review highlights the many ways in which this pathway is regulated in order to prevent self-DNA recognition and underlines the importance of maintaining tight control in order to prevent autoimmune disease. We will discuss the murine and human studies that have implicated the cGAS-STING pathway as being an important contributor to breakdown in tolerance in SLE and highlight the potential therapeutic application of this knowledge for the treatment of SLE.
Collapse
|
6
|
Bertelli R, Schena F, Antonini F, Reverberi D, Signa S, Pedemonte N, Consolaro A, Gattorno M, Negrini S, Pupo F, Volpi S, Ghiggeri GM. Neutrophil Extracellular Traps in Systemic Lupus Erythematosus Stimulate IgG2 Production From B Lymphocytes. Front Med (Lausanne) 2021; 8:635436. [PMID: 33912575 PMCID: PMC8072216 DOI: 10.3389/fmed.2021.635436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Circulating autoantibodies of IgG2 isotype predominate in Systemic Lupus Erythematosus (SLE) and concur to the development of the renal lesions characteristic of Lupus Nephritis (LN). Anti-dsDNA and anti-histones IgG2, together with anti-podocyte proteins (i.e., α-enolase) are the major autoantibodies in serum and renal glomeruli of LN patients. The mechanisms underlying autoantibody formation and isotype switching in SLE and LN are unknown. A major issue is how DNA/histones are externalized from cell nucleus, driving the autoimmune response. Neutrophil Extracellular Traps (NETs) have been recently identified as crucial players in this context, representing the main source of DNA and nucleosome proteins. A second key point is what regulates IgG2 isotype switching: in mouse models, T-bet transcription factor has been described as essential for IgG2a class switch. We hypothesized that, in SLE, NET formation is the key mechanism responsible for externalization of autoantigens (i.e., dsDNA, histones 2,3, and α-enolase) and that T-bet is upregulated by NETs, driving, in this way, immunoglobulin class switch recombination (CSR), with production of IgG2 autoantibodies. The data here presented show that NETs, purified from SLE patients, stimulate ex vivo IgG2 isotype class switch possibly through the induction of T-bet. Of note, we observed a prominent effect of NETs on the release of soluble IgG2 in SLE patients', but not in healthy donors' B cells. Our results add important knowledge on the mechanisms of IgG2 class switch in SLE and contribute to further elucidate the role of NETs in LN pathogenesis.
Collapse
Affiliation(s)
- Roberta Bertelli
- Laboratory of Molecular Nephrology, Division of Nephrology and Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Laboratory of Human Genetics, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Schena
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Antonini
- Core Facilities Flow Cytometry and Cell Imaging Lab, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Sara Signa
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics and Maternal and Children's Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicoletta Pedemonte
- Complex Operative Unit (UOC) of Medical Genetics, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Alessandro Consolaro
- Pediatric Rheumatology Clinic, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Francesca Pupo
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics and Maternal and Children's Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Division of Nephrology and Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Division of Nephrology, Dialysis, Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
7
|
Vlach J, Bender AT, Przetak M, Pereira A, Deshpande A, Johnson TL, Reissig S, Tzvetkov E, Musil D, Morse NT, Haselmayer P, Zimmerli SC, Okitsu SL, Walsky RL, Sherer B. Discovery of M5049: A Novel Selective Toll-Like Receptor 7/8 Inhibitor for Treatment of Autoimmunity. J Pharmacol Exp Ther 2020; 376:397-409. [PMID: 33328334 DOI: 10.1124/jpet.120.000275] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor (TLR) 7 and TLR8 are transmembrane receptors that recognize single-stranded RNA. Activation of these receptors results in immune cell stimulation and inflammatory cytokine production, which is normally a protective host response. However, aberrant activation of TLR7/8 is potentially pathogenic and linked to progression of certain autoimmune diseases such as lupus. Thus, we hypothesize that an inhibitor that blocks TLR7/8 would be an effective therapeutic treatment. Prior efforts to develop inhibitors of TLR7/8 have been largely unsuccessful as a result of the challenge of producing a small-molecule inhibitor for these difficult targets. Here, we report the characterization of M5049 and compound 2, molecules which were discovered in a medicinal chemistry campaign to produce dual TLR7/8 inhibitors with drug-like properties. Both compounds showed potent and selective activity in a range of cellular assays for inhibition of TLR7/8 and block synthetic ligands and natural endogenous RNA ligands such as microRNA and Alu RNA. M5049 was found to be potent in vivo as TLR7/8 inhibition efficaciously treated disease in several murine lupus models and, interestingly, was efficacious in a disease context in which TLR7/8 activity has not previously been considered a primary disease driver. Furthermore, M5049 had greater potency in disease models than expected based on its in vitro potency and pharmacokinetic/pharmacodynamic properties. Because of its preferential accumulation in tissues, and ability to block multiple TLR7/8 RNA ligands, M5049 may be efficacious in treating autoimmunity and has the potential to provide benefit to a variety of patients with varying disease pathogenesis. SIGNIFICANCE STATEMENT: This study reports discovery of a novel toll-like receptor (TLR) 7 and TLR8 inhibitor (M5049); characterizes its binding mode, potency/selectivity, and pharmacokinetic and pharmacodynamic properties; and demonstrates its potential for treating autoimmune diseases in two mouse lupus models. TLR7/8 inhibition is unique in that it may block both innate and adaptive autoimmunity; thus, this study suggests that M5049 has the potential to benefit patients with autoimmune diseases.
Collapse
Affiliation(s)
- Jaromir Vlach
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Andrew T Bender
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Melinda Przetak
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Albertina Pereira
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Aditee Deshpande
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Theresa L Johnson
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Sonja Reissig
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Evgeni Tzvetkov
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Djordje Musil
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Noune Tahmassian Morse
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Philipp Haselmayer
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Simone C Zimmerli
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Shinji L Okitsu
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Robert L Walsky
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Brian Sherer
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| |
Collapse
|
8
|
Bende RJ, Janssen J, Beentjes A, Wormhoudt TAM, Wagner K, Haacke EA, Kroese FGM, Guikema JEJ, van Noesel CJM. Salivary Gland Mucosa-Associated Lymphoid Tissue-Type Lymphoma From Sjögren's Syndrome Patients in the Majority Express Rheumatoid Factors Affinity-Selected for IgG. Arthritis Rheumatol 2020; 72:1330-1340. [PMID: 32182401 PMCID: PMC7496822 DOI: 10.1002/art.41263] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
Objective Patients with Sjӧgren's syndrome (SS) have an increased risk of developing malignant B cell lymphomas, particularly mucosa‐associated lymphoid tissue (MALT)–type lymphomas. We have previously shown that a predominant proportion of patients with SS‐associated salivary gland MALT lymphoma express somatically hypermutated IgM with strong amino acid sequence homology with stereotypic rheumatoid factors (RFs). The present study was undertaken in a larger cohort of patients with SS‐associated MALT lymphoma to more firmly assess the frequency of RF reactivity and the significance of somatic IGV‐region mutations for RF reactivity. Methods B cell antigen receptors (BCRs) of 16 patients with SS‐associated salivary gland MALT lymphoma were analyzed. Soluble recombinant IgM was produced of 12 MALT lymphoma samples, including 1 MALT lymphoma sample that expressed an IgM antibody fitting in a novel IGHV3‐30–encoded stereotypic IGHV subset. For 4 of the 12 IgM antibodies from MALT lymphoma samples, the somatically mutated IGHV and IGKV gene sequences were reverted to germline configurations. Their RF activity and binding affinity were determined by enzyme‐linked immunosorbent assay and surface plasmon resonance, respectively. Results Nine (75%) of the 12 IgM antibodies identified in patients with SS‐associated salivary gland MALT lymphoma displayed strong monoreactive RF activity. Reversion of the IGHV and IGKV mutations to germline configuration resulted in RF affinities for IgG that were significantly lower for 3 of the 4 somatically mutated IgM antibodies. In stereotypic IGHV3‐7/IGKV3‐15–encoded RFs, a recurrent replacement mutation in the IGKV3‐15–third complementarity‐determining region was found to play a pivotal role in the affinity for IgG‐Fc. Conclusion A majority of patients with SS‐associated salivary gland MALT lymphoma express somatically mutated BCRs that are selected for monoreactive, high‐affinity binding of IgG‐Fc. These data underscore the notion that soluble IgG, most likely in immune complexes in inflamed tissues, is the principal autoantigen in the pathogenesis of a variety of B cell lymphomas, particularly SS‐associated MALT lymphomas.
Collapse
Affiliation(s)
- Richard J Bende
- Amsterdam University Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | - Jerry Janssen
- Amsterdam University Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Beentjes
- Amsterdam University Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | - Thera A M Wormhoudt
- Amsterdam University Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | - Koen Wagner
- AIMM Therapeutics, Amsterdam, The Netherlands
| | - Erlin A Haacke
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Jeroen E J Guikema
- Amsterdam University Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| | - Carel J M van Noesel
- Amsterdam University Medical Center and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, Rosal-Vela A, Botta D, Bradley JE, Wojciechowski W, Ptacek T, Danila MI, Edberg JC, Bridges SL, Kimberly RP, Chatham WW, Schoeb TR, Rosenberg AF, Boss JM, Sanz I, Lund FE. IFNγ induces epigenetic programming of human T-bet hi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019; 8:e41641. [PMID: 31090539 PMCID: PMC6544433 DOI: 10.7554/elife.41641] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.
Collapse
Affiliation(s)
- Esther Zumaquero
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Sara L Stone
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Scott A Jenks
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Anoma Nellore
- Department of Medicine, Division of Infectious DiseaseThe University of Alabama at BirminghamBirminghamUnited States
| | - Betty Mousseau
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Antonio Rosal-Vela
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Davide Botta
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Wojciech Wojciechowski
- Center for Pediatric Biomedical Research, Flow Cytometry Shared Resource LaboratoryUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | - Travis Ptacek
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- Informatics Group, Center for Clinical and Translational ScienceThe University of Alabama at BirminghamBirminghamUnited States
| | - Maria I Danila
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources ProgramThe University of Alabama at BirminghamBirminghamUnited States
| | - Alexander F Rosenberg
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- The Informatics InstituteThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Ignacio Sanz
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Frances E Lund
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
11
|
Abstract
Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions essential for mediating effective humoral immunity. CSR is catalyzed by activation-induced deaminase (AID) that initiates DNA lesions in the evolutionarily conserved switch (S) regions at the immunoglobulin heavy chain (Igh) locus. AID-initiated DNA lesions are subsequently converted into DNA double stranded breaks (DSBs) in the S regions of Igh locus, repaired by non-homologous end-joining to effect CSR in mammalian B lymphocytes. While molecular mechanisms of CSR are well characterized, it remains less well understood how upstream signaling pathways regulate AID expression and CSR. B lymphocytes express multiple receptors including the B cell antigen receptor (BCR) and co-receptors (e.g., CD40). These receptors may share common signaling pathways or may use distinct signaling elements to regulate CSR. Here, we discuss how signals emanating from different receptors positively or negatively regulate AID expression and CSR.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
12
|
Kinloch AJ, Kaiser Y, Wolfgeher D, Ai J, Eklund A, Clark MR, Grunewald J. In Situ Humoral Immunity to Vimentin in HLA-DRB1*03 + Patients With Pulmonary Sarcoidosis. Front Immunol 2018; 9:1516. [PMID: 30038611 PMCID: PMC6046378 DOI: 10.3389/fimmu.2018.01516] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vimentin has been implicated in pulmonary sarcoidosis as a T-cell autoantigen, particularly in the context of HLA-DRB1*03, the Vα2.3/Vβ22 T-cell receptor (TCR), and Löfgren’s syndrome. As vimentin is a known antigenic target in B-cell-mediated autoimmunity, we investigated in situ humoral anti-vimentin responses in pulmonary sarcoidosis and their relationship with HLA-DRB1*03. Sarcoid and healthy control (HC) lung biopsies were analyzed by multi-color confocal microscopy for B-cells, T-cells, proliferation, and vimentin, and compared to tonsillectomy tissue. Bronchoalveolar lavage fluid (BALF) and serum from 48 sarcoidosis patients and 15 healthy volunteers were typed for HLA-DRB1*03 and titrated for antibodies to full-length vimentin, vimentin truncations, and total IgG and IgA by ELISA. Presence of extracellular vimentin in BALF was determined by mass spectrometry and T-cell populations measured by flow cytometry. Sarcoid lung samples, especially from HLA-DRB1*03+ patients, contained vimentin-rich tertiary lymphoid structures and corresponding BALF was highly enriched for both IgG and IgA anti-vimentin antibody (AVA) titers. Furthermore, sarcoidosis patient BALF AVA concentrations (expressed as arbitrary units per milligram of total immunoglobulin isotype) correlated with the percentage of CD4+ T-cells expressing the Vα2.3/Vβ22 TCR. BALF antibody reactivity to the vimentin N-terminus was most prominent in HCs, whereas reactivity to the C-terminus (VimC-term) was enriched in the sarcoid lung. Specifically, HLA-DRB1*03+ patient BALF contained higher concentrations of anti-VimC-term antibodies than BALF from both HCs and HLA-DRB1*03− patients. Consistent with the lung as a site of AVA production, the concentration of AVAs in BALF was dramatically higher than in matched serum samples. Overall, there was a poor correlation between BALF and serum AVA concentrations. Together, these studies reveal the presence of linked in situ recognition of vimentin by both T- and B-cells in HLA-DRB1*03+ sarcoidosis patients, associated with a selective humoral immune response to the vimentin C-terminus.
Collapse
Affiliation(s)
- Andrew J Kinloch
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Ylva Kaiser
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Don Wolfgeher
- Proteomics Core Laboratory, Cummings Life Science Center, University of Chicago, Chicago, IL, United States
| | - Junting Ai
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, United States
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
13
|
Gestermann N, Di Domizio J, Lande R, Demaria O, Frasca L, Feldmeyer L, Di Lucca J, Gilliet M. Netting Neutrophils Activate Autoreactive B Cells in Lupus. THE JOURNAL OF IMMUNOLOGY 2018; 200:3364-3371. [PMID: 29632142 DOI: 10.4049/jimmunol.1700778] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Lupus erythematosus (LE) patients develop autoantibodies that form circulating immune complexes (ICs) with extracellular self-nucleic acids. These ICs are deposited into peripheral tissues, where they trigger detrimental organ inflammation. Recent evidence suggests that ICs contain LL37-DNA complexes derived from neutrophil extracellular traps (NETs) and that LE patients develop pathogenic autoantibodies against these structures, including Abs to LL37. However, the mechanism that leads to the generation of these Abs is unknown. In this study, we show that NETs directly trigger Ab production by human memory B cells. This occurs via LL37-DNA complexes present in NETs, which have the unique ability to gain access to endosomal compartments of B cells and to trigger TLR9 activation. In LE patients, NET-derived LL37-DNA complexes trigger polyclonal B cell activation via TLR9, but also specifically expand self-reactive memory B cells producing anti-LL37 Abs in an Ag-dependent manner. These findings suggest a unique link between neutrophils and B cells in which NETs trigger a concerted activation of TLR9 and BCR leading to anti-NET autoantibody production in lupus.
Collapse
Affiliation(s)
- Nicolas Gestermann
- Department of Dermatology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland; and
| | - Jeremy Di Domizio
- Department of Dermatology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland; and
| | - Roberto Lande
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy
| | - Olivier Demaria
- Department of Dermatology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland; and
| | - Loredana Frasca
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy
| | - Laurence Feldmeyer
- Department of Dermatology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland; and
| | - Julie Di Lucca
- Department of Dermatology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland; and
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland; and
| |
Collapse
|
14
|
Riggs JM, Hanna RN, Rajan B, Zerrouki K, Karnell JL, Sagar D, Vainshtein I, Farmer E, Rosenthal K, Morehouse C, de Los Reyes M, Schifferli K, Liang M, Sanjuan MA, Sims GP, Kolbeck R. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000261. [PMID: 29644082 PMCID: PMC5890856 DOI: 10.1136/lupus-2018-000261] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023]
Abstract
Objective We investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE. Methods IFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element-luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells. Results Anifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity. Conclusions Anifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling.
Collapse
Affiliation(s)
- Jeffrey M Riggs
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Richard N Hanna
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Bhargavi Rajan
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Kamelia Zerrouki
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Jodi L Karnell
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Divya Sagar
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Inna Vainshtein
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Erika Farmer
- Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Kimberly Rosenthal
- Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Chris Morehouse
- Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | | | - Kevin Schifferli
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Meina Liang
- Clinical Pharmacology and DMPK, MedImmune LLC, Mountain View, California, USA
| | - Miguel A Sanjuan
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Gary P Sims
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Roland Kolbeck
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
15
|
Teixeira V, Tam LS. Novel Insights in Systemic Lupus Erythematosus and Atherosclerosis. Front Med (Lausanne) 2018; 4:262. [PMID: 29435447 PMCID: PMC5796914 DOI: 10.3389/fmed.2017.00262] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/28/2017] [Indexed: 01/22/2023] Open
Abstract
Introduction The systemic inflammatory nature of systemic lupus erythematosus (SLE) is well patent not only in the diverse clinical manifestations of the disease but also in the increased risk of premature atherosclerosis and cardiovascular events (CVE), making SLE one of the most complex diseases to study and manage in clinical practice. Aim To travel from old aspects to modern insights on the physiopathology, new molecular biomarkers, imaging methods of atherosclerosis assessment, and the potential treatments of atherosclerosis in SLE. Methods We conducted a literature search using PubMed database and performed a critical review. Conclusion/discussion Several developments have taken place in the understanding of the relationship between SLE and premature atherosclerosis. Nevertheless, cardiovascular diseases are still the major cause of reduced life expectancy in SLE and the main cause of death. The lack of standardization methods for the imaging assessment of atherosclerosis in SLE and the multifactorial nature of the disease are well patriated in the difficulty of achieving consistent and reproducible results among studies that focus in cardiovascular risk assessment and prediction. A raising number of molecular biomarkers of atherosclerosis have been proposed, but the combination of several biomarkers and risk factors may better estimate cardiovascular disease risk. Moreover, the development of effective therapies to prevent progression of atherosclerosis and CVE shall address systemic inflammation.
Collapse
Affiliation(s)
- Vítor Teixeira
- Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon, Portugal
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
16
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
17
|
Schell SL, Soni C, Fasnacht MJ, Domeier PP, Cooper TK, Rahman ZSM. Mer Receptor Tyrosine Kinase Signaling Prevents Self-Ligand Sensing and Aberrant Selection in Germinal Centers. THE JOURNAL OF IMMUNOLOGY 2017; 199:4001-4015. [DOI: 10.4049/jimmunol.1700611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/11/2017] [Indexed: 11/19/2022]
|
18
|
Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat Immunol 2017; 18:1249-1260. [PMID: 28892471 PMCID: PMC5679073 DOI: 10.1038/ni.3837] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
Interleukin 2 (IL-2) promotes Foxp3+ regulatory T (Treg) cell responses, but inhibits T follicular helper (TFH) cell development. However, it is not clear how IL-2 affects T follicular regulatory (TFR) cells, a cell type with properties of both Treg and TFH cells. Using an influenza infection model, we found that high IL-2 concentrations at the peak of the infection prevented TFR cell development by a Blimp-1-dependent mechanism. However, once the immune response resolved, some Treg cells downregulated CD25, upregulated Bcl-6 and differentiated into TFR cells, which then migrated into the B cell follicles to prevent the expansion of self-reactive B cell clones. Thus, unlike its effects on conventional Treg cells, IL-2 inhibits TFR cell responses.
Collapse
|
19
|
CD11c+ T-bet+ memory B cells: Immune maintenance during chronic infection and inflammation? Cell Immunol 2017; 321:8-17. [PMID: 28838763 DOI: 10.1016/j.cellimm.2017.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 01/30/2023]
Abstract
CD11c+ T-bet+ B cells have now been detected and characterized in different experimental and clinical settings, in both mice and humans. Whether such cells are monolithic, or define subsets of B cells with different functions is not yet known. Our studies have identified CD11c+ IgM+ CD19hi splenic IgM memory B cells that appear at approximately three weeks post-ehrlichial infection, and persist indefinitely, during low-level chronic infection. Although the CD11c+ T-bet+ B cells we have described are distinct, they appear to share many features with similar cells detected under diverse conditions, including viral infections, aging, and autoimmunity. We propose that CD11c+ T-bet+ B cells as a group share characteristics of memory B cells that are maintained under conditions of inflammation and/or low-level chronic antigen stimulation. In some cases, these cells may be advantageous, by providing immunity to re-infection, but in others may be deleterious, by contributing to aged-associated autoimmune responses.
Collapse
|
20
|
Suthers AN, Sarantopoulos S. TLR7/TLR9- and B Cell Receptor-Signaling Crosstalk: Promotion of Potentially Dangerous B Cells. Front Immunol 2017; 8:775. [PMID: 28751890 PMCID: PMC5507964 DOI: 10.3389/fimmu.2017.00775] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
B cells are capable of receptor-mediated responses to foreign antigens. Recognition of microbial-derived nucleic acid (NA) by toll-like receptors (TLRs) 7 and 9 in B cells has been substantiated. Endogenous NA released from damaged or dying cells can also be immunogenic in certain contexts and can incite aberrant activation of B cells. When TLR-driven B cell receptor (BCR)-activated B cells are not properly constrained, pathologic autoantibodies are produced. It is also clear that endosomal TLR7/TLR9 can operate in conjunction with BCR. In addition to BCR signaling, a balance between TLR7 and TLR9 is pivotal in the development of B cell autoreactivity. While TLR9 is important in normal memory B cell responses through BCR, TLR9 activation has been implicated in autoantibody production. Paradoxically, TLR9 also plays known protective roles against autoimmunity by directly and indirectly inhibiting TLR7-mediated autoantibody production. Herein, we summarize literature supporting mechanisms underpinning the promotion of pathological BCR-activated B cells by TLR7 and TLR9. We focus on the literature regarding known points of TLR7/TLR9 and BCR crosstalk. Data also suggest that the degree of TLR responsiveness relies on alterations of certain intrinsic B-cell signaling molecules and is also context specific. Because allogeneic hematopoietic stem cell transplantation is a high NA and B cell-activating factor environment, we conclude that B cell studies of synergistic TLR-BCR signaling in human diseases like chronic graft-versus-host disease are warranted. Further understanding of the distinct molecular pathways mediating TLR-BCR synergy will lead to the development of therapeutic strategies in autoimmune disease states.
Collapse
Affiliation(s)
- Amy N Suthers
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies and Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
21
|
Mihaylova N, Bradyanova S, Chipinski P, Herbáth M, Chausheva S, Kyurkchiev D, Prechl J, Tchorbanov AI. Annexin A1 as a target for managing murine pristane-induced systemic lupus erythematosus. Autoimmunity 2017; 50:257-268. [DOI: 10.1080/08916934.2017.1300884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nikolina Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Silviya Bradyanova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petroslav Chipinski
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Melinda Herbáth
- MTA-ELTE Immunology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Stela Chausheva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital ‘St.I.Rilski’, Medical University Sofia, Sofia, Bulgaria
| | - József Prechl
- MTA-ELTE Immunology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrey I. Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
22
|
Morawski PA, Bolland S. Expanding the B Cell-Centric View of Systemic Lupus Erythematosus. Trends Immunol 2017; 38:373-382. [PMID: 28274696 DOI: 10.1016/j.it.2017.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this review we consider recent advances regarding both the pathogenic and the regulatory role of lymphocytes in SLE beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel, targeted therapeutics.
Collapse
Affiliation(s)
- Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
23
|
Giles JR, Neves AT, Marshak-Rothstein A, Shlomchik MJ. Autoreactive helper T cells alleviate the need for intrinsic TLR signaling in autoreactive B cell activation. JCI Insight 2017; 2:e90870. [PMID: 28239656 PMCID: PMC5313065 DOI: 10.1172/jci.insight.90870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease.
Collapse
Affiliation(s)
- Josephine R. Giles
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adriana Turqueti Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Mark J. Shlomchik
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
You M, Dong G, Li F, Ma F, Ren J, Xu Y, Yue H, Tang R, Ren D, Hou Y. Ligation of CD180 inhibits IFN-α signaling in a Lyn-PI3K-BTK-dependent manner in B cells. Cell Mol Immunol 2017; 14:192-202. [PMID: 26277892 PMCID: PMC5301152 DOI: 10.1038/cmi.2015.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE) is the consistent production of various auto-antibodies by auto-reactive B cells. Interferon-α (IFN-α) signaling is highly activated in SLE B cells and plays a vital role in the antibody response by B cells. Previous studies have shown that CD180-negative B cells, which are dramatically increased in SLE patients, are responsible for the production of auto-antibodies. However, the association between CD180 and IFN-α signaling remains unknown. In the present study, we explored the effect of CD180 on regulating the activation of IFN-α signaling in B cells. We found that the number of CD180-negative B cells was increased in MRL/Mp-Fas(lpr/lpr) lupus-prone mice compared with wild-type mice. Phenotypic analysis showed that CD180-negative B cells comprised CD138+ plasmablast/plasma cells and GL-7+ germinal center (GC) B cells. Notably, ligation of CD180 significantly inhibited the IFN-α-induced phosphorylation of signal transducer and activator of transcription 2 (STAT-2) and expression of IFN-stimulated genes (ISGs) in a Lyn-PI3K-BTK-dependent manner in vitro. Moreover, ligation of CD180 could also inhibit IFN-α-induced ISG expression in B cells in vivo. Furthermore, the Toll-like receptor 7 and Toll-like receptor 9 signaling pathways could significantly downregulate CD180 expression and modulate the inhibitory effect of CD180 signaling on the activation of IFN-α signaling. Collectively, our results highlight the close association between the increased proportion of CD180-negative B cells and the activation of IFN-α signaling in SLE. Our data provide molecular insight into the mechanism of IFN-α signaling activation in SLE B cells and a potential therapeutic approach for SLE treatment.
Collapse
Affiliation(s)
- Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Guanjun Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Fanlin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Feiya Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Huimin Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ruijing Tang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Deshan Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University Nanjing 210093, People's Republic of China
| |
Collapse
|
25
|
Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad DS, Karunanithi P, Srivastava R, Venkatesh K, Selvam S, Krishnamurthy P, Mariappan TT, Saxena A, Fan L, Stetsko DK, Holloway DA, Li X, Zhu J, Yang WP, Ruepp S, Nair S, Santella J, Duncia J, Hynes J, McIntyre KW, Carman JA. Selective IRAK4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:1308-1319. [PMID: 28003376 PMCID: PMC5253435 DOI: 10.4049/jimmunol.1600583] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
Abstract
The serine/threonine kinase IL-1R-associated kinase (IRAK)4 is a critical regulator of innate immunity. We have identified BMS-986126, a potent, highly selective inhibitor of IRAK4 kinase activity that demonstrates equipotent activity against multiple MyD88-dependent responses both in vitro and in vivo. BMS-986126 failed to inhibit assays downstream of MyD88-independent receptors, including the TNF receptor and TLR3. Very little activity was seen downstream of TLR4, which can also activate an MyD88-independent pathway. In mice, the compound inhibited cytokine production induced by injection of several different TLR agonists, including those for TLR2, TLR7, and TLR9. The compound also significantly suppressed skin inflammation induced by topical administration of the TLR7 agonist imiquimod. BMS-986126 demonstrated robust activity in the MRL/lpr and NZB/NZW models of lupus, inhibiting multiple pathogenic responses. In the MRL/lpr model, robust activity was observed with the combination of suboptimal doses of BMS-986126 and prednisolone, suggesting the potential for steroid sparing activity. BMS-986126 also demonstrated synergy with prednisolone in assays of TLR7- and TLR9-induced IFN target gene expression using human PBMCs. Lastly, BMS-986126 inhibited TLR7- and TLR9-dependent responses using cells derived from lupus patients, suggesting that inhibition of IRAK4 has the potential for therapeutic benefit in treating lupus.
Collapse
Affiliation(s)
| | - Sourabh Ranade
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Jignesh Nagar
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Siva Subramani
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Durga Shiv Prasad
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | | | - Ratika Srivastava
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Kamala Venkatesh
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Sabariya Selvam
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | | | | | - Ajay Saxena
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Li Fan
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Dawn K Stetsko
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543
| | | | - Xin Li
- Lead Evaluation, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Jun Zhu
- Translational Technologies, Bristol-Myers Squibb, Hopewell, NJ 08525
| | - Wen-Pin Yang
- Translational Technologies, Bristol-Myers Squibb, Hopewell, NJ 08525
| | - Stefan Ruepp
- Discovery Toxicology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Satheesh Nair
- Biocon Bristol-Myers Squibb Research Center, Bangalore 560099, India
| | - Joseph Santella
- Discovery Chemistry, Bristol-Myers Squibb, Princeton, NJ 08543
| | - John Duncia
- Discovery Chemistry, Bristol-Myers Squibb, Princeton, NJ 08543
| | - John Hynes
- Discovery Chemistry, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Kim W McIntyre
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Julie A Carman
- Immunology Discovery, Bristol-Myers Squibb, Princeton, NJ 08543;
| |
Collapse
|
26
|
Wolfram W, Sauerwein KMT, Binder CJ, Eibl-Musil N, Wolf HM, Fischer MB. Pneumococcal Polysaccharide Vaccination Elicits IgG Anti-A/B Blood Group Antibodies in Healthy Individuals and Patients with Type I Diabetes Mellitus. Front Immunol 2016; 7:493. [PMID: 27895641 PMCID: PMC5108245 DOI: 10.3389/fimmu.2016.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Hypothesis Blood group antibodies are natural antibodies that develop early in life in response to cross-reactive environmental antigens in the absence of antigen encounter. Even later in life structural similarities in saccharide composition between environmental antigens such as bacterial polysaccharides and blood group A/B antigens could lead to changes in serum levels, IgM/IgG isotype, and affinity maturation of blood group anti-A/B antibodies. We addressed the question whether immunization with pneumococcal polysaccharide (PnP) vaccine Pneumo 23 Vaccine “Pasteur Merieux” (Pn23) could have such an effect in patients with type I diabetes mellitus (DM I), an autoimmune disease where an aberrant immune response to microbial antigens likely plays a role. Methods Anti-PnP IgM and IgG responses were determined by ELISA, and the DiaMed-ID Micro Typing System was used to screen anti-A/B antibody titer before and after Pn23 immunization in 28 healthy individuals and 16 patients with DM I. In addition, surface plasmon resonance (SPR) technology using the Biacore® device and a synthetic blood group A/B trisaccharide as the antigen was applied to investigate IgM and IgG anti-A/B antibodies and to measure antibody binding dynamics. Results All healthy individuals and DM I patients responded with anti-PnP IgM and IgG antibody production 4–6 weeks after Pn23 immunization, while no increase in blood group anti-A/B antibody titer was observed when measured by the DiaMed-ID Micro Typing System. Interestingly, isotype-specific testing by SPR technology revealed an increase in blood group anti-A/B IgG, but not IgM, following Pn23 immunization in both patients and controls. No change in binding characteristics of blood group anti-A/B antibodies could be detected following Pn23 vaccination, supporting the assumption of an increase in IgG antibody titer with no or very little affinity maturation. Conclusion The study provides evidence for epitope sharing between pneumococcal polysaccharides and blood group ABO antigens, which leads to a booster of blood group anti-A/B antibodies of the IgG isotype after Pn23 immunization in healthy individuals. Manifest autoimmunity such as present in DM I patients has no additional effect on the cross-reactive antibody response against pneumococcal polysaccharides and blood group antigens.
Collapse
Affiliation(s)
- Wendelin Wolfram
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna , Vienna , Austria
| | | | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna , Vienna , Austria
| | | | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria; Sigmund Freud Private University - Medical School, Vienna, Austria
| | - Michael B Fischer
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria; Department for Health Science and Biomedicine, Danube University Krems, Krems, Austria
| |
Collapse
|
27
|
Pratesi S, Nencini F, Filì L, Occhiato EG, Romagnani S, Parronchi P, Maggi E, Vultaggio A. Dermatophagoides pteronyssinus group 2 allergen bound to 8-OH modified adenine reduces the Th2-mediated airway inflammation without inducing a Th17 response and autoimmunity. Mol Immunol 2016; 77:60-70. [DOI: 10.1016/j.molimm.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|
28
|
Nakayamada S, Tanaka Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm Regen 2016; 36:6. [PMID: 29259679 PMCID: PMC5725651 DOI: 10.1186/s41232-016-0015-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
B cells play a pivotal role in autoimmunity not only by producing pathogenic autoantibodies but also by modulating immune responses via the production of cytokines and chemokines. The B cell-activating factor/a proliferation-inducing ligand (BAFF/APRIL) system promotes B cell survival and differentiation and thus plays a prominent role in the pathogenesis of autoimmune diseases. Currently, BAFF and APRIL inhibitors are in clinical trials for systemic lupus erythematosus with significant efficacy. However, several studies have demonstrated the efficacy of the BAFF/APRIL blockade which showed considerable variability in the response to B cell-targeted therapy. This may indicate substantial heterogeneity in the pathogenesis of autoimmune diseases. Therefore, objective markers that can predict the effect of BAFF/APRIL-blocking agents could be valuable to the precision medicine linked clinically and to cost-effective therapy.
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555 Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, 807-8555 Japan
| |
Collapse
|
29
|
Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol 2016; 12:344-57. [PMID: 27170508 DOI: 10.1038/nrrheum.2016.61] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.
Collapse
|
30
|
Popi AF, Longo-Maugéri IM, Mariano M. An Overview of B-1 Cells as Antigen-Presenting Cells. Front Immunol 2016; 7:138. [PMID: 27148259 PMCID: PMC4827000 DOI: 10.3389/fimmu.2016.00138] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
The role of B cells as antigen-presenting cells (APCs) has been extensively studied, mainly in relation to the activation of memory T cells. Considering the B cell subtypes, the role of B-1 cells as APCs is beginning to be explored. Initially, it was described that B-1 cells are activated preferentially by T-independent antigens. However, some reports demonstrated that these cells are also involved in a T-dependent response. The aim of this review is to summarize information about the ability of B-1 cells to play a role as APCs and to briefly discuss the role of the BCR and toll-like receptor signals in this process. Furthermore, some characteristics of B-1 cells, such as natural IgM production and phagocytic ability, could interfere in the participation of these cells in the onset of an adaptive response.
Collapse
Affiliation(s)
- Ana F Popi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Ieda M Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Mario Mariano
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
31
|
Presence of Rheumatoid Factor during Chronic HCV Infection Is Associated with Expansion of Mature Activated Memory B-Cells that Are Hypo-Responsive to B-Cell Receptor Stimulation and Persist during the Early Stage of IFN Free Therapy. PLoS One 2015; 10:e0144629. [PMID: 26649443 PMCID: PMC4674123 DOI: 10.1371/journal.pone.0144629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/21/2015] [Indexed: 12/11/2022] Open
Abstract
Approximately half of those with chronic hepatitis C virus (HCV) infection have circulating rheumatoid factor (RF), and a portion of these individuals develop cryoglobulinemic vasculitis. B cell phenotype/function in relation to RF in serum has been unclear. We examined B cell subset distribution, activation state (CD86), cell cycle state (Ki67), and ex-vivo response to BCR, TLR9 and TLR7/8 stimulation, in chronic HCV-infected donors with or without RF, and uninfected donors. Mature-activated B-cells of HCV-infected donors had lower CD86 expression compared to uninfected donors, and in the presence of RF they also showed reduced CD86 expression in response to BCR and TLR9 stimulation. Additionally, mature activated memory B cells of HCV RF+ donors less commonly expressed Ki67+ than HCV RF- donors, and did not proliferate as well in response to BCR stimulation. Proportions of mature-activated B cells were enhanced, while naïve B-cells were lower in the peripheral blood of HCV-RF+ compared to RF- and uninfected donors. None of these parameters normalize by week 8 of IFN free direct acting antiviral (DAA) therapy in HCV RF+ donors, while in RF- donors, mature activated B cell proportions did normalize. These data indicate that while chronic HCV infection alone results in a lower state of activation in mature activated memory B cells, the presence of RF in serum is associated with a more pronounced state of unresponsiveness and an overrepresentation of these B cells in the blood. This phenotype persists at least during the early time window after removal of HCV from the host.
Collapse
|
32
|
The B-cell antigen receptor integrates adaptive and innate immune signals. Proc Natl Acad Sci U S A 2015; 112:12145-50. [PMID: 26371314 DOI: 10.1073/pnas.1516428112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
B cells respond to antigens by engagement of their B-cell antigen receptor (BCR) and of coreceptors through which signals from helper T cells or pathogen-associated molecular patterns are delivered. We show that the proliferative response of B cells to the latter stimuli is controlled by BCR-dependent activation of phosphoinositidyl 3-kinase (PI-3K) signaling. Glycogen synthase kinase 3β and Foxo1 are two PI-3K-regulated targets that play important roles, but to different extents, depending on the specific mitogen. These results suggest a model for integrating signals from the innate and the adaptive immune systems in the control of the B-cell immune response.
Collapse
|
33
|
Clark MR, Trotter K, Chang A. The Pathogenesis and Therapeutic Implications of Tubulointerstitial Inflammation in Human Lupus Nephritis. Semin Nephrol 2015; 35:455-64. [PMID: 26573548 PMCID: PMC4653081 DOI: 10.1016/j.semnephrol.2015.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nephritis is a common complication of systemic lupus erythematosus for which current therapies often prove inadequate. Current lupus nephritis classification systems emphasize glomerular acuity and scarring. However, tubulointerstitial inflammation (TII) and scarring are much better predictors of progression to renal failure. It now is becoming clear that the immunologic features, and probable underlying mechanisms, are very different in lupus glomerulonephritis and TII at the time of biopsy. Although glomerulonephritis is a manifestation of systemic autoimmunity, TII is associated with local in situ adaptive immune cell networks predicted to amplify local inflammation and tissue damage. In addition, poorly defined networks of innate immune cells and effectors likely contribute to the severity of local inflammation. Defining these in situ immune mechanisms should lead to a better understanding of prognostically meaningful lupus nephritis subsets and show novel therapeutic opportunities.
Collapse
Affiliation(s)
- Marcus R Clark
- Department of Medicine, University of Chicago, Chicago, IL; Department of Pathology, University of Chicago, Chicago, IL; Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL.
| | | | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
34
|
Williams JM, Bonami RH, Hulbert C, Thomas JW. Reversing Tolerance in Isotype Switch-Competent Anti-Insulin B Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:853-64. [PMID: 26109644 PMCID: PMC4506889 DOI: 10.4049/jimmunol.1403114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/30/2015] [Indexed: 12/22/2022]
Abstract
Autoreactive B lymphocytes that escape central tolerance and mature in the periphery are a liability for developing autoimmunity. IgG insulin autoantibodies that predict type 1 diabetes and complicate insulin therapies indicate that mechanisms for tolerance to insulin are flawed. To examine peripheral tolerance in anti-insulin B cells, we generated C57BL/6 mice that harbor anti-insulin VDJH-125 site directed to the native IgH locus (VH125(SD)). Class switch-competent anti-insulin B cells fail to produce IgG Abs following T cell-dependent immunization of VH125(SD) mice with heterologous insulin, and they exhibit markedly impaired proliferation to anti-CD40 plus insulin in vitro. In contrast, costimulation with LPS plus insulin drives robust anti-insulin B cell proliferation. Furthermore, VH125(SD) mice produce both IgM and IgG2a anti-insulin Abs following immunization with insulin conjugated to type 1 T cell-independent Brucella abortus ring test Ag (BRT). Anti-insulin B cells undergo clonal expansion in vivo and emerge as IgM(+) and IgM(-) GL7(+)Fas(+) germinal center (GC) B cells following immunization with insulin-BRT, but not BRT alone. Analysis of Igκ genes in VH125(SD) mice immunized with insulin-BRT reveals that anti-insulin Vκ from the preimmune repertoire is selected into GCs. These data demonstrate that class switch-competent anti-insulin B cells remain functionally silent in T cell-dependent immune responses, yet these B cells are vulnerable to reversal of anergy following combined BCR/TLR engagement that promotes Ag-specific GC responses and Ab production. Environmental factors that lead to infection and inflammation could play a critical yet underappreciated role in driving loss of tolerance and promoting autoimmune disease.
Collapse
Affiliation(s)
- Jonathan M Williams
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Chrys Hulbert
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - James W Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
35
|
Dong G, Fan H, Yang Y, Zhao G, You M, Wang T, Hou Y. 17β-Estradiol enhances the activation of IFN-α signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKKε. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:1585-98. [PMID: 25912736 DOI: 10.1016/j.bbadis.2015.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022]
Abstract
The activation of IFN-α signaling in B cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Many studies suggest that estrogens are closely related to the gender difference in the prevalence of SLE. However, the underlying mechanism of the interaction between estrogens and the activation of IFN-α signaling in SLE B cells remains incompletely understood. In the present study, we first found that healthy female mice showed an up-regulated type I IFN-induced gene signature in B cells compared with age-matched male mice, and an in vivo study revealed that the gender difference was related to 17β-estradiol. Moreover, we found that 17β-estradiol could enhance the activation of IFN-α signaling in an ERα-dependent manner by down-regulating the expression of three microRNAs, including let-7e-5p, miR-98-5p and miR-145a-5p. These microRNAs could target the 3'UTR of the IKKε-encoding gene IKBKE directly and regulate the expression of IKKε, which can promote the activation of IFN-α signaling. In addition, compared with age-matched male mice, female mice showed a higher level of IKKε and lower levels of let-7e-5p, miR-98-5p and miR-145a-5p in B cells. Moreover, peripheral blood mononuclear cells from women showed a higher level of IKKε and lower levels of let-7e-5p, miR-98-5p and miR-145a-5p compared with those from age-matched men. These data suggest that 17β-estradiol amplifies the activation of IFN-α signaling in B cells via IKKε by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p. Our findings may provide a new perspective for understanding the mechanism underlying the gender difference in the prevalence of SLE.
Collapse
Affiliation(s)
- Guanjun Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Hongye Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yonghong Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Guangfeng Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China.
| |
Collapse
|
36
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
37
|
Wu Y, He S, Bai B, Zhang L, Xue L, Lin Z, Yang X, Zhu F, He P, Tang W, Zuo J. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell Mol Immunol 2015; 13:379-90. [PMID: 25942599 DOI: 10.1038/cmi.2015.13] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022] Open
Abstract
We previously reported that SM934, a water-soluble artemisinin derivative, was a viable treatment in murine lupus models. In the current study, we further investigated the therapeutic effects of a modified dosage regimen of SM934 on lupus-prone MRL/lpr mice and explored its effects on B cell responses, a central pathogenic event in systemic lupus erythematosus (SLE). When orally administered twice-daily, SM934 significantly prolonged the life-span of MRL/lpr mice, ameliorated the lymphadenopathy symptoms and decreased the levels of serum anti-nuclear antibodies (ANAs) and of the pathogenic cytokines IL-6, IL-10 and IL-21. Furthermore, SM934 treatment restored the B-cell compartment in the spleen of MRL/lpr mice by increasing quiescent B cell numbers, maintaining germinal center B-cell numbers, decreasing activated B cell numbers and reducing plasma cell (PC) numbers. Ex vivo, SM934 suppressed the Toll-like receptor (TLR)-triggered activation and proliferation of B cells, as well as antibody secretion. Moreover, the present study demonstrated that SM934 interfered with the B-cell intrinsic pathway by downregulating TLR7/9 mRNA expression, MyD88 protein expression and NF-κB phosphorylation. In human peripheral blood mononuclear cells (PBMCs), consistent with the results in MRL/lpr mice, SM934 inhibited TLR-associated B-cell activation and PC differentiation. In conclusion, a twice daily dosing regimen of SM934 had therapeutic effects on lupus-prone MRL/lpr mice by suppressing B cell activation and plasma cell formation.
Collapse
Affiliation(s)
- Yanwei Wu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bingxin Bai
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Zhang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Xue
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Lin
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peilan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Goury A, Meghraoui-Kheddar A, Belmokhtar K, Vuiblet V, Ortillon J, Jaisson S, Devy J, Le Naour R, Tabary T, Cohen JHM, Schmidt AM, Rieu P, Touré F. Deletion of receptor for advanced glycation end products exacerbates lymphoproliferative syndrome and lupus nephritis in B6-MRL Fas lpr/j mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:3612-22. [PMID: 25762779 DOI: 10.4049/jimmunol.1402342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/07/2015] [Indexed: 01/10/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor that interacts with advanced glycation end products, but also with C3a, CpG DNA oligonucleotides, and alarmin molecules such as HMGB1 to initiate a proinflammatory reaction. Systemic lupus erythematosus is an autoimmune disorder associated with the accumulation of RAGE ligands. We generated mice invalidated for RAGE in the lupus-prone B6-MRL Fas lpr/j background to determine the role of RAGE in the pathogenesis of systemic lupus erythematosus. We compared the phenotype of these mice with that of their wild-type and B6-MRL Fas lpr/j littermates. Lymphoproliferative syndrome, production of anti-dsDNA Abs, lupus nephritis, and accumulation of CD3(+)B220(+)CD4(-)CD8(-) autoreactive T cells (in the peripheral blood and the spleen) were significantly increased in B6-MRL Fas lpr/j RAGE(-/-) mice compared with B6-MRL Fas lpr/j mice (respectively p < 0.005, p < 0.05, p < 0.001, and p < 0.001). A large proportion of autoreactive T cells from B6-MRL Fas lpr/j mice expressed RAGE at their surface. Time course studies of annexin V expression revealed that autoreactive T cells in the spleen of B6-MRL Fas lpr/j-RAGE(-/-) mice exhibited a delay in apoptosis and expressed significantly less activated caspase 3 (39.5 ± 4.3%) than T cells in B6-MRL Fas lpr/j mice (65.5 ± 5.2%) or wild-type mice (75.3 ± 2.64%) (p = 0.02). We conclude that the deletion of RAGE in B6-MRL Fas lpr/j mice promotes the accumulation of autoreactive CD3(+)B220(+)CD4(-)CD8(-) T cells, therefore exacerbating lymphoproliferative syndrome, autoimmunity, and organ injury. This suggests that RAGE rescues the apoptosis of T lymphocytes when the death receptor Fas/CD95 is dysfunctional.
Collapse
Affiliation(s)
- Antoine Goury
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France; Service de Néphrologie, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Aïda Meghraoui-Kheddar
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, EA4683 (Immunité Adaptative et Fonctionnalité des Barrières Biologiques), 51100 Reims, France
| | - Karim Belmokhtar
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France; Service de Néphrologie, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Vincent Vuiblet
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France; Service de Néphrologie, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Jeremy Ortillon
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France
| | - Stéphane Jaisson
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France
| | - Jerôme Devy
- Faculté des Sciences, Laboratoire Signalisation et Récepteurs Matriciels, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France
| | - Richard Le Naour
- Faculté de Pharmacie, Université de Reims Champagne-Ardenne, EA4683 (Immunité Adaptative et Fonctionnalité des Barrières Biologiques), 51100 Reims, France
| | - Thierry Tabary
- Laboratoire d'Immunologie, Université de Reims Champagne-Ardenne, Laboratoire de Recherche en Nanosciences EA4682 et Centre Hospitalier Universitaire de Reims, Reims 51100, France; and
| | - Jacques H M Cohen
- Laboratoire d'Immunologie, Université de Reims Champagne-Ardenne, Laboratoire de Recherche en Nanosciences EA4682 et Centre Hospitalier Universitaire de Reims, Reims 51100, France; and
| | | | - Philippe Rieu
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France; Service de Néphrologie, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Fatouma Touré
- Faculté de Médecine, Laboratoire de Néphrologie, Université de Reims Champagne-Ardenne, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7369 (Matrice Extracellulaire et Dynamique Cellulaire), 51100 Reims, France; Service de Néphrologie, Centre Hospitalier Universitaire de Reims, 51100 Reims, France;
| |
Collapse
|
39
|
Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2015; 258:132-44. [PMID: 24517430 DOI: 10.1111/imr.12146] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solid organ transplantation is a vital therapy for end stage diseases. Decades of research have established that components of the adaptive immune system are critical for transplant rejection, but the role of the innate immune system in organ transplantation is just emerging. Accumulating evidence indicates that the innate immune system is activated at the time of organ implantation by the release of endogenous inflammatory triggers. This review discusses the nature of these triggers in organ transplantation and also potential mediators that may enhance inflammation resolution after organ implantation.
Collapse
Affiliation(s)
- Daniel N Mori
- Departments of Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
40
|
Nakayamada S, Iwata S, Tanaka Y. Relevance of lymphocyte subsets to B cell-targeted therapy in systemic lupus erythematosus. Int J Rheum Dis 2015; 18:208-18. [DOI: 10.1111/1756-185x.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| |
Collapse
|
41
|
Heesters BA, Das A, Chatterjee P, Carroll MC. Do follicular dendritic cells regulate lupus-specific B cells? Mol Immunol 2014; 62:283-8. [PMID: 24636642 PMCID: PMC4160379 DOI: 10.1016/j.molimm.2014.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 11/22/2022]
Abstract
The factors that allow self-reactive B cells to escape negative selection and become activated remain poorly defined. In this review we describe recently published results in which a B cell receptor-knock-in mouse strain specific for nucleolar self-antigens was bred with mice deficient in complement C4 and discuss the implications for the lupus field. Absence of C4 leads to a breakdown in the elimination of autoreactive B cell clones at the transitional stage. This is characterized by a relative increase in their response to a range of stimuli, entrance into follicles and a greater propensity to form self-reactive germinal centers. In this review, a model is proposed in which, in the absence of complement C4, inappropriate clearance of apoptotic debris promotes chronic activation of myeloid cells and follicular dendritic cells, resulting in secretion of Type I interferon. This allows for the maturation and activation of self-reactive B cell clones leading to increased spontaneous formation of germinal centers and subsequent generation of autoantibodies.
Collapse
Affiliation(s)
| | - Abhishek Das
- Program in Cellular and Molecular Medicine, Childrens Hospital, Boston, MA, USA
| | | | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Childrens Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Soni C, Wong EB, Domeier PP, Khan TN, Satoh T, Akira S, Rahman ZSM. B cell-intrinsic TLR7 signaling is essential for the development of spontaneous germinal centers. THE JOURNAL OF IMMUNOLOGY 2014; 193:4400-14. [PMID: 25252960 DOI: 10.4049/jimmunol.1401720] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spontaneous germinal center (Spt-GC) B cells and follicular helper T cells generate high-affinity autoantibodies that are involved in the development of systemic lupus erythematosus. TLRs play a pivotal role in systemic lupus erythematosus pathogenesis. Although previous studies focused on the B cell-intrinsic role of TLR-MyD88 signaling on immune activation, autoantibody repertoire, and systemic inflammation, the mechanisms by which TLRs control the formation of Spt-GCs remain unclear. Using nonautoimmune C57BL/6 (B6) mice deficient in MyD88, TLR2, TLR3, TLR4, TLR7, or TLR9, we identified B cell-intrinsic TLR7 signaling as a prerequisite to Spt-GC formation without the confounding effects of autoimmune susceptibility genes and the overexpression of TLRs. TLR7 deficiency also rendered autoimmune B6.Sle1b mice unable to form Spt-GCs, leading to markedly decreased autoantibodies. Conversely, B6.yaa and B6.Sle1b.yaa mice expressing an extra copy of TLR7 and B6.Sle1b mice treated with a TLR7 agonist had increased Spt-GCs and follicular helper T cells. Further, TLR7/MyD88 deficiency led to compromised B cell proliferation and survival after B cell stimulation both in vitro and in vivo. In contrast, TLR9 inhibited Spt-GC development. Our findings demonstrate an absolute requirement for TLR7 and a negative regulatory function for TLR9 in Spt-GC formation under nonautoimmune and autoimmune conditions. Our data suggest that, under nonautoimmune conditions, Spt-GCs initiated by TLR7 produce protective Abs. However, in the presence of autoimmune susceptibility genes, TLR7-dependent Spt-GCs produce pathogenic autoantibodies. Thus, a single copy of TLR7 in B cells is the minimal requirement for breaking the GC-tolerance checkpoint.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Eric B Wong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Tahsin N Khan
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239; and
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
43
|
Abstract
Multiple intracellular RNA sensing innate immune pathways have been linked to autoimmune disease. RNA-related ligands taken up by the endocytic pathway activate TLRs, and affect primarily immune cells. This type of activation is enhanced by nucleic acid-specific antibodies and induces an inflammatory program. In contrast, spontaneous activation of cytoplasmic RNA sensing pathways targets mostly non-hematopoietic tissues and their effect on autoimmune disease is secondary to the release of interferon in the circulation. The fact that pathologies result from spontaneous activation of innate pathways implies that endogenous RNA ligands that might be sensed as pathogenic are commonly found in both immune and non-immune cells.
Collapse
|
44
|
Bikker A, Kruize AA, van der Wurff-Jacobs KMG, Peters RP, Kleinjan M, Redegeld F, de Jager W, Lafeber FPJG, van Roon JAG. Interleukin-7 and Toll-like receptor 7 induce synergistic B cell and T cell activation. PLoS One 2014; 9:e94756. [PMID: 24740301 PMCID: PMC3989236 DOI: 10.1371/journal.pone.0094756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/19/2014] [Indexed: 12/23/2022] Open
Abstract
Objectives To investigate the potential synergy of IL-7-driven T cell-dependent and TLR7-mediated B cell activation and to assess the additive effects of monocyte/macrophages in this respect. Methods Isolated CD19 B cells and CD4 T cells from healthy donors were co-cultured with TLR7 agonist (TLR7A, Gardiquimod), IL-7, or their combination with or without CD14 monocytes/macrophages (T/B/mono; 1 : 1 : 0,1). Proliferation was measured using 3H-thymidine incorporation and Ki67 expression. Activation marker (CD19, HLA-DR, CD25) expression was measured by FACS analysis. Immunoglobulins were measured by ELISA and release of cytokines was measured by Luminex assay. Results TLR7-induced B cell activation was not associated with T cell activation. IL-7-induced T cell activation alone and together with TLR7A synergistically increased numbers of both proliferating (Ki67+) B cells and T cells, which was further increased in the presence of monocytes/macrophages. This was associated by up regulation of activation markers on B cells and T cells. Additive or synergistic induction of production of immunoglobulins by TLR7 and IL-7 was associated by synergistic induction of T cell cytokines (IFNγ, IL-17A, IL-22), which was only evident in the presence of monocytes/macrophages. Conclusions IL-7-induced CD4 T cell activation and TLR7-induced B cell activation synergistically induce T helper cell cytokine and B cell immunoglobulin production, which is critically dependent on monocytes/macrophages. Our results indicate that previously described increased expression of IL-7 and TLR7 together with increased numbers of macrophages at sites of inflammation in autoimmune diseases like RA and pSS significantly contributes to enhanced lymphocyte activation.
Collapse
Affiliation(s)
- Angela Bikker
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
- * E-mail:
| | - Aike A. Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Rogier P. Peters
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marije Kleinjan
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Frank Redegeld
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Wilco de Jager
- Department of Pediatric Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Floris P. J. G. Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Joël A. G. van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
45
|
Wang X, Stearns NA, Li X, Pisetsky DS. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects. Clin Immunol 2014; 153:94-103. [PMID: 24732074 DOI: 10.1016/j.clim.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022]
Abstract
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus (SLE). To elucidate specificity further, the effect of polyamines on the binding of anti-DNA antibodies from patients with lupus was tested by ELISA to calf thymus (CT) DNA; we also assessed the binding of plasmas of patients and normal human subjects (NHS) to Micrococcus luteus (MC) DNA. As these studies showed, spermine can dose-dependently inhibit SLE anti-DNA binding to CT DNA and can promote dissociation of preformed immune complexes. With MC DNA as antigen, spermine failed to inhibit the NHS anti-DNA binding. Studies using plasmas adsorbed to a CT DNA cellulose affinity indicated that SLE plasmas are mixtures of anti-DNA that differ in inhibition by spermine and binding to conserved and non-conserved determinants. Together, these studies demonstrate that spermine can influence the binding of anti-DNA autoantibodies and may contribute to the antigenicity of DNA.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China; Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA
| | - Nancy A Stearns
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA
| | - Xingfu Li
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China
| | - David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA; Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
46
|
Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp Mol Med 2014; 46:e85. [PMID: 24626171 PMCID: PMC3972786 DOI: 10.1038/emm.2013.165] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
Vaccination is one of the most successful applications of immunology and for a long time has depended on parenteral administration protocols. However, recent studies have pointed to the promise of mucosal vaccination because of its ease, economy and efficiency in inducing an immune response not only systemically, but also in the mucosal compartment where many pathogenic infections are initiated. However, successful mucosal vaccination requires the help of an adjuvant for the efficient delivery of vaccine material into the mucosa and the breaking of the tolerogenic environment, especially in oral mucosal immunization. Given that M cells are the main gateway to take up luminal antigens and initiate antigen-specific immune responses, understanding the role and characteristics of M cells is crucial for the development of successful mucosal vaccines. Especially, particular interest has been focused on the regulation of the tolerogenic mucosal microenvironment and the introduction of the luminal antigen into the lymphoid organ by exploiting the molecules of M cells. Here, we review the characteristics of M cells and the immune regulatory factors in mucosa that can be exploited for mucosal vaccine delivery and mucosal immune regulation.
Collapse
|
47
|
Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep 2014; 4:3792. [PMID: 24445780 PMCID: PMC3896912 DOI: 10.1038/srep03792] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/27/2013] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs), as innate immunity sensors, play critical roles in immune responses. Six SNPs of TLR3, TLR7, and TLR8 were genotyped to determine their associations with systemic lupus erythematosus (SLE) and clinical manifestations of SLE. TLR7 SNP rs3853839 was independently associated with SLE susceptibility in females (G vs. C: p = 0.0051). TLR7 rs3853839-G (G vs. C: p = 0.0100) and TLR8 rs3764880-G (recessive model: p = 0.0173; additive model: p = 0.0161) were associated with pericardial effusion in females relative to healthy females. Anti-SSA positive cases were more likely to have the dominant TLR7 rs179010-T allele than normal controls (p = 0.0435). TLR3 rs3775296-T was associated with photosensitivity (p = 0.0020) and anemia (p = 0.0082). The “G-G” haplotype of TLR7 rs3853839 and TLR8 rs3764880 increased risk of SLE in females (age adjusted p = 0.0032). These findings suggest that TLR variations that modify gene expression affect risk for SLE susceptibility, clinical phenotype development, and production of autoantibodies.
Collapse
|
48
|
TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 2014; 111:1497-502. [PMID: 24474776 DOI: 10.1073/pnas.1314121111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with diverse clinical presentations characterized by the presence of autoantibodies to nuclear components. Toll-like receptor (TLR)7, TLR8, and TLR9 sense microbial or endogenous nucleic acids and are implicated in the development of SLE. In mice TLR7-deficiency ameliorates SLE, but TLR8- or TLR9-deficiency exacerbates the disease because of increased TLR7 response. Thus, both TLR8 and TLR9 control TLR7 function, but whether TLR8 and TLR9 act in parallel or in series in the same or different cell types in controlling TLR7-mediated lupus remains unknown. Here, we reveal that double TLR8/9-deficient (TLR8/9(-/-)) mice on the C57BL/6 background showed increased abnormalities characteristic of SLE, including splenomegaly, autoantibody production, frequencies of marginal zone and B1 B cells, and renal pathology compared with single TLR8(-/-) or TLR9(-/-) mice. On the cellular level, TLR8(-/-) and TLR8/9(-/-) dendritic cells were hyperesponsive to TLR7 ligand R848, but TLR9(-/-) cells responded normally. Moreover, B cells from TLR9(-/-) and TLR8/9(-/-) mice were hyperesponsive to R848, but TLR8(-/-) B cells were not. These results reveal that TLR8 and TLR9 have an additive effect on controlling TLR7 function and TLR7-mediated lupus; however, they act on different cell types. TLR8 controls TLR7 function on dendritic cells, and TLR9 restrains TLR7 response on B cells.
Collapse
|
49
|
SPRi-based strategy to identify specific biomarkers in systemic lupus erythematosus, rheumatoid arthritis and autoimmune hepatitis. PLoS One 2013; 8:e84600. [PMID: 24376828 PMCID: PMC3869893 DOI: 10.1371/journal.pone.0084600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/16/2013] [Indexed: 11/24/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is a target for antinuclear autoantibodies in systemic Lupus erythematosus (SLE), rheumatoid arthritis (RA), and autoimmune hepatitis (AIH). Aim To monitor molecular interactions between peptides spanning the entire sequence of hnRNP A2/B1 and sera from patients and healthy controls. Methods Sera from 8 patients from each pathology and controls were passed across a surface plasmon resonance Imagery (SPRi) surface containing 39 overlapping peptides of 17 mers covering the human hnRNP B1. Interactions involving the immobilised peptides were followed in real time and dissociation rate constants koff for each interaction were calculated. Results Several significant interactions were observed: i) high stability (lower koff values) between P55-70 and the AIH sera compared to controls (p= 0.003); ii) lower stability (higher koff values) between P118-133 and P262-277 and SLE sera, P145-160 and RA sera compared to controls (p=0.006, p=0.002, p=0.007). The binding curves and koff values observed after the formation of complexes with anti-IgM and anti-IgG antibodies and after nuclease treatment of the serum indicate that i) IgM isotypes are prevalent and ii) nucleic acids participate in the interaction between anti-hnRNAP B1 and P55-70 and also between controls and the peptides studied. Conclusions These results indicate that P55-70 of hnRNP B1 is a potential biomarker for AIH in immunological tests and suggest the role of circulating nucleic acids, (eg miRNA), present or absent according to the autoimmune disorders and involved in antigen-antibody stability.
Collapse
|
50
|
Khan WN, Wright JA, Kleiman E, Boucher JC, Castro I, Clark ES. B-lymphocyte tolerance and effector function in immunity and autoimmunity. Immunol Res 2013; 57:335-53. [DOI: 10.1007/s12026-013-8466-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|