1
|
Hestad KA, Aaseth JO, Kropotov JD. Neuropsychological Characteristics and Quantitative Electroencephalography in Skogholt's Disease-A Rare Neurodegenerative Disease in a Norwegian Family. Brain Sci 2024; 14:905. [PMID: 39335400 PMCID: PMC11430514 DOI: 10.3390/brainsci14090905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Members of three generations of a Norwegian family (N = 9) with a rare demyelinating disease were studied. Neuropsychological testing was performed using the Mini Mental Status Examination (MMSE), Wechsler Intelligence Scale-III (WAIS-III), and Hopkins Verbal Learning Test-Revised (HVLT-R). EEGs were recorded with grand averaging spectrograms and event-related potentials (ERPs) in rest and cued GO/NOGO task conditions. The results were within the normal range on the MMSE. Full-scale WAIS-III results were in the range of 69-113, with lower scores in verbal understanding than in perceptual organization, and low scores also in indications of working memory and processing speed difficulties. The HVLT-R showed impairment of both immediate and delayed recall. Quantitative EEG showed an increase in low alpha (around 7.5 Hz) activity in the temporofrontal areas, mostly on the left side. There was a deviation in the late (>300 ms) component in response to the NOGO stimuli. A strong correlation (r = 0.78, p = 0.01) between the Hopkins Verbal Learning Test (delayed recall) and the amplitude of the NOGO ERP component was observed. The EEG spectra showed deviations from the healthy controls, especially at frontotemporal deviations. Deviations in the ERP component of the NOGO trials were related to delayed recall in the Hopkins Verbal learning test.
Collapse
Affiliation(s)
- Knut A Hestad
- Department of Research, Innlandet Hospital Trust, N-1381 Brumunddal, Norway
| | - Jan O Aaseth
- Department of Research, Innlandet Hospital Trust, N-1381 Brumunddal, Norway
| | - Juri D Kropotov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Shi T, Chen Z, Li J, Wang H, Wang Q. AIF translocation into nucleus caused by Aifm1 R450Q mutation: generation and characterization of a mouse model for AUNX1. Hum Mol Genet 2024; 33:905-918. [PMID: 38449065 PMCID: PMC11070138 DOI: 10.1093/hmg/ddae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 03/08/2024] Open
Abstract
Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.
Collapse
Affiliation(s)
- Tao Shi
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Ziyi Chen
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Jin Li
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Hongyang Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Qiuju Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| |
Collapse
|
3
|
Schilliger Z, Alemán-Gómez Y, Magnus Smith M, Celen Z, Meuleman B, Binz PA, Steullet P, Do KQ, Conus P, Merglen A, Piguet C, Dwir D, Klauser P. Sex-specific interactions between stress axis and redox balance are associated with internalizing symptoms and brain white matter microstructure in adolescents. Transl Psychiatry 2024; 14:30. [PMID: 38233401 PMCID: PMC10794182 DOI: 10.1038/s41398-023-02728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Adolescence is marked by the maturation of systems involved in emotional regulation and by an increased risk for internalizing disorders (anxiety/depression), especially in females. Hypothalamic-pituitary-adrenal (HPA)-axis function and redox homeostasis (balance between reactive oxygen species and antioxidants) have both been associated with internalizing disorders and may represent critical factors for the development of brain networks of emotional regulation. However, sex-specific interactions between these factors and internalizing symptoms and their link with brain maturation remain unexplored. We investigated in a cohort of adolescents aged 13-15 from the general population (n = 69) whether sex-differences in internalizing symptoms were associated with the glutathione (GSH)-redox cycle homeostasis and HPA-axis function and if these parameters were associated with brain white matter microstructure development. Female adolescents displayed higher levels of internalizing symptoms, GSH-peroxidase (GPx) activity and cortisol/11-deoxycortisol ratio than males. There was a strong correlation between GPx and GSH-reductase (Gred) activities in females only. The cortisol/11-deoxycortisol ratio, related to the HPA-axis activity, was associated with internalizing symptoms in both sexes, whereas GPx activity was associated with internalizing symptoms in females specifically. The cortisol/11-deoxycortisol ratio mediated sex-differences in internalizing symptoms and the association between anxiety and GPx activity in females specifically. In females, GPx activity was positively associated with generalized fractional anisotropy in widespread white matter brain regions. We found that higher levels of internalizing symptoms in female adolescents than in males relate to sex-differences in HPA-axis function. In females, our results suggest an important interplay between HPA-axis function and GSH-homeostasis, a parameter strongly associated with brain white matter microstructure.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mariana Magnus Smith
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ben Meuleman
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Alain Binz
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arnaud Merglen
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Qiao H, Morioka Y, Wang D, Liu K, Gao S, Wake H, Ousaka D, Teshigawara K, Mori S, Nishibori M. Protective effects of an anti-4-HNE monoclonal antibody against liver injury and lethality of endotoxemia in mice. Eur J Pharmacol 2023; 950:175702. [PMID: 37059372 DOI: 10.1016/j.ejphar.2023.175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
4-hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product that is known to be elevated during oxidative stress. During systemic inflammation and endotoxemia, plasma levels of 4-HNE are elevated in response to lipopolysaccharide (LPS) stimulation. 4-HNE is a highly reactive molecule due to its generation of both Schiff bases and Michael adducts with proteins, which may result in modulation of inflammatory signaling pathways. In this study, we report the production of a 4-HNE adduct-specific monoclonal antibody (mAb) and the effectiveness of the intravenous injection of this mAb (1 mg/kg) in ameliorating LPS (10 mg/kg, i.v.)-induced endotoxemia and liver injury in mice. Endotoxic lethality in control mAb-treated group was suppressed by the administration of anti-4-HNE mAb (75 vs. 27%). After LPS injection, we observed a significant increase in the plasma levels of AST, ALT, IL-6, TNF-α and MCP-1, and elevated expressions of IL-6, IL-10 and TNF-α in the liver. All these elevations were inhibited by anti-4-HNE mAb treatment. As to the underlining mechanism, anti-4-HNE mAb inhibited the elevation of plasma high mobility group box-1 (HMGB1) levels, the translocation and release of HMGB1 in the liver and the formation of 4-HNE adducts themselves, suggesting a functional role of extracellular 4-HNE adducts in hypercytokinemia and liver injury associated with HMGB1 mobilization. In summary, this study reveals a novel therapeutic application of anti-4-HNE mAb for endotoxemia.
Collapse
Affiliation(s)
- Handong Qiao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yuta Morioka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shuji Mori
- Department of Pharmacology, Shujitsu University, Okayama, 703-8516, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
5
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
6
|
Chun YL, Eom WJ, Lee JH, Nguyen TNC, Park KH, Chung HJ, Seo H, Huh Y, Kim SH, Yeo SG, Park W, Bang G, Kim JY, Kim MS, Jeong NY, Jung J. Investigation of the Hydrogen Sulfide Signaling Pathway in Schwann Cells during Peripheral Nerve Degeneration: Multi-Omics Approaches. Antioxidants (Basel) 2022; 11:antiox11081606. [PMID: 36009325 PMCID: PMC9405209 DOI: 10.3390/antiox11081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
N-ethylmaleimide (NEM) inhibits peripheral nerve degeneration (PND) by targeting Schwann cells in a hydrogen sulfide (H2S)-pathway-dependent manner, but the underlying molecular and pharmacological mechanisms are unclear. We investigated the effect of NEM, an α,β-unsaturated carboxyl compound, on H2S signaling in in vitro- and ex vivo-dedifferentiated Schwann cells using global proteomics (LC-MS) and transcriptomics (whole-genome and small RNA-sequencing (RNA-seq)) methods. The multi-omics analyses identified several genes and proteins related to oxidative stress, such as Sod1, Gnao1, Stx4, Hmox2, Srxn1, and Edn1. The responses to oxidative stress were transcriptionally regulated by several transcription factors, such as Atf3, Fos, Rela, and Smad2. In a functional enrichment analysis, cell cycle, oxidative stress, and lipid/cholesterol metabolism were enriched, implicating H2S signaling in Schwann cell dedifferentiation, proliferation, and myelination. NEM-induced changes in the H2S signaling pathway affect oxidative stress, lipid metabolism, and the cell cycle in Schwann cells. Therefore, regulation of the H2S signaling pathway by NEM during PND could prevent Schwann cell demyelination, dedifferentiation, and proliferation.
Collapse
Affiliation(s)
- Yoo Lim Chun
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Department of Biomedical Science, Graduation School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan 49201, Korea
| | - Won-Joon Eom
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Department of Biomedical Science, Graduation School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Jun Hyung Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gu, Daegu 42988, Korea
| | - Thy N. C. Nguyen
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gu, Daegu 42988, Korea
| | - Ki-Hoon Park
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Seo-gu, Busan 49267, Korea
| | - Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Seo-gu, Busan 49267, Korea
| | - Han Seo
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kosin University, Seo-gu, Busan 49267, Korea
| | - Youngbuhm Huh
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Department of Biomedical Science, Graduation School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Sang Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Wonseok Park
- Department of Orthopedic Surgery, Good Samsun Hospital, Sasang-gu, Busan, 47007, Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gu, Daegu 42988, Korea
- Correspondence: (M.-S.K.); (N.Y.J.); (J.J.)
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan 49201, Korea
- Correspondence: (M.-S.K.); (N.Y.J.); (J.J.)
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Department of Biomedical Science, Graduation School, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (M.-S.K.); (N.Y.J.); (J.J.)
| |
Collapse
|
7
|
Fan Z, Liang L, Ma R, Xie R, Zhao Y, Zhang M, Guo B, Zeng T, He D, Zhao X, Zhang H. Maternal sevoflurane exposure disrupts oligodendrocyte myelination of the postnatal hippocampus and induces cognitive and motor impairments in offspring. Biochem Biophys Res Commun 2022; 614:175-182. [DOI: 10.1016/j.bbrc.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
8
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
9
|
Hydroxytyrosol Attenuates High-Fat-Diet-Induced Oxidative Stress, Apoptosis and Inflammation of Blunt Snout Bream (Megalobrama amblycephala) through Its Regulation of Mitochondrial Homeostasis. FISHES 2022. [DOI: 10.3390/fishes7020078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study was conducted to investigate the effects of dietary hydroxytyrosol (HT) on oxidative stress, inflammation and mitochondrial homeostasis in blunt snout bream (Megalobrama amblycephala). Fish were fed a low-fat diet (LFD, 5% lipid), a high-fat diet (HFD, 15% lipid), an LFD supplementing 200 mg/kg HT, or an HFD supplementing 200 mg/kg HT. After 10-week feeding, significant reduction of growth was observed in fish fed HFD, compared with other groups. HFD caused oxidative stress and more apoptosis of hepatocytes, while HT addition resulted in significant decrease of ROS and MDA contents, and the apoptotic hepatocytes. Moreover, the expression of genes involving inflammation of HFD group were elevated. Supplementing HT to HFD can attenuate this. All the activities of complexes of mitochondria in the HFD group were decreased compared with those in the LFD group, while supplementing HT to HFD significantly increased complex I-III activities. Furthermore, HFD downregulated the expressions of Atg5 and NRF-1 which induced the failure of mitophagy and biogenesis, while, supplementing HT to HFD reversed these expressions involving mitochondrial autophagy and biogenesis. In summary, adding HT to HFD relieved oxidative stress, apoptosis and inflammation, likely due to its regulation of mitochondrial homeostasis.
Collapse
|
10
|
Rudge JD. A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model. J Alzheimers Dis Rep 2022; 6:129-161. [PMID: 35530118 PMCID: PMC9028744 DOI: 10.3233/adr-210299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
This paper proposes a new hypothesis for Alzheimer's disease (AD)-the lipid invasion model. It argues that AD results from external influx of free fatty acids (FFAs) and lipid-rich lipoproteins into the brain, following disruption of the blood-brain barrier (BBB). The lipid invasion model explains how the influx of albumin-bound FFAs via a disrupted BBB induces bioenergetic changes and oxidative stress, stimulates microglia-driven neuroinflammation, and causes anterograde amnesia. It also explains how the influx of external lipoproteins, which are much larger and more lipid-rich, especially more cholesterol-rich, than those normally present in the brain, causes endosomal-lysosomal abnormalities and overproduction of the peptide amyloid-β (Aβ). This leads to the formation of amyloid plaques and neurofibrillary tangles, the most well-known hallmarks of AD. The lipid invasion model argues that a key role of the BBB is protecting the brain from external lipid access. It shows how the BBB can be damaged by excess Aβ, as well as by most other known risk factors for AD, including aging, apolipoprotein E4 (APOE4), and lifestyle factors such as hypertension, smoking, obesity, diabetes, chronic sleep deprivation, stress, and head injury. The lipid invasion model gives a new rationale for what we already know about AD, explaining its many associated risk factors and neuropathologies, including some that are less well-accounted for in other explanations of AD. It offers new insights and suggests new ways to prevent, detect, and treat this destructive disease and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan D’Arcy Rudge
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
11
|
Colella M, Panfoli I, Doglio M, Cassanello M, Bruschi M, Angelis LCD, Candiano G, Parodi A, Malova M, Petretto A, Morana G, Tortora D, Severino M, Maghnie M, Buonocore G, Rossi A, Baud O, Ramenghi LA. Adenosine Blood Level: A Biomarker of White Matter Damage in Very Low Birth Weight Infants. Curr Pediatr Rev 2022; 18:153-163. [PMID: 35086453 DOI: 10.2174/1573396318666220127155943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Very low birth weight infants are at risk of developing periventricular white matter lesions. We previously reported high blood adenosine levels in premature infants and infants with low birth weight. We asked whether blood adenosine levels could be related to the vulnerability of the maturing white matter to develop lesions. The present study aims at finding a biomarker for the early detection of brain white matter lesions that can profoundly influence the neurodevelopmental outcome, whose pathophysiology is still unclear. METHODS Dried blood spots were prospectively collected for the newborn screening program and adenosine concentration measurements. Fifty-six newborns who tested four times for blood adenosine concentration (at days 3, 15, 30, and 40 post-birth) were included in the program. All infants underwent brain MRI at term equivalent age. Neurodevelopmental outcomes were studied with Griffiths Mental Development Scales (GMDS) at 12 ± 2 months corrected age. RESULTS Blood adenosine concentration increased over time from a median of 0.75 μM at Day 3 to 1.46 μM at Day 40. Adenosine blood concentration >1.58 μM at Day 15 was significantly associated with brain white matter lesions at MRI (OR (95 % CI) of 50.0 (3.6-688.3), p-value < 0.001). A moderate negative correlation between adenosine at 15 days of life and GMDS at 12 ± 2 months corrected age was found. CONCLUSION These findings suggest a potential role for blood adenosine concentration as a biomarker of creberal white matter lesions in very low birth weight infants.
Collapse
Affiliation(s)
- Marina Colella
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Pediatrics, The University of Genova, Genoa, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia-DIFAR, Universitàdi Genova, Genoa, Italy
| | - Matteo Doglio
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Pediatrics, The University of Genova, Genoa, Italy
| | - Michela Cassanello
- LABSIEM-Laboratory for the Study of Inborn Errors of Metabolism, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Laura C De Angelis
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry-Core Facilities, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Morana
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Tortora
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariasavina Severino
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- LABSIEM-Laboratory for the Study of Inborn Errors of Metabolism, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, The University of Siena, Siena, Italy
| | - Andrea Rossi
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Oliver Baud
- Robert Debré hospital, Paris Diderot University, Paris, France
| | - Luca A Ramenghi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
A Multidrug Approach to Modulate the Mitochondrial Metabolism Impairment and Relative Oxidative Stress in Fanconi Anemia Complementation Group A. Metabolites 2021; 12:metabo12010006. [PMID: 35050128 PMCID: PMC8777953 DOI: 10.3390/metabo12010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination. As a control, isogenic FA cell lines corrected with the functional Fanc-A gene were used. Results showed that: (i) quercetin recovered the energy metabolism efficiency, reducing oxidative stress; (ii) C75 caused the lipid accumulation decrement and a slight oxidative stress reduction, without improving the energy metabolism; (iii) rapamycin reduced the aerobic metabolism and the oxidative stress, without increasing the energy status. In addition, all molecules reduce the accumulation of DNA double-strand breaks. Two-by-two combinations of the three drugs showed an additive effect compared with the action of the single molecule. Specifically, the quercetin/C75 combination appeared the most efficient in the mitochondrial and lipid metabolism improvement and in oxidative stress production reduction, while the quercetin/rapamycin combination seemed the most efficient in the DNA breaks decrement. Thus, data reported herein suggest that FA is a complex and multifactorial disease, and a multidrug strategy is necessary to correct the metabolic alterations.
Collapse
|
13
|
Sams E. Oligodendrocytes in the aging brain. Neuronal Signal 2021; 5:NS20210008. [PMID: 34290887 PMCID: PMC8264650 DOI: 10.1042/ns20210008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
More than half of the human brain volume is made up of white matter: regions where axons are coated in myelin, which primarily functions to increase the conduction speed of axon potentials. White matter volume significantly decreases with age, correlating with cognitive decline. Much research in the field of non-pathological brain aging mechanisms has taken a neuron-centric approach, with relatively little attention paid to other neural cells. This review discusses white matter changes, with focus on oligodendrocyte lineage cells and their ability to produce and maintain myelin to support normal brain homoeostasis. Improved understanding of intrinsic cellular changes, general senescence mechanisms, intercellular interactions and alterations in extracellular environment which occur with aging and impact oligodendrocyte cells is paramount. This may lead to strategies to support oligodendrocytes in aging, for example by supporting myelin synthesis, protecting against oxidative stress and promoting the rejuvenation of the intrinsic regenerative potential of progenitor cells. Ultimately, this will enable the protection of white matter integrity thus protecting cognitive function into the later years of life.
Collapse
Affiliation(s)
- Eleanor Catherine Sams
- Blizard Institute, Barts and The London School of Medicine and Dentistry Centre for Neuroscience, Surgery and Trauma, Blizard Institute, 4 Newark Street, Whitechapel E1 2AT, London
| |
Collapse
|
14
|
Enriched Environment Enhances the Myelin Regulatory Factor by mTOR Signaling and Protects the Myelin Membrane Against Oxidative Damage in Rats Exposed to Chronic Immobilization Stress. Neurochem Res 2021; 46:3314-3324. [PMID: 34449011 DOI: 10.1007/s11064-021-03433-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Long-term consequences of stress intervene in normal signaling of the brain leading to many psychological complications. The enriched environment (EE) may potentially ameliorate the stress response in rats. However, the mechanistic understanding of the enriched environment in protecting the myelin membrane from oxidative damage after prolonged exposure to immobilization stress (IS) remains vague. In the current study, we examined the impact of EE by exposing the rats to IS (4 h/day) followed by EE treatment (2 h/day) for 28 days and the activities of ROS, lipid peroxides, and phospholipids were studied, and its influence on the myelin regulatory factor (MyRF) and enzymes linked to sphingolipid was assessed in the forebrain region of myelin membrane. The ROS and lipid peroxidation was increased, and a significant decrease in the antioxidant activities was found in the IS group. IS + EE could reduce oxidative damage and increase the levels of antioxidant activities. The individual phospholipids including sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidic acid (PA) were decreased in the IS group, while IS + EE exhibited significant increase in the phospholipid classes regardless of the exposure to IS. There was down-regulation in the mRNA levels of MyRF, CERS2, SPLTC2, UGT8, and GLTP, while IS + EE could mitigate the up-regulation in the levels of mRNA of MyRF, CERS2, SPLTC2, UGT8, and GLTP. The protein expression of MOG, PLP1, and mTOR was found to be reduced in the IS group of rats, however, IS + EE revealed significant increase in the expression of these signaling molecules. These results suggest that EE had a positive effect on chronic stress response by protecting the myelin membrane against oxidative damage and increasing the protein synthesis required for myelin membrane plasticity via activation of MyRF and mTOR signaling in the forebrain region of IS exposed rats.
Collapse
|
15
|
Santín-Márquez R, Ramírez-Cordero B, Toledo-Pérez R, Luna-López A, López-Diazguerrero NE, Hernández-Arciga U, Pérez-Morales M, Ortíz-Retana JJ, García-Servín M, Alcauter S, Hernández-Godínez B, Ibañez-Contreras A, Concha L, Gómez-González B, Königsberg M. Sensory and memory processing in old female and male Wistar rat brain, and its relationship with the cortical and hippocampal redox state. GeroScience 2021; 43:1899-1920. [PMID: 33837484 PMCID: PMC8492817 DOI: 10.1007/s11357-021-00353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
The brain is one of the most sensitive organs damaged during aging due to its susceptibility to the aging-related oxidative stress. Hence, in this study, the sensory nerve pathway integrity and the memory were evaluated and related to the redox state, the antioxidant enzymes function, and the protein oxidative damage in the brain cortex (Cx) and the hippocampus (Hc) of young (4-month-old) and old (24-month-old) male and female Wistar rats. Evoked potentials (EP) were performed for the auditory, visual, and somatosensory pathways. In both males and females, the old rat groups' latencies were larger in almost all waves when compared to the young same-sex animals. The novel object test was performed to evaluate memory. The superoxide dismutase and catalase antioxidant activity, as well as the protein oxidative damage, and the redox state were evaluated. Magnetic resonance (MR) imaging was used to obtain the diffusion tensor imaging, and the brain volume, while MR spectroscopy was used to obtain the brain metabolite concentrations (glutamine, glutamate, Myo-inositol, N-acetyl-aspartate, creatine) in the Cx and the Hc of young and old females. Our data suggest that, although there are limited variations regarding memory and nerve conduction velocity by sex, the differences concerning the redox status might be important to explain the dissimilar reactions during brain aging between males and females. Moreover, the increment in Myo-inositol levels in the Hc of old rats and the brain volume decrease suggest that redox state alterations might be correlated to neuroinflammation during brain aging.
Collapse
Affiliation(s)
- Roberto Santín-Márquez
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
- Posgrado en Biología Experimental, UAMI, México, México
| | - Belén Ramírez-Cordero
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Rafael Toledo-Pérez
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
- Posgrado en Biología Experimental, UAMI, México, México
| | | | - Norma E López-Diazguerrero
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Ulalume Hernández-Arciga
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Marcel Pérez-Morales
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Juan José Ortíz-Retana
- Laboratorio Nacional Enfocado en Imagenología por Resonancia Magnética, Instituto de Neurobiología, UNAM, Juriquilla, Mexico
| | | | - Sarael Alcauter
- Laboratorio Nacional Enfocado en Imagenología por Resonancia Magnética, Instituto de Neurobiología, UNAM, Juriquilla, Mexico
| | | | | | - Luis Concha
- Laboratorio Nacional Enfocado en Imagenología por Resonancia Magnética, Instituto de Neurobiología, UNAM, Juriquilla, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, México, CDMX, 09340, México.
| |
Collapse
|
16
|
Ravera S, Bartolucci M, Calzia D, Morelli AM, Panfoli I. Efficient extra-mitochondrial aerobic ATP synthesis in neuronal membrane systems. J Neurosci Res 2021; 99:2250-2260. [PMID: 34085315 DOI: 10.1002/jnr.24865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
Abstract
The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Martina Bartolucci
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini, Genoa, Italy.,Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| | | | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab., University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Ding X, Li X, Wang L, Zeng J, Huang L, Xiong L, Song S, Zhao J, Hou L, Wang F, Pei Y. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1092-1094. [PMID: 33787060 PMCID: PMC8196644 DOI: 10.1111/pbi.13594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Xiaoyan Ding
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Xianbi Li
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Lei Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Jianyan Zeng
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Liang Huang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Li Xiong
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Shuiqing Song
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Juan Zhao
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Lei Hou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Fanlong Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsBiotechnology Research CenterSouthwest UniversityChongqingChina
| |
Collapse
|
18
|
PKCα Inhibition as a Strategy to Sensitize Neuroblastoma Stem Cells to Etoposide by Stimulating Ferroptosis. Antioxidants (Basel) 2021; 10:antiox10050691. [PMID: 33924765 PMCID: PMC8145544 DOI: 10.3390/antiox10050691] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a limited cell population inside a tumor bulk characterized by high levels of glutathione (GSH), the most important antioxidant thiol of which cysteine is the limiting amino acid for GSH biosynthesis. In fact, CSCs over-express xCT, a cystine transporter stabilized on cell membrane through interaction with CD44, a stemness marker whose expression is modulated by protein kinase Cα (PKCα). Since many chemotherapeutic drugs, such as Etoposide, exert their cytotoxic action by increasing reactive oxygen species (ROS) production, the presence of high antioxidant defenses confers to CSCs a crucial role in chemoresistance. In this study, Etoposide-sensitive and -resistant neuroblastoma CSCs were chronically treated with Etoposide, given alone or in combination with Sulfasalazine (SSZ) or with an inhibitor of PKCα (C2-4), which target xCT directly or indirectly, respectively. Both combined approaches are able to sensitize CSCs to Etoposide by decreasing intracellular GSH levels, inducing a metabolic switch from OXPHOS to aerobic glycolysis, down-regulating glutathione-peroxidase-4 activity and stimulating lipid peroxidation, thus leading to ferroptosis. Our results suggest, for the first time, that PKCα inhibition inducing ferroptosis might be a useful strategy with which to fight CSC chemoresistance.
Collapse
|
19
|
Savas HB, Sayar E, Kara T. Thiol Disulfide Balance Oxidative Stress and Paraoxonase 1 Activities in Children and Adolescents Aged 6-16 Years with Specific Learning Disorders. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Photobiomodulation and Oxidative Stress: 980 nm Diode Laser Light Regulates Mitochondrial Activity and Reactive Oxygen Species Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626286. [PMID: 33763170 PMCID: PMC7952159 DOI: 10.1155/2021/6626286] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Photobiomodulation with 808 nm laser light electively stimulates Complexes III and IV of the mitochondrial respiratory chain, while Complexes I and II are not affected. At the wavelength of 1064 nm, Complexes I, III, and IV are excited, while Complex II and some mitochondrial matrix enzymes seem to be not receptive to photons at that wavelength. Complex IV was also activated by 633 nm. The mechanism of action of wavelengths in the range 900–1000 nm on mitochondria is less understood or not described. Oxidative stress from reactive oxygen species (ROS) generated by mitochondrial activity is an inescapable consequence of aerobic metabolism. The antioxidant enzyme system for ROS scavenging can keep them under control. However, alterations in mitochondrial activity can cause an increment of ROS production. ROS and ATP can play a role in cell death, cell proliferation, and cell cycle arrest. In our work, bovine liver isolated mitochondria were irradiated for 60 sec, in continuous wave mode with 980 nm and powers from 0.1 to 1.4 W (0.1 W increment at every step) to generate energies from 6 to 84 J, fluences from 7.7 to 107.7 J/cm2, power densities from 0.13 to 1.79 W/cm2, and spot size 0.78 cm2. The control was equal to 0 W. The activity of the mitochondria's complexes, Krebs cycle enzymes, ATP production, oxygen consumption, generation of ROS, and oxidative stress were detected. Lower powers (0.1–0.2 W) showed an inhibitory effect; those that were intermediate (0.3–0.7 W) did not display an effect, and the higher powers (0.8–1.1 W) induced an increment of ATP synthesis. Increasing the power (1.2–1.4 W) recovered the ATP production to the control level. The interaction occurred on Complexes III and IV, as well as ATP production and oxygen consumption. Results showed that 0.1 W uncoupled the respiratory chain and induced higher oxidative stress and drastic inhibition of ATP production. Conversely, 0.8 W kept mitochondria coupled and induced an increase of ATP production by increments of Complex III and IV activities. An augmentation of oxidative stress was also observed, probably as a consequence of the increased oxygen consumption and mitochondrial isolation experimental conditions. No effect was observed using 0.5 W, and no effect was observed on the enzymes of the Krebs cycle.
Collapse
|
21
|
Bauckneht M, Pastorino F, Castellani P, Cossu V, Orengo AM, Piccioli P, Emionite L, Capitanio S, Yosifov N, Bruno S, Lazzarini E, Ponzoni M, Ameri P, Rubartelli A, Ravera S, Morbelli S, Sambuceti G, Marini C. Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. J Nucl Cardiol 2020; 27:2183-2194. [PMID: 30737636 DOI: 10.1007/s12350-019-01618-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Oxidative stress and its interference on myocardial metabolism play a major role in Doxorubicin (DXR) cardiotoxic cascade. METHODS Mice models of neuroblastoma (NB) were treated with 5 mg DXR/kg, either free (Free-DXR) or encapsulated in untargeted (SL[DXR]) or in NB-targeting Stealth Liposomes (pep-SL[DXR] and TP-pep-SL[DXR]). Control mice received saline. FDG-PET was performed at baseline (PET1) and 7 days after therapy (PET2). At PET2 Troponin-I and NT-proBNP were assessed. Explanted hearts underwent biochemical, histological, and immunohistochemical analyses. Finally, FDG uptake and glucose consumption were simultaneously measured in cultured H9c2 in the presence/absence of Free-DXR (1 μM). RESULTS Free-DXR significantly enhanced the myocardial oxidative stress. Myocardial-SUV remained relatively stable in controls and mice treated with liposomal formulations, while it significantly increased at PET2 with respect to baseline in Free-DXR. At this timepoint, myocardial-SUV was directly correlated with both myocardial redox stress and hexose-6-phosphate-dehydrogenase (H6PD) enzymatic activity, which selectively sustain cellular anti-oxidant mechanisms. Intriguingly, in vitro, Free-DXR selectively increased FDG extraction fraction without altering the corresponding value for glucose. CONCLUSION The direct correlation between cardiac FDG uptake and oxidative stress indexes supports the potential role of FDG-PET as an early biomarker of DXR oxidative damage.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Fabio Pastorino
- Laboratory of Experimental Therapy in Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nikola Yosifov
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Edoardo Lazzarini
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine & Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapy in Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine & Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| |
Collapse
|
22
|
Marini C, Cossu V, Bonifacino T, Bauckneht M, Torazza C, Bruno S, Castellani P, Ravera S, Milanese M, Venturi C, Carlone S, Piccioli P, Emionite L, Morbelli S, Orengo AM, Donegani MI, Miceli A, Raffa S, Marra S, Signori A, Cortese K, Grillo F, Fiocca R, Bonanno G, Sambuceti G. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res 2020; 10:76. [PMID: 32638178 PMCID: PMC7340686 DOI: 10.1186/s13550-020-00666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. Results FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. Conclusion Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milano, Italy. .,Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | | | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Marra
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Roberto Fiocca
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy.,Pharmacology and Toxicology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
23
|
Cappelli E, Degan P, Bruno S, Pierri F, Miano M, Raggi F, Farruggia P, Mecucci C, Crescenzi B, Naim V, Dufour C, Ravera S. The passage from bone marrow niche to bloodstream triggers the metabolic impairment in Fanconi Anemia mononuclear cells. Redox Biol 2020; 36:101618. [PMID: 32863220 PMCID: PMC7327247 DOI: 10.1016/j.redox.2020.101618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by bone marrow (BM) failure and aplastic anemia. In addition to a defective DNA repair system, other mechanisms are involved in its pathogenesis, such as defective mitochondrial metabolism, accumulation of lipids, and increment of oxidative stress production. To better understand the role of these metabolic alterations in the process of HSC maturation in FA, we evaluated several biochemical and cellular parameters on mononuclear cells isolated from the bone marrow of FA patients or healthy donors. To mimic the cellular residence in the BM niche or their exit from the BM niche to the bloodstream, cells have been grown in hypoxic or normoxic conditions, respectively. The data show that, in normoxic conditions, a switch from anaerobic to aerobic metabolism occurs both in healthy and in pathological samples. However, in FA cells this change is associated with altered oxidative phosphorylation, the increment of oxidative stress production, no activation of the endogenous antioxidant defenses and arrest in the G2M phase of the cell cycle. By contrast, FA cells grown in hypoxic conditions do not show cell cycle and metabolic alterations in comparison to the healthy control, maintaining both an anaerobic flux. The data reported herein suggests that the passage from the BM niche to the bloodstream represents a crucial point in the FA pathogenesis associated with mitochondrial dysfunction. MNCs isolated from the bloodstream of FA patients display a metabolic defect. The metabolic defect is not evident in FA-MNCs isolated from the bone marrow niche. The metabolic defect seems to be linked to the oxygen availability. The passage from the BM niche to the bloodstream is crucial in FA pathogenesis.
Collapse
Affiliation(s)
- Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Degan
- Mutagenesis and Preventive Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Bruno
- Experimental Medicine Department, University of Genova, Genoa, Italy
| | - Filomena Pierri
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federica Raggi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Piero Farruggia
- A.R.N.A.S. Ospedali Civico Di Cristina e Benfratelli, Palermo, Italy
| | - Cristina Mecucci
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Barbara Crescenzi
- Department of Medicine, Section of Hematology and Center for Hemato-Oncology Research CREO, Cytogenetics and Molecular Medicine Laboratory, University of Perugia, Perugia, Italy
| | - Valeria Naim
- CNRS UMR9019, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Vilejuif, France
| | - Carlo Dufour
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Ravera
- Experimental Medicine Department, University of Genova, Genoa, Italy
| |
Collapse
|
24
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
25
|
Richter AE, Salavati S, Kooi EMW, den Heijer AE, Foreman AB, Schoots MH, Bilardo CM, Scherjon SA, Tanis JC, Bos AF. Fetal Brain-Sparing, Postnatal Cerebral Oxygenation, and Neurodevelopment at 4 Years of Age Following Fetal Growth Restriction. Front Pediatr 2020; 8:225. [PMID: 32435629 PMCID: PMC7218090 DOI: 10.3389/fped.2020.00225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/15/2020] [Indexed: 01/06/2023] Open
Abstract
Objectives: To assess the role of fetal brain-sparing and postnatal cerebral oxygen saturation (rcSO2) as determinants of long-term neurodevelopmental outcome following fetal growth restriction (FGR). Methods: This was a prospective follow-up study of an FGR cohort of 41 children. Prenatally, the presence of fetal brain-sparing (cerebroplacental ratio < 1) was assessed by Doppler ultrasound. During the first two days after birth, rcSO2 was measured with near-infrared spectroscopy. At 4 years of age, intelligence (IQ points), behavior (T-scores), and executive function (T-scores) were assessed using the Wechsler Preschool and Primary Scale of Intelligence, Child Behavior Checklist, and Behavior Rating Inventory of Executive Function-Preschool Version, respectively. Using linear regression analyses, we tested the association (p < 0.05) between brain-sparing/rcSO2 and normed neurodevelopmental scores. Results: Twenty-six children (gestational age ranging from 28.0 to 39.9 weeks) participated in the follow-up at a median age of 4.3 (range: 3.6 to 4.4) years. Autism spectrum disorder was reported in three children (11.5%). Fetal brain-sparing was associated with better total and externalizing behavior (betas: -0.519 and -0.494, respectively). RcSO2 levels above the lowest quartile, particularly on postnatal day 2 (≥ 77%), were associated with better total and internalizing behavior and executive functioning (betas: -0.582, -0.489, and -0.467, respectively), but also lower performance IQ (beta: -0.530). Brain-sparing mediated some but not all of these associations. Conclusions: In this FGR cohort, fetal brain-sparing and high postnatal rcSO2 were-independently, but also as a reflection of the same mechanism-associated with better behavior and executive function. Postnatal cerebral hyperoxia, however, was negatively associated with brain functions responsible for performance IQ.
Collapse
Affiliation(s)
- Anne E Richter
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Neonatology, Groningen, Netherlands
| | - Sahar Salavati
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Neonatology, Groningen, Netherlands
| | - Elisabeth M W Kooi
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Neonatology, Groningen, Netherlands
| | - Anne E den Heijer
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Neonatology, Groningen, Netherlands
| | - Anne B Foreman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Neonatology, Groningen, Netherlands
| | - Mirthe H Schoots
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, Netherlands
| | - Caterina M Bilardo
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands.,Department of Obstetrics and Gynecology, Amsterdam University Medical Center, VU University Medical Center, Amsterdam, Netherlands
| | - Sicco A Scherjon
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Jozien C Tanis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Arend F Bos
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Neonatology, Groningen, Netherlands
| |
Collapse
|
26
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
28
|
Tobore TO. On elucidation of the role of mitochondria dysfunction and oxidative stress in multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/ncn3.12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
30
|
Orczykowski ME, Calderazzo SM, Shobin E, Pessina MA, Oblak AL, Finklestein SP, Kramer BC, Mortazavi F, Rosene DL, Moore TL. Cell based therapy reduces secondary damage and increases extent of microglial activation following cortical injury. Brain Res 2019; 1717:147-159. [PMID: 30998931 PMCID: PMC6530569 DOI: 10.1016/j.brainres.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Cortical injury elicits long-term cytotoxic and cytoprotective mechanisms within the brain and the balance of these pathways can determine the functional outcome for the individual. Cytotoxicity is exacerbated by production of reactive oxygen species, accumulation of iron, and peroxidation of cell membranes and myelin. There are currently no neurorestorative treatments to aid in balancing the cytotoxic and cytoprotective mechanisms following cortical injury. Cell based therapies are an emerging treatment that may function in immunomodulation, reduction of secondary damage, and reorganization of surviving structures. We previously evaluated human umbilical tissue-derived cells (hUTC) in our non-human primate model of cortical injury restricted to the hand area of primary motor cortex. Systemic hUTC treatment resulted in significantly greater recovery of fine motor function compared to vehicle controls. Here we investigate the hypothesis that hUTC treatment reduces oxidative damage and iron accumulation and increases the extent of the microglial response to cortical injury. To test this, brain sections from these monkeys were processed using immunohistochemistry to quantify oxidative damage (4-HNE) and activated microglia (LN3), and Prussian Blue to quantify iron. hUTC treated subjects exhibited significantly reduced oxidative damage in the sublesional white matter and iron accumulation in the perilesional area as well as a significant increase in the extent of activated microglia along white matter pathways. Increased perilesional iron accumulation was associated with greater perilesional oxidative damage and larger reconstructed lesion volume. These findings support the hypothesis that systemic hUTC administered 24 h after cortical damage decreases the cytotoxic response while increasing the extent of microglial activation.
Collapse
Affiliation(s)
- Mary E Orczykowski
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Samantha M Calderazzo
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Eli Shobin
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adrian L Oblak
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Brian C Kramer
- Janssen Scientific Affairs, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Farzad Mortazavi
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA; Yerkes National Primate Research Center, 201 Dowman Drive, Emory University, Atlanta, GA 30322, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, 72 E. Concord Street, L-1004, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, 72 E. Concord Street, C3, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
31
|
Discrete Changes in Glucose Metabolism Define Aging. Sci Rep 2019; 9:10347. [PMID: 31316102 PMCID: PMC6637183 DOI: 10.1038/s41598-019-46749-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.
Collapse
|
32
|
Gupta R, Saha P, Sen T, Sen N. An augmentation in histone dimethylation at lysine nine residues elicits vision impairment following traumatic brain injury. Free Radic Biol Med 2019; 134:630-643. [PMID: 30790655 PMCID: PMC6588499 DOI: 10.1016/j.freeradbiomed.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022]
Abstract
Traumatic Brain Injury (TBI) affects more than 1.7 million Americans each year and about 30% of TBI-patients having visual impairments. The loss of retinal ganglion cells (RGC) in the retina and axonal degeneration in the optic nerve have been attributed to vision impairment following TBI; however, the molecular mechanism has not been elucidated. Here we have shown that an increase in histone di-methylation at lysine 9 residue (H3K9Me2), synthesized by the catalytic activity of a histone methyltransferase, G9a is responsible for RGC loss and axonal degeneration in the optic nerve following TBI. To elucidate the molecular mechanism, we found that an increase in H3K9Me2 results in the induction of oxidative stress both in the RGC and optic nerve by decreasing the mRNA level of antioxidants such as Superoxide dismutase (sod) and catalase through impairing the transcriptional activity of Nuclear factor E2-related factor 2 (Nrf2) via direct interaction. The induction of oxidative stress is associated with death in RGC and oligodendrocyte precursor cells (OPCs). The death in OPCs is correlated with a reduction in myelination, and the expression of myelin binding protein (MBP) in association with degeneration of neurofilaments in the optic nerve. This event allied to an impairment of the retrograde transport of axons and loss of nerve fiber layer in the optic nerve following TBI. An administration of G9a inhibitor, UNC0638 attenuates the induction of H3K9Me2 both in RGC and optic nerve and subsequently activates Nrf2 to reduce oxidative stress. This event was concomitant with the rescue in the loss of retinal thickness, attenuation in optic nerve degeneration and improvement in the retrograde transport of axons following TBI.
Collapse
Affiliation(s)
- Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, USA.
| |
Collapse
|
33
|
Bianchi G, Ravera S, Traverso C, Amaro A, Piaggio F, Emionite L, Bachetti T, Pfeffer U, Raffaghello L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis 2019; 39:1141-1150. [PMID: 29860383 DOI: 10.1093/carcin/bgy076] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | | | | | - Laura Emionite
- Animal Facility, Ospedale Policlinico San Martino, Genova, Italy
| | - Tiziana Bachetti
- Department of Medical Genetics, Istituto G. Gaslini, Genova, Italy.,Biochemistry Laboratory, University of Genova, Genova, Italy
| | | | | |
Collapse
|
34
|
Lu Y, Li R, Zhu J, Wu Y, Li D, Dong L, Li Y, Wen X, Yu F, Zhang H, Ni X, Du S, Li X, Xiao J, Wang J. Fibroblast growth factor 21 facilitates peripheral nerve regeneration through suppressing oxidative damage and autophagic cell death. J Cell Mol Med 2018; 23:497-511. [PMID: 30450828 PMCID: PMC6307793 DOI: 10.1111/jcmm.13952] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Seeking for effective drugs which are beneficial to facilitating axonal regrowth and elongation after peripheral nerve injury (PNI) has gained extensive attention. Fibroblast growth factor 21 (FGF21) is a metabolic factor that regulates blood glucose and lipid homeostasis. However, there is little concern for the potential protective effect of FGF21 on nerve regeneration after PNI and revealing related molecular mechanisms. Here, we firstly found that exogenous FGF21 administration remarkably promoted functional and morphologic recovery in a rat model of sciatic crush injury, manifesting as persistently improved motor and sensory function, enhanced axonal remyelination and regrowth and accelerated Schwann cells (SCs) proliferation. Furthermore, local FGF21 application attenuated the excessive activation of oxidative stress, which was accompanied with the activation of nuclear factor erythroid‐2‐related factor 2 (Nrf‐2) transcription and extracellular regulated protein kinases (ERK) phosphorylation. We detected FGF21 also suppressed autophagic cell death in SCs. Additionally, treatment with the ERK inhibitor U0126 or autophagy inhibitor 3‐MA partially abolishes anti‐oxidant effect and reduces SCs death. Taken together, these results indicated that the role of FGF21 in remyelination and nerve regeneration after PNI was probably related to inhibit the excessive activation of ERK/Nrf‐2 signalling‐regulated oxidative stress and autophagy‐induced cell death. Overall, our work suggests that FGF21 administration may provide a new therapy for PNI.
Collapse
Affiliation(s)
- Yingfeng Lu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Li
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqing Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Duohui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lupeng Dong
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wen
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangzheng Yu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Ni
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghu Du
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
35
|
Lv W, Deng B, Duan W, Li Y, Liu Y, Li Z, Xia W, Li C. Schwann Cell Plasticity is Regulated by a Weakened Intrinsic Antioxidant Defense System in Acute Peripheral Nerve Injury. Neuroscience 2018; 382:1-13. [PMID: 29684504 DOI: 10.1016/j.neuroscience.2018.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/01/2022]
Abstract
The biological effects of the transcription factor NF-E2-related factor 2 (Nrf2) in acute peripheral nervous system (PNS) injury have not been adequately elucidated. By analyzing the results of Nrf2 knockout and Nrf2 activation experiments, we found the following: (1) the antioxidant system was rapidly inactivated after acute PNS injury in a partly Nrf2-dependent manner, giving rise to a temporary state of oxidative stress, and then slowly and partially recovered following regeneration. (2) Nrf2 knockout promoted the reprogramming and proliferation of Schwann cells and inhibited myelination, as well as the redifferentiation of repair Schwann cells. (3) Dimethyl fumarate had no influence on the myelination of regenerated nerves. (4) Nrf2 functional regulation was able to regulate the redox status of nerves by changing the levels of target antioxidants and reactive oxygen species (ROS) at the same time, without altering the balance between them. In conclusion, the Nrf2-antioxidant system was temporarily inactivated in injured nerves, promoting Schwann cell reprogramming and proliferation, and its functional recovery was essential for Schwann cell redifferentiation and myelination.
Collapse
Affiliation(s)
- Wenjing Lv
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China
| | - Binbin Deng
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China
| | - Weisong Duan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yuanyuan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Yakun Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Zhongyao Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China
| | - Wei Xia
- Neurological Intensive Care Unit, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, PR China
| | - Chunyan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China; Institute of Cardiocerebrovascular Disease, West Heping Road 215, Shijiazhuang 050000, Hebei, PR China; Neurological Laboratory of Hebei Province, Shijiazhuang 050000, Hebei, PR China.
| |
Collapse
|
36
|
Ravera S, Signorello MG, Bartolucci M, Ferrando S, Manni L, Caicci F, Calzia D, Panfoli I, Morelli A, Leoncini G. Extramitochondrial energy production in platelets. Biol Cell 2018. [PMID: 29537672 DOI: 10.1111/boc.201700025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the β subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | | | - Martina Bartolucci
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Sara Ferrando
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), University of Genoa, Genoa, 16132, Italy
| | - Lucia Manni
- Department of Biology, Università di Padova, Padova, Italy
| | | | - Daniela Calzia
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Alessandro Morelli
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genova, Genova, 16132, Italy
| |
Collapse
|
37
|
Ravera S, Bonifacino T, Bartolucci M, Milanese M, Gallia E, Provenzano F, Cortese K, Panfoli I, Bonanno G. Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2018; 55:9220-9233. [PMID: 29656361 DOI: 10.1007/s12035-018-1059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset fatal neurodegenerative disease characterized by muscle wasting, weakness, and spasticity due to a progressive degeneration of cortical, brainstem, and spinal motor neurons. The etiopathological causes are still largely obscure, although astrocytes definitely play a role in neuronal damage. Several mechanisms have been proposed to concur to neurodegeneration in ALS, including mitochondrial dysfunction. We have previously shown profound modifications of glutamate release and presynaptic plasticity in the spinal cord of the SOD1G93A mouse model of ALS. In this work, we characterized, for the first time, the aerobic metabolism in two specific compartments actively involved in neurotransmission (i.e. the presynaptic district, using purified synaptosomes, and the perisynaptic astrocyte processes, using purified gliosomes) in SOD1G93A mice at different stages of the disease. ATP/AMP ratio was lower in synaptosomes isolated from the spinal cord, but not from other brain areas, of SOD1G93A vs. control mice. The energy impairment was linked to altered oxidative phosphorylation (OxPhos) and increment of lipid peroxidation. These metabolic dysfunctions were present during disease progression, starting at the very pre-symptomatic stages, and did not depend on a different number of mitochondria or a different expression of OxPhos proteins. Conversely, gliosomes showed a reduction of the ATP/AMP ratio only at the late stages of the disease and an increment of oxidative stress also in the absence of a significant decrement in OxPhos activity. Data suggest that the presynaptic neuronal moiety plays a pivotal role for synaptic energy metabolism dysfunctions in ALS. Changes in the perisynaptic compartment seem subordinated to neuronal damage.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Martina Bartolucci
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, 16132, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148, Genoa, Italy. .,Center of Excellence for Biomedical Research, University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
38
|
Ravera S, Podestà M, Sabatini F, Fresia C, Columbaro M, Bruno S, Fulcheri E, Ramenghi LA, Frassoni F. Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Cell Mol Life Sci 2018; 75:889-903. [PMID: 28975370 PMCID: PMC11105169 DOI: 10.1007/s00018-017-2665-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
We evaluated the energy metabolism of human mesenchymal stem cells (MSC) isolated from umbilical cord (UC) of preterm (< 37 weeks of gestational age) and term (≥ 37 weeks of gestational age) newborns, using MSC from adult bone marrow as control. A metabolic switch has been observed around the 34th week of gestational age from a prevalently anaerobic glycolysis to the oxidative phosphorylation. This metabolic change is associated with the organization of mitochondria reticulum: preterm MSCs presented a scarcely organized mitochondrial reticulum and low expression of proteins involved in the mitochondrial fission/fusion, compared to term MSCs. These changes seem governed by the expression of CLUH, a cytosolic messenger RNA-binding protein involved in the mitochondria biogenesis and distribution inside the cell; in fact, CLUH silencing in term MSC determined a metabolic fingerprint similar to that of preterm MSC. Our study discloses novel information on the production of energy and mitochondrial organization and function, during the passage from fetal to adult life, providing useful information for the management of preterm birth.
Collapse
Affiliation(s)
- Silvia Ravera
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy.
| | - Marina Podestà
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IRCCS Rizzoli Orthopedic Institute, 40136, Bologna, Italy
| | - Silvia Bruno
- Section of Human Anatomy, Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Ezio Fulcheri
- Laboratory Medicine and Diagnostic Services, Division of Perinatal Pathology, Department of Translational Research, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | | | - Francesco Frassoni
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| |
Collapse
|
39
|
Colla R, Izzotti A, De Ciucis C, Fenoglio D, Ravera S, Speciale A, Ricciarelli R, Furfaro AL, Pulliero A, Passalacqua M, Traverso N, Pronzato MA, Domenicotti C, Marengo B. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 2018; 7:70715-70737. [PMID: 27683112 PMCID: PMC5342585 DOI: 10.18632/oncotarget.12209] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration that in vitro mimics the clinically-used dose. The selected cells (HTLA-Chr) acquire multi-drug resistance (MDR), becoming less sensitive than parental cells to high doses of etoposide or doxorubicin. MDR is due to several mechanisms that together contribute to maintaining non-toxic levels of H2O2. In fact, HTLA-Chr cells, while having an efficient aerobic metabolism, are also characterized by an up-regulation of catalase activity and higher levels of reduced glutathione (GSH), a thiol antioxidant compound. The combination of such mechanisms contributes to prevent membrane lipoperoxidation and cell death. Treatment of HTLA-Chr cells with L-Buthionine-sulfoximine, an inhibitor of GSH biosynthesis, markedly reduces their tumorigenic potential that is instead enhanced by the exposure to N-Acetylcysteine, able to promote GSH synthesis. Collectively, these results demonstrate that GSH and GSH-related responses play a crucial role in the acquisition of MDR and suggest that GSH level monitoring is an efficient strategy to early identify the onset of drug resistance and to control the patient's response to therapy.
Collapse
Affiliation(s)
- Renata Colla
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genova, Genova, Italy.,IRCCS AOU San Martino IST Genova, Genova, Italy
| | - Chiara De Ciucis
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Andrea Speciale
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Nicola Traverso
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
40
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
41
|
Jiang TT, Wei LL, Shi LY, Chen ZL, Wang C, Liu CM, Li ZJ, Li JC. Microarray expression profile analysis of mRNAs and long non-coding RNAs in pulmonary tuberculosis with different traditional Chinese medicine syndromes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:472. [PMID: 27855662 PMCID: PMC5114807 DOI: 10.1186/s12906-016-1436-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
Abstract
Background Combination chemotherapy with Western anti-tuberculosis (TB) drugs is the mainstay of TB treatment. Chinese herbal medicines with either heat clearing and detoxifying effects or nourishing Yin and reducing fire effects have been used to treat TB based on the Traditional Chinese Medicine (TCM) syndromes of TB patients. This study analyzed the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs in TB patients with different TCM syndromes. Methods TB patients were classified as pulmonary Yin deficiency (PYD) syndrome, hyperactivity of fire due to Yin deficiency (HFYD) syndrome, and deficiency of Qi and Yin (DQY) syndrome. Total RNA from 44 TB patients and healthy controls was extracted and hybridized with a human lncRNA microarray containing 30586 lncRNAs and 26109 mRNAs probes. Bioinformatics analyses, including gene ontology (GO) and pathways, were performed. Related clinical data were also analyzed. Results Differentially expressed mRNAs and lncRNAs were identified (fold change >2, and P < 0.05) in PYD (634 mRNAs and 566 lncRNAs), HFYD (47 mRNAs and 55 lncRNAs), and DQY (63 mRNAs and 60 lncRNAs) patients. The most enriched pathways were the hippo signaling pathway (P = 0.000164) and the protein digestion and absorption pathway (P = 5.89017E-05). Clinical analyses revealed that the lipid indexes of TB patients were abnormal and that the triglyceride concentration was significantly higher in DQY patients (P = 0.0252). Our study is the first to acquire the microarray expression profiles of lncRNAs and mRNAs and analyze pathway enrichment in PYD, HFYD, and DQY patients with TB. Conclusions Our analyses of the expression profiles of lncRNAs and mRNAs may represent a novel method to explore the biological essence of TCM syndromes of TB. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1436-y) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Mol Neurobiol 2016; 54:7520-7533. [DOI: 10.1007/s12035-016-0257-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
43
|
Ravera S, Panfoli I. Role of myelin sheath energy metabolism in neurodegenerative diseases. Neural Regen Res 2015; 10:1570-1. [PMID: 26692843 PMCID: PMC4660739 DOI: 10.4103/1673-5374.167749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Silvia Ravera
- Pharmacy Department, Biochemistry Laboratory, University of Genova, Viale Benedetto XV, Genova, Italy
| | - Isabella Panfoli
- Pharmacy Department, Biochemistry Laboratory, University of Genova, Viale Benedetto XV, Genova, Italy
| |
Collapse
|
44
|
Ravera S, Bartolucci M, Garbati P, Ferrando S, Calzia D, Ramoino P, Balestrino M, Morelli A, Panfoli I. Evaluation of the Acquisition of the Aerobic Metabolic Capacity by Myelin, during its Development. Mol Neurobiol 2015; 53:7048-7056. [PMID: 26676569 DOI: 10.1007/s12035-015-9575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
Our previous reports indicate that the electron transfer chain and FoF1-ATP synthase are functionally expressed in myelin sheath, performing an extra-mitochondrial oxidative phosphorylation (OXPHOS), which would provide energy to the nerve axon. This supports the idea that myelin plays a trophic role for the axon. Although the four ETC complexes and ATP synthase are considered exquisite mitochondrial proteins, they are found ectopically expressed in several membranous structures. This study was designed to understand when and how the mitochondrial OXPHOS machinery is embedded in myelin, following myelinogenesis in the rat, which starts at birth and continues until the first month of age. Rats were sacrificed at different time points (from day 5 to 90 post birth). Western blot, immunofluorescence microscopy, luminometric, and oximetric analyses show that the isolated myelin starts to show OXPHOS components around the 11th day after birth and increases proportionally to the rat age, becoming similar to those of adult rat around the 30-third day. Interestingly, WB data show the same temporal relationship between myelinogenesis and appearance of proteins involved in mitochondrial fusion and cellular trafficking. It may be speculated that the OXPHOS complexes may be transferred to the endoplasmic reticulum membrane (known to interact with mitochondria) and from there through the Golgi apparatus to the forming myelin membrane.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy.
| | - Martina Bartolucci
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Patrizia Garbati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via de Toni 5, 16132, Genova, Italy
| | - Sara Ferrando
- DISTAV, University of Genova, C.so Europa 26, 16132, Genova, Italy
| | - Daniela Calzia
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Paola Ramoino
- DISTAV, University of Genova, C.so Europa 26, 16132, Genova, Italy
| | - Maurizio Balestrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via de Toni 5, 16132, Genova, Italy
| | - Alessandro Morelli
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| |
Collapse
|
45
|
Bartolucci M, Ravera S, Garbarino G, Ramoino P, Ferrando S, Calzia D, Candiani S, Morelli A, Panfoli I. Functional Expression of Electron Transport Chain and FoF1-ATP Synthase in Optic Nerve Myelin Sheath. Neurochem Res 2015; 40:2230-41. [PMID: 26334391 DOI: 10.1007/s11064-015-1712-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/23/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
Our previous studies reported evidence for aerobic ATP synthesis by myelin from both bovine brainstem and rat sciatic nerve. Considering that the optic nerve displays a high oxygen demand, here we evaluated the expression and activity of the five Respiratory Complexes in myelin purified from either bovine or murine optic nerves. Western blot analyses on isolated myelin confirmed the expression of ND4L (subunit of Complex I), COX IV (subunit of Complex IV) and β subunit of F1Fo-ATP synthase. Moreover, spectrophotometric and in-gel activity assays on isolated myelin, as well as histochemical activity assays on both bovine and murine transversal optic nerve sections showed that the respiratory Complexes are functional in myelin and are organized in a supercomplex. Expression of oxidative phosphorylation proteins was also evaluated on bovine optic nerve sections by confocal and transmission electron microscopy. Having excluded a mitochondrial contamination of isolated myelin and considering the results form in situ analyses, it is proposed that the oxidative phosphorylation machinery is truly resident in optic myelin sheath. Data may shed a new light on the unknown trophic role of myelin sheath. It may be energy supplier for the axon, explaining why in demyelinating diseases and neuropathies, myelin sheath loss is associated with axonal degeneration.
Collapse
Affiliation(s)
- Martina Bartolucci
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Ravera
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Greta Garbarino
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Paola Ramoino
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Daniela Calzia
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132, Genoa, Italy
| | - Alessandro Morelli
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Isabella Panfoli
- Biochemistry Laboratory, Department of Pharmacy (DIFAR), University of Genova, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|